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1 Prelude

Fluids

The water in the canals of Amsterdam, the air circulating in the atmosphere,
and for example our morning coffee, have a common property: they are all fluids.
By definition, they tend to assume the form of the vessel they are contained in,
contrary to solid systems which have a defined form. Hence, differently from
common language, in physics the term fluid refers to both liquid and gas phases
of matter.

The theoretical model able to capture the behavior of a general fluid is fluid dy-
namics, also referred to as hydrodynamics. The power of this formalism is due to
its ability in effectively describing a fluid as a collective medium, neglecting the
contributions of all the individual particles. For example, in order to study how
ocean currents spread out, it is certainly not necessary to know how all the water
molecules move in water, which would be quite a complicated if not impossible
task to perform. For this reason fluid dynamics turns out to be a very satisfactory
and useful description currently used in a wide range of physical applications, from
weather forecasts to the study of air interacting with solid surfaces, such as the
wings of an airplane.

Although hydrodynamics is a very general description, valid for any fluid, clearly
not every fluid behaves in the same way, for example, honey is more reluctant
to motion than water. This means that the fluid dynamical description must be
supplemented with some additional intrinsic parameters, different for every fluid,

1
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1. Prelude

and depending on how specifically the individual particles interact with each other,
for example the viscosity. The latter measures how dissipative the fluid is, that is
how much energy is lost in heat when moving parts of the fluid. In other words,
it describes how resistant the fluid is to motion or to movements of an object in
its interior. Honey is an example of a very viscous fluid moving in general very
slowly, while water, on the contrary, has a very low value of the viscosity which
manifests in its ability to flow very well. The viscosity, and the other intrinsic
parameters, can either be measured in experiments or theoretically derived from
the microscopic particle description (if any), which governs the behavior of the
individual particles of a fluid. There are cases in which such a computation can
be performed and other cases, when the particles are very interacting, or strongly
coupled, in which computations can be very difficult, if not impossible. Most of our
current theoretical tools are in fact better adapted to the opposite regime where
systems are weakly coupled, that is almost non interacting.

Besides the common types of fluids mentioned above, fluid behavior is present
in more exotic places such as at the Relativistic Heavy Ion Collider (RHIC) in
Brookhaven, US and at the Large Hadron Collider (LHC) in Geneva, Switzerland.
In these two laboratories there have been ongoing experiments which, among oth-
ers, collide two oppositely accelerated beams of atoms at very high energy. The
energy is so high that upon impact, the atoms dissolve in their elementary con-
stituents, the so-called quarks and gluons. For a very short time, before cooling
down and recombining into atoms, these particles behave collectively as a strongly
coupled fluid at a very high temperature and high density, which goes under the
name of quark-gluon plasma1. The environment created in these experiments re-
produces the characteristics of the universe shortly after the Big Bang. At that
time it was too hot for the atoms to form, and the quark-gluon plasma was dom-
inating the scene. Hence, analyzing the behavior of the quark-gluon plasma pro-
vides a window into the universe in its very early stages and helps to explain why
the universe is the way we observe it. However, in order to make any prediction to
be compared with experimental data, one needs the actual values of the intrinsic
properties, which, as we said, are necessary inputs of the hydrodynamic descrip-
tion of a fluid. Given that the quark-gluon plasma is a strongly coupled fluid, the
computation of even the viscosity coefficient turns out to be a very difficult task.

***
1A plasma is another phase of matter which behaves as a fluid. The difference between a

common liquid and a plasma is that the plasma is made of charged particles while the liquid is
made of neutral ones. The particles in the quark-gluon plasma carry charges under the quantum-
chromodynamic force, the force responsible of keeping together the nucleus of an atom.

2
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Fluids in gravity

Yet another place where fluids can be found is in the context of gravity and in
particular within black holes. The key property of these objects, believed to be
present in the center of every galaxy of our universe, is that they attract everything
with such a strong gravitational force that even light cannot escape after crossing
a certain surface, the so-called event horizon. It turns out that this surface is
dynamical, changing over time. In fact if we were to throw something into a black
hole, its event horizon and the external space, or to say it better spacetime2, would
start to oscillate in a similar way as if we were to throw a stone into water. Very
suggestively, given that the event horizon acts as a surface of no-return where
energy is lost, black holes are naturally dissipative objects. This peculiar behavior
resembles very much fluid dynamics and has led to many developments to make
these statements more precise.

These ideas came about for the first time in the 1980’s in work which culminated
in the formulation of the so-called membrane paradigm. In this model a surface, or
membrane, covers completely any black hole whose interior is reflected in simple
physical properties of the membrane itself. In particular, in one of the many
formulations of the paradigm, this membrane behaves as a fluid, the membrane
fluid. It turns out, however, that this fluid has a negative viscosity, which is a
weird and seemingly unphysical property since it translates in the ability of the
fluid to produce energy along the flow rather than loosing it. Hence, even though
the membrane paradigm provides a great simplification for studying black holes
as we can see them, for example, from earth where the interior of any black hole
is always unaccessible, perhaps the fluid interpretation of such a membrane might
be misleading. In fact a better way in which fluid behavior appears in gravity is
given in the context of holography.

Holography, developed in the mid 1990’s, is the idea that any gravitational theory,
a theory of a dynamical spacetime or geometry, can be equivalently described by
a theory of particles in one dimension less. Pictorially the additional dimension
and gravity should be thought of as a hologram, mathematically encoded on some
lower-dimensional surface in the language of a theory of particles where gravity is
absent. In other words, holography establishes an intriguing equivalence between
two very different theories which should be thought of as being the same. One only
needs to know how to decode the hologram to go, for example, from the geometrical
description to a particle description. Most importantly and surprisingly, it turns
out that this equivalence is realized in a very crucial way, that is, when one theory

2Spacetime in Einstein’s theory of gravity can be thought of as a grid or fabric. The presence
of a mass distorts spacetime and the presence of a perturbation which changes over time can
create propagating waves of the spacetime itself: gravitational waves.

3
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is weakly coupled the other is strongly coupled and vice versa, and the two theories
are said to be dual to each other. This statement has very profound consequences
because, when it is convenient, one can use the weakly coupled side of the duality
to tackle quantities which in the strongly coupled theory one would not have been
able to compute.

This very suggestive idea of holography so far has been made very precise only
for a specific class of spacetimes, those which are negatively curved3 called anti-de
Sitter. By precise we mean that there is now a holographic dictionary, a recipe
capable to explicitly translate quantities expressed in the language of geometry
to quantities defined in the language of the particle theory and vice versa. For
example, a fixed empty anti-de Sitter spacetime corresponds to have no particles
in the dual theory. A black hole in anti-de Sitter is dual to a set of particles
which are at equilibrium at a certain temperature. Following this analogy, slightly
perturbing the geometry of this black hole beautifully corresponds to a collective
behavior of the particles around the equilibrium configuration in the dual theory,
and they effectively behave as a fluid. It turns out this fluid is very closely related
to the strongly coupled quark-gluon plasma discussed before. Very impressively
now, its intrinsic properties, such as the viscosity, can be computed very easily by
analyzing the geometry of the black holes. Hence, not only holography shows how
fluid behavior can be realized in gravity, but it can also be used as a theoretical tool
to deal with strongly coupled theories of particles by means of their gravitational
counterparts.

***

Motivation and main results

In this thesis we are going on a journey between the concepts presented above.
We are interested both in what gravity can tell us about fluid dynamics itself, as
well as how fluid dynamics can help us in understanding better holography.

For example, we said that hydrodynamics is a valid description encompassing the
dynamical behavior of any fluid, but it turns out not to be unique. There is one
conventional formulation which is very old and well-established, and more recent
formulations, which are motivated by the desire of rewriting the theory more sys-

3An example of a negatively curved spacetime is the saddle surface, as opposed to a positively
curved spacetime of which an example is the sphere.

4
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tematically, in a language which possibly requires less principles. However, these
novel approaches are less studied and it is not clear how reliable they are. In this
thesis we help clarifying this point by means of holography. Using a gravitational
theory, more precisely a perturbed black hole in anti-de Sitter spacetime, we show
that fluid behavior appears as well, precisely in one of these non-conventional for-
mulations. We are therefore able to confirm, at least within our example, that
certain features of these formulations are robust.

In this thesis we also find yet another evidence of fluid behavior from a slightly
different way of implementing holography. Usually in holography the theory of
particles is encoded on a lower dimensional surface which is located at the border
of the anti-de Sitter spacetime. Here we consider this surface to be somewhere
in the interior instead, without specifying the actual background geometry but
keeping it general up to a certain extent. In this way we are able to generalize the
holographic dictionary, in the fluid regime, to spacetimes which are not necessarily
anti-de Sitter but also, for example, flat. We also push this surface closer to the
event horizon of a black hole to see whether the fluid holographically encoded on
this surface behaves similarly to the membrane fluid introduced before. We show
that the two fluids are different in many ways, clarifying some long-standing issues
with the fluid interpretation of the membrane paradigm.

However, the membrane paradigm does not need to be totally dismissed since it
has yet another more general definition. In this case the interior of a black hole is
also completely neglected, and one only retains the key information that anything
hovering outside the event horizon will eventually fall in and not come back. In this
thesis we question whether this approximation to black holes works and we show
that it does up to some special cases. The exception lies in those perturbations of
the black hole geometry which are not captured by hydrodynamics. To be more
precise when perturbing a black hole before the onset of the situation where fluid
dynamics works very well, there is another very complicated configuration where
not only there are propagating waves but also other disturbances which decay very
fast. Holography is powerful enough that is capable to capture this behavior as
well, whilst the membrane paradigm turns out to be slightly more restrictive.

***

5
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2 Introduction and

Overview

On different formulations of Fluid Dynamics and the

search for Dissipation within Dynamical Horizons

This Chapter is devoted to give a more detailed and self-contained overview of the
concepts which will be relevant for this thesis. We start with a brief introduction
to fluid dynamics and proceed our journey moving to the gravitational setting
through the membrane paradigm and holography. A summary of the notation can
be found at the end of this manuscript.

2.1 Fluid dynamics

Fluid dynamics is the theory which describes the collective behavior of an in-
teracting quantum field theory. Consider a system at thermal equilibrium at a
temperature T and allow fluctuations. If these fluctuations are sufficiently long-
wavelength such that their gradients are small with respect to the background
temperature, then one can always divide the system in domains in which the
temperature is locally roughly constant T (x), and the system is said to be at local
thermal equilibrium. Fluid dynamics is the theory that governs the interactions be-
tween these domains named fluid particles, defined to be infinitesimal with respect
to the size of the system but big enough to contain a large amount of microscopic
constituents whose dynamics is neglected. Hence, more precisely, hydrodynamics
is a valid description if there is a separation of scales between the wavelength λ of
the perturbations and the so-called mean free path lmfp, i.e. the scale measuring

7
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2. Introduction and Overview

the distance between two subsequent collisions of the microscopic constituents

lmfp

λ
� 1. (2.1)

In the following we give a brief overview on the different formulations of relativistic
fluid dynamics for the case of an uncharged fluid in d+1 dimensions for simplicity1.
We start with the well-known conventional description based on a conserved stress-
energy tensor, its conservation equations and a local entropy current. Subsequently
we discuss some newer formulations in which equations of motion are obtained by
means of a variational principle. The general aspects of fluid dynamics are going
to be used extensively throughout this thesis in the context of fluids in gravity, in
particular the novel formulations are going to be implemented in Chapter 3.

2.1.1 Conventional formulation

A fluid is a system at local thermal equilibrium and one can always define local
variables associated to the fluid particles. For an uncharged fluid they can be
chosen to be, for example, the temperature T (x) and the fluid velocity ua(x),
normalized to uaua = −1. The system is characterized by a symmetric stress-
energy tensor Tab and its conservation equations

∇aT ab = 0. (2.2)

The crucial assumption in fluid dynamics is in choosing the stress tensor to be
expressed in terms of the fluid variables through the so-called constitutive relations.
In this way the amount of independent degrees of freedom for the stress tensor
reduces drastically from (d + 1)(d + 2)/2 to only d + 1, and therefore eq. (2.2) are
a closed system, see e.g. [5] for a review.

Hydrodynamics is an effective theory where the fluid variables are assumed to
depend slowly on space and time. The constitutive relations can be generically
provided in a derivative expansion of the fluid variables, therefore the stress tensor
can be assumed to be given

Tab = T
(0)
ab + T

(1)
ab + T

(2)
ab + . . . , (2.3)

where each term contains more and more derivatives, becoming increasingly irrel-
evant according to the expansion parameter set in eq. (2.1). At leading order, for
example, we simply have

T
(0)
ab = P (γab + uaub) + ε uaub, (2.4)

1Generalizations to charged fluids are straightforward.

8
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2.1. Fluid dynamics

where γab is the background fluid metric, ε(T ) is the energy density and P (T ) is the
pressure. The latter is determined by an equation of state P = P (ε), characteristic
of the fluid under consideration.

First order hydrodynamics

To determine the form of the stress tensor at first order, define all the symmetric
tensor structures constructed out of derivatives ∇aT and ∇aub compatible with
the symmetries of the system. Then select the ones which are on-shell independent,
i.e. inequivalent after imposing the equations of motion (2.2) with the leading order
expansion (2.4). In this way, for example, on can trade temperature derivatives
for derivatives of the velocity field. The latter can be recasted into shear, vorticity,
acceleration, and expansion2 respectively as

σab = hc
〈ahd

b〉∇cud; ωab = ∇[aub]; aa = uc∇cua; θ = ∇cuc, (2.5)

where we have defined hab = γab + uaub to be the projector operator along the
directions transverse to ua. Then, the most general constitutive relation for the
stress tensor at first order is given by a linear combination of symmetric tensor
structures constructed out of (2.5), the metric γab, and the fluid velocity ua as in

T
(1)
ab = −2 η σab − ζ θ hab. (2.6)

The undetermined coefficients η(T ) and ζ(T ) are the so-called shear and bulk
viscosity respectively and they incorporate the dissipative nature of a physical
fluid. These values must be provided experimentally or derived from a microscopic
theory if it is available, see e.g. [6]. Notice that the term ωab is not allowed since
it is antisymmetric. A term of the form u(aab) would be perfectly fine instead,
but it turns out not to be relevant since it can be canceled by field redefinitions.
In fact the fluid variables T and ua are only well defined at equilibrium. Out of
equilibrium there is always an ambiguity in shifting T → T +δT and ua → ua+δua

by choosing δT and δua to be proportional to the derivatives of the fluid variables.
Usually one chooses to work in a particular reference frame where the fluid velocity
becomes unambiguously defined. A standard choice is the Landau frame defined
as

T
(n)
ab ub = 0 with n ≥ 1, (2.7)

where the velocity field is aligned with the energy flow Tabub = −ε ua. However,
one could also choose to work with other reference frames or even with a frame
invariant formulation, see e.g. [7]. No frame is preferred by nature reflecting the

2We refer the reader to the end of this thesis for a summary on the notation.
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fact that only the value of the stress-energy tensor Tab matters and not how it is
expressed in terms of ua and T .

One can proceed analogously at higher orders in derivatives by defining the on-shell
inequivalent tensor structures build up from derivatives of the fluid variables. To
each independent tensor structure entering in the constitutive relation of the stress
tensor one associates an arbitrary function: the transport coefficient, as we did in
(2.6) where the transport coefficients are exactly the shear and bulk viscosity. It
turns out that based on symmetry grounds alone, T

(2)
ab for an uncharged fluid can

be parametrized by 15 such independent transport coefficients, see e.g. [8].

The entropy current

Another physical requirement that has to be implemented in the fluid dynamics
approach is the existence of a local entropy current Ja. In the same way as the
entropy increases when a system evolves from one global equilibrium configuration
to another, in fluid dynamics we should also require the local entropy current
to increase. This statement translates into a local form of the second law of
thermodynamics

∇aJa ≥ 0, (2.8)

which we will generically refer to as the entropy constraint. This equation can be
used to restrict the number of independent transport coefficients. For example,
at first order this constraint gives conditions on the values of the shear and bulk
viscosity

η ≥ 0; ζ ≥ 0. (2.9)

It has been shown that at second order there are no more sign-definite conditions
on the transport coefficients similar to (2.9), see e.g. [8]. Nevertheless, there are
5 relations among the 15 independent coefficients. This comes from the fact that
the divergence of the entropy current would admit negative terms which must
be set to zero to satisfy the entropy constraint (2.8). These relations reduce the
stress tensor at second order to effectively a 10 parameter family of solutions.
This procedure, although systematic and straightforward, can become technically
quite involved beyond the first order in a derivative expansion. It is natural to
seek for a principle which would allow to reformulate fluid dynamics without the
requirement of the existence of a local entropy current.

Non relativistic fluid dynamics

Let us briefly comment on the regime where fluid velocities are small compared
to the speed of light |�v| � 1. In this case conservation equations (2.2) with the

10
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stress energy tensor up to first order (2.6) become the continuity equation for the
mass density ρ

∂tρ + ρ ∇kvk + vi∇iρ = 0, (2.10)

and the well-known Navier-Stokes equations(
∂tvi + vj∇iv

j
)

ρ = −∇iP + ∇jΠj
i , (2.11)

with
Πij = η

(
∇ivj + ∇jvi − 2

d
qij ∇kvk

)
+ ζ qij ∇kvk, (2.12)

where qij is the space metric. This non relativistic limit is obtained by assuming
the usual relativistic velocity parametrization ua = γ(1, �v) with γ = (1−viv

i)−1/2,
a non relativistic equation of state for which P � ε and requiring the energy
density to be dominated by mass density ε ∼ ρ.

***

2.1.2 Effective action formulation

Hydrodynamics is an effective theory valid at low energies and as such it would be
desirable to understand it from first principles following the rules of an effective
field theory. This entails in postulating an effective action as a functional of cer-
tain local fields compatible with required spacetime and internal symmetries, and
the Euler-Lagrangian equations should carry the same information as the conser-
vation equations of the stress-energy tensor (2.2). The complication here is that
the system is at finite temperature and out of equilibrium, and the usual quan-
tum field theory path integral adapted to describe pure initial and final states
cannot be directly applied here. Given that a fluid dynamical system is at local
thermal equilibrium with small deviations from the global thermal equilibrium
configuration, it is widely believed that a complete treatment should be given in
terms of the Schwinger-Keldysh formalism [9, 10], which is well suited to describe
finite temperature systems in a time-varying setup as the dissipative fluids under
consideration where initial and final states are mixed. Some progress has been
made in this direction [11, 12, 13, 14, 15, 16], see also [17, 18] for cases including
thermodynamical fluctuations. However, it is fair to say that a complete system-
atic understanding of a variational principle formulation of fluid dynamics is still
absent.

11
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In this section we are going to restrict to the case of relativistic perfect fluids,
those which do not convert kinetic and potential energy to heat and therefore are
dissipationless, i.e. do not exhibit entropy production

∇aJa = 0. (2.13)

While it is questionable whether this restriction encompasses any physical system
at all, let us for the moment be agnostic about this issue and take it as a useful
starting point towards a complete and systematic variational principle formulation
of fluid dynamics including dissipation.

The degrees of freedom and the symmetries

An effective action approach to perfect fluid dynamics has been initiated in [19]
and revisited more recently in [20, 21, 22], see also [23, 24, 25]. The Lagrangian
of perfect fluids in d + 1 dimensions can be given in terms of d scalar fields

φI = φI(t, �x) where I = 1, . . . , d. (2.14)

Perhaps the most natural interpretation of such scalars is that of a map at fixed
lab-frame time t between space coordinates �x labeling the lab-frame (Eulerian
frame) and the internal coordinates φI . The latter label the comoving (Lagrangian)
frame, i.e. φI(t, �x) describes which volume element φI is seen by a fixed observer
at position �x when the lab-frame time t is varied. The internal parametrization of
the fluid elements is not unique, there is always an obvious freedom of shifting or
rotating the fluid elements

φI → φI + cI and φI → RI
J φJ . (2.15)

It turns out, however, that the description of perfect fluids requires a much larger
symmetry group: invariance under all reparametrizations that do not compress or
dilute fluid cells. This is expressed by demanding invariance of the action under
the volume-preserving diffeomorphisms in the space of φI fields:

φI → ξI(φJ) with det
(

∂ξI

∂φJ

)
= 1. (2.16)

In particular this invariance is what encodes the physical requirement that a fluid
does not resist to non compressional deformations, i.e. shear stresses. In the case
of a jelly, a solid with a continuous rotational invariance, the internal symmetry
would be reduced to rotational and translational invariance only (2.15), such that
a jelly responds to shear stresses as well, see e.g. [26]. In the case of solids,
one instead imposes relevant discrete rotational and translational invariance. Let

12
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us emphasize that volume-preserving diffeomorphisms invariance is not the same
as requiring a fluid to be incompressible. Incompressibility is the regime of fluid
dynamics in which ∇·�v ∼ 0, and the mass density is constant along the fluid flow as
can be seen from (2.10). The difference between a generic and an incompressible
fluid is that the latter does not feature compression (sound) waves, while the
requirement of volume-preserving diffeomorphisms invariance holds for both type
of fluids as long as they are perfect, non dissipative.

The leading order effective action

The effective action for a relativistic perfect fluid is given by

S =
∫

dd+1x
√

−γ F (s), (2.17)

where
s = s0

√
det ∂aφI ∂aφJ , (2.18)

s0 is a suitable normalization constant and γ is the determinant of the background
metric γab. The argument s of the yet unspecified scalar function F is propor-
tional to the unique invariant of spacetime and internal symmetries that can be
constructed out of the fields φI and the background metric γab restricting to the
lowest possible number of derivatives. The combination in the square root of (2.18)
is dimensionless given that the fields φI are the comoving coordinates and carry
the length dimension.

In order to make contact with the developments of the previous section, let us
derive the conserved energy-momentum tensor. By varying the action (2.17) with
respect to the background metric γab, it takes the form

Tab = − 2√−γ

δS

δγab
= −sF ′(s)B−1

IJ ∂aφI∂bφJ + F (s)γab with BIJ = ∂aφI∂aφJ

(2.19)
and becomes the energy-momentum tensor of a perfect fluid (2.4) upon identifying
the energy density and the pressure with

ε(s) = −F (s); P = −F ′(s)s + F (s). (2.20)

The fluid velocity ua can be derived assuming it is unit-normalized uaua = −1
and that the scalar fields φI are the comoving coordinates, that is their derivatives
must be orthogonal to the fluid flow: ua∂aφI = 0. These requirements select the
unique velocity field to be

ua = Ja/s where s =
√

−JaJa (2.21)

13
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and

Ja = s0
∗(dφ1 ∧ · · · ∧ dφd) =

1
d!

s0 εa b1...bdεI1...Id
∂b1φI1 . . . ∂bd

φId (2.22)

which is an identically conserved current, as the spacetime hodge dual of the
volume form in the configuration space. With the identifications (2.20) and (2.21)
the scalar s in (2.18) assumes the interpretation of being the entropy density of the
fluid and the vector (2.22) as the identically (off-shell) conserved entropy current.
The physics of these fluids is therefore intrinsically non dissipative.

The equations of motion for φI derived from the effective action (2.17) turn out to
be the conservation of the energy-momentum tensor (2.4) projected transversally
to the flow (

γab + uaub
)

∇cTcb = 0. (2.23)

The remaining component of the conservation equation ub∇aTab = 0, which incor-
porates the conservation of energy, is implied by the conservation of the entropy
current (2.13).

Higher orders in derivatives

The action (2.17) receives corrections carrying higher number of derivatives of φI

fields
S(0) + S(1) + S(2) + . . . . (2.24)

These corrections can be obtained order by order in a derivative expansion by con-
structing all the possible scalars allowed by volume-preserving diffeomorphisms
symmetry as in [23], see also [25]. However, as it has been shown in [23], at
second order in a derivative expansion the number of independent transport co-
efficients derived by such an effective action turns out to be less than the ones
derived from the conventional formalism, restricted to configurations with no en-
tropy production (2.13). This contrasting result brings us to question whether
volume-preserving diffeomorphisms invariance should be taken as a fundamental
symmetry for perfect fluids after all. Or whether maybe the conventional formal-
ism is incomplete and one needs to consider additional physical constraints. Let
us also mention here that the gravitational calculation in Ref. [27] indicates that
including dissipation requires relaxing the volume-preserving diffeomorphism in-
variance as the exact symmetry at subleading orders in the gradient expansion.
On physical grounds, this can be understood by the presence of shear viscosity
which implies that the fluid responds now nontrivially to shear stresses as well.
This provides an excellent motivation for exploring possible generalizations of the
action (2.17) as well as gravitational embeddings of this problem which we will
pursue in Chapter 3.

14
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The linearized expansion

In the rest of the current section we assume a flat background metric γab = ηab. A
natural way to fix the fluid’s parametrization is requiring that in equilibrium and
on a given time slice the fluid elements are aligned with the spatial coordinates

φI(�x, t) = δI
axa. (2.25)

This configuration spontaneously breaks the spacetime Poincaré symmetry and the
global subgroup of the internal symmetry (2.15-2.16) down to diagonal rotations
and spatial translations. In the presence of broken global symmetries Goldstone
bosons arise. Although there should be one Goldstone boson per broken generator,
it turns out that in the presence of spacetime symmetries not all the Goldstones
are independent, see e.g. [28]. It has been shown in [29], by means of the so-called
coset construction, that the only independent Goldstone bosons correspond to the
breaking of the space and internal translations down to the diagonal combination
thereof. At the linearized level, such Goldstones are realized as perturbations on
top of the equilibrium configuration (2.25)

φi(�x, t) = xi + πi(t, �x), i = 1, . . . , d. (2.26)

In the formula above, we do not distinguish the internal and coordinate indices
anymore since the Goldstone bosons transform under the diagonal combination.

Let us now consider linearizing the fluid’s action (2.17) in the Goldstone fields
(5.21). The Goldstones can be classified according to their orientation with respect
to the propagation direction being longitudinal or transverse

�π = �πL + �πT with �∇ × �πL = 0 and �∇ · �πT = 0. (2.27)

Linearization of the velocity field and the entropy density give

ut = −1 − 1
2

(∂t�π)2 + . . . , �u = ∂t�π + . . . (2.28)

s = s0 + s0∇ · �π − 1
2

s0(∂t�π)2 + . . . (2.29)

and the effective action (2.17) becomes

S(0) =
∫

dd+1x

{
F (s0) − 1

2
F ′(s0)s0

(
(∂t�π

T )2 + (∂t�π
L)2 − c2

s(∇ · �πL)2
)

+ . . .

}
.

(2.30)
The equations of motion, equivalent to the conservation (2.23) of the energy-
momentum tensor (2.2), give the following leading order dispersion relations

πL : ωL = ±cs k, (2.31)
πT : ωT = 0. (2.32)
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The longitudinal Goldstone describes a sound wave. Its group velocity cs is given
by

c2
s =

F ′′(s0)
F ′(s0)

s0 =
P ′(s0)
ε′(s0)

=
∂P

∂ε
. (2.33)

For a conformal fluid for example we have

F (s) ∼ sd+1/d, (2.34)

and the speed of sound takes the familiar form

cs =
1√
d

. (2.35)

The transverse Goldstones do not propagate instead, because they have a trivial
dispersion relation (2.32). This is a direct consequence of the volume-preserving
diffeomorphism invariance of the action (2.17), which at a linearized level acts as
follows

�π(t, �x) → �π(t, �x) + �ξ(�x) with ∇ · �ξ = 0 (2.36)

and does not allow the gradient terms of the form ∇ × �π to appear in the action
(energy).

***

2.1.3 The equilibrium partition function formalism

Let us to conclude this section mentioning yet another alternative formulation
of fluid dynamics which will also be relevant in Chapter 3. This formalism has
been recently proposed in [30, 31] and it relies on an even more restrictive class
of fluids: not only they are dissipationless following (2.13), but also hydrostatic,
that is time-independent. The fundamental quantity in this construction is the
Euclidean generating functional W = − ln Z, where Z is the partition function as a
function of time-independent sources. For an uncharged fluid and at leading order
in a derivative expansion, it is defined as an integral over d spatial dimensions and
a compactified time direction with period T0

W =
∫

dd+1x
√

γ P (T ). (2.37)

The integrand is a function of the temperature T through the pressure P (T ),
and the background metric γab sourcing the stress-energy tensor, assumed to have
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a timelike Killing vector such that it is time-independent. The latter can be
computed as usual by

Tab = − 2
√

γ

δW

δγab
, (2.38)

and at leading order reproduces (2.4) with the identifications

T =
T0√
γtt

; ua =
1

√
γtt

(
1,�0

)
; ε = T s − P ; s = P ′(T ), (2.39)

where γtt is the local redshift factor.

This formalism is very useful in characterizing hydrodynamics without postulating
the existence of an entropy current. Higher derivative contributions to (2.37) can
be constructed by adding all the independent scalars that can be build out of
the derivatives of the background metric. The new stress tensor can be readily
derived using (2.38). By requiring this quantity to be compatible with the more
general stress tensor provided in the conventional formalism, gives relations among
transport coefficients, which turn out to be the same as the ones coming from the
entropy constraint (2.8) as discussed around (2.9). This means that as soon as the
first order hydrodynamic transport has been analyzed, one can trade the existence
of a local entropy current with the requirement of compatibility with hydrostatic
equilibrium. In fact, as shown with some rigor in [32, 33], sign-definite relations of
the type (2.9), which would not be captured by the partition function formalism,
appear only at first order.

Notice that the partition function is given in terms of the pressure and the effective
action of Section 2.1.2 as a functional of the energy density. Naturally these two
formalisms should be related by a Legendre transform with respect to the entropy
density P (T ) = T s − ε(s). It has been shown in [34] that this is exactly the case,
and in particular, together with a companion paper [35], the authors show that
there exists a more general Lagrangian formalism which encompasses all the cases
discussed above, and also able to incorporate all the possible transport coefficients,
even those which are not reproduced by the effective action formalism. To under-
stand the relations among the various approaches to fluid dynamics we set up a
precise gravitational holographic dual for effective actions and partition functions
in Chapter 3. With such a description at hand one might be able to understand
in detail the separation between dissipative and dissipationless transport in flu-
ids and find a path towards a complete formulation of a variational principle for
general (dissipative) fluid dynamics.

***

17



209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva

2. Introduction and Overview

2.2 Fluids in gravity

It has been appreciated for quite a while that gravity, and in particular black hole
physics, can be related to fluid dynamics. First hints of this behavior appear in the
context of the membrane paradigm. Even if this is an old-standing topic, it has
many formulations that seemingly not everyone has agreed upon. In this Section
we provide a general historical introduction on this subject hopefully clarifying
some confusions. These concepts will be relevant in Chapter 3 where the mem-
brane paradigm will act as a useful approximation for the black hole interior and
in Chapter 5 where we will explore the limits of validity of such an approximation
scheme. We then continue our journey moving to the holographic interpretation
of gravity where fluid dynamics arises quite naturally. Holography will be relevant
throughout this thesis and in particular we will use it for embedding fluid effec-
tive actions in gravity in Chapter 3 and for constructing general hydrodynamic
solutions to Einstein gravity in the interior of spacetime in Chapter 4.

2.2.1 The membrane paradigm

Black holes are very complicated objects which have fascinated physicists ever since
a few years after the formulation of general relativity. They form presumably after
the collapse of very massive stars and continue to grow by acquiring mass from
surrounding matter. It is nowadays widely accepted that at the center of every
galaxy sits a supermassive black hole. However, due to the fact that black holes do
not emit any type of radiation a part from the very weak Hawking one [36], they
have so far escaped any direct detection. Current astronomical research is focused
on indirect detections based on black hole interactions with their surroundings, see
e.g. [37] for a review. Theoretical models are necessary to understand how those
interactions come about and what to look at when searching for black hole signals
in the sky. Typical examples are the study of gravitational waves created from
colliding black holes [38] or gamma ray bursts obtained from hot regions of the
accretion disk of spinning black holes in the presence of a companion star, see also
[39]. Now, using the full machinery of general relativity to model these systems
can become quite nasty and it is often useful, if not strictly necessary, to rely on
a certain degree of approximation.

The simplest way to model a black hole is to neglect whatever is behind the event
horizon. From the point of view of an asymptotic observer who can never reach
the interior of a black hole this is after all everything that is needed, right? Well, if
we were simply to truncate all computations at the event horizon we would arrive
at nonphysical conclusions. Say there is an electric charge right outside the black
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Figure 2.1: Electric field lines created by a charged particle outside the event
horizon of a black hole. If we were to naively neglect the interior of a black hole,
Gauss law would not be satisfied (left). The assumption of an induced charge on
the event horizon restores effectively the validity of the Gauss law (right).

hole horizon, its electric field lines would intersect the horizon and stop inevitably
violating the Gauss law. The correct thing to do is to require additional boundary
conditions, such as the presence of induced charges on the horizon as suggested
by R. Hanni and R. Ruffini in [40] in a way that the total charge is vanishing, see
Figure 2.2. Analogously, R. Znajek in [41] and independently T. Damour in [42]
introduced the concept of horizon current in order to complete all circuits entering
and leaving the horizon, which now behaves as if it had finite conductivity. A
few years later in [43], see also [44] for a review, T. Damour also showed how
the horizon surface of a black hole in Einstein gravity behaves as a fluid bubble
obeying dynamical Navier-Stokes equations with finite shear and bulk viscosity.

The set of all these electromagnetic and mechanical analogies for black hole physics
form comprehensively what goes under the name of the Membrane Paradigm. The
interior of a black hole is unaccessible to an external observer and can be effec-
tively replaced by a membrane endowed with simple physical properties, providing
convenient mental pictures useful for an astrophysical point of view.

This membrane was initially thought to be located at the event horizon. However,
problems can arise due to the peculiar nature of the horizon, which is a null globally
defined hypersurface and it is hardly accessible to an external observer. Hence,
for practical purposes, it has been suggested by K. Thorne and collaborators in
[45, 46] to move the membrane to a stretched horizon when necessary. The latter is
a timelike hypersurface, a very small distance away from the horizon itself, invoked
during explicit calculations and sent towards the event horizon at the end.
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Applications of the membrane paradigm in the realm of astrophysics mainly use
the electromagnetic properties of the membrane. Examples are the study of the
magnetosphere of a black hole surrounded by a magnetized accretion disk [45] and
jets emitted by a spinning black hole [47], see [48] for many more applications and
further references. The membrane paradigm has also been applied in the context
of holography as we will discuss at the end of this Chapter.

Let us summarize what we have learned so far in a generic statement:

The membrane paradigm: as a way to replace the interior of a black hole with
a membrane living on the horizon/stretched horizon endowed with simple physical
properties.

In the reminder part of this Section we are going to enter in more details. We first
define the electromagnetic and gravitational membrane as they appeared histor-
ically and make a precise distinction with what we call the membrane fluid, yet
another interpretation of the membrane paradigm. Subsequently we give a more
modern and compact definition of the membrane as a boundary condition and
show how it can be coupled to the external spacetime.

The electromagnetic membrane

Let us for illustration derive the electromagnetic properties of the membrane on a
stretched horizon in 3+1 dimensions following closely the original formulation of
[45]. We will show how the induced charge, the electric current and the horizon
conductivity arise on the membrane as a consequence of the horizon being a regular
place.

Fields on a stretched horizon can be probed by fiducial observers (FIDOs). They
are confined to the timelike hypersurface, have a constant acceleration and behave
singularly when the stretched horizon is pushed towards the horizon. Observers
which exhibit regular behavior instead are the freely falling (FFOs) ones. It turns
out that FIDOs and FFOs are in relative motion with respect to each other along
the normal direction �n to the stretched horizon at approximatively the speed of
light �β = β �n, see [48]. The closer the stretched horizon is to the horizon, the
faster the two types of observers move as β = 1 − O(α2) and α = √

gtt is the
redshift parameter such that α → 0 when the horizon is approached.

The electric �EFFO and magnetic �BFFO fields as measured by a FFO are regular
on the horizon, hence they are of order O(1). The corresponding electromagnetic
fields �E and �B as seen by a FIDO can be obtained by a simple Lorentz transfor-
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mation with a Lorentz factor γ = O(α−1)

�E⊥ = �EFFO
⊥ , �E|| = γ ( �EFFO

|| + �n ∧ �BFFO
|| ) + O(α), (2.40)

�B⊥ = �BFFO
⊥ , �B|| = γ ( �BFFO

|| − �n ∧ �EFFO
|| ) + O(α),

where ⊥ and || denote normal and tangential components to the stretched horizon
respectively. Notice that the tangential components are singular at the horizon.
These expressions can be rewritten in a compact form

�E|| = �n ∧ �B|| + O(α), �B|| = −�n ∧ �E|| + O(α) (2.41)

and have a simple physical interpretation. In the near-horizon limit when α → 0,
local observers on the stretched horizon see the tangential electromagnetic field to
behave as an ingoing plane wave.

One can define the horizon charge density q to terminate the normal component
of the electric field in order to satisfy Gauss’s law, and the horizon current density
�J|| to complete Ampere’s law

q =
1

4π
E⊥, 4π �J|| ∧ �n = �B||. (2.42)

Using (2.42) into (2.41) we obtain Ohm’s law on the horizon

�J|| = σ �E|| with σ =
1

4π
, (2.43)

where σ is the horizon conductivity. Equations (2.42) together with (2.43) form
the celebrated electromagnetic membrane.

The gravitational membrane

We now turn our attention to the case of gravitational interactions of the black
hole with surrounding matter. As the electromagnetic tensor field Fμν in 3 + 1
dimensions has been split into an electric field Em = Fm0 and a magnetic field
component Bm = εmnpF np, gravitational perturbations parametrized by the Weyl
tensor Cμνρσ can be analogously split according to [46] into a gravitoelectric field
E and a gravitomagnetic field B

Emn = Cm0n0, Bmn =
1
2

ε0mpq Cpq
n0, (2.44)

where ε is the Levi-Civita tensor in 3+1 dimensions. Similar arguments developed
in the previous section apply to normal-normal components E⊥⊥, B⊥⊥, normal-
tangential components E⊥||, B⊥|| and tangential-traceless components E|| ||, B|| ||
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of the gravitoelectromagnetic fields. In fact requiring FFOs to be well behaved at
the horizon selects the ingoing plane wave behavior for the normal-tangential and
the tangential-tangential components

�E⊥|| = �n ∧ �B⊥|| + O(α), �B⊥|| = −�n ∧ �E⊥|| + O(α), (2.45)
(E|| ||)mn = εmpq npBqn

|| || + O(α), (B|| ||)mn = −εmpq npEqn
|| || + O(α),

analogously to (2.41).

Despite such a straightforward generalization to incorporate gravitational per-
turbations, the interpretation of this gravitational membrane in terms of simple
physical properties is now somehow obscured. There is no natural way to see the
gravitational membrane’s properties in terms of charges, currents etc.

The membrane fluid

The gravitational properties of the membrane are better known through the de-
velopments of T. Damour in [43, 44]. He showed that Einstein equations in d + 2
dimensions describing the evolution of the horizon of a black hole can be recasted
into nonrelativistic dissipative Navier-Stokes equations3

LlPi + θ Pi = −∇iP + 2 η ∇jσj
i + ζ ∇iθ − fi, (2.46)

where σij is the shear tensor and θ is the volume expansion with associated shear
η and bulk viscosity ζ respectively

η = 1/2; ζ = − (d − 1)
d

. (2.47)

The momentum surface density is Pi, P is the fluid pressure, fi is an external
force per unit surface area, ∇i is the covariant derivative in d spatial dimensions
and Ll is the Lie derivative along the time direction represented by the vector l

which is tangent and normal to the event horizon, which is a null hypersurface.
Navier-Stokes equations (2.46) characterize what we call the Membrane Fluid with
specific universal transport properties (2.47), among which an unphysical negative
bulk viscosity (2.47), see the condition (2.9) coming from the entropy current
constraint.

3These equations can be mapped to (2.11) with simple identifications of the shear tensor, the
volume expansion, the momentum density, and the the substantive derivative (derivative taken
along the path moving with velocity �v)

σij =
1
2

(
∇ivj + ∇jvi − 2

d
qij ∇kvk

)
; θ = ∇kvk; Pi = ρ vi; Ll = ∂t + vi∇i,

and fi is an additional external force per unit area.
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Although the fluid interpretation of the membrane paradigm is very suggestive,
as we shall see explicitly in Chapter 5, eq. (2.46) are problematic in many ways.
They are just a rewriting of a subset of Einstein equations in terms of certain
suitable geometrical quantities and never include any information on the regularity
property of the horizon as opposed to e.g. eq. (2.45). Moreover, as we will see
explicitly in Chapter 5, these membrane fluid equations are part of a bigger system
of coupled equations which comprehensively describe the evolution of the null
horizon surface, but do not have a hydrodynamic interpretation. This means, in
particular, that the evolution of the part of the spacetime external to the horizon
determines the dynamics of the horizon itself. A recent interesting generalization of
the membrane paradigm where horizon dynamics decouples and can be considered
as an isolated system has been given in [49, 50] in the large-d limit of gravity4.
All these subtleties bring us to question whether there is a better, compact and
comprehensive formulation of the membrane paradigm which encompasses the
necessary properties of the black hole interior, that is the horizon being a regular
place, and is useful for applications. We will address this issue in the following
subsection.

The membrane paradigm as a boundary condition

In the last few sections we have observed that the main physical ingredient for the
formulation of the membrane paradigm is the regularity condition for the FFOs
on the horizon surface, which translates into an ingoing plane wave behavior for
the fields when approaching the horizon, as in (2.41) and (2.45). Here we take
this physical boundary condition to be the definition of the membrane paradigm
following the modern approach of N. Iqbal and H. Liu in [52].

Consider for illustration a probe scalar field in a black hole background. For any
nonextremal black hole, the near-horizon expansion of a scalar field φ(ω, k, u) given
in Fourier space is

φ = e−iωt+i�k·�x
{

cout(1 − u)iω/4πT
(

1 + α1(1 − u) + . . .
)

+

cin(1 − u)−iω/4πT
(

1 + β1(1 − u) + . . .
)}

, (2.48)

where T is the temperature of the black hole, u is the radial coordinate and u = 1
is the rescaled horizon radius5. The universal leading terms (1 − u)±iω/4πT follow

4This peculiar limit has been initiated in [51]. The hope is that many things simplify similarly
to the large-Nc limit for SU(Nc) gauge theories.

5One could for example derive such an expansion from the metric of a black hole in anti-de
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from the fact that the near-horizon region of any finite-temperature black hole
is Rindler6. The values of the coefficients αi and βj of the subleading terms are
non-universal and depend on the number of dimensions, the mass of the field and
its momentum.

We are interested in imposing ingoing boundary conditions at the event horizon,
which correspond to regularity conditions for the FFOs. These are typically se-
lected by requiring cout = 0 (or cin = 0 for purely outgoing boundary conditions).
A suggestive way of rewriting these boundary conditions is in terms of a relation
between the radial and time derivative (in Fourier space) of the field at the horizon

4πT (1 − u)
∂uφ

iωφ

∣∣∣∣∣
u=1

= σ, (2.50)

where σ = 1 corresponds to purely ingoing and σ = −1 to purely outgoing modes.
We keep σ general and refer to it as the membrane coupling. This statement can
be extended to a stretched horizon by keeping σ fixed and equal to 1 and viewing
eq. (2.50) not as the response of the event horizon, a null surface residing at u = 1,
but rather of a timelike membrane located at u = uδ = 1 − δ with δ � 1. One
might have thought that for sufficiently small δ the membrane paradigm always
effectively imposes ingoing boundary conditions on the event horizon. Surprisingly,
as we shall see in Chapter 5, this turns out not to be the case.

To summarize let us fix the definition of the membrane paradigm which we will
use extensively throughout this thesis:

The membrane paradigm:

as an ingoing-like boundary condition for scalar combinations of the fields taken
on the horizon/stretched horizon

4πT (1 − u)
∂uφ

iωφ

∣∣∣∣∣
u=uδ

= σ (2.51)

Sitter spacetime in d + 2 dimensions

ds2 =
du2

4u2f(u)
− (4πT/(d + 1))2

u
f(u)dt2 +

(4πT/(d + 1))2

u
d�x2, (2.49)

where f(u) = 1− u(d+1)/2, the horizon is at u = 1 and we set the anti-de Sitter radius to unity.
6The Rindler spacetime [53] is a patch of Minkowski spacetime, a reference frame of constantly

accelerated observers, experiencing a thermal bath.
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Coupling the membrane to outer spacetime

So far we have showed how the membrane paradigm effectively encodes the con-
tribution of the interior of a black hole. We want to couple this information to
the exterior of the spacetime and transfer it to the infinity, where an asymptotic
observer sits. Combining [54, 27], consider a black hole in the presence of matter
which we generically represent by a scalar field φ. Divide the full spacetime into
a contribution coming from the interior and the exterior of the black hole by a
surface Σ located at the horizon or at a stretched horizon. The action separates
accordingly

S = Sin + Sout. (2.52)

The variational principle in d+2 dimensions generates field equations in the interior
and exterior of spacetime with two additional (d+1)-dimensional boundary terms

δS = (e.o.m.)in +
∫

Σ
dd+1x Πin δφΣ + (e.o.m.)out +

∫
Σ

dd+1x Πout δφΣ, (2.53)

where
Πin =

δSin

δφΣ and Πout =
δSout

δφΣ (2.54)

are the conjugate momenta of the generic field φ with respect to the normal to
the hypersurface Σ according to a radial slicing of the spacetime. Now, Dirichlet
boundary conditions δφ = 0 can only be assumed on the singularity and at infinity
of the spacetime7 but not on the intermediate surface Σ on which the field δφΣ is
arbitrary. In fact on the intermediate surface the necessary boundary condition is
a continuity equation, since the field δφΣ is fictitious and has to be integrated out

δS

δφΣ =
δSin

δφΣ +
δSout

δφΣ = Πin + Πout = 0. (2.55)

Hence, in order to correctly take into account the evolution of the field in the
exterior of the black hole one needs a suitable boundary condition for the conju-
gate momentum Πout, identified with Πin on Σ. The latter could be in principle
computed evaluating Sin. However, this action refers to the part of the spacetime
containing the event horizon of the black hole which is a dissipative object at fi-
nite temperature. As such, the correct formalism to take these effects into account
is the Schwinger-Keldysh formalism [9, 10] which is a quite involved procedure.
In a gravitational setting this has been implemented, for example, in [55] with a
double-sided eternal black hole in anti-de Sitter spacetime, a black hole with two

7In the case of black holes in AdS spacetime there is a conformal boundary at infinity on
which it is possible to assume nontrivial Dirichlet boundary conditions. Surface terms will be
necessary to assure the variational problem to be well defined at infinity as we will discuss later
in the context of AdS/CFT.
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asymptotic boundaries on which one can define two copies of the dual field theory
acting as the doubled degrees of freedom in the Schwinger-Keldysh formalism. The
membrane paradigm comes as a simplification since it replaces the full dynamical
interior region with a simple membrane response

Πin =
δSin

δφΣ = iω σ φ, (2.56)

which can be easily obtained from (2.50), (2.55) and knowing that

Πout =
δSout

δφΣ =
δL

δ∂uφ

∣∣∣
Σ

= −
√

−gguu∂uφ
∣∣∣
Σ

= −4πT (1−u)∂uφ+O(1−u), (2.57)

where generically the kinetic term is of the form L ∼ −1/2
√−g guu ∂uφ ∂uφ + . . .

and in the last equality of (2.57) we have performed a near-horizon expansion.

The upshot of this discussion is that the membrane paradigm (2.51) can be reinter-
preted as a universal response function (2.56) characterizing nonextremal horizons
and yet having a particularly simple form which can be coupled to the exterior of
spacetime and transferred to infinity by requiring (2.55) as we shall see explicitly
in Chapter 3 and 5.

***

2.2.2 Holographic fluid dynamics

Another way to realize fluid dynamics in gravity is through the low energy limit
of a subset of black holes in the context of holographic gravity, which is the pro-
posal that any gravitational theory can be described by a quantum field theory
in one dimension less with no gravity. In this Section we first provide a small
introduction and overview to holography itself, then we illustrate its low energy
regime, that is fluid/gravity duality. At the end we show how fluid effective actions
can be in principle obtained from gravity and how the membrane paradigm ca be
implemented within holography.

The holographic principle

A holographic interpretation of gravity was firstly given within the so-called holo-
graphic principle stated by G. ’t Hooft in [56] and by L. Susskind in [57], see also
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[58] for a review. This principle can be understood by inspecting the necessary
properties that any putative theory of quantum gravity should have. Even without
knowing the precise nature of a unified theory of gravity with quantum mechanics,
we can question how the fundamental degrees of freedom scale when changing the
volume V of space they are contained in. Let us perform a gedanken experiment.
Imagine to throw matter in such a volume of space until a black hole of the same
size is formed. Black holes are known to be thermodynamical objects carrying
entropy [59, 60, 36] which grows as the area A of the event horizon

S =
A

4GN
, (2.58)

where GN is the gravitational Newton constant. Given the generalized version
of the second law of thermodynamics for black holes [61], the amount of entropy
which was present in the volume of space to start with must have been no greater
than the amount of entropy of a black hole of the same size. Now, given that
the entropy is related to the number of degrees of freedom8 S ∼ N , we have to
conclude that the fundamental gravitational degrees of freedom in a volume of
space must scale as the area A enclosing the volume. This is a surprising result
since for a local quantum field theory the degree of complexity grows as the volume
V instead9. If we are willing to retain locality as our defining principle, a theory
of quantum gravity could still be described by a local quantum field theory but
at the price of one dimension. This is precisely the main statement of holography:
all the information concerning gravitational physics can be encoded on a certain
lower dimensional hypersurface of the spacetime in terms of a local quantum field
theory where gravity is absent.

The AdS/CFT correspondence

A concrete realization of holography appeared in 1997 when J. M. Maldacena
conjectured in [62] an unexpected equivalence or duality between a string theory
in an anti-de Sitter (AdS) spacetime and a conformal field theory (CFT) in one
lower dimension10, the so-called AdS/CFT correspondence. Soon after, many more
examples followed proposing equivalences between other types of string theories

8Define N = logΩ, where Ω = dim (H) is the number of states of a quantum mechanical
system, i.e. the dimensionality of the Hilbert space H. For example, for a system of 3 spins there
are Ω = 23 states and N = 3 log 2 degrees of freedom.

9A local quantum field theory can be thought of as a lattice of quantum oscillators. Each
oscillator has generically ∞ states but in the case the theory admits an ultra-violet cutoff, we
might assume there is a finite amount of states n. Hence, in a generic volume V the number of
states is Ω ∼ nV .

10The precise equivalence is between type IIB String Theory in AdS5 × S5 and N = 4 SU(Nc)
supersymmetric Yang-Mills (SYM) in four dimensions, which is a conformal field theory.
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on different backgrounds and (non) conformal field theories, see e.g. [63, 64, 65]
for comprehensive reviews on these so-called gauge/gravity dualities. The amount
of evidence that these conjectures hold is overwhelming and AdS/CFT is probably
the most striking and significant outcome of string theory that earned [62] 10.000+
citations.

Interestingly enough, these correspondences, which from now on we will generically
refer to as AdS/CFT, realize a strong/weak coupling duality. This is a statement
about the regime in which the two theories are expected to overlap. When one
theory is strongly coupled, the other one is in the weakly coupled regime and vice
versa. For example, the strong coupling (planar)11 limit of the field theory can be
accessed via a classical gravitational dual, which is generically a simple setup. This
feature is at the basis of the great popularity of AdS/CFT since the correspondence
can be used as a nonperturbative tool to explore otherwise unaccessible regimes
of certain field theories by means of their gravity duals. In addition, differently
from other nonperturbative approaches, AdS/CFT is well suited to analyze not
only thermodynamics but also physics out of equilibrium.

Applications rely on two possibilities. The first one is a top down approach where
one deals with the low energy supergravity limit of a certain specific string theory
configuration. Here the dual field theory is mostly known and there are few pa-
rameters that one can play with. The second approach is bottom up which does
not have any specific string theory embedding in mind. Typically one chooses to
work with classical gravity where fields and their interactions are chosen based on
some required generic properties that the dual field theory should have. Both the
approaches are limited in their applicability to realistic field theories, for example
to quantum chromo-dynamics (QCD). However, even if only toy models can be
analyzed, AdS/CFT has provided many qualitative and quantitative insights into
condensed matter and high energy physics, such as high-temperature supercon-
ductors12, cold atoms at unitarity, quark-gluon plasma, etc, see [66, 67, 68, 69] for
extensive reviews.

Hence, to summarize, on one side AdS/CFT, or more generically holography, seems
to be a key ingredient for the formulation of a theory of quantum gravity. On the
other side it represents a useful theoretical tool for investigating the strongly cou-
pled regime of certain quantum field theories admitting gravitational holographic
duals. This provides an excellent motivation for studying holography and extend-
ing the realm to which it can be applied. If holography is true, one should be able
to translate all the generic features of any quantum field theory, such as the entan-

11Large-Nc.
12See e.g. [4] for an application relevant for unbalanced superconductors developed by the

author.
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glement entropy or the Wilsonian renormalization group flow, to the dual gravity
side. Fluid behavior is yet another example where the low energy regime of a field
theory should be mapped to the long-wavelength gravitational perturbations of a
class of black holes. This picture has been beautifully realized in what goes under
the name of fluid/gravity duality and represents exactly the way fluid behavior
arises in gravitational physics. In the reminder part of this Section we show some
aspects of the holographic dictionary focusing on those which will be relevant for
this thesis.

Basic holographic dictionary

Let us here enter in more detail of the correspondence and show how quantities
on one side can be translated to the other one by means of the holographic dic-
tionary. We concentrate on the classical gravity limit of the correspondence and
in particular on asymptotically (locally) AdS spacetimes in d + 2 dimensions for
which the holographic interpretation is best understood, see e.g. [70] for a review.
These spacetimes are solutions to Einstein gravity with a negative cosmological
constant possibly coupled to additional matter

S =
1

2k2
(d+2)

∫
dr dd+1x

√
−g (R − 2Λ)+Smatter, with Λ = −d(d + 1)

2L2 , (2.59)

where 2k2
(d+2) = 16πG

(d+2)
N , L is the parameter measuring the curvature of AdS

spacetime and g is the determinant of the bulk metric gμν . At large radius, this
solution asymptotes to

ds2 = gμνdxμdxν =
r2

L2 γab dxadxb +
L2

r2 dr2 + . . . for r → ∞. (2.60)

This would be an AdS spacetime in the so-called Poincaré patch if γab = ηab,
i.e. the maximally symmetric solution to vacuum Einstein gravity with a negative
cosmological constant. For a generic metric γab instead, the spacetime (2.60) is
only locally (asymptotically) AdS. An important feature of these geometries is
that they admit a conformal boundary at infinity which can be seen by fixing an
horizon radius r = rc and then sending rc → ∞. The metric γab on this boundary
is an arbitrary Dirichlet value that needs to be externally provided.

The same is valid for any other bulk field evolving in the interior, the bulk, of AdS.
The scalar field φ or the gauge field Aμ, for example, must be supplemented with
Dirichlet boundary conditions on the boundary at infinity 13 φ(0), A

(0)
a . Follow-

ing the standard prescription given in [71, 72], to every bulk field φ, Aμ, gμν it
13This property reflects the fact that AdS spacetime is not globally hyperbolic, hence additional

data on the boundary must be supplied to define the evolution of fields in the bulk.
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is possible to associate an operator of the boundary field theory O, Aa, Tab by
identifying the Dirichlet boundary condition φ(0), A

(0)
a , γab with the source of the

corresponding dual operator14. For example, the boundary metric value γab of the
bulk metric gμν is the source associated to the stress-energy tensor Tab of the dual
field theory.

The fundamental assumption of the holographic correspondence relies in identi-
fying the on-shell action (2.59) with the generating functional of the connected
correlators of the dual field theory as a function of the sources

Son−shell[φ(0), A(0)
a , γab, . . . ] = W [φ(0), A(0)

a , γab, . . . ], (2.61)

where W = − ln Z and Z is the partition function15. Euclidean correlation func-
tions can be easily derived as usual by performing subsequent derivations of the
generating functional with respect to the sources.

However, one needs to be careful because of the presence of a boundary in AdS.
In order for the variational problem to be well defined, one needs to supply the
Hilbert-Einstein action (2.59) with a Gibbons-Hawking [73, 74] term

SGH =
1

2k2
(d+2)

∫
dd+1x

√
−γ 2K, (2.62)

where K is the trace of the extrinsic trace Kab at the boundary. In addition,
given that the boundary is at infinity, one needs to add boundary counterterms
to compensate large volume, i.e. large r, divergences of the on-shell action. These
boundary terms can be found by applying the method of holographic renormaliza-
tion [75, 70, 76, 77], which is equivalent to the renormalization procedure in field
theory to remove the ultra-violet divergences. After holographically renormalizing
the action, one obtains finite correlation functions.

For example, for the gravitational sector alone the corresponding counterterm
reads

Sct = − 1
2k2

(d+2)

∫
dd+1x

√
−γ̃

2d

L
+ . . . (2.63)

and ellipses denote terms containing contributions of the Ricci scalar and tensors
of the boundary hypersurface which vanish when γ̃ab is flat. Since the boundary
is at infinity, algorithmically one first computes counterterms Sct on a finite cutoff
hypersurface rc with the rescaled induced metric γ̃ab = r2

c/L2γab and then performs

14Alternative identifications of bulk and boundary fields are possible.
15Notice that this is valid for the case of the classical gravity regime. The same expression can

be obtained as a saddle point approximation of a more general relation between the partition
functions of the putative string theory embedding of gravity and of the dual field theory.
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the limit rc → ∞. The stress-energy tensor can be derived [78, 79, 80, 81] from
Sren = S + SGH + Sct

〈Tab〉 = − lim
rc→∞

[(
rc

L

)d−1 2√−γ̃

δSren

δγ̃ab

]
= lim

rc→∞

[(
rc

L

)d−1 (
T BY

ab + T ct
ab

)]
,

(2.64)
where T BY

ab is the Brown-York stress tensor [82] and T ct
ab is the counterterm con-

tribution
T BY

ab = 2 (Kγ̃ab − Kab) , T ct
ab = −2d

L
γ̃ab + · · · ,

where we have imposed 2k2
(d+2) = 1 for simplicity.

Fluid/gravity duality

Fluid/gravity duality can be thought of as the low energy regime of the AdS/CFT
correspondence, where long wavelength perturbations of (d+2)-dimensional gravi-
tational solutions can be mapped to the low energy fluid regime of the dual (d+1)-
dimensional strongly coupled field theory. It was developed first in the pioneering
works of [83, 84, 85] and nonlinearly generalized in [86, 87], see [88, 89] for reviews.
Let us here illustrate the main findings for the simplest case of holography in AdS
spacetime.

Thermodynamics. According to holography, different asymptotically (locally)
AdS spacetimes correspond to different states of the dual conformal field theory.
Pure AdS spacetime represents a vacuum CFT and a black hole in AdS realizes
a CFT at finite temperature. Restricting ourselves to the case of a dual field
theory in Minkowski spacetime γab = ηab, for reasons which will be clearer in the
following, the global thermal equilibrium configuration is represented by a planar
black hole, or black brane, in AdS:

ds2 =
r2

L2

(
−f(r)dt2 + dxidxi

)
+

L2

f(r)r2 dr2 with f(r) = 1 −
(

rH

r

)d+1

(2.65)

where rH is the location of the horizon radius. Clearly AdS asymptotics (2.60) with
flat Dirichlet boundary conditions is respected. Notice also that the topology of
the horizon is that of a brane rather than that of a hole as it is for Schwarzschild
black holes. The Hawking temperature associated to the black brane (2.65) is
proportional to the horizon radius

T =
(d + 1) rH

4π L2 . (2.66)

The equilibrium configuration properties can be obtained from the holographic
definition of the stress-energy tensor (2.64). This gives the ideal fluid stress tensor

31



209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva

2. Introduction and Overview

(2.4) restricted to static configurations, that is with ua = (1,�0), with pressure and
energy density given by

P =
1
L

(
rH

L

)d+1

; ε =
d

L

(
rH

L

)d+1

. (2.67)

These quantities satisfy the conformal equation of state ε = d P giving a traceless
stress-energy tensor T a

a = 0, which is compatible with the fact that the dual field
theory is conformal.

Hydrodynamics. Fluid behavior is achieved by allowing the fluid variables T

and ua to fluctuate. On the gravity side this can be implemented, for example, by
allowing fluctuations of the horizon radius16 rH(x), given its relation to the tem-
perature through (2.66). These fluctuations must be sufficiently long wavelength
in order for a hydrodynamic description to hold. Hence, we must require gradients
in the parameters to be small with respect to the temperature

∂arH/L

T
� 1, (2.68)

in the same way as it was in (2.1), where the mean free path is now proportional
to the unique microscopic scale lmfp ∼ 1/T set by conformal invariance. Notice
that had we had an additional scale, such as the curvature R of the field theory
background, we would have needed to consider a dimensionless RT expansion
parameter. In order for the gradient expansion to be valid we would have to
require RT  1, that is variations of the curvature must be smaller than the scale
set by the temperature. This translates into the requirement that the geometry
should be locally flat and this is why we have chosen to work with planar black
holes.

Once the horizon is taken to be a dynamical object, the metric (2.65) is no longer
a solution of the Einstein equations of motion. A near equilibrated solution to the
Einstein equations must be constructed order by order in a derivative expansion. In
other words the equilibrium metric (2.65)17 with spacetime-dependent parameters
must be supplemented by additional terms g

(1)
μν + g

(2)
μν + . . . containing more and

more derivatives ∂arH . Using repeatedly the prescription given in (2.64), one can
find the dual fluid stress tensor (2.3) at each order in a hydrodynamic expansion.
For example, at first order we can reproduce (2.6) in the Landau frame with a

16Using a diffeomorphism it is possible to generalize the metric (2.65) to a (d + 1)-family of
solutions with d parameters associated to the fluid velocity ua. Dynamical configurations with
ua promoted to ua(x) can be studied as well.

17In order to avoid problems with regularity at the horizon it is common choice to switch to
Eddington-Finkelstein [90, 91] coordinates.
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specific form of the shear and bulk viscosity

η =
(

rH

L

)d

; ζ = 0;
η

s
=

1
4π

, (2.69)

where s is the entropy density, obtained from (2.58) with s = S/V . The dual
field theory, and consequently its fluid regime, is conformal and as such the stress
tensor should be traceless, which is assured by a vanishing bulk viscosity given
that T a

a ∼ ζ.

The last expression in (2.69) is the celebrated shear viscosity over entropy ratio
which is of order O(1), hence universal for every field theory admitting an Einstein
gravity dual, that is independent of the details of the model under consideration,
see [83, 92, 88, 93, 52]. This result has played a prominent role in the AdS/CFT
correspondence and has had valuable consequences for a broader physics commu-
nity. In 4+1 dimensions the values (2.69) correspond specifically to the shear and
bulk viscosity of the low energy N = 4 SYM at strong coupling. Even if this
theory is a conformal field theory which has little to do with real world quan-
tum chromo-dynamics (QCD), the finite temperature and hydrodynamic regime
resemble instead the properties of the deconfined phase of QCD at finite tem-
perature and finite chemical potential, namely the quark-gluon plasma (QGP).
The AdS/CFT correspondence provided useful insights and helped in clarifying
the nature of this QGP. By dimensional analysis one would have in fact expected
η/s ∼ f(λ, Nc)/4π, dependent on the dimensionless parameters of the dual field
theory, and at weak coupling there have been estimates of this quantity show-
ing that it diverges [94, 95]. This divergence is a sign of the fact that in the
weak coupling limit the N = 4 SYM behaves as a gas where dissipative effects
are strong. Only after holography entered the scene, the high energy community
started to appreciate that the QGP behaves as a strongly coupled nearly ideal
fluid instead, as suggested by the smallness of the η/s ratio. Recent experimental
findings in [96] have set the value of the QGP shear viscosity over entropy ratio
to be η/s ≤ 2.5/4π, which is remarkably close to (2.69).

Fluid/gravity duality on a finite cutoff

So far we have discussed holography in AdS spacetimes. However, if hologra-
phy is the correct paradigm for gravity one should be able to extend the holo-
graphic description to more general gravitational theories with different asymp-
totics. Recent non-asymptotically AdS holographic-type constructions have been
given for Lifshitz [97] and Schroedinger spacetimes [98, 99], which are relevant
for applications to non relativistic condensed matter systems. But constructing
a holographic duality, for example, for asymptotically flat spacetimes has been
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a long standing challenge. Different approaches in this direction can be found in
[100, 101, 102, 103, 104], but there are strong indications that the dual field theory
should be non local anyway, see also [105, 106]. Another case of study is the de
Sitter/CFT correspondence [107, 108] relevant for mimicking our universe where
the spacetime has positive cosmological constant.

The fluid regime can be thought of as a simplifying starting point in exploring
different asymptotics. In this case instead of searching for a comprehensive dictio-
nary between all the possible bulk fields and boundary data valid at all scales, one
can start by considering the stress-energy tensor alone in its low energy regime.
An interesting approach of this type can be found in the so called fluid/gravity
duality on a finite cutoff. This entails in locating a hard cutoff, a hypersurface at
a fixed radial position, in the interior of spacetime and considering only physics
between the horizon of the black hole and the cutoff itself. In this way the asymp-
totics, the region near the boundary, is completely neglected. By assuming the
same conventional holographic dictionary on a finite cutoff, one can as well apply
a fluid/gravity duality reasoning, provided one gives a consistent prescription for
the dual stress tensor. The natural candidate is the conserved Brown-York stress
tensor (2.65) although some ambiguities are involved. We will show how the latter
can be partially fixed in Chapter 4.

Early developments of this scheme can be found in [109, 110, 111] for the case
of vacuum Einstein gravity. A systematic construction of the metric to all orders
in the hydrodynamic expansion was provided first in a non relativistic setting
in [111] and generalized to relativistic setups in [112, 113]. The thermal state
corresponds here to the Rindler spacetime which has an horizon determined by
accelerated observers and the dual fluid, the so-called Rindler fluid, lives on a finite
cutoff with flat background metric and has its own specific (pathological) fluid
properties. At this point one can try to generalize the procedure to spacetimes
with different asymptotics and general bulk stress tensor with matter, see also
[114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124] for related work. We will
consider this scenario in detail in Chapter 4.

Analyzing fluid/gravity duality on a finite cutoff is an interesting problem on its
own. The finite cutoff, which is in no particular place of spacetime, can be freely
moved from the asymptotic boundary to the horizon. Hence, it is particularly
interesting exploiting the simple case of fluid/gravity duality on a finite cutoff
in AdS, see e.g. [125, 126], and understand what is its near-horizon limit which,
not surprisingly, turns out to be Rindler fluid dynamics. We have encountered in
Section 2.2.1 yet another fluid behavior on the horizon, the membrane fluid. We
will show in Chapter 5 what are the substantial differences between the membrane
fluid and a holographic fluid on a finite cutoff pushed towards the horizon.
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Retarded Green’s function in holography

Let us here mention that so far we have considered a holographic dictionary for
Euclidean correlators. However, it should be possible to holographically compute
also correlators defined in Minkowski spacetime, useful for real time and finite
temperature situations which will be relevant in Chapter 5. A prescription has
been first proposed for the simplest case of the retarded Green’s function in [127],
once this is known one can use standard relations to obtain the other Minkowski
correlators, see e.g. [128]. This prescription has been later justified in [55] and
generalized to generic n-point functions in [129, 130].

Holographic retarded Green’s function. For the purposes of this thesis we
will only be interested in the simple prescription of [127] which is inspired by linear
response theory. Consider a system at equilibrium and apply a perturbation φ(0).
From a field theory point of view this is a source which modifies the Lagrangian
as δL ∼ O φ(0). If the disturbance φ(0) is sufficiently small in amplitude, the
system will react modifying the expectation value of the corresponding operator
in a simple linear way

〈O(ω,�k)〉 = −GR(ω,�k)φ(0)(ω,�k) (2.70)

by means of the retarded Green’s function GR of the operator O, which in coor-
dinate space is given by

GR(x, y) = −iθ(x0 − y0)〈[O(x), O(y)]〉 (2.71)

The reason one employs specifically a retarded Green’s function here and not
any other real time correlator can be understood from causality considerations:
modifications to the system need to happen only after the source has been applied.
At this point one can readily define a holographic prescription for the retarded
Green’s function by inverting eq. (2.70) and using the holographic dictionary for
the one-point function

GR(ω,�k) = − 1
φ(0)(ω,�k)

δSren

δφ(0)(ω,�k)
, (2.72)

where Sren is the renormalized gravitational on-shell action. Hence, in practice, in
order to compute the retarded Green’s function for a certain observable O from a
holographic point of view, one needs to perturb the bulk with the corresponding
linearized bulk field perturbation φ whose boundary value is φ(0). Given that Ein-
stein equations are a set of second order differential equations one needs a second
boundary condition in the interior of the spacetime. For the prescription above
to work one specifically requires an ingoing boundary condition on the horizon.
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Once the solution is known one computes the (renormalized) on-shell action and
eventually applies (2.72).

Quasinormal modes. Retarded correlators are particularly interesting since they
encode nontrivial physics in the structure of their poles. From these poles one can
extract dispersion relations ω = ω(�k) obeyed by the respective perturbations.
In fact after a source is applied, the system generically tends to come back to
equilibrium configuration and the dispersion relation contains the information on
how the system will eventually equilibrate.

What is the interpretation of these poles from a gravitational point of view? As
it has been shown in [131, 127] they can be identified with the so-called black
hole quasinormal modes, see [132] for a review. These modes are defined as per-
turbations of black hole solutions which are precisely ingoing at the horizon and
vanishing at asymptotic infinity. Every black hole has its own set of quasinormal
modes which have been studied in the realm of stability of black hole solutions,
in fact for a stable configuration after perturbing a little a black hole, these fluc-
tuations should not grow big destroying the black hole background. The fact
that quasinormal modes are related to poles of the retarded Green’s function in
holography can be understood by staring a little at the eq. (2.72). It is easy
to see that poles are exactly the places where the source φ(0) or equivalently the
asymptotic Dirichlet boundary condition vanishes, which is the defining property
of quasinormal modes.

The structure of quasinormal modes is quite rich. They exhibit oscillatory be-
havior, hence they are normal, and also damped behavior due to the presence
of an horizon surface, this is why they are quasinormal. Generically they orga-
nize in an infinite tower of short-lived gapped quasinormal modes which die off
very quickly, and long-lived hydrodynamic modes which encode the hydrodynamic
response, that is ω(k) → 0 for k → 0 in the low energy regime k, ω � T .

For example for a massless scalar field φ in a (planar) black hole in AdS3, i.e. the
non rotating Banados-Teitelboim-Zanelli (BTZ) black hole [133, 127], the quasi-
normal modes are given by

ω = ±k − i 4π T (n + 1) for n = 0, 1, 2, . . . . (2.73)

These can be exactly matched to the poles of the retarded Green’s function of the
dual (1 + 1)-dimensional CFT at finite temperature, as derived in [127].

Hydrodynamic quasinormal modes. Let us now consider in field theory the
response to linearized metric perturbations δh

(0)
ab sourcing a stress-energy tensor

Tab. By choosing for concreteness a convenient direction in momentum space
such that �k = (k, 0, . . . ), one can classify the perturbations according to their
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transformation properties with respect to the residual symmetry SO(d − 1) of the
plane transverse to the direction of propagation. In general one has scalar, vector
and tensor modes, but it turns out that in the low energy regime tensor modes do
not feature any hydrodynamic behavior, hence we will not consider them anymore.
By inspecting the pole structure of the retarded correlator GR ∼ θ(t)〈[T T ]〉 in the
hydrodynamic regime ω, k � T , one can then extract the corresponding dispersion
relation.

The vector sector, or the shear or transverse channel, encodes diffusion in the
transverse direction and the dispersion relation in a hydrodynamic expansion is
purely imaginary

ωT = −i
η

ε + P
k2 − i

(
η

ε + P

)2

τ k4 + O(k5). (2.74)

Here ε and P are as usual the energy density and pressure, η is the shear viscosity
and τ is the relaxation time, a coefficient which in the conventional formalism
would be encoded in the second order expansion of the stress-energy tensor T

(2)
ab ,

see e.g. [134]. Notice that in the case we restrict ourselves to a dissipationless
response such a dispersion relation is trivially vanishing, meaning that in this case
there is no dynamics in the transverse sector. This is the linearized manifestation of
the volume-preserving diffeomorphisms invariance for perfect fluids in the effective
action formalism as discussed previously, see (2.32).

The dispersion relation for the scalar sector, or longitudinal channel, encodes in-
stead the information on the perturbations along the longitudinal direction of the
propagation. For example for a conformal fluid for which ζ = 0 it is given by

ωL = ±cs k − i Γ k2 ± Γ
cs

(
c2

sτ − Γ
2

)
k3 + O(k4),

with Γ =
1

ε + P

d − 1
d

η, (2.75)

where cs is the sound velocity defined as c2
s = ∂P/∂ε, see e.g. [134].

Holographically the same results can be obtained by analyzing the corresponding
linear bulk field perturbations δhμν whose Dirichlet boundary conditions are δh

(0)
ab ,

and computing the poles of the retarded Green’s function following the prescription
(2.72). For a planar black-hole in AdS5 and restricting to the hydrodynamic
regime, one can reproduce the dispersion relations (2.74-2.75) with the values of
the thermodynamic and transport properties found above (2.67) and (2.69) where
the relaxation time given by

τ =
2 − ln 2

2πT
, (2.76)

as derived to first order in [84, 84, 135] and to second order in [134].
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Interior Horizon Cutoff Boundary

UVIR

Figure 2.2

Holographic Wilsonian effective action

An interesting generic feature of the AdS/CFT correspondence is the so-called
UV/IR connection [136]. The radial dimension extending in the interior of the
spacetime is naturally related to the energy scale of the dual field theory. It turns
out that large volumes in gravity, hence the infra-red (IR) physics, are dual to
the ultra-violet (UV) regime of the field theory and going into the interior of the
spacetime is mapped to the IR behavior of the dual field theory. In other words,
one should think of holography as a map between a gravitational theory and a
field theory taken together with its renormalization group flow.

This idea has been initially explored in [75, 137] and more recently revisited in
[138, 139] building the concept of a holographic Wilsonian effective action, see also
[27, 140, 141]. Let us illustrate these findings by considering a cutoff hypersurface Σ
in the interior of a spacetime, at a fixed radial position, which divides the spacetime
into two regions. Borrowing the field theory language, we dub the region between
the interior of spacetime and the cutoff, possibly containing an horizon, as the
IR region and the spacetime between the cutoff and the asymptotic boundary as
the UV region, schematically represented in Figure 2.2. The action also naturally
separates accordingly in two pieces

S = SIR + SUV. (2.77)

We have discussed a similar separation in the context of the membrane paradigm
in Section 2.2.1. The difference here is that in general there is no need to place
the cutoff on the horizon or a stretched horizon, but it can be located anywhere
in the interior of the spacetime. These two regions can be analyzed separately
imposing Dirichlet boundary conditions on the cutoff Σ, and, for the solutions to
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be smoothly connected to each other, requiring a continuity equation equivalent
to (2.55) which we rewrite here for completeness

δS

δφΣ =
δSIR

δφΣ +
δSUV

δφΣ = 0. (2.78)

The UV region is related to the high energy degrees of freedom of the dual field
theory, which can be generically integrated-out in favor of a Wilsonian effective
action [142]. From a gravitational point of view, such a Wilsonian effective action
can be identified with SUV evaluated on-shell between the two boundaries on
which one has imposed two Dirichlet boundary conditions. In this way the UV
spacetime is effectively ”integrated-out” and the bulk UV action is replaced with a
boundary term. Given that the radial position of the cutoff surface Σ is supposedly
related to the energy scale, moving the surface into the interior of the spacetime
corresponds for SUV to perform the low energy limit of the Wilsonian effective
action. This procedure has been applied to electromagnetic fields in an AdS black
brane background in [138, 139, 27]. In Chapter 3 we will show how to extend it to
the case of gravitational fields, and the outcome will be the perfect fluid effective
action discussed in Section 2.1.2.

Dissipative effects can be naturally studied by coupling the UV region to the IR
which contains the horizon surface. As we already discussed, the evaluation of SIR

is not a simple task since it contains the contribution of the interior of the black
hole and in principle one needs to consider the full Schwinger-Keldysh formalism.
However, the membrane paradigm is an excellent approximation scheme which
allows us to neglect all these complications and replace the full dynamical IR
sector with a simple membrane response (2.56) as in [27, 139]. We will see in
Chapter 3 how this coupling correctly reproduces the hydrodynamic modes (2.74)
and (2.75) at infinity.

***

2.3 Preview of the main results

The aim of this introduction has been in illustrating the main concepts that are
going to be used throughout this thesis, emphasizing the questions which will be
discussed in the following.

We started our journey with fluid dynamics showing how this behavior could
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be implemented in different ways. The effective action formalism, for example,
was particularly interesting since it involved a huge reparametrization symmetry,
the volume-preserving diffeomorphisms invariance. One context in which such
a symmetry can be tested is holography by computing explicitly a holographic
Wilsonian effective action.

Proceeding our journey we showed interest in developing holography beyond asymp-
totically AdS spacetimes, which motivated a fluid/gravity duality approach on a
finite cutoff. Moving the cutoff deeper in the interior of spacetime provides a
holographic fluid interpretation near the horizon and we wondered whether this is
equivalent to the membrane fluid.

Finally, we also showed how, among the many interpretations of the membrane
paradigm, there is one that better suits applications to holography. We motivated
the importance of a simple membrane response to replace the complicated near
horizon dynamics and we also questioned whether such an approximation is always
allowed.

Let us here outline the structure of this thesis together with a summary of the
main results.

In Chapter 3:

• we derive the effective action for relativistic, conformal, perfect fluids from
holography. At least at leading order in a hydrodynamic expansion the
volume-preserving diffeomorphisms symmetry is reproduced,

• we show that at subleading order there are intrinsic divergences which are
only removed when dissipative effects are taken into account. This seems
to suggest, at least within our holographic setup, that it is not possible to
decouple the dissipationless sector alone,

• we holographically identify the Goldstone fields φI of the effective action
approach to fluid dynamics with spacelike geodesics in the bulk.

In Chapter 4:

• we identify a (partially) unambiguous holographic prescription for the dual
hydrodynamic stress-energy tensor on a finite cutoff,

• we construct, to a certain extent, fluid/gravity duality on a finite cutoff for
Einstein gravity with a general bulk stress tensor.
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In Chapter 5:

• we show that the membrane paradigm as a boundary condition is a good
approximation scheme with the only exception being in the computation of
the short-lived massive quasinormal modes,

• we show that a holographic fluid behavior on a finite cutoff taken near the
horizon is a more complete fluid description than the membrane fluid.
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3
Effective actions

for Fluids from

Holography

On integrating out spacetime geometry for the sake of an effective

field theory of low energy Goldstone degrees of freedom

A recent reformulation of perfect fluid dynamics relies on an effective action de-
scription, which is constrained by volume-preserving diffeomorphisms invariance.
However, it is not clear whether such a symmetry is sufficient for a complete de-
scription of non dissipative transport. In this Chapter, based on [1], we are going
to explicitly derive the low energy effective action for relativistic, perfect, con-
formal, strongly coupled fluids from gravity. This provides an example where the
above symmetry holds and our results can be interpreted as yet another derivation
of fluid/gravity duality.

3.1 Introduction

As already illustrated in Section 2.2.2 of the Introduction, the key step in deriving
an effective action from gravity is to consider the holographic Wilsonian effective
field theory approach. High energy field theory degrees of freedom are encoded
in the UV region of the spacetime between a finite cutoff and the asymptotic
boundary of the spacetime. Integrating-out these degrees of freedom corresponds
to ”integrate-out” the UV geometry. This procedure entails in finding the solu-
tion for fields in the UV region with two Dirichlet boundary conditions on the
two boundaries, that is, one needs to solve what we call a double-Dirichlet prob-
lem. Once the solution is known, the UV action can be evaluated on-shell and
interpreted as the Wilsonian effective action for the dual field theory.
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Applying this reasoning to the derivation of an effective action for (conformal)
fluids corresponds to consider gravitational perturbations in an AdS spacetime
in the presence of a planar horizon. The double-Dirichlet problem in the UV
fixes in this case two independent metrics, one is GAB on a finite cutoff and the
other is γab on the asymptotic boundary. The effective action is a function of the
two Dirichlet boundary data, invariant under diffeomorphism × diffeomorphism
symmetry. However, in order for the action to be local one needs additional
fields φA, bifundamental between the two metrics1, which allow to pull back the
metric on one boundary to the other through for example ∂aφA ∂bφB GAB . These
scalar fields can also be interpreted as Goldstone bosons if we consider the two
boundary metrics to be Minkowski. The effective action in this case is invariant
under Poincaré × Poincaré symmetry, but any solution of the gravitational field
equations will connect the two boundaries and break the symmetry spontaneously
to a diagonal Poincaré subgroup and thereby give rise to a set of Goldstone bosons2.
Though this argument clearly does not apply if we start with two arbitrary metrics
on the boundaries, we will nonetheless stick to the term Goldstone bosons.

The final necessary step is to push the cutoff hypersurface towards the horizon
where the metric degenerates. This feature will be crucial since it will trade
the generic diffeomorphisms invariance on the cutoff hypersurface for the volume-
preserving diffeomorphism internal symmetry of the Goldstones, giving rise to
the effective action for perfect (conformal) fluids as discussed in Section 2.1.2,
generalized to an arbitrary metric in the configuration space of the Goldstones
which we will discuss in Section 3.2. We find it however rather intriguing why this
should be the case. Why is the low energy dynamics of planar black holes in AdS
compatible with fluid dynamics after all? Why is it not resembling, for example,
jelly dynamics, which responds nontrivially to shear stresses too and does not have
the above mentioned internal symmetry? Unfortunately we have not been able to
answer those questions from first principles within our gravitational embedding.

In this Chapter we construct the effective action for perfect conformal fluids in two
ways. First in Section 3.3 we work in a fully nonlinear setting at leading order in a
derivative expansion. Subsequently in Section 3.4 we work with linearized metric
perturbations which allow to extend the reasoning to second order in derivatives
where we find more intriguing results. Although the effective action is still com-
patible with the volume-preserving diffeomorphism symmetry, we find, perhaps
not surprisingly, that the answer is in general divergent, but remains finite when
we restrict to stationary configurations. In fact by sending the cutoff all the way

1In this perspective, the effective action can also be reinterpreted as a bigravity theory as in
[143].

2Completely analogous reasoning, albeit applied to gauge fields, explains the emergence of
pions in the Sakai-Sugimoto model of holographic QCD [144].
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to the horizon amounts in imposing Dirichlet boundary conditions on the horizon
itself which in general is not a physically reasonable thing to do.

To cure these divergences, in Section 3.5.1 we consider a setup where we couple
the UV effective theory to a dissipative IR system, which is supposed to describe
the near-horizon physics and in particular encode the one-way nature of the event
horizon. As discussed in Section 2.2.1 we can replace the full dynamical IR sector
with a simple membrane paradigm boundary condition a small distance away from
the horizon and then take the membrane to the horizon. Technically, the coupling
to the membrane simply modifies the IR boundary condition in such a way that
it imposes ingoing, as opposed to Dirichlet, boundary conditions on the horizon.
Hence, by including the contribution of the dissipative sector we are lead to a finite
answer. This means, at least within our holographic setup, that it is not possible
to separate the dissipative sector from the dissipationless one. This is perhaps not
such a surprising result since the field theory dual to a planar black hole in AdS
is intrinsically dissipative, and trying to isolate a dissipationless sector might not
be a physically allowed thing to do.

In Section 3.5.2 we restrict ourselves to stationary configurations and we describe
the coupling of the UV effective action to a different, non dissipative, IR sector.
The latter is given as a simple functional of the metric and it captures the contribu-
tion of the tip of the Euclidean cigar which describes the Euclidean black hole. If
we then extremize the sum of this IR sector with our double-Dirichlet UV effective
action, we automatically obtain the lowest order contribution to the equilibrium
partition function discussed in Section 2.1.2. The extremalization procedure turns
out to be equivalent to a Legendre transform which transforms the energy density
into the pressure. This is in perfect agreement with the fact that the action for
a fluid in terms of Goldstone bosons is given by the energy while the equilibrium
partition function is given by the pressure.

Finally in Section 3.6 we start questioning the role of the entropy current in the
effective action formalism for perfect fluids, which do not feature entropy produc-
tion by definition. It is natural to ask whether such a conserved entropy current
originates in any way as the Noether current of some symmetry of the effective
action. We will show that there exists indeed a nontrivial transformation on the
Goldstones which, if assumed to be a symmetry of the effective action, correctly
reproduces the entropy current as the Noether current of this would-be symmetry.

***
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3.2 Generalized effective action formulation

Before diving directly into an effective action construction from gravity, let us here
illustrate two generalizations of the perfect fluid action (2.17), considered also in
[27], which will be relevant for us.

General configuration space metric

First of all notice that there is no fundamental reason for having a trivial metric
on the configuration space of the Goldstones φi as it was in Section 2.1.2. Let
us therefore consider a generic, albeit non-dynamical, background metric Gij(�φ)
which couples to the Goldstones in the effective action

S =
∫

dd+1x
√

−γ F (s), (3.1)

through the entropy density

s = s0

√
det (∂aφi ∂bφj γab Gjk). (3.2)

Such a rewriting is motivated precisely by the fact that in our gravitational setup
the action will generically depend on two metrics: one on the asymptotic boundary,
which is going to represent the background fluid metric, and another on the cutoff
(sent towards the horizon) which is going to be the configuration space metric for
the Goldstones.

The entropy current (2.22) depends now on the configuration space metric via the
Levi-Civita tensor

εi1...id−1 →
√

det Gij ε
(0)
i1...id−1

, (3.3)

where ε(0) is the (flat space) Levi-Civita symbol. Nevertheless, it is still identically
conserved

∇aJa = −1
2

Ja(∂aGij)Gij = −1
2

Ja(∂aφk)(∂kGij)Gij = 0, (3.4)

as φi fields are the comoving coordinates and hence Ja∂aφi = s · (ua∂aφi) = 0.

The timelike Goldstone

The second generalization follows from considering systems parametrized by d+1,
instead of d, scalar fields

φA(x) = δA
a xa + πA(x), (3.5)
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where now φA = (φt, �φ) and φt is what we call the timelike Goldstone. This
additional Goldstone is motivated by a gravitational embedding in mind with two
hypersurfaces characterized by (d + 1)-dimensional metrics. The bifundamental
fields realizing the pull-back of one metric to the other should be in fact combined
in a (d + 1)-dimensional vector φA.

The addition of this Goldstone modifies the parametrization of the configuration
space metric. Given that the latter will be the degenerate metric of the horizon, a
convenient parametrization can be given in terms of the so-called Galilean metric
which writes

ds2 = GABdφAdφB = Gij(dφi − vidφt)(dφj − vjdφt), (3.6)

together with the following null vector

nA =
1
γ

(1, vi) with GABnB = 0 and γ = (1 − Gijvivj)−1/2, (3.7)

and the variables Gij and �v depend on the internal spacetime coordinates φA.

The entropy current (2.22) can be generalized to be the spacetime Hodge dual of
the volume form of the coordinates ei

Ja =
1
d!

s0 εa b1...bd εi1...id
ei1

b1
. . . eid

bd
, (3.8)

where the combinations ei
a are defined as

ei
a = ∂aφi − vi∂aφt. (3.9)

The indices a, b, etc. are raised with the spacetime inverse metric γab and the
Latin indices i, j, etc. are lowered and raised with the configuration space metric
Gij and its inverse. Writing explicitly the dependence of the Levi Civita tensors
on the relevant metrics, the generalized entropy current takes the form

Ja =
1
d!

s0
√

det Gij

√
−γ γb1c1 . . . γbdcd ε(0)

a c1...cd
ε

(0)
i1...id

ei1
b1

. . . eid

bd
, (3.10)

and the corresponding entropy density is

s = s0

√
det(ei

aea j Gjk). (3.11)

Note that a priori the current (3.8) is not conserved off-shell for generic Gij and
�v.
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Linearized expansion

Let us now demonstrate that both generalizations of the effective action for fluids
illustrated above lead to the correct equations of relativistic fluid mechanics. We
will show this at linear level for clarity but the same reasoning can be applied at
nonlinear level.

Consider for concreteness the following linearized expansion of the configuration
spacetime metric

Gij = δij + Hij(φA); vi = −Hti(φA), (3.12)

where Hij and Hti are small perturbations. Without any loss of generality we can
restrict the perturbations HAB to depend only on e.g. (φt, φx), which in Fourier
space corresponds to a choice of the direction of propagation of the perturbations
being �k = (kx, 0, . . . , 0). This choice allows us to divide the perturbations accord-
ing to their transformation properties in the remaining transverse O(d − 1) plane.
There are three distinguished sectors

scalar: Hxx, H, Htx, Htt

vector: Hxα, Htα

tensor: Hαβ − 1
(d − 1)

δαβH, (3.13)

where H =
∑

α Hαα is the trace in the transverse direction α = 1, . . . d − 1. We
will not consider the tensor sector in the following since it can be shown that it is
not linked to any hydrodynamic behavior. Inserting the scalar and vector sectors
expansions into (3.11) and using the linearized Goldstone expansions (3.5), the
leading order effective action (3.1) takes the form

S(0) =
∫

dd+1x

(
F (s0) +

1
2

s0F ′(s0)Hii + s0F ′(s0)δxπx +

−1
2

s0F ′(s0)
(

H2
tx +

1
4

H2
xx − 1

2
HxxH − 1

4
c2

sH2
ii

)
+

+s0F ′(s0)
(1

2
Ḣii − ∂xHtx

)
πt +

−1
2

s0F ′(s0)
(

(π̇x)2 − c2
s(δxπx)2 − 2 πxḢtx + c2

s πx ∂xHii

)
+

−1
2

s0F ′(s0)
∑

α

(
(π̇α)2 + H2

tα + H2
xα − 2 παḢtα

))
, (3.14)

where Hii = Hxx + H and cs is the speed of sound defined in (2.33). This explicit
expansion will be the one that we will derive in Section 3.4 from a linearized
gravitational setting.
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3.3. Nonlinear effective action from gravity

Notice that the linearized timelike Goldstone πt appears here as a Lagrange mul-
tiplier and the corresponding equation of motion ensures now the on-shell conser-
vation of the entropy current

∇aJa = −1
2

Ḣii + ∂xHtx + . . .
∣∣
on-shell = 0. (3.15)

The equations of motion for the transverse and longitudinal Goldstones are now
respectively

∂2
t πα + ∂tHtα = 0, ∂2

t πx − c2
s ∂2

xπx + ∂tHtx − 1
2

c2
s ∂xHii = 0 (3.16)

and correspond to the conservation equations (2.23) of the perfect fluid stress-
energy tensor (2.4) with the velocity and the entropy density redefined in the
following way

ut = −1 − 1
2

(Ht�x + ∂t�π)2 + . . . , �u = Ht�x + ∂t�π + . . . (3.17)

s = s0 +
1
2

s0 Hii + s0∇ · �π + . . . . (3.18)

These expressions can be obtained from the linearization of (3.11) and using
ua = Ja/s, where Ja given in (3.10). Hence we showed explicitly that the above
generalizations of the perfect fluid effective action of Section 2.1.2 reproduce the
correct hydrodynamic equations. It can be shown that the same is true at nonlin-
ear level. This analysis indicates that the standard action for relativistic perfect
fluids is a particular instance of the more general action obtained by making the
Lagrangian (3.1) depend on s defined by Eq. (3.11), rather than by Eq. (2.18).
Actions of these types were encountered previously in Ref. [27] and in the follow-
ing sections we will derive such an action using holography. Notice that a key
ingredient in this derivation is the degenerate nature of the configuration space
metric. Had we worked with a general non-degenerate metric instead, the timelike
Goldstone would be dynamical and not only a Lagrange multiplier.

***

3.3 Nonlinear effective action from gravity

In this Section we derive the low energy leading order effective action for relativis-
tic, conformal, perfect fluids from holography at full nonlinear level. As a first step
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we solve the double-Dirichlet problem between a finite cutoff in the interior of the
spacetime, which we dub as the IR brane, and another hypersurface, which we dub
as the UV brane, also at a finite radial coordinate but closer to asymptotic infinity.
With such a solution at hand we compute the (partially) on-shell UV action3 in
that region deriving in this intermediate step what we call the double-Dirichlet
effective action. Subsequently we stretch the UV region by sending the IR brane
to the horizon and the UV brane to infinity, thereby deriving the effective action
for perfect fluids (3.1).

3.3.1 The double-Dirichlet effective action

The effective action between two generic branes in the interior of the spacetime
should generically depend on the IR and UV brane metrics, GAB and γab respec-
tively, and on the Goldstones φA

Seff(γab, GAB , φA), (3.19)

and should be invariant under diffeomorphisms on the two hypersurfaces, there-
fore explicit dependences on the positions of the branes, say u1 and u2, are not
allowed. Moreover, given that this construction relies on two slices in no particu-
lar place in the interior of the spacetime, the effective action should be invariant
under γ ↔ G, up to possible field redefinitions. The Goldstone modes φA(x) are
the bifundamental fields between the two branes and can be used to rewrite the
effective action (3.19) as a local theory on one of the branes

Seff =
∫

dd+1x
√

−γ F (γab, hab), (3.20)

where hab is the pull-back of the IR metric GAB to the UV brane

hab = GAB
∂φA

∂xa

∂φB

∂xb
(3.21)

and F (γab, hab) is a scalar quantity built from the two tensors γ and h.

Let us now restrict the form of (3.20) by analyzing what are the scalar structures
that are allowed. In principle, the action (3.20) contains derivative terms of the
Goldstone fields and of the curvatures built from γ and h. However, here we are
interested in the low energy regime only. Hence recalling that Goldstones have
mass dimension -1, we accept terms with arbitrary number of Goldstones with
no more than one derivative applied to each of these fields. This is the analogue

3Not all Einstein equations are used to compute this action. Constraint equations are left
unsolved and turn out to be equations of motion for the Goldstones connecting the two branes.
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3.3. Nonlinear effective action from gravity

of the hydrodynamic gradient expansion and is also the reason why we assume
the effective action depends only on the metrics and the Goldstones. Given the
diffeomorphisms × diffeomorphisms invariance, the independent scalar structures
that we can construct out of γab and hab, without using derivatives, are the traces
Tr M, Tr M2, . . . of the matrix M ≡ hacγcb where hac is the inverse of hac. In d+1
dimensions there are only d + 1 independent traces corresponding to the amount
of eigenvalues of the matrix M . Therefore the effective action (3.19) depends on
d + 1 scalars

F (γab, hab) = F [M ] = F [Tr M, . . . , Tr Md+1]. (3.22)

Equivalently, we could have chosen to work with traces of M−1, but will find traces
of M to be more convenient.

Geometric interpretation of the Goldstone bosons

Let us here show how the Goldstone bosons arise more precisely. Suppose there is a
solution to the double-Dirichlet problem in Einstein gravity, that is we know what
is the bulk geometry with two Dirichlet boundary conditions on the two branes.
By applying a diffeomorphism xμ → yμ(u, xa), the solution can be brought to the
radial Arnowitt-Deser-Misner (ADM) [145] form

ds2 = gμνdyμdyν = dU2 + 2 Aa(y) dyadU + gab(y, U) dyadyb, (3.23)

with new bulk spacetime coordinates yμ = (U, ya) with ya = (t, �y). The original
radial slices located say at u1 and u2 are now at U = U1,2(yμ) for some functions
U1,2(yμ) and lines of ya = const are spatial geodesics. By undoing the change
of coordinates that put the metric in the radial ADM form (3.23) with yμ →
xμ(U, ya), we can identify the Goldstone bosons with the map from xμ(U2(yμ), ya)
to xμ(U1(yμ), ya) along the spacelike geodesics. By construction, these Goldstone
modes are covariant and transform correctly under diffeomorphisms of the metrics
on the two slices. We could also imagine alternative definitions based on spacelike
or null geodesics which make a prescribed angle with one of the two boundaries,
but we expect these to be related through a field redefinition to the previous
construction.

The derivation

We now specify to the case of Einstein gravity with a negative cosmological con-
stant

S =
1

2k2
(d+2)

∫
du dd+1x

√
−g (R − 2Λ), (3.24)
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where g is the determinant of the spacetime metric gμν . Let us from now on set
2k2

(d+2) = 1 for simplicity. Einstein field equations are simply given by

Rμν =
2
d

Λ gμν . (3.25)

The most general metric ansatz where Goldstones are given by spatial geodesics
was given above in (3.23). Let us however restrict to a subset of solutions where
the UV and IR metric are constant. Because of this restriction we can even take
the full metric to be independent on the field theory coordinates ya. Moreover we
can always perform a shift ya → ya − U Aa to get rid of Aa in the metric. Finally,
replacing U with u, and y with x, the metric ansatz that we are going to adopt is
simply

ds2 = du2 + gab(u) dxadxb. (3.26)

Moreover since we have anticipated above that the effective action involves eigen-
values of the matrix M through (3.22), we can probe this feature with diagonal
metrics on the two boundaries. Hence we can parametrize gab(u) as follows

gab(u) dxadxb = eψa(u)δab dxadxb = −eψt(u) dt2 + eψi(u) dxidxi. (3.27)

Equations of motion and solutions. The Ricci scalar on the ansatz (3.26) as
a function of the single variable gab can then be evaluated to be

R = −Tr
(
g−1∂2

ug
)

+
3
4

Tr
(
g−1∂ug g−1∂ug

)
− 1

4
(
Tr(g−1∂ug)

)2
, (3.28)

with the Ricci tensor given by

Ruu = −1
2

Tr
(
g−1∂2

ug
)

+
1
4

Tr
(
g−1∂ug g−1∂ug

)
, (3.29)

Rab = −1
2

∂2
ug +

1
2

∂ug g−1∂ug − 1
4

Tr
(
g−1∂ug

)
∂ug, (3.30)

where g−1 is the inverse of gab, and we have suppressed the indices for simplicity.
If we multiply (3.30) by g−1, take the trace and use Einstein equations (3.25), we
get

−1
2

∂uTr(g−1∂ug) − 1
4

(Tr(g−1∂ug))2 = 2Λ
d + 1

d
, (3.31)

which is a first order equation for the combination Tr(g−1∂ug). Assuming a neg-
ative cosmological constant parametrized as follows

�2 ≡ −2Λ
d + 1

d
, (3.32)

the solution to (3.31) is simply

Tr
(
g−1∂ug

)
= 2 � coth �(u − u0), (3.33)
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where u0 is an integration constant. Since Tr
(
g−1∂ug

)
= ∂u (log det g) identically,

we can solve for det g which gives

det g = C sinh2 �(u − u0) (3.34)

with some integration constant C. Now, plugging the metric ansatz (3.26) together
with (3.27) into Einstein equations (3.25) and using (3.34) gives

1
2

∂2
uψa +

�

2
tanh �(u − u0) ∂uψa =

�2

d + 1
, (3.35)

which can be readily solved giving

ψa = Aa + Ba log
(

tanh
�

2
(u − u0)

)
+

2
d + 1

log(sinh �(u − u0)) (3.36)

where Aa and Ba are some integration constants. The constants Aa do not obey
any constraint and Ba must satisfy∑

a

Ba = 0. (3.37)

After analyzing the remaining uu component of the Einstein equations (3.25) with
(3.29) given by

Ruu =
∑

a

(
−1

2
∂2

uψa − 1
4

∂uψa ∂uψa

)
, (3.38)

we get one more constraint ∑
a

B2
a = 4

d

d + 1
. (3.39)

Let us count the amount of integration constants. We have the freedom to choose
the values of u = u1 and u = u2 where the IR and UV brane live4. The total
number of variables is therefore d + 1 from Aa, (d − 1) from Ba, plus u0, u1, u2.
However, shifting u0, u1, u2 simultaneously by a constant does not change the
solution, so there are only two independent variables among u0, u1, u2. The total
number of free variables is therefore 2(d + 1), which is precisely the right number
to determine a double-Dirichlet solution.

Now, the solution is completely determined after imposing the Dirichlet boundary
conditions on the IR and UV branes located in u1 and u2 respectively. We can
parametrize their metrics simply by ψ1

a = ψa(u1) and ψ2
a = ψa(u2). We expect the

effective action to only depend on the ratio of the IR and UV metric, as that is
what appears in the matrix M we used above. Therefore the interesting quantities

4This is reminiscent of the situation encountered when calculating transition amplitudes in
quantum gravity [146].

53



209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva

3. Effective actions for Fluids from Holography

are the combinations eψ2
a−ψ1

a which form the eigenvalues of M . Indeed, the shift
variables Aa do not appear in the solutions in a very profound way and do not
affect the ratio of the IR and UV metric. In other words, they effectively decouple,
as expected. Therefore we are left with the following system of equations where
we have set u0 = 0 for simplicity

ψ2
a − ψ1

a =
2

d + 1
log

(
sinh �u2

sinh �u1

)
+ Ba log

(
tanh �

2 u2

tanh �
2 u1

)
,

∑
a

Ba = 0,

∑
a

B2
a = 4

d

d + 1
, (3.40)

which we need to solve. We can easily solve the first equation for Ba and are then
left with two equations for u1 and u2 which are not particularly easy to solve.

The on-shell action. We are now ready to evaluate the on-shell action. The
Hilbert-Einstein contribution (3.24) because the Ricci scalar is constant5 reads

S = V
4Λ
d

∫ u2

u1

du exp

(∑
a

ψa(u)/2

)
, (3.41)

where V is the volume in the (t, �y) directions. Such action can be easily evaluated
using our solution (3.36) and takes the final form

S = − 2 V �

d + 1
e
∑

a
Aa/2 (cosh �u2 − cosh �u1). (3.42)

Besides the Hilbert-Einstein term, in order for the variational principle to be well
defined on the two boundaries, one needs to include the usual Gibbons-Hawking
term (2.62) evaluated on both the UV as well as the IR boundary. Where γ is the
determinant of the metric on the selected slice and K is its extrinsic trace. Such
contribution is of the form

SGH = −
∫

dd+1x
√

−g Tr
(
g−1∂ug

)
, (3.43)

and on e.g. u2 it evaluates to

SGH = −2V � e
∑

a
Aa/2 cosh �u2. (3.44)

5This is certainly true when both the constraints and the dynamical components of the Ein-
stein equations are imposed. Here, we do not want to impose the constraints associated with the
choice of the shift vector Aa in (3.23). However, in the radial gauge, the relevant off-diagonal
contributions from the equations of motion to the Ricci scalar vanish, as the inverse metric is
diagonal. This is the reason why also in our setup the Ricci scalar is constant.
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The final result, combining all three contributions, thus reads

Stotal = −2 V (d + 2) �

d + 1
e
∑

a
Aa/2 (cosh �u2 − cosh �u1). (3.45)

Let us express the just found generic gravitational effective action in terms of the
eigenvalues of the matrix M . From (3.40) we obtain that

log
(

sinh �u2

sinh �u1

)
=

1
2

∑
a

(ψ2
a − ψ1

a) =
1
2

Tr(log M), (3.46)

(
log

(
tanh �

2 u1

tanh �
2 u2

))2

=
d + 1
4 d

(∑
a

(ψ2
a − ψ1

a)2 − 1
d + 1

( ∑
a

(ψ2
a − ψ1

a)
)2

)
=

=
d + 1

4d

(
Tr(log M)2 − 1

d + 1
(Tr(log M))2

)
(3.47)

and equations (3.45), (3.46) and (3.47) are the final set of equations we would like
to solve. To compare with the effective action which we introduced in (3.20) with
(3.22) we need to insert the value of

√−γ at the UV brane. We read off that

F [M ] = −2(d + 2)�
d + 1

cosh �u2 − cosh �u1

sinh �u2
. (3.48)

The eigenvalues of M are exp(ψ2
a −ψ1

a), i.e. the eigenvalues of the UV metric times
the ones of the inverse IR metric. We have therefore succeeded in writing F [M ]
in terms of the eigenvalues of the matrix M : one first needs to solve for u1 and u2

in terms of the eigenvalues using equations (3.46) and (3.47) and substitute those
in (3.48) to get the expression of F [M ] in terms of its eigenvalues. One conclusion
we can already draw is that

F [M ] ≡ F [ Tr(log M), Tr(log M)2 ] = F [t1, t2], (3.49)

since those are the only combinations of eigenvalues that appear. Similar results
appeared simultaneously in [147]. Hence, the double-Dirichlet effective action
is a function with two arguments where the relation between t1 ≡ Tr(log M),
t2 ≡ Tr(log M)2 and u1, u2 is given by (3.46) and (3.47). It appears difficult to
obtain the solution for u1 and u2 in any compact form, so eq. (3.48) is as close
as it gets to finding an explicit expression for the gravitational double-Dirichlet
effective action.

3.3.2 Fluid effective action

Now that we have derived the double-Dirichlet effective action between two arbi-
trary branes in AdS, let us make contact with the fluid effective action as in (3.1).
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We want to send the IR brane to the horizon where the metric degenerates. This
can be achieved by requiring eψ1

t → 0. Inspecting (3.40), this limit in our setup
translates to require u1 → 0 while keeping u2 finite. At the same time, t1 → +∞
and t2 → +∞ by looking at (3.46) and (3.47). Hence in the near-horizon limit
u1 → 0 we find that

t1

2
+

[
d + 1
4 d

(
t2 − t2

1
d + 1

)] 1
2

= 2 log cosh
�u2

2
(3.50)

and the effective action (3.48) reduces to

F [t1, t2] = −2(d + 2)�
d + 1

tanh
� u2

2
. (3.51)

Taking the expressions (3.46) and (3.47) it is easy to see that for in the near-horizon
limit where ψ1

t → −∞ we have

t1

2
+

[
d + 1
4 d

(
t2 − t2

1
d + 1

)] 1
2

=
d + 1
2 d

∑
i

(ψ2
i − ψ1

i ) =
d + 1
2 d

Tr′ log M (3.52)

where Tr′ is defined as the trace with the degenerate eigenvalue ψt removed. We
can now solve for u2 combining (3.50) and (3.52) and plug it into the effective
action (3.51). The result is

F [M ] = −2(d + 2)�
d + 1

[
1 − exp

(
−d + 1

2 d
Tr′ log M

)] 1
2

, (3.53)

which is a very concrete effective action. Notice that it only depends on Tr′ log M =
log det′ M and, therefore, it is invariant under the volume-preserving diffeomor-
phisms.

Finally, let us take the limit where the UV brane is taken to the boundary of
AdS. Then the exponential in equation (3.53) becomes very small and we can
approximate

F [M ] ≈ −2(d + 2)�
d + 1

[
1 − 1

2
exp

(
−d + 1

2 d
Tr′ log M

)]
. (3.54)

The first term is a constant, so it can be canceled by a local counterterm of the
form (2.63). The effective action therefore becomes

F [M ] =
(d + 2)�

d + 1
(det ′M)− d+1

2 d , (3.55)

which is exactly the power that we need to describe a conformal fluid in d + 1
spacetime dimensions as in (2.34). More explicitly, assume the IR metric to be of
the form

GAB dφAdφB = Gtt dφtdφt + Gij dφidφj . (3.56)
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In the near-horizon limit, with Gtt → 0, one of the eigenvalues of M will blow up,
or equivalently, one of the eigenvalues of M−1 will go to zero. It is then very easy
to see that

det ′M−1 = det
(
∂aφi∂bφjγabGjk

)
= (s/s0)2 (3.57)

and therefore our action (3.55) is indeed of the type (3.1) with the entropy density
given by (3.2). Notice that under conformal rescalings of the UV metric γab →
Ωγab the determinant scales as

√−γ → Ω(d+1)/2√−γ and det ′M → Ωd det ′M .
Hence, combining (3.55) together with the determinant as in (3.20), makes the
effective action invariant under rescalings of the UV metric and finite. We have
therefore found a direct derivation of the effective action for ideal conformal fluids
from holography.

***

3.4 Linearized effective action from gravity

We will now move to the explicit construction of the linearized effective action for
the (3+1)-dimensional conformal fluid6. We will focus our attention on the regime
where deviations from equilibrium are not only long-wavelength, but also small
in their amplitude. This will allow us to extend the analysis from the previous
Section to higher orders in the low momentum/frequency expansion. The relevant
gravity action is

S =
1

2k2
5

∫
du d4x

√
−g (R − 2Λ) (3.58)

and the corresponding equations of motion are

Eμν = Rμν − 1
2

R gμν + Λ gμν = 0. (3.59)

The black brane geometry dual to the plasma state of N = 4 super Yang-Mills
takes the following form7

ds2 = gμνdxμdxν =
(πTL)2

u
(−f(u)dt2 + dx2 + dy2 + dz2) +

L2du2

4u2f(u)
, (3.60)

6This specific fluid corresponds to the low energy regime of N = 4 SYM in the large-Nc limit
and at strong coupling

7We could have taken the equivalent form (2.65), but we find this one more convenient.
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where u is the radial coordinate extending from u = 0 (UV boundary) to u = 1
(the event horizon), the emblackening factor reads f(u) = 1−u2, T is the Hawking
temperature and L is the curvature radius of the vacuum AdS5. In this convention,
Λ = − 6

L2 .

In studying small perturbations δhμν(t, x, u) of the black brane background (3.60)
it will be convenient to work in the Fourier space

δhμν(t, x, u) =
∫

dω dk

(2π)2 δhμν(ω, k, u) e−iωt+ikx (3.61)

and to further define

Hab := |gac| δhcb; ∂uHuu :=
4 u

√
f(u)

L2 δhuu; Hau := 2πT |gac| δhcu, (3.62)

where gab is the inverse of the black brane metric (4.90) restricted to a, b, . . .

indices. For definiteness, we aligned the momentum along the x-direction. The
perturbations (3.62) are classified according to their transformation properties
with respect to residual rotations O(2) in the plane transverse to their momentum,
see e.g. [135]. This gives rise to the scalar, vector and tensor channels, which, by
construction, decouple from each other. Given that the tensor channel does not
support the hydrodynamic (gapless) excitations, the corresponding modes are not
going to contribute to the hydrodynamic effective action and we will neglect them.
Hence, we are only going to consider the scalar and vector modes

Scalar (sound channel): Htt, Hxt, Hii, Haa, Htu, Hxu, Huu,

Vector (shear channel): Hαt, Hαx, Hαu, with α = y, z. (3.63)

For the future convenience, the formulas above utilized the following notation:

Hii = Hxx + Hyy + Hzz and Haa = Hxx − Hyy − Hzz. (3.64)

Notice that our analysis here keeps arbitrary values of the lapse and shift variables,
as opposed to the previous Section. This will allow us to be very explicit about
the emergence of the Goldstone bosons on the gravity side.

3.4.1 Shear channel

The shear channel equations of motion are Eαt and Eαx (α = y, z) and take the
form

H ′′
αt − 1

u
H ′

αt − k̃2 1
uf

Hαt − k̃ ω̃
1

uf
Hαx + i ω̃ H ′

αu − i ω̃
1
u

Hαu = 0, (3.65)

H ′′
αx− (1 + u2)

uf
H ′

αx+ω̃2 1
uf2 Hαx+ω̃ k̃

1
uf2 Hαt−i k̃ H ′

αu+i k̃
(1 + u2)

uf
Hαu = 0,

(3.66)
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where we defined the dimensionless frequency and momentum

ω̃ =
ω

2πT
and k̃ =

k

2πT
. (3.67)

The equations (3.65) and (3.66) need to be supplemented with the constraint Eαu

k̃ H ′
αx +

ω̃

f
H ′

αt + i
(ω̃2 − fk̃2)

f
Hαu = 0. (3.68)

Since we are interested in the low energy dynamics of the linearized perturbations,
we will search for solutions in a perturbative derivative expansion. The fields Hαu

naturally appear with a field theory derivative and they have to be retained at the
same order as the other fields Hαt and Hαx. We implement the gradient expansion
by redefining ω → λ ω, k → λ k, rescaling the fields Hαu → 1/λ Hαu and searching
for solutions in a power series of the bookkeeping parameter λ � 1

Hab = H
(0)
ab + λ H

(1)
ab + λ2 H

(2)
ab + . . . . (3.69)

At this point, one usually fixes a gauge (typically, the radial gauge Hμu = 0)
and solves the full set of equations (3.65-3.68) in the small-λ expansion. In each
transversal direction α, the relevant equations are a set of two coupled second order
ordinary differential equations and one first order equation. The total number of
the integration constants per transverse direction is then three. They are usually
fixed by setting two Dirichlet boundary conditions in the UV and imposing the
ingoing boundary condition on the horizon. However, as in the previous Section,
we want to solve here a double Dirichlet problem, namely we want to impose the
Dirichlet boundary conditions not only in the UV but also on some IR brane. We
are going then to solve (3.65) and (3.66) and leave the constraint (3.68) unsolved.
At leading order in the hydrodynamic expansion (3.69) equations (3.65-3.66) are
then

H
(0)′′
αt − 1

u
H

(0)′
αt + iω̃ H ′

αu − iω̃
1
u

Hαu = 0, (3.70)

H(0)′′
αx − (1 + u2)

uf
H(0)′

αx − ik̃ H ′
αu + ik̃

(1 + u2)
uf

Hαu = 0. (3.71)

The solution with Dirichlet boundary conditions HB
ab in the UV (u = 0) and

Dirichlet boundary conditions Hδ
ab at some u = uδ is not unique since it depends

on the arbitrary gauge choice encoded in the fields Hαu

H
(0)
αt (u) = HB

αt − u2

u2
δ

ΔHαt − iω̃

∫ u

0
Hαu(w) dw, (3.72)

H(0)
αx (u) = HB

αx − log f

log fδ
ΔHαx + ik̃

∫ u

0
Hαu(w) dw. (3.73)
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In the formula above, fδ = f(uδ) and we have also defined the following bulk
diffeomorphisms invariant combinations

ΔHαt = HB
αt − Hδ

αt − iω̃ πα,

ΔHαx = HB
αx − Hδ

αx + ik̃ πα, (3.74)

with πα defined as a following Wilson line-like object

πα =
∫ uδ

0
Hαu(u) du. (3.75)

The transverse Goldstones

The Wilson line-like objects defined in (3.75) are the (linearized) Goldstone bosons
of certain spontaneously broken symmetries. In fact, one can easily see that the
combinations (3.75) are invariant under those bulk diffeomorphisms, which in-
volve diagonal combinations of the diffeomorphisms on the two boundaries, and
transform nontrivially otherwise. The gauge symmetry of reparametrizing the two
Dirichlet boundary conditions Diffs4×Diffs4 is broken down to the diagonal combi-
nation diag(Diffs4) by the classical solution (3.72-3.73) and the Goldstones (3.75)
can be associated to the spontaneous breaking of the global symmetry subgroup

Poincaré4 × Poincaré4 → diag(Transl4 + Rot3). (3.76)

In the formula above, the Lorentz group is broken completely as the two boundaries
are characterized by different speed of light and only the diagonal combination of
spacetime translations and rotations survive.

If we work instead in a specific gauge, e.g. the radial gauge, the Goldstones (3.75)
arise as non-trivial boundary conditions to be imposed on the second boundary.
For instance we can perform a bulk diffeomorphism xμ → xμ + ξμ in order to
transform the metric (3.60) with its perturbations Hμν to a form where the new
metric perturbation satisfy the condition H̃μU = 0 in the new bulk coordinates
yμ = (ya, U). Such diffeomorphism, in the lowest order in the derivative expansion,
is

ξ(0)
α (u) =

1
u

Cα − 1
u

∫ u

0
Hαu(w)dw, (3.77)

where Cα = Cα(ω̃, k̃) does not depend on the radial direction and can be set to
zero. The bulk metric perturbations change to

H̃
(0)
αt (u) = H

(0)
αt (u) + i ω̃

∫ u

0
Hαu(w)dw, (3.78)

H̃(0)
αx (u) = H(0)

αx (u) − i k̃

∫ u

0
Hαu(w)dw (3.79)
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and the boundary values transform accordingly

H̃δ
tα = Hδ

tα + i ω̃ πα, (3.80)
H̃δ

xα = Hδ
xα − i k̃ πα. (3.81)

Notice that in the radial gauge the metric is of the form

ds2 = dU2 + 2 Aa(ya) dyadU + gab(ya, U) dyadyb (3.82)

and the lines of constant ya are spatial geodesics with affine parameter U . As
described in previously in Section 3.3, the Goldstone bosons (3.75) correspond
to a map xa(ya, 0) → xa(ya, uδ) from the conformal boundary to the IR brane
following suitable spatial geodesics.

The transverse effective action

Now that we have the solution of the double Dirichlet problem, we are ready to
compute the partially on-shell action between the IR and the UV brane. In order to
make the variational problem well-defined we need to include the Gibbons-Hawking
term on both of the boundaries (as in the previous Section) and a counterterm in
the UV

Sδ = SHE |uδ
0 + SGH |uδ

− SGH |u=0 − Sct|u=0, (3.83)

where SHE is given in (3.58) and

SGH =
1
k2

5

∫
d4x

√
−γ K; Sct =

L

2k2
5

∫
d4x

√
−γ

(
6

L2 +4R

)
, (3.84)

In the formulas above, γ is the determinant of the induced metric on the timelike
hypersurface, K is the trace of the extrinsic curvature tensor and 4R is the Ricci
scalar on the (3+1)-dimensional timelike hypersurface, which will only contribute
in the second order of the derivative expansion. We will now set the action (3.83)
partially on-shell by using the solutions (3.72-3.73). The background contribution
takes the form

Sconst = P0V4

(
3 − 6

u2
δ

)
with P0 =

π4T 4L3

8k2
5

, (3.85)

where V4 is the four-dimensional volume term and P0 is the thermodynamic pres-
sure. The contribution of the perturbation is given by

ST = −P0V2

∫
dk dω

(2π)2

∑
α

(
3
2

(HB
αt)2 +

1
2

(HB
αx)2 + (3.86)

+
3
u2

δ

(Hδ
αt)2 − (2 + fδ)

u2
δ

(Hδ
αx)2 − 2

u2
δ

(ΔHαt)2 − 2
log fδ

(ΔHαx)2

)
,
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where V2 is the two-dimensional transverse volume term and we have omitted the
arguments of the fields for which we use the convention

A B =
1
2

(
A(ω̃, k̃)B(−ω̃, −k̃) + A(−ω̃, −k̃)B(ω̃, k̃)

)
. (3.87)

The equations of motion for the Goldstone fields, as derived from the effective
action (3.86), correspond to the constraint equations (3.68) and represent conser-
vation of the energy-momentum tensor in the dual field theory. Imposing vanishing
double Dirichlet boundary conditions, the effective action will depend only on the
Goldstone degrees of freedom

SπT = P0V2

∫
dk dω

(2π)2

∑
α

2
(

ω̃2

u2
δ

+
k̃2

log fδ

)
π2

α. (3.88)

The linear dispersion relation is immediately derived

ω̃T = ± cT k̃, with cT =
uδ√

− log fδ

, (3.89)

and depends on the position uδ of the IR brane suggesting that on a finite cutoff
uδ the volume preserving diffeomorphisms is broken. This is very much in line
with the analysis presented in the previous Section.

In the near horizon limit uδ → 1 the background on-shell action

Sconst|H = −3 P0 V4, (3.90)

represents the energy density times the four-volume of a holographic conformal
fluid. The transverse effective action

ST |H = P0V2

∫
dk dω

(2π)2

∑
α

(
1
2

(HB
αt)2 − 1

2
(HB

αx)2 − 4 HB
αt Hδ

αt + 2 (Hδ
αx)2 +

−(Hδ
αt)2 + 2 iω̃

(
(HB

αt − Hδ
αt) πα − πα(HB

αt − Hδ
αt)

)
+ 2 ω̃2π2

α

)
(3.91)

turns out to be equivalent to the Fourier transform of the transverse sector in
Eq. (3.14) derived in Section 3.2 when the boundary metric expansion is included.
In order to demonstrate it, one needs to redefine πα → −πα, impose the confor-
mal fluid equation of state F (s) = −s4/3 and set s0 to s

4/3
0 ≡ 3P0. Furthermore,

one also needs to add the contribution +3 (Hδ
αt)2 coming from the difference be-

tween the near horizon form of the metric (3.60) with linear perturbations and
the Galilean form of the horizon metric (3.6), where in the tt-component the first
nontrivial term is second order in an amplitude expansion. Notice also that in
the near horizon limit the transverse velocity cT → 0 and the trivial shear waves
dispersion relation (2.32) is recovered.

62



209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva

3.4. Linearized effective action from gravity

At higher orders of the hydrodynamic expansion, the effective action contains
divergent terms as the stretched horizon approaches the position of the event
horizon. However, the resulting dispersion relation for the Goldstones is trivial

ω̃T = O(1 − uδ) + O(k̃4), (3.92)

and does not retain any of the aforementioned undesired features if one is careful
in taking the near horizon limit at each order of the hydrodynamic expansion. The
reason for it is simply that the two limits do not commute.

To recap, we demonstrated here that up to the second order of hydrodynamic
gradient expansion, the shear mode does not propagate provided one ignores the
dissipative effects. This hints towards the volume-preserving diffeomorphisms in-
variance being the symmetry of the effective action for holographic fluids at least
up to the second order of the gradient expansion.

3.4.2 Sound channel

All the manipulations of the previous Section can be repeated pretty much straight-
forwardly also for the sound channel perturbations. The dynamical Einstein’s
equations (Eab = 0) in the leading order of the gradient expansion take the form

H
(0)′′
xt − 1

u
H

(0)′
xt − ik̃ f H ′

tu + ik̃
(1 + 3u2)

u
Htu + iω̃ H ′

xu − iω̃
1
u

Hxu = 0,

H(0)′′
aa − (1 + u2)

uf
H(0)′

aa − 2 ik̃ H ′
xu + 2 ik̃

(1 + u2)
uf

Hxu = 0,

H
(0)′′

ii − 1
uf

H
(0)′

ii − 2 ik̃ H ′
xu + 2 ik̃

1
uf

Hxu +
3
2

√
fH ′′

uu − 3
2

(1 + 2u2)
u

√
f

H ′
uu = 0,

H
(0)′′
tt − (1 + 2u2)

uf
H

(0)′
tt − 2

3
H

(0)′′

ii +
2
3

(1 + u2)
uf

H
(0)′

ii − 2 iω̃
(1 + 2u2)

uf
Htu +

+2 iω̃ H ′
tu +

4
3

ik̃ H ′
xu − ik̃

4(1 + u2)
3uf

Hxu +

− (3 − u2)
2
√

f
H ′′

uu + (1 + u2)
(3 − 2u2)
2uf3/2 H ′

uu = 0, (3.93)

and the constraint equations (Eμu = 0) read

ik̃

(
H

(0)′
xt +

2u

f
H

(0)
xt

)
+iω̃

(
H

(0)′
ii +

u

f
H

(0)
ii +

3
2

√
fH ′

uu

)
+k̃2fHtu+k̃ω̃ Hxu = 0,

ik̃

(
H

(0)′
tt − u

f
H

(0)
tt +

2
3

(H(0)′
aa −H

(0)′
ii )− (3 − u2)

2
√

f
H ′

uu

)
+

iω̃H ′
xt

f
−k̃ω̃Htu− ω̃2Hxu

f
=0,

H
(0)′
tt − (3 − u2)

3f
H

(0)′
ii + 2 iω̃ Htu + ik̃

2(3 − u2)
3f

Hxu − 2√
f

H ′
uu = 0. (3.94)
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The solutions to eq. (3.93) with double-Dirichlet boundary conditions depend on,
basically freely-specifiable, values of Htu, Hxu and Huu

H
(0)
xt (u) = HB

xt − u2

u2
δ

ΔHtx + ik̃ f

∫ u

0
Htu(w)dw − iω̃

∫ u

0
Hxu(w)dw,

H
(0)
ii (u) = HB

ii − 1 −
√

f

1 −
√

fδ

ΔHii + 2 ik̃

∫ u

0
Htu(w)dw − 3

2
f Huu(u),

H(0)
aa (u) = HB

aa − log f

log fδ
ΔHaa + 2 ik̃

∫ u

0
Hxu(w)dw,

H
(0)
tt (u) = HB

tt −
√

fδ(1 −
√

f)√
f(1 −

√
fδ)

ΔHtt +
1
3

(1 −
√

f)(
√

fδ −
√

f)√
f(1 −

√
fδ)

ΔHii +

−2 iω̃

∫ u

0
Htu(w)dw +

1 + u2

2
√

f
Huu(u), (3.95)

where we have defined the following bulk diffeomorphisms invariant combinations

ΔHxt = HB
xt − Hδ

xt + ik̃ fδ πt − iω̃ πx,

ΔHii = HB
ii − Hδ

ii + 2 ik̃ πx − 3
2

√
fδ Huu(uδ),

ΔHaa = HB
aa − Hδ

aa + 2 ik̃ πx,

ΔHtt = HB
tt − Hδ

tt − 2 iω̃ πt +
1 + u2

δ

2
√

fδ

Huu(uδ). (3.96)

In complete analogy with the previous Section, we also defined the following (lin-
earized) Goldstones

πt =
∫ uδ

0
Htu(u)du and πx =

∫ uδ

0
Hxu(u)du. (3.97)

Notice that the contribution Huu appears here with no derivatives. This metric
component is in fact non-dynamical and it is associated to the parametrization of
the position of the IR brane uδ.

The longitudinal effective action

The on-shell action (3.83) up to second order in an amplitude expansion in the
sound channel with vanishing double Dirichlet boundary conditions is

SπL = P0 V2

∫
dk dω

(2π)2

(
fδ

u2
δ

(
2 k̃2 − 3 ω̃2)

π2
t − 2 ω̃ k̃

fδ

u2
δ

πt πx +

+
(
8 k̃2u2

δ −
(
k̃2(1 + u2

δ) − 6 ω̃2)
log fδ

)
3 u2

δ log fδ
π2

x

)
, (3.98)
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where we followed the same convention as in Eq. (3.87). Notice that the contri-
bution of Huu was integrated out. If the IR brane is kept at an arbitrary radial
position uδ, both Goldstones πt and πx are dynamical with coupled equations of
motion

fδ

u2
δ

(
2 k̃2 − 3 ω̃2)

πt − ω̃ k̃
fδ

u2
δ

πx = 0, (3.99)

ω̃ k̃
fδ

u2
δ

πt +
(
8 k̃2u2

δ −
(
k̃2(1 + u2

δ) − 6 ω̃2)
log fδ

)
3 u2

δ log fδ
πx = 0. (3.100)

As previously, these equations correspond to the constraint equations, here the
first two equations of (3.94), and hence follow from the conservation of the dual
energy-momentum tensor. We can now solve Eq. (3.99) for the dispersion relations.
We obtain two modes, which decouple in the vicinity of the event horizon and
correspond then to the independent oscillations of πt and πx:

πt : ω̃ = ±
√

2
3

k̃ + O(k̃3) (3.101)

πx : ω̃L = ± 1√
3

k̃ + O(1 − uδ) + O(k̃3). (3.102)

Notice that the longitudinal Goldstone πx has the standard dispersion relation for
sound waves, see Eq. (2.35). The other mode is not present in relativistic hydrody-
namics. In fact, it is easily seen from the effective action point of view (3.98) that
in the near-horizon limit uδ → 1 all πt contributions vanish and only the longitu-
dinal mode πx survives. Hence, although the dispersion relation (3.101) is finite
on the horizon, it is associated with unphysical mode and has to be discarded8.

Going to higher order in the hydrodynamic gradient expansion at the level of the
effective action is technically quite demanding. Despite that, it is still possible to
solve the double Dirichlet problem and investigate the constraint equations, which
we did up to the second order in a derivative expansion. Proceeding in this way,
we derived the correction to the dispersion relation for the longitudinal sector

ω̃L = ± 1√
3

k̃ ±
(

2
3
√

3
+

log(1 − uδ)
18

√
3

− 5 log 2
18

√
3

)
k̃3 + O(1 − uδ) + O(k̃4). (3.103)

Notice that although such dispersion relation is purely real and, hence, dissipation-
less, it diverges in the near-horizon limit. We expect the corresponding divergence
to appear in the effective action, although we did not check this explicitly. It is

8Another way to see this is by looking at the residue of the resulting two-point function for
the dual energy-momentum tensor. The residue related to the pole (3.101) vanishes in the near-
horizon limit and as a result the corresponding mode disappears. We thank Dam T. Son for
pointing this out.
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hard to interpret this divergence unequivocally. Perhaps the most straightforward
interpretation is that beyond the leading order in the gradient expansion keeping
the vanishing Dirichlet boundary conditions on the event horizon is unphysical. A
more speculative interpretation is that at the level of the holographic correspon-
dence it is simply not possible to split the fluid into the dissipative and dissipa-
tionless part. Perhaps this is not such surprising since we are dealing with the low
energy limit of N = 4 SYM which is intrinsically dissipative, similar conclusions
where given in [147]. We finish this Section by pointing out that the divergent
contributions to (3.103) are intrinsically associated with the ω-dependence. Hence,
it is natural to expect that in the Euclidean setting in thermal equilibrium such
divergences are absent and that the action functional for fluids (also beyond the
leading order in the gradient expansion) is well-defined.

***

3.5 Coupling to an IR sector

So far we dealt only with the part of the spacetime between some IR and UV
branes, ultimately sending one of the cutoffs to the UV boundary and trying to
send the other to the event horizon. However we never included the very important
property of the horizon being a surface of no return, i.e. we never included the
dynamical contributions of the part of the spacetime between the horizon and the
IR brane. Having an intermediate cutoff uδ naturally splits the spacetime into a
UV and IR sector and, as a consequence, the bulk action also splits into two parts
as in eq. (2.77), which explicitly is

S = SIR + SUV =
1

2k2
5

∫ 1

uδ

du d4x
√

−g (R − 2Λ) +
1

2k2
5

∫ uδ

0
du d4x

√
−g (R − 2Λ).

(3.104)
The (partially) on-shell UV part of the action computed in a derivative expansion
is what acquires the interpretation of the effective action for dissipationless hydro-
dynamical excitations, at least at the leading order. In order to couple such action
to the IR sector, one needs to integrate out the IR fields (2.78) on the finite cutoff
Hδ

μν

δS

δ Hδ
μν

=
δSIR

δ Hδ
μν

+
δSUV

δ Hδ
μν

= 0. (3.105)
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Hence setting Dirichlet boundary on the IR brane has to be understood as a useful
intermediate step.

In the remaining part of this Section we are going to focus on two different ways to
couple the UV sector to the IR. First, we use a membrane paradigm approximation
and derive the usual damped dispersion relation for the sound waves, without
any trace of the divergence discussed in the previous Section (see Eq. (3.103)).
Secondly, we focus on static configuration and employ the coupling to a regular
Rindler-type dynamical sector, providing the first derivation of the hydrodynamic
partition function from holography.

3.5.1 Membrane paradigm coupling

In order to recover dissipation, it is clearly necessary to include the horizon con-
tribution and ultimately recovering the ingoing boundary condition. As already
mentioned in Section 2.2.1 of the Introduction, instead of retaining the full dynam-
ical IR sector we can equivalently use the membrane paradigm boundary condition
on a finite cutoff uδ (2.51) which here explicitly writes

2(1 − u)
Z ′(u)

iω̃ Z(u)

∣∣∣∣∣
uδ

= σ with σ = 1, (3.106)

where Z is the relevant linearized gauge invariant gravitational perturbation. Here
we will not question whether this approximation is valid in general, as far as
hydrodynamic transport is concerned it seems to work very well. As we will see in
Chapter 5, the membrane paradigm only fails to reproduce the gapped quasinormal
modes which are not considered here. The nonlocal gauge-invariant combinations
as defined in literature [135] are

ZT
α = k̃ Htα + ω̃ Hxα,

ZL = 2 k̃2f Htt + 4 ω̃ k̃ Hxt + 2 ω̃2Hxx + Haa

(
k̃2(1 + u2) − ω̃2)

,(3.107)

respectively in the shear and sound channels. Keeping now the IR Dirichlet bound-
ary conditions Hδ

μν non-vanishing, solving the constraint equations with respect to
the Goldstones and using Eq. (3.106) gives the dispersion relations for the shear
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and sound modes

ω̃T = − i

2
σ k̃2 − i

8
σ

(
2 + (1 − σ2) log(1 − uδ) − (1 + σ2) log 2

)
k̃4 + O(1 − uδ),

ω̃L = ±
√

1
3

k̃ − i

3
σ k̃2 + (3.108)

±
(

1
2
√

3
− log 2

3
√

3
+ (1 − σ2)

(1 + log 2 + log(1 − uδ))
6
√

3

)
k̃3 + O(1 − uδ),

(3.109)

as functions of the membrane coupling σ. Notice that decoupling the membrane
by setting the membrane coupling σ = 0 gives a dissipationless dispersion relation
which, however, does not coincide with Eq. (3.103). There is a simple explanation
to this. From Eq. (3.106) it follows that imposing σ = 0 corresponds to setting
Neumann rather than Dirichlet boundary condition on the IR brane. This result
demonstrates that also for a different set of boundary conditions we do get the
divergent terms in the dispersion relation for sound waves. Several boundary
conditions could in principle give different dissipationless effective actions and
dispersion relations, as long as we make sure there is no net flux through the IR
brane. The divergent logarithmic term is removed when the ingoing boundary
conditions (σ = 1) are imposed, reproducing the correct dispersion relations as
given in Section 2.2.2 in (2.74) and (2.75) with the values of the shear and bulk
viscosity given in (2.69) and the relaxation time being (2.76). This complements
our discussion from the previous Section on the division of holographic fluids into
dissipative and non-dissipative contribution.

3.5.2 Euclidean IR sector coupling

The equilibrium partition function discussed in 2.1.3 can be computed holograph-
ically by evaluating the on-shell action on solutions to Einstein’s equations in the
Euclidean signature with arbitrary boundary metrics and a regular boundary con-
dition at the tip of the cigar. Our setup can be viewed as an intermediate step
to obtain the same result. In fact, this can be achieved by coupling the effective
action in the static limit ω → 0 to an Euclidean IR sector which takes care of
the near horizon (regular) region of the spacetime. Notice that in the conven-
tional derivation of the thermodynamic partition function from gravity there is no
Gibbons-Hawking term in the IR, while in the effective action formalism we had to
retain such term in (3.83) since it was non-vanishing in the near horizon limit. It
is then natural to expect that the IR sector is proportional to such a contribution
and we will show in the following that this is, in fact, the case.

Consider a regular cigar-shaped geometry, which near the horizon of a black hole
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looks like the tip of a cigar times the horizon geometry

ds2 =
β2

IRGtt

(2π)2r2
0

(
dr2 +

(2π)2

β2
IR

r2(dφt)2
)

+ Gij(dφi − vidφt)(dφj − vjdφt), (3.110)

where we assumed Euclidean time has periodicity βIR. Setting r = r0 we recover
the Euclidean metric on the IR brane

ds2 = GABdφAdφB = Gttdφtdφt + Gij(dφi − vidφt)(dφj − vjdφt). (3.111)

The geometry (3.110) does not solve Einstein equations, but since we are working
at the leading order in derivatives this does not matter. Moreover, we will assume
that r0 is very small with Gtt ∼ r2

0. We denoted the inverse temperature by βIR

to emphasize that this is the temperature as seen by the IR metric, which is not
necessarily the same as the temperature defined by the UV metric.

The on-shell value of the Euclidean action that covers the near horizon region
0 ≤ r ≤ r0 contains in principle two contributions

SIR = SHE

∣∣∣0

r0
+ SGH

∣∣∣
r0

. (3.112)

The bulk Einstein-Hilbert action scales as SHE ∼ O(r0) since the integration
domain shrinks to zero. The Gibbons-Hawking term turns out to be independent
of r0 and equal to

SGH =
∫

dd+1φA

√
det Gij

βIR
. (3.113)

To proceed, we make a change of coordinates (φi −viφt) → φi which we can always
undo later. Since we are working at the lowest order in derivatives we can assume
the vi to be constant, and the change of coordinates therefore removes the dφtdφi

cross terms from the metric. We can then rewrite (3.113) as

SGH =
∫

dd+1φA

√
det GAB

βIR

√
Gtt

=
∫

dd+1x

√
det h

βIR

√
Gtt

, (3.114)

where h is defined in (3.21). If we denote

ΣAB =
∂φA

∂xa

∂φB

∂xb
γab,

then we can use the fact that GAB is block diagonal to deduce the following identity

det(ΣABGBC) =
det(ΣijGjk)

√
Gtt

(Σ−1)tt
. (3.115)

If we insert this identity in (3.114) we obtain

SGH =
∫

dd+1x
√

γ det
(

∂φi

∂xa

∂φj

∂xb
γabGjk

)1/2 1
βIR σ

, (3.116)
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where
σ2 = (Σ−1)tt = γab

∂xa

∂φt

∂xb

∂φt
. (3.117)

The quantity σ has a simple interpretation: it is the norm of the vector field ∂
∂φt

pulled back to the UV boundary. Therefore, βIR σ is the proper length of the
Euclidean time circle as perceived on the UV boundary. We will therefore take

βUV = σ βIR (3.118)

as our definition of the inverse UV temperature. With this definition, we now see
that

SGH =
∫

dd+1x
√

γ det
(

∂φi

∂xa

∂φj

∂xb
γabGjk

)1/2 1
βUV

=
∫

dd+1x
√

γ
s

βUV
, (3.119)

where in the last line we reinstate the vi-dependence by undoing the coordinate
transformation (φi −viφt) → φi to recover precisely the entropy density as defined
in Eq. (3.11). Hence, to summarize, we have just shown that the relevant contri-
bution of the IR sector in the near horizon limit is given by the Gibbons-Hawking
term (3.119). Most importantly, it is of the form SIR ∼ Ts Vd, where s is the
entropy density, T is the temperature of the fluid and Vd is the spacetime volume.

Now, as promised, we couple the IR action (3.119) to the UV effective action
derived in Section 3.4 in the static limit ω → 0. The coupling is realized by
integrating out IR data as required in (3.105), which effectively sets the Goldstones
on-shell. Notice also that since SUV ∼ −ε Vd where ε is the energy density, we are
actually performing a Legendre transform of the energy density with respect to
the entropy density which gives the pressure P = Ts − ε as a function of T. With
arbitrary background metric configurations and using the notation of Section 3.4
the final result is

S = P0V4 + P0V3

∫
dx

(
3
2

HB
tt +

1
2

HB
ii

)
+

+P0V3

∫
dx

(
15
8

(HB
tt )2 +

1
2

(HB
xt)2 − 1

8
(HB

xx)2 +
3
4

HB
tt HB

ii +
1
2

HB
xxHB

yy +

+
1
2

∑
α

(
(HB

αt)2 − (HB
αx)2) )

. (3.120)

As expected such expression corresponds to the equilibrium partition function
described in (2.37) where the background fluid metric in 3+1 dimensions is a
linearized perturbation around the flat metric and only shear and sound channels
are taken into account

ds2 = −(1 − HB
tt (x))dt2 + 2 HB

it (x)dxidt + (δij + HB
ij (x))dxidxj . (3.121)
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The pressure for a conformal fluid is P (T ) = c T d+1, the temperature is T =
T0/

√
1 − HB

tt and the constant c is fixed to match the equilibrium pressure in 3+1
dimensions: P0 = c T 4

0 .

***

3.6 The entropy current as a Noether current

In this Section we want to explore the role that the conserved entropy current
Ja = sua plays in our setup. It turns out that the entropy current is related to a
symmetry as in [35, 34]. To describe this symmetry, we put vi = 0 for simplicity
and first define an IR stress tensor

T AB
IR = − 2√

−G

δS

δGAB
det

(
∂xa

∂φA

)
. (3.122)

The extra determinant has been put in because we want the IR stress tensor to be
defined with respect to the measure dd+1φA and not with respect to dd+1x. Just
as we do in fluids in Landau frame, we can look for a unit timelike eigenvector uM

IR

of TIR which obeys
T AB

IR (uIR)B = −ρIR uA
IR. (3.123)

We can in principle find the eigenvalue ρIR using the explicit form of the near-
horizon metric (3.110), and using the fact that the derivative of the effective action
with respect to a boundary metric is proportional to the conjugate momentum, or
radial derivative, of that metric; however, we do not need the explicit form of ρIR

in our analysis below. We now claim that whenever

φA → φA +
uA

IR

ρIR
(3.124)

is a symmetry of the action, the corresponding conserved current is precisely the
entropy current.

To show this, we first observe that for our action, which was of the type

S =
∫

dd+1x
√

−γF [γab, hab], (3.125)

with h given in (3.21). The covariantly conserved Noether current for a transfor-
mation of the type (3.124) is

ja = 2
δF

δhab
GAB

∂φA

∂xb

uB
IR

ρIR
= 2

δF

δGAB

∂xa

∂φA
GBC

uC
IR

ρIR
. (3.126)
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Using the definition of the IR stress tensor in (3.122) and the eigenvalue equation
(3.123) this becomes

ja =
√

−G√−γ
det

(
∂φA

∂xa

)
∂xa

∂φB
uB

IR. (3.127)

We now perform a near-horizon limit specializing to the case where uA
IR = δAt/

√
−Gtt

is a vector purely in the φt-direction. The conserved current is then

ja =
√

−G√−γ
det

(
∂φA

∂xa

)
σ√

−Gtt

ua
UV , (3.128)

where we introduced the unit vector

ua
UV =

1
σ

∂xa

∂φt
, (3.129)

which can be thought of as the suitably normalized pull back of the IR vector uIR.
If we look back at our analysis of the IR effective action, in particular at (3.114)
and (3.119), we see that one way to write the entropy density s is as

s =
√

−G√−γ
det

(
∂φA

∂xa

)
σ√

−Gtt

(3.130)

and therefore
ja = s ua

UV , (3.131)

which is indeed the same as the entropy current.

Strictly speaking, we are not quite done at this point, because we should also show
that ua

UV is the fluid velocity. This can be demonstrated as follows. Because the
function F in (3.125) must be a scalar and does not involve derivatives, it must
be a function of traces of products of hab and γab. This implies in particular that
it obeys the equation

∂F

∂γac
γcb +

∂F

∂hac
hcb = 0. (3.132)

It is not difficult to see that this equation implies that if uA
IR is an eigenvector of

T AB
IR , then

ua
UV =

∂xa

∂φA
uA

IR (3.133)

is automatically an eigenvector of T ab
UV , the stress tensor obtained by varying the

action with respect to γab. Therefore, the vector ua
UV appearing in (3.131) is

automatically an eigenvector of the UV stress tensor and therefore precisely equal
to the fluid velocity in Landau frame. To summarize we have shown that the
Noether current associated to the symmetry (3.124), with uA

IR the unit eigenvector
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of the IR stress tensor T AB
IR defined in (3.122) with eigenvalue ρIR as defined in

(3.123) is precisely the entropy current of the system.

It is interesting that our system appears to have two temperatures, two stress
tensors, and two fluid velocities, defined with respect the IR and UV boundary
respectively as in [35, 34]. This is perhaps an automatic consequence of our setup
where the two boundaries appeared on equal footing. In the limit where the IR
boundary becomes very close to the horizon of a black hole, the IR fluid physics
becomes quite simple, as it is governed by the universal near-horizon Rindler
region. These simple properties are then propagated to the UV boundary with
the help of the Goldstone bosons. In particular, the entropy, which in the near-
horizon region is very simple and proportional to the area of the horizon, becomes
somewhat more involved when described in terms of the UV variables9. We have
also explained how the entropy current can be associated to a symmetry which
is purely based on the IR variables. This symmetry corresponds to some type
of invariance of the IR dynamics as one flows along with the IR fluid velocity,
with a suitable normalization. It would clearly be very interesting to explore these
connections in more detail and extend them to the case where higher derivative
corrections are included in the effective action. Finally, we note that the entropy
current is conserved on-shell, but once we take the limit where the IR boundary
coincides with the horizon the variable φt decouples from the theory and the
entropy current (which remains finite in this limit) becomes conserved off-shell as
well.

***

3.7 Discussion and Outlook

In this Chapter we used the ideas of the holographic Wilsonian effective action ap-
proach illustrated in Section 2.2.2 to compute the effective action for (conformal)
perfect fluids from gravity. Our results can also be viewed as an alternative deriva-
tion of the fluid/gravity duality at least up to the leading order in a derivative
expansion. In particular we showed how to identify the field theory Goldstones
with geometric quantities in gravity and how the derived effective action exhibits
the volume-preserving diffeomorphism invariance, even if we do not understand

9See [148, 149] for earlier constructions of hydrodynamic entropy currents from gravity. These
results were directly motivated by area theorems.
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exactly the geometric origin of this symmetry. At subleading orders in a deriva-
tive expansion we have not been able to decouple the dissipationless sector from
the dissipative one because of certain logarithmic divergences in the dispersion
relations. We interpret this issue as a pathology arising when taking (incorrectly)
the Dirichlet boundary conditions all the way to the horizon. Moreover, our gravi-
tational setup is specifically dual to N = 4 super Yang Mills, which at low energies
behaves as a dissipative plasma and it should not be that surprising that when
attempting to decouple the dissipationless sector, something goes wrong. On the
other hand, it is still intriguing to see whether there exists a holographic dual
of a dissipationless fluid, possibly involving a geometry with no black hole event
horizon.

The gravitational embedding of perfect fluid dynamics is a natural simple starting
point for the derivation of a complete effective action for fluids featuring dissipative
effects, and in this Chapter we have seen how to incorporate those effects in our
setup by means of a simple membrane coupling. The necessary step to go beyond
this approximation scheme would be an extension of our work to two-sided eternal
AdS black holes as in [55], which would naturally give rise to the doubled set of
degrees of freedom one needs in the Schwinger-Keldysh formalism to describe real
time, finite temperature phenomena. It would also be interesting to understand
the relation between the above mentioned approach and the recent field theory
developments of [35, 34], where yet another general master Lagrangian for fluid
dynamics is proposed containing a double set of degrees of freedom. The authors of
[35, 34] suggest in particular that an eventual effective action description for fluids
should contain an additional U(1) symmetry as well. The Noether current associ-
ated to this symmetry is related to what they call the the adiabaticity equation,
an off-shell generalization of the on-shell entropy current conservation. We find it
interesting to relate their results with our entropy current findings in Section 3.6.

In this Chapter we showed how to couple the derived effective action to different IR
sectors. Besides the ones discussed here, there are other boundary conditions one
often encounters, such as the near-horizon AdS2 boundary conditions for near ex-
tremal black branes which feature prominently in various AdS/CMT applications,
see e.g. [150]. These strongly coupled IR boundary conditions would, in combina-
tion with our effective action, lead to a gravitational version of semi-holography
[151] which would be clearly interesting to explore further.

The double-Dirichlet problem can alternatively be interpreted as the transition
amplitude of gravity in radial quantization from a Hartle-Hawking [146] point of
view. It would be interesting to develop this picture in more detail, and also con-
sider the analogue problem in de Sitter space, where it could shed further light
on the relation between de Sitter correlation functions and Euclidean partition
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functions. It is also tempting to use the effective action to find a description of
spacetimes with a hole, making contact with the ideas developed in [152, 153].
Other interesting developments would be the study of terms higher order in the
fields and/or derivatives in both gravity and in the effective actions; and possible
generalizations to other systems such as solids, superfluids, etc, see e.g. [29]. More-
over it would be interesting to understand the relation to bigravity theories which
also rely on two metrics, see e.g. [154]. Also it would be interesting to understand
the relation of our entropy current to Wald entropy [155]. Finally, hydrodynamic
effective actions appeared recently in a model of dense nuclear matter [156] and it
would be very interesting to pursue this connection further.
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4 Holographic Fluids

on finite Cutoffs

On holography in the interior of spacetime and fluid behavior

beyond Anti-de Sitter asymptotics

Extensions of holography to non asymptotically AdS spacetimes are often hard to
come by. Restricting to the hydrodynamic regime and considering a holographic-
like dictionary on a timelike slice in the interior of the spacetime, rather than on
the asymptotic boundary, allows us to extend at least the fluid/gravity duality
approach on a finite cutoff and therefore to spacetimes which are not necessarily
asymptotically AdS. In this Chapter, based on [2], we are going to show how
this approach can be implemented in general, giving a prescription for the dual
stress-energy tensor on a finite cutoff.

4.1 Introduction

In order to study the fluid/gravity duality on a slice in the interior of a generic
spacetime we consider a (d + 2)-dimensional spacetime with a general bulk stress-
energy with an event horizon. For example, for the case of a negative cosmological
constant it could be a black hole and for a vanishing cosmological constant it could
be Rindler spacetime. We assume that such a manifold admits a radial foliation
with timelike (d + 1)-dimensional hypersurfaces Σc at constant r = rc as in Figure
4.1. We restrict to the IR part of the spacetime between the horizon and the finite
cutoff and assume there exists a dual field theory on Σc in a holographic sense.
In the low energy limit such field theory should behave as a fluid with an rc-
dependent background metric γab(rc) which can be viewed as a running coupling
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H+

H−

Σc
Figure 4.1: The spacetime has past and
future horizons H− and H+ respectively.
The dual fluid lives on a timelike surface
Σc. Lines of constant t and constant r

in the Eddington-Finkelstein coordinate
system are shown.

at an energy scale identified with rc.

In order to claim there is a dual field theory on Σc one needs to be able to unam-
biguously define how to compute e.g. field theory quantities from the bulk point
of view. In the low energy limit the quantity of interest is the conserved1 stress-
energy tensor that satisfies a thermodynamic relation with the temperature and
entropy density. As many authors have pointed out, the Brown-York stress energy
tensor defined in (2.65) is a natural candidate for the fluid energy momentum ten-
sor on Σc as it is conserved. In Section 4.2 we give a precise derivation for such
prescription highlighting the fact that, when the hypersurface is only conformally
flat, as is indeed the case for AdS/CFT, the holographic stress tensor cannot be
the Brown-York stress energy tensor but rather should be conformal to it.

In Section 4.3 we proceed by identifying the most general seed equilibrium metric
solution with Dirichlet flat boundary conditions on a finite cutoff hypersurface
Σc. We show how thermodynamic properties arise by reading off the expression
for the dual stress tensor in a fluid form. In particular we argue how different
choices of coordinate systems, although agreeing at thermodynamic equilibrium,
give different results when performing a hydrodynamic expansion.

In section 4.4 we provide a general set up for hydrodynamics by promoting the
1Strictly speaking the fluid stress energy tensor should satisfy an appropriate conservation

equation but is not always conserved. The generalization to cases in which it is not conserved
because of e.g. sources for currents is straightforward.

78



209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva

4.2. Dual stress-energy tensor on a finite cutoff

defining parameters of the equilibrium bulk solutions to be position dependent.
Working in a relativistic gradient expansion, we work out the hydrodynamic equa-
tions of motion. We show that the conservation of the dual fluid is associated with
the integrability of the bulk equations and we derive a general expression for the
first order dissipative corrections to the fluid stress energy tensor.

As an example of our formalism we revisit the case of a finite cutoff in a planar
AdS black hole spacetime in Section 4.5. We compute the first order hydrodynamic
metric corresponding to a Dirichlet boundary condition on the hypersurface Σc.
As this hypersurface is taken towards the conformal boundary we recover the
usual fluid/gravity results summarized in Section 2.2.2. Given our solution with
a Dirichlet boundary condition on Σc, we work out the asymptotic expansion of
the metric in the neighborhood of the conformal boundary. This metric remains
asymptotically locally AdS but the background metric for the dual CFT is no
longer conformally flat. In fact having Dirichlet boundary conditions on Σc cor-
responds to have some mixed boundary conditions on the asymptotic infinity and
the dual conformal field theory at infinity is deformed. We give the precise form
for this background metric, up to first order in derivatives, thereby identifying the
precise deformation of the dual CFT captured by the Dirichlet condition in the
bulk. We observe in Section 4.5 and again in 4.6, that when the cutoff hypersur-
face is pushed towards the horizon it gives the so-called Rindler fluid dynamics,
at least at first order, studied previously in the literature.

Finally in section 4.6 we consider various examples of bulk stress energy tensors,
including cosmological constant and gauge fields. Using our examples, we observe
that the existence of a flat timelike hypersurface is (as one would expect) highly
non-trivial: in the absence of negative bulk curvature this requirement forces us
into scaling regions of black holes with spherical horizon topologies.

***

4.2 Dual stress-energy tensor on a finite cutoff

We will now derive a prescription for the stress-energy tensor on a finite cutoff.
The proof makes use of a Hamiltonian description of the bulk dynamics, following
the same approach as in the Hamiltonian method of holographic renormalization
[76]. One difference relative to the latter is that we will work with a finite cutoff
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and we will not need to look in detail at the renormalization since on-shell actions
are now finite. A second difference relative to Hamiltonian holographic renormal-
ization is that we do not consider generic bulk solutions with given asymptotics;
instead we restrict to the hydrodynamic regime in which the bulk solution is near
to an equilibrium solution with horizon. We do not need to assume a negative cos-
mological constant or indeed any specific form for the bulk stress energy tensor.

General case

Let us consider a (d + 2)-dimensional manifold which can be radially foliated by
(d + 1)-dimensional timelike hypersurfaces Σc of constant r = rc. The metric can
be parametrized according to the radial Arnowitt-Deser-Missner (ADM) decom-
position [145]

ds2 = (N2 + NaNa) dr2 + 2 Na dxadr + γab dxadxb, (4.1)

where N and Na are the lapse and shift function and xa = (t, xi) are the coor-
dinates relative to the hypersurface Σc endowed with metric γab. The action for
Einstein gravity coupled to an arbitrary matter Lagrangian Lm which may or may
not include a cosmological constant can be written as

S = − 1
2k2

(d+2)

∫
dd+2x

√
−γ N

(
d+1R + K2 − KabKab − Lm

)
, (4.2)

where d+1R is the curvature of Σc, Kab together with K = Kabγab are the extrinsic
curvature and its trace and γ is the determinant of γab. We will set from now on
2k2

(d+2) = 1 for simplicity. Note that in this rewriting of the bulk Einstein-Hilbert
action one obtains a boundary term which precisely cancels the Gibbons-Hawking
contribution (2.62), the variational problem for this action is then well defined for
given boundary data γab. The canonical momentum πab conjugate to γab can be
easily derived from the Lagrangian L defined via S =

∫
drL

πab =
δL

δ(∂rγab)
= −

√−γ

2
T BY ab, (4.3)

and it is proportional to the Brown-York stress tensor (2.65) defined on the hy-
persurface Σc. We rewrite it here for completeness

T BY
ab = 2 (Kγab − Kab). (4.4)

Let us now recall the Hamilton-Jacobi formalism of mechanics to express the
momenta on any given hypersurface as variations of the on-shell action with respect
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to the induced values of the fields on this surface, namely

πab(rc) =
δSonshell

δγab(rc)
. (4.5)

Note that rc is arbitrary, with the relation holding for any rc provided that the
radial coordinate is well-defined. The crucial step now is to assume the usual
holographic dictionary of the form given in [71, 72], and explained in Section
2.2.2, to hold on a finite cutoff as well. Namely we identify the gravitational on-
shell action Sonshell with the dual field theory generating functional W [γab(rc)]
similarly to (2.61) and interpret the background metric γab(rc) as the source of
the stress-energy tensor Tab of the (putative) dual cutoff field theory which can be
computed as

〈T ab〉 = − 2√−γ

δSonshell

δγab(rc)
= T BY ab, (4.6)

where in the last equality we used the Hamilton-Jacobi relation (4.5) and the
canonical momentum definition (4.3). From now on we will omit the brackets in
the stress tensor.

Let us now discuss some subtleties associated with the prescription (4.6). Whilst
the variational problem is well-defined for the action (4.2) given the metric on the
bounding hypersurface, the variational problem would be equally well posed if one
added to the action boundary terms SB [γ] depending only on quantities intrinsic
to the induced geometry. The corresponding dual stress-energy tensor would then
become

T ab → T ab − 2√−γ

δSB [γ]
δγab

. (4.7)

In usual AdS/CFT such boundary terms are uniquely defined when one takes the
conformal class of the metric to be fixed as one takes the boundary to infinity.
These terms are equivalent to the counterterms needed to obtain finite renormal-
ized quantities, but at finite rc there is no natural way to fix such ambiguity with
a generic bulk solution. In addition to this, another source of ambiguity is associ-
ated to rescalings of the metric γab on the hypersurface. If the boundary metric
for the dual theory is redefined through a conformal factor Ω to γ̃ab = Ω2γab then
the stress tensor associated to the conformal structure γab is given by

T γ
ab ≡ − 2√−γ

δSonshell

δγab(rc)
= Ωd−1 T γ̃

ab. (4.8)

All this discussion points out that there is no unique way to holographically define
a stress tensor associated to a general finite cutoff field theory. However, as we
will show in the following section, if we restrict to hydrodynamic regime with the
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induced metric being (conformally) flat, we will be able to partially remove the
above mentioned ambiguities.

In the hydrodynamic regime

In the hydrodynamic regime the dual conserved stress-energy tensor at lowest
order in a derivative expansion should acquire a perfect fluid form as in (2.4)

T F
ab = P (γab + uaub) + ε uaub, (4.9)

where P is the pressure, ε the energy density and ua the fluid velocity. The Brown-
York stress tensor (4.4) can be recasted in this form but as we just saw it is not
uniquely defined. Any linear combination with covariant tensors built from the
intrinsic metric γab on the hypersurface Σc and its curvature as in (4.7) or any
rescaling as in (4.8) would generate an equally conserved tensor.

When the induced metric is intrinsically flat γab = ηab the ambiguities can be
parametrized by two constants only

T F
ab = C1(rc) T BY

ab + C2(rc) ηab. (4.10)

As noticed in previous works [110, 111, 112], the parameter C2(rc) causes only a
shift in the pressure and energy density

P → P + C2(rc), ε → ε − C2(rc), (4.11)

which however does not affect the thermodynamic combination

(P + ε) = s T + · · · , (4.12)

where s is the entropy density, T the temperature and the ellipses denote additional
contributions from charges etc.

To understand the role of the prefactor C1(rc) one should consider the effect of
a conformal transformation on the hypersurface metric γ̃ab = Ω2 γab, which is
equivalent to a rescaling of the coordinates as x̃a = Ω−1xa. Under such a rescaling,
it is easy to see that the thermodynamic variables become

P̃ = Ω2P ; ε̃ = Ω2ε; s̃ = Ωds; T̃ = Ω T. (4.13)

As a consequence, if the thermodynamic relation (4.12) is satisfied when the in-
duced metric on Σc is Minkowski then it is not satisfied for any non-trivial confor-
mal factor Ω unless an appropriate prefactor C1(rc) is included which scales homo-
geneously. Hence, in the case the induced metric is conformally flat γab = Ω2ηab,
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the fluid stress energy tensor T F
ab should be related to the Brown-York stress energy

tensor T BY
ab defined on γab by

T F
ab = Ωd−1T BY

ab + · · · . (4.14)

This expression closely resembles the expression for the renormalized stress energy
tensor in AdS/CFT given in (2.64). The choice of C1(rc) defines in fact the
holographic dictionary for the fluid. For Ω = 1 the value of C1(rc) which is
consistent with the thermodynamic relation is precisely C1(rc) = 1.

Hydrodynamic dual stress-energy tensor on a finite cutoff:
It is proportional to the Brown-York stress-energy tensor associated to Σc. For the
case of a (conformally) flat metric it is

T F
ab = Ωd−1 T BY

ab + C2 γab with γab = Ω2 ηab (4.15)

where T BY
ab = 2 (Kγab − Kab),

and C2 is an ambiguity in the definition of the pressure and energy density which
does not affect the thermodynamic relation or hydrodynamics.

***

4.3 Thermodynamic equilibrium

Let us here extract the general thermodynamic properties of a fluid defined on a
finite cutoff timelike hypersurface Σc with flat Dirichlet boundary conditions.

4.3.1 The general seed metric ansatz

We begin by considering a generic static solution. Once a static solution is con-
structed one can always boost it to find a general stationary solution which corre-
sponds to fluids with nonzero velocity. A convenient homogeneous and isotropic
metric ansatz in Eddington-Finkelstein type coordinates [90, 91] is of the form

ds2 = 2 dt dr − f(r)dt2 + g(r) dxidxi. (4.16)
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We assume the existence of an horizon at rH such that f(rH) = 0 and the above
metric represents a general black brane solution at finite temperature. The reason
we work in these coordinates rather than in Schwarzschild type ones as in (2.65)
is because we want a manifestly regular metric on the horizon. On a hypersurface
Σc of constant rc the induced metric is

ds2
∣∣∣
Σc

= γab dxadxb = −f(rc) dt2 + g(rc) dxidxi, (4.17)

which is assumed to be nondegenerate by requiring f(rc) �= 0, g(rc) �= 0. After
rescaling the coordinates t →

√
f(rc) t and xi →

√
g(rc) xi the metric (4.16) can

always be written in a way that the induced metric on Σc is in a manifestly flat
form

ds2 =
2 dt dr√

f(rc)
− f(r)

f(rc)
dt2 +

g(r)
g(rc)

dxidxi. (4.18)

The induced flat metric on Σc is invariant under boost transformations. Hence we
can obtain a more general (stationary) family of solutions by performing a Lorentz
transformation on the spacetime coordinates

t → γ t − γ �v · �x ; �x → �x − γ t�v + (γ − 1)
�x · �v

|�v|2 �v . (4.19)

Defining the four velocity ua = γ(1, vi) and γ = (1 − vivi)−1/2 as usual, the
resulting metric is

ds2 = gμν dxμdxν = − 2
λ

ua dxadr + G(r) hab dxadxb − F (r) uaub dxadxb, (4.20)

where hab = ηab + uaub and we have redefined the quantities

G(r) ≡ g(r)
g(rc)

; F (r) ≡ f(r)
f(rc)

; λ ≡
√

f(rc), (4.21)

such that G(rc) = F (rc) = 1. The inverse metric gμν is then given by

grr = λ2F (r); gra = λ ua; gab =
hab

G(r)
. (4.22)

The metric (4.20) is the most general (stationary) homogeneous and isotropic
equilibrium metric ansatz with (flat) Dirichlet boundary conditions on a finite
cutoff rc that we are going to use throughout this Chapter. It represents a black
brane solution with Hawking temperature

T = λ
F ′(rH)

4π
, (4.23)
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and entropy density at the horizon

s = 4π(G(rH))d/2. (4.24)

The specific form of (4.20) depends on the bulk stress tensor Tμν through Einstein
equations

Gμν = Tμν (4.25)

which are explicitly given by

G′′ =
1
2

G′2

G
− 2 G

d
Trr, (4.26)

F ′G′ = −1
2

(d − 1)
FG′2

G
+

4 G F

d
Trr +

4 G

d λ
Traua, (4.27)

F ′′ =
2

d λ2 G
Tabhab + d (d − 1)

FG′2

4 G2 − 2
(d − 1)

d
F Trr − 4(d − 1)

d λ
Traua,

(4.28)

together with a constraint on the bulk stress tensor such that the metric takes the
required stationary form

TarFλ + Tabub = 0. (4.29)

One can understand this latter constraint as follows. Taking the static limit of the
metric (4.20), a bulk stress energy tensor compatible with the symmetries must
be characterized by three scalar functions as

Tμνdxμdxν = T rdr2 + T tdt

(
dt − 2

λF
dr

)
+ T idxidxi =

=
(

T r − T t

λ2F 2

)
dr2 + T tdt2

s + T idxidxi, (4.30)

where ts is the Schwarzschild time, such that dts = dt − dr/λF . Conservation of
the bulk stress energy tensor implies that only two out of these three functions are
independent. Under a boost the form of the stress energy tensor becomes

Tμνdxμdxν = T rdr2 +
2

λF
T tua dr dxa +

(
T tuaub + T ihab

)
dxadxb. (4.31)

Thus we recover the constraint (4.29) given that

Tab = T ihab + T tuaub; Tar =
T t

λ F
. (4.32)
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4.3.2 Ideal fluid stress-energy tensor

Following the prescription (4.15) for a flat induced metric on Σc, in order to
compute the dual fluid stress tensor it suffices to evaluate the Brown-York stress
tensor on Σc. Such quantity can be recasted in a perfect fluid form

T F
ab = P hab + ε uaub, with hab = ηab + uaub, (4.33)

where the fluid velocity corresponds to the parameter ua in (4.20) and the pres-
sure P together with the energy density ε are characterized by the values of the
gradients of the metric functions and λ

P = λ ((d − 1)G′(rc) + F ′(rc)) ; (4.34)
ε = −λ d G′(rc). (4.35)

There is an apparent redundancy in these expressions, as the two thermodynamic
quantities are expressed in terms of three metric parameters. However, recall that
λ characterizes the rescaling of the time coordinate on the hypersurface Σc, see eq.
(4.21). By choosing the time coordinate to be adapted to this hypersurface one can
always take λ = 1 but then the time Killing vector at asymptotic infinity will not
have its usual normalization. Therefore λ measures the relative normalization of
the Killing vector. Hence the fluid parameters (P, ε, ua) are related to the metric
parameters (F ′(rc), G′(rc), ua) in (4.20). Depending on the bulk stress energy
tensor and matter present, the fluid may have other parameters. For example,
if there is a bulk gauge field then the ansatz for the gauge field consistent with
stationarity would be of the form

Aμdxμ = (μ(r) + (r − rc)ρ(r)) uadxa. (4.36)

Then one would regard μ(rc) as a boundary condition, characterizing the chemical
potential in the field theory, and ρ(rc) as characterizing the charge density in the
fluid.

Hamiltonian constraint. Not all the fluid parameters above are independent.
They are related by the Hamiltonian constraint, namely a specific component of
the Einstein equations which in radial slicing can be expressed as

K2 − KabKab = d+1R + 2 Tμνnμnν , (4.37)

with nμ the unit normal vector to Σc given by

nμ∂μ = λ F ∂r + ua ∂a; nμdxμ =
1
λ

dr. (4.38)
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Using the definition (4.4) it is easy to show that Eq. (4.37) can be written as a
quadratic constraint of the Brown-York stress tensor

d T BY
ab T BY ab − (T BY)2 = −8 d λ−2T rr. (4.39)

For the case at hand, where the induced metric on Σc is flat, the Brown-York
stress tensor is directly related to the fluid one according to (4.15), hence using
the ideal fluid expression (4.33) into the constraint (4.39) we have the relation(

1 − 1
d

)
ε = −P ±

√
P 2 − 8

(d − 1)
d λ2 T rr , (4.40)

which effectively defines an equation of state for the dual fluid. Since the equation
(4.39) is quadratic, one can always find two possible solutions for given data T rr

on Σc. For example, for a bulk stress tensor given by a negative cosmological
constant only, the equation of state implies a relation between the pressure and
energy density of the dual fluid. Now, given that a solution exists for a certain sign
in (4.40) determining a specific pressure P and energy density ε, a corresponding
solution for the equation of state with the opposite sign is obtained by replacing

ε → −ε; P → −P. (4.41)

Now the switch in signs in the energy density and pressure can be achieved by
switching the direction of the normal to the hypersurfaces nμ → −nμ, which cor-
responds to changing the sign of the extrinsic curvature. Physically, however, the
opposite sign solution (4.41) gives a negative value for (ε + P ) and therefore the
thermodynamic relation (ε + P ) = sT could only be satisfied by a negative tem-
perature. Therefore the second equation of state never gives physically meaningful
solutions.

Momentum constraint. The conservation of the Brown-York stress tensor is
incorporated in the momentum constraint equations, another subset of Einstein
equations which in radial slicing can be written as

∇cKc
a − ∇aK = −1

2
∇bT BY b

a = Taμnμ, (4.42)

where ∇a is the covariant derivative in the induced geometry γab. Requiring that
the Brown-York stress-energy tensor is conserved on Σc implies a constraint on
the bulk stress tensor Taμnμ = 0 which is indeed satisfied due to Eq. (4.29).

Clearly if the fluid parameters are constants, the fluid stress tensor (4.33) is iden-
tically conserved. Allowing them to vary with respect to field theory coordinates,
conservation equations ∂aT F ab = 0 are

(P + ε) ∂aua = −Dε; (4.43)
(P + ε) ac = −D⊥

c P, (4.44)
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where D⊥
a ≡ hb

a ∂b, D ≡ ua∂a and the acceleration ac = Duc.

4.3.3 Other choices of coordinate systems

Let us now discuss some subtleties associated to different choices of coordinates.
For example consider the original coordinates in (4.16) in which the induced metric
on Σc (4.17) is only conformally flat

ds2
∣∣∣
Σc

= Ω2 (dxidxi − c2
l dt2) with Ω = g(rc)1/2, (4.45)

where the effective speed of light is c2
l = f(rc)/g(rc). If one works with the original

coordinates as in (4.16), rather than the rescaled ones as in (4.18), then the boost
should preserve the induced metric (4.45). This implies that the boost must use
cl as the effective speed of light, resulting in

ds2 = −2
Ua

cl
dxadr + g(r)(dxidxi − c2

l dt2) + (Uadxa)2
(

g(r) − f(r)
c2

l

)
(4.46)

with the new four velocity defined as

Ua = γl

(
cl,

vi

cl

)
; γ2

l =
(

1 − viv
i

c2

)−1

. (4.47)

With this form of the metric the entropy density and temperature are rescaled with
respect to (4.24) and (4.23) with appropriate factors of Ω = g(rc)1/2 as anticipated
in (4.13)

s = 4π(g(rH))d/2 ≡ 4π(G(rH))d/2(g(rc))d/2; (4.48)

T =
1

4πcl
f ′(rH) ≡ 1

4π
F ′(rH)(g(rc))1/2. (4.49)

The fluid tensor associated with a hypersurface Σc in the metric in (4.46) according
to the prescription (4.15) is now

T F
ab = g(rc)d−1T BY

ab = P (γab + g(rc) UaUb) + ε g(rc) UaUb, (4.50)

where the pressure and energy density are related to (4.34-4.35) by a rescaling as
in (4.13) and a redefinition due to the prescription (4.15)

P F = λ g(rc)(d+1)/2 ((d − 1)G′(rc) + F ′(rc)) ; (4.51)
εF = −λ d g(rc)(d+1)/2 G′(rc). (4.52)

In equilibrium the two forms of the metric (4.20) and (4.46) differ from each other
by trivial rescalings of the coordinates and the choice of a coordinate system is
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merely one of computational convenience. Once one goes beyond equilibrium into
the hydrodynamic regime, however, the two forms of the metric are no longer
equivalent and different choices really correspond to distinct boundary conditions
on the hypersurface Σc. The reason is that the metric functions f(r) and g(r) de-
pend on the thermodynamic quantities: the temperature, charge etc. In the hydro-
dynamic regime the latter are promoted to be spatially dependent, and therefore
both the conformal factor and the effective speed of the light cl in (4.46) become
spatially dependent. Hence it is only sensible to keep the induced metric on Σc

fixed as (4.45) when one extends to the hydrodynamic regime if the conformal
factor g(rc) and the speed of light c2

l are independent of the fluid parameters. In
fact if the conformal factor depends on the fluid parameters then implicitly the
background metric on Σc is only flat to leading order in the hydrodynamic expan-
sion. Moreover the fluid stress energy tensor defined in (4.15) would also only be
conserved to leading order in gradients.

***

4.4 Near equilibrium hydrodynamic solutions

In this section we will promote the general seed equilibrium metric to allow for
hydrodynamic configurations by allowing the fluid parameters to become slowly
varying. We will show a general algorithm to compute such family of near equi-
librated solutions in Einstein gravity with a flat Dirichlet boundary condition on
Σc.

4.4.1 General hydrodynamic equations

In order to enter in the hydrodynamic regime let us first as promised promote
the thermodynamic parameters in (4.20) to become slowly varying functions of
the rescaled coordinates xa which, contrary to the conventional fluid/gravity du-
ality picture summarized in Section 2.2.2 of the Introduction, satisfy a Dirichlet
boundary condition on Σc rather than on the asymptotic infinity. The seed metric
becomes then

ds2 = g(0)
μν dxμdxν = (4.53)

= −2 λ(x)−1ua(x)dxadr +
(

G(r, x)hab−F (r, x)ua(x)ub(x)
)

dxadxb,
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with hab = ηab + uaub and

∂aub(x) ∼ O(ε); ∂aλ ∼ O(ε); ∂aF (r, x) ∼ O(ε); ∂aG(r, x) ∼ O(ε), (4.54)

with ε small and the subscript (0) denoting leading order quantities in ε expansion.
By construction this generalization preserves the induced metric on Σc and satisfies
the Einstein plus matter equations to leading order in ε with the fluid parameters
as given above. However, to any subleading order n ≥ 1 one will need to correct
the leading order metric contribution g

(0)
μν given in (4.53) by terms g

(n)
μν

gμν = g(0)
μν + g(1)

μν + · · · + g(n)
μν + . . . (4.55)

such that Einstein equations are still satisfied at order n. Supposing that one
weights derivatives such that ∂r ∼ 1 and ∂a ∼ ε, then each such metric correction
g

(n)
μν will contain n derivatives ∂a of the fluid parameters. The new metric (4.55)

describes then a near equilibrium gravitational solution which can be constructed
order by order in a derivative expansion.

Let us describe the general algorithm to obtain (4.55). Suppose we have derived the
necessary metric component g

(n−1)
μν which assures Einstein equations are satisfied

up to order n − 1. Define R̂
(n)
μν as the part of the Ricci tensor containing partial

derivatives ∂a of g
(n−1)
μν and δR

(n)
μν as the part of the Ricci tensor related to radial

derivatives ∂r of the new, yet to be found, component g
(n)
μν . Einstein equations

(4.25) at order n are

R̂(n)
μν + δR(n)

μν − 1
2

n∑
k=0

g(k)
μν R̂(n−k) − 1

2
g(0)

μν δR(n) = T (n)
μν , (4.56)

where the Ricci scalar tensors at each order are defined as

R̂(n) =
n∑

k=0

R̂(k)
ρσ g(n−k)ρσ; δR(n) = δR(n)

ρσ g(0)ρσ, (4.57)

and the inverse metric is defined in a way to assure that the trace of the metric is
fixed to Tr(g) = d + 2, for example at first order it is

g(1)μν = −g(0)μρg(0)νσg(1)
ρσ . (4.58)

Equations (4.56) can be then rewritten in a more compact form

R̂(n)
μν + δR(n)

μν = T̄ (n)
μν , (4.59)

where the bulk stress tensor is redefined to

T̄ (n)
μν = T (n)

μν − 1
d

n∑
k=0

g(k)
μν T (n−k); T (n) =

n∑
k=0

T (k)
ρσ g(n−k)ρσ. (4.60)
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Now, equations (4.59) can be solved by writing explicitly the dependence on the
unknown metric component g

(n)
μν contained in the linearized Ricci tensor

δR(n)
μν = −∇(0)

μ δΓ(n)ρ
ρν + ∇(0)

ρ δΓ(n)ρ
μν , (4.61)

through the linearized Christoffel symbols

δΓ(n)ρ
μν =

1
2

g(0)ρλ
(

∇(0)
μ g

(n)
λν + ∇(0)

ν g
(n)
λμ − ∇(0)

λ g(n)
μν

)
, (4.62)

where ∇(0)
μ is the covariant derivative associated to the leading order metric (4.53).

It is useful to restrict to radial gauge g
(n)
rμ = 0 for n ≥ 1 so that the lines at constant

xa are bulk radial null geodesics and the metric keeps the Eddington-Finkelstein
form to all orders, which is useful in order to avoid coordinate singularities at the
horizon. The generic metric correction g

(n)
ab can then be decomposed on a basis of

two linearly independent scalars, one vector and a traceless symmetric tensor

g
(n)
ab = α(n)uaub + 2 u(aβ

(n)
b) + γ̃

(n)
ab +

1
d

γ(n)hab for n ≥ 1, (4.63)

with
uaβ(n)

a = uaγ̃
(n)
ab = γ̃

(n)
ab hab = 0. (4.64)

Combining all the expressions given above for the general metric ansatz given in
(4.53), the independent equations (4.59) are given by

1
2

∂2
r

(
1
G

γ(n)
)

+
1
2

G′

G
∂r

(
1
G

γ(n)
)

+ T̄ (n)
rr = 0;(4.65)

∂2
r β(n)

a +
(d−2)

2
G′

G
∂rβ(n)

a −
(

(d−2)
2

G′2

G2 +
G′′

G

)
β(n)

a − 2
λ

(R̂(n)
rb −T̄ (n)

rb )hb
a = 0;(4.66)

1
Gd/2 ∂r

(
Gd/2G′α(n)

)
− G′2

G
α(n) − 1

d Gd/2 ∂r

(
Gd/2F∂rγ(n)

)
+

+
2G′F
d G

∂rγ(n)− FG′2

d G2 γ(n)− FG′

2
∂r

(
1
G

γ(n)
)

+
2

d λ2

(
R̂

(n)
ab −T̄ (n)

ab

)
hab = 0;(4.67)

λ2

2
F ∂2

r γ̃
(n)
ab +λ2

(
1
4

(d−4)
FG′

G
+

1
2

F ′
)

∂rγ̃
(n)
ab +

λ2

2
FG′2

G2 γ̃
(n)
ab +

−R̂
(n)
cd hc

ahd
b +

1
d

R̂
(n)
cd hcdhab +

(
T̄ (n)

cd hc
ahd

b − 1
d

T̄ (n)
cd hcdhab

)
= 0;(4.68)

which are respectively the (rr) equation, the hab projection of the (ra) equation,
the hab trace of the (ab) equation and the projection (hc

ahd
b − 1/d hcdhab) of the

(ab) equation. Details of the derivation can be found in Appendix A.

Hence, given a bulk stress tensor T̄ (n)
μν and knowing the structure of R̂

(n)
μν , which

as we saw comes from derivatives of g
(n−1)
μν , equations (4.65-4.68) are ready to be
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solved for the unknown variables α(n), β
(n)
a , γ̃

(n)
ab and γ(n). As we will see in the

next section, in order to completely specify the solution additional constraints are
needed. These will be provided by requiring the hydrodynamic fluid stress tensor
to be in a specific frame of reference such as Landau frame.

4.4.2 The fluid stress tensor

The Brown-York stress-energy tensor at order n can be split in two contributions

T
BY(n)
ab = T̂

BY(n)
ab + δT

BY(n)
ab , (4.69)

where

T̂
BY(n)
ab = 2

(
K̂(n)ηab − K̂

(n)
ab

)
; δT

BY(n)
ab = 2

(
δK

(n)
ab ηab − δK

(n)
ab

)
, (4.70)

since the extrinsic curvature itself can been separated into two pieces: K̂
(n)
ab cor-

responding to contributions at order n arising from spacetime derivatives ∂a of
g

(n−1)
μν and δK

(n)
ab coming from radial derivatives of g

(n)
μν

K
(n)
ab =

1
2

(Lngab)(n)
∣∣∣
Σc

= K̂
(n)
ab + δK

(n)
ab , (4.71)

where Ln is the Lie derivative along the normal nμ defined in (4.38) and the traces
are defined as

K̂(n) = K̂
(n)
ab ηab; δK(n) = δK

(n)
ab ηab. (4.72)

The extrinsic curvature is given explicitly by

K̂
(1)
ab = σab +

1
d

θ hab − u(aab) − u(a∂b) ln λ, (4.73)

K̂
(n)
ab =

1
2

Dg
(n−1)
ab

∣∣∣
Σc

with n > 1, (4.74)

δK
(n)
ab =

1
2

λ ∂rg
(n)
ab

∣∣∣
Σc

=
1
2

λ
(

α(n)′(rc)uaub +

+2 β
(n)′
(a (rc)ub) + γ̃

(n)′
ab (rc) +

1
d

γ(n)′(rc)hab

)
, (4.75)

where we have introduced a shorthand notation for the velocity derivatives

θ = ∂cuc; aa = Dua; Kab = hc
(ahd

b) ∂cud; σab = Kab − 1
d

θ hab, (4.76)
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and D = uc∂c. The above formulae can be used to compute e.g.

T̂
BY(1)
ab = −2θuaub + 2hab

(
(d − 1)

d
θ − D ln λ

)
+

−2σab + 2u(aab) + 2u(aD⊥
b) ln λ, (4.77)

λ−1δT
BY(n)
ab =

(
− uaub γ(n)′(rc) − 2 β

(n)′
(a (rc)ub) +

+ hab

(
− α(n)′(rc)+

(d − 1)
d

γ(n)′(rc)
)

− γ̃
(n)′
ab (rc)

)
. (4.78)

We will work in Landau frame for the fluid stress tensor

T
F (n)
ab ua = 0 for n ≥ 1, (4.79)

which, using (4.69) and the expression (4.78), gives two constraints order by order
for n ≥ 1 according to the two independent projections of (4.79)

λ γ(n)′(rc) − T̂
BY(n)
ab uaub = 0; λ β(n)′

c (rc) + T̂
BY(n)
ab uahb

c = 0. (4.80)

At first order using (4.83) we have for example the relations

λγ(1)′(rc) = −2θ, (4.81)
λβ(1)′

a (rc) = aa + D⊥
a ln λ, (4.82)

giving the general first order correction to the Brown-York stress tensor in Landau
frame

T
BY(1)
ab = −hab

(
2 D ln λ + λα(1)′(rc)

)
− 2σab − λγ̃

(1)′
ab (rc). (4.83)

Note that this result holds generally, regardless of the structure of the bulk stress
energy tensor.

In total we have four classes of differential equations (4.65-4.68), three second order
and one first order, together with two constraints (4.80). This set of equations
allows us to find solutions for the four classes of unknown variables α(n), β

(n)
a ,

γ̃
(n)
ab and γ(n) order by order after imposing four Dirichlet boundary conditions

on Σc, namely α(n)(rc) = β
(n)
a (rc) = γ̃

(n)
ab (rc) = γ(rc)(n) = 0, and one regularity

condition on the horizon.

By inspecting the Bianchi identities as it is shown in Appendix B, the conservation
of the Brown-York stress tensor at order n is assured as long as the same constraint
(4.29) is satisfied, i.e. (Tμνnν)(n) = 0 at generic order n.

***
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4.5 Negative cosmological constant background

After setting the stage in Sections 4.3 and 4.4, let us consider the simplest example,
i.e. the familiar case in which the bulk stress-energy tensor is simply a negative
cosmological constant

Tμν = −Λ gμν with Λ = −d (d + 1)
2 L2 . (4.84)

4.5.1 Solutions at thermodynamic equilibrium

The leading order Einstein equation (4.26) for the variable g(r) using the redefi-
nitions (4.21) gives the general solution

g(r) = (c1r + c2)2. (4.85)

Vanishing c1 is generically only consistent with the other Einstein equations when
the bulk stress-energy tensor is zero. Hence assuming c1 �= 0 one can absorb
both constants into a redefinition of the origin and scale of the radial coordinate,
(c1r + c2) → r/L. Integrating the remaining Einstein equations (4.27) one obtains
the solution for f(r)

f(r) =
r2

L2 +
c3

rd−1 , (4.86)

Let us in the following analyze the possible type of fluids that can be described
within this class of asymptotically AdS solutions to Einstein gravity.

Vacuum AdS solution. This simple solution is achieved for c3 = 0 in (4.86)
which placed into (4.18) gives the vacuum AdS metric in Eddington-Finkelstein
rescaled coordinates

ds2 = −r2

r2
c

dt2 +
r2

r2
c

dxidxi + 2
L

rc
dt dr. (4.87)

The energy density and the pressure can be computed from (4.34-4.35) with G(r) =
F (r) = r2/r2

c and λ = rc/L giving

ε = −2d

L
; P =

2d

L
. (4.88)

The combination (ε + P ) = Ts is invariant and identically vanishing reflecting the
fact that the AdS spacetime metric (4.87) has a trivial horizon geometry and thus
one cannot associate to it a non-zero entropy. The arbitrariness in the definition
of the fluid stress-energy tensor (4.15) can be used to redefine and set the pressure
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and energy density to zero. This can be obtained by shifting the dual stress tensor
by

T F
ab → T F

ab − 2d

L
ηab. (4.89)

The AdS black brane solution. Let us now consider the case c3 �= 0. For
c3 > 0 the solution with (4.86) represents the well-known unphysical negative mass
black brane, with naked singularity at r = 0, and we shall not consider it further
here. Conversely setting c3L2 = −rd+1

H , the resulting geometry (4.18) is that
of a (positive mass) AdS black brane in ingoing rescaled Eddington-Finkelstein
coordinates

ds2 = −r2

r2
c

h(r)dt2 +
r2

r2
c

dxidxi + 2
L

rc

√
hc

dt dr with h(r) = 1 −
(

rH

r

)d+1

,

(4.90)
and hc ≡ h(rc). After boosting, the metric (4.90) can be brought into the form
(4.20) with

G(r) =
r2

r2
c

; F (r) =
r2

r2
c

h(r)
hc

; λ =
rc

L

√
hc, (4.91)

and the thermodynamic properties are easily obtained from (4.34-4.35) to be

ε = −2d

L

√
hc, (4.92)

P =
1

L
√

hc

(2d hc + rch′(rc)) . (4.93)

Notice that the energy density (4.92) is negative, but as already mentioned one can
use the ambiguity in the definition of the Brown-York stress-energy tensor (4.15)
in order to shift it to a positive value and, as we have seen, the thermodynamic
relation

(ε + P ) =
d + 1
L

√
hc

rd+1
H

rd+1
c

(4.94)

is independent of this ambiguity. The Hawking temperature (4.23) and the horizon
entropy density (4.24) are in fact given by

TH =
(d + 1)
4π rc L

rH√
hc

; s = 4π
rd

H

rd
c

, (4.95)

and thus the thermodynamic relation (4.94) is indeed satisfied.

Conformal boundary fluid. The previous AdS black brane solution (4.90) in
the limiting case for which the timelike hypersurface approaches the asymptotic
infinity rc → ∞ should reproduce the well-known case of thermodynamics of a
conformal fluid in asymptotically AdS black brane. However, according to con-
ventional AdS/CFT, the metric at infinity is only conformally flat γab = r2

c/L2ηab
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and the dual field theory coordinates are defined with respect to ηab. Hence,
before taking the limit in the thermodynamic relations derived in the previous
section one has to consider the rescaled definitions (4.51) and (4.52) instead with
g(rc) = r2

c/L2

ε = −
(rc

L

)d+1 2d

L

√
hc, (4.96)

P =
1

L
√

hc

(rc

L

)d+1
(2d hc + rch′(rc)) , (4.97)

together with the entropy density and Hawking temperature as redefined in (4.48)
and (4.49)

s = 4π
rd

H

Ld
; TH =

(d + 1)
4πL2

rH√
hc

. (4.98)

This is yet not completely satisfying since even if the temperature and entropy
density are finite in the limit rc → ∞, the pressure (4.97) and energy density
(4.96) are clearly diverging. Again we can use the ambiguity in the definition of
the dual stress tensor (4.15) to fix such pathology. The necessary term corresponds
to the shift (4.89) that is needed to set the vacuum AdS metric (4.87) to have
trivial thermodynamics, with ηab replaced by γab = rd+1

c /Ld+1ηab. In other words
to get finite results for the AdS black brane solution with Dirichlet boundary
conditions on the conformal structure at infinity we need to subtract the vacuum
AdS background, which is equivalent to perform holographic renormalization with
a counterterm of the form (2.63). After such redefinition of the pressure (4.97) and
energy density (4.96) and sending rc → ∞ we get indeed the usual thermodynamic
properties, see also (2.67), of the dual conformal fluid at infinity

ε =
d

L

(rH

L

)d+1
; P =

1
L

(rH

L

)d+1
; TH =

(d + 1)rH

4πL2 ; s = 4π
rd

H

Ld
. (4.99)

Near-horizon fluid. Let us here consider the other limiting behavior, namely
the case when the cutoff hypersurface Σc approaches the horizon rc → rH instead.
In this case the energy density (4.92) vanishes and the pressure (4.93) diverges as

ε = O(rc − rH)
1
2 , (4.100)

P =
√

(d + 1)
√

rH

L

1√
rc − rH

+ O(rc − rH)
1
2 , (4.101)

mimicking the same behavior of the Rindler fluid thermodynamic parameters
εR = 0 and PR ∼ 1/

√
rc − rH in proximity of the Rindler horizon, see Section

4.6.1. Such behavior was to be expected due to the universal form of the near-
horizon region of a nonextremal black hole. The effective temperature (4.95)
clearly diverges as Σc approaches the horizon but this divergence evidently arises
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only from the time coordinate rescaling. In other words, in rescaling time so that
the induced metric on Σc is flat, the effective pressure and temperature diverge as
the hypersurface approaches the horizon. If one worked instead with the original
coordinate t as in (4.17) the pressure would remain finite but the induced metric
(the background metric for the fluid) would, as expected, become null in this limit.

4.5.2 AdS black brane hydrodynamics on Σc at first order

We will now consider the case of hydrodynamic perturbations on the AdS black
brane background (4.90) in boosted and rescaled coordinates (4.53) with (4.91)

ds2 = −2
L

rc

√
hc(rH)

uadxadr +
r2

r2
c

(
hab− h(r, rH)

hc(rH)
uaub

)
dxadxb. (4.102)

The equation of state (4.40) sets a relation between the pressure and energy den-
sity. As a matter of fact their explicit expressions (4.92) and (4.93) only depend on
the horizon radius rH through hc. Hence we have d + 1 independent fluid param-
eters: rH which is related to the temperature T of the dual fluid through (4.95)
and the fluid velocity ua with the usual constraint uaua = −1. Such parameters
need to be promoted to be slowly varying functions rH(x) and ua(x) of the field
theory coordinates xa on Σc.

The general formulae developed in Section 4.4 comes now at hand. What we
need to do is to compute the solutions to Eq. (4.65-4.68) at first order in a
hydrodynamic expansion. The bulk stress tensor is given by T̄ (1)

μν = 2
d Λg

(1)
μν and

the Ricci tensor R̂
(1)
μν can be straightforwardly derived (see details in Appendix A)

from the generic seed metric form (4.53). Given that in our case G is independent of
the fluid parameters due to (4.91), we have DG = D⊥G = 0 which is a considerable
simplification. Moreover, anytime that a field theory derivative ∂a hits the horizon
radius parameter rH through derivatives of F and λ, we can use the fluid stress
tensor conservation equations at leading order (4.43) to trade ∂arH with derivatives
of the fluid velocity, which is equivalent to take the yet to be derived solution g

(1)
ab

to be on-shell
∂arH

rH
=

(
1
d

θ ua − δ(rc)aa

)
, (4.103)

where

δ(rc) =
2(1 − (rH/rc)d+1)

2 + (d − 1)(rH/rc)d+1 =
2 hc

2hc + (d + 1)(1 − hc)
. (4.104)

Hence solutions to Eq. (4.65-4.68) with Dirichlet boundary conditions γ(1)(rc) =
α(1)(rc) = β

(1)
a (rc) = γ̃

(1)
ab (rc) = 0, a regularity condition on the horizon and
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Landau gauge conditions (4.81-4.82) are

γ(1) =
2L

rc

√
hc

r

(
1 − r

rc

)
θ, (4.105)

α(1) =
L

d h
3/2
c

r

rc

(
−(d + 1)

(
1 − rd

c

rd

)
+ (d − 1)h +

(
2 − (d + 1)

rd
c

rd

)
hc

)
θ,

(4.106)

β(1)
a =

L δ(rc)
r2

ch
3/2
c

r

(
r

(
1 − rd+1

c

rd+1

)
− rc

(
1 − rd

c

rd

)
hc

)
aa, (4.107)

γ̃
(1)
ab =

2L

rc rH

√
hc r2

(
k(r) − k(rc) +

1
(d + 1)

log h/hc

)
σab, (4.108)

where we have defined

k(r) =
rH

r
2F1

(
1,

1
d + 1

, 1 +
1

d + 1
,

rd+1
H

rd+1

)
, (4.109)

and 2F1 is a Hypergeometric function.

The fluid stress-energy tensor at first order (4.83) can now be written in the familiar
form as

T
F(1)
ab = −2 η(rc) σab − ζ(rc) θ hab, (4.110)

where the shear and bulk viscosity are given respectively by

η(rc) =
rd

H

rd
c

; ζ(rc) = 0. (4.111)

Hence, although the fluid is non conformal due to the non conformal equation of
state (4.40) giving a non zero trace for the stress energy tensor, the bulk viscosity
is vanishing at each radial slice Σc. Moreover with the entropy density (4.24), the
universal shear viscosity over entropy ratio bound, as in (2.69), is recovered at
each hypersurface Σc

η(rc)
s(rc)

=
1

4π
, (4.112)

confirming the results found previously for the non relativistic fluid dual to a finite
cutoff hypersurface in AdS gravity [126] and the relativistic version of it [125], see
also [157]. Alternative derivations using RG flows can be found in [109, 158, 159],
see also [52] for a derivation using linear response theory.

4.5.3 Relation to the conformal fluid at infinity

The solution that we just found in the previous section gives a first order correction
to AdS black brane background with a Dirichlet boundary condition on Σc. As
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discussed for the thermodynamic properties around (4.99), in order to connect such
solution to the one with Dirichlet boundary conditions imposed on the conformally
flat metric at infinity as in standard AdS/CFT correspondence, it is first necessary
to redefine the field theory coordinates ya = Ω−1xa with Ω = rc/L. The leading
order metric (4.90) in boosted coordinates now reads

ds2 = −2
ua√
hc

dyadr +
r2

L2

(
hab − h

hc
uaub

)
dyadyb, (4.113)

so that when pushing the cutoff hypersurface to the conformal boundary rc → ∞
we have hc → 1 and the metric is the usual AdS black brane metric, see e.g. [86].
The rescaling acts on the derivatives as well ∂y

a = Ω ∂x
a with ua unchanged, hence

we have
θx =

L

rc
θy; ax

a =
L

rc
ay

a; σx
ab =

L

rc
σy

ab. (4.114)

The first order metric perturbations as derived in (4.105-4.108), taking into account
dxadxb → r2

c/L2 dyadyb, are now rescaled to

γy(1) =
rc

L
γ(1); αy(1) =

rc

L
α(1); βy(1)

a =
rc

L
β(1)

a ; γ̃
y(1)
ab =

rc

L
γ̃

(1)
ab , (4.115)

and in the limit rc → ∞ they become

γy(1) → 2 r θy, (4.116)

αy(1) → r

d
(d − 1)(h − 1)θy (4.117)

βy(1)
a → −r ay

a, (4.118)

γ̃
y(1)
ab → 2

r2

rH

(
k(r)−k(∞)+

log h

(d+1)

)
σy

ab = 2
r2

rH
H(r/rH)σy

ab, (4.119)

where asymptotically H(x) ∼ 1
x − 1

(d+1)
1

xd+1 . Now, we can always perform a
diffeomorphism of the radial coordinate r such that

r → r − 1
d

θy, (4.120)

and working to first order in gradients this results in a shift of the scalar quantities

γy(1) → γy(1) − 2 r θy; αy(1) → αy(1) +
r θy

d
(2 − (d − 1)(h − 1)) . (4.121)

Such transformation applied to the first order hydrodynamic solution (4.116-4.119)
and using the definition (4.63) of the metric perturbation, results into the first
order nonlinear correction of the AdS black brane metric

g(1)
μν dyμdyν = 2

r2

rH
H(r/rH) σy

ab dyadyb +
2
d

r θy uaub dyadyb +

−2 ray
(a ub) dyadyb, (4.122)
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which exactly coincides with the one derived in [86].

The shear and bulk viscosity of the conformal fluid at infinity can be obtained
directly from (4.111) together with a rescaling by a factor (rc/L)d−1 following
again the prescription (4.15) for the dual fluid stress tensor

ηCFT σy
ab = lim

rc→∞

(rc

L

)d−1
η(rc)

rc

L
σy

ab =
rd

H

Ld
σy

ab, (4.123)

ζCFT = lim
rc→∞

(rc

L

)d−1
ζ(rc) = 0.

Hence, we have shown that the stress-energy tensor at finite cutoff reproduces the
usual AdS/CFT results in (2.69) as the cutoff is taken to the asymptotic boundary.

4.5.4 UV field theory interpretation

The Dirichlet boundary condition on a finite cutoff hypersurface Σc necessarily
leads to a non-Dirichlet boundary condition at the boundary at infinity. The aim
of this section is to explore the interpretation of the fluid on the cutoff surface as
a state in a deformation of the ultraviolet conformal field theory on the boundary.
The strategy is to extrapolate the solution (4.115) to the asymptotic boundary by
sending r → ∞ and change to Fefferman-Graham coordinates. Using the standard
AdS/CFT dictionary one can thereby show how the original CFT on the boundary
has been deformed.

As we have derived in the previous section, the black brane metric in Eddington-
Finkelstein coordinates up to order one in the hydrodynamic expansion is

ds2 = −2
ua√
hc

dyadr + gab(y, r)dyadyb, (4.124)

g
(0)
ab (y, r) = r2 (hab − h/hc uaub) ,

g
(1)
ab (y, r) = α(1) 1

d
θ uaub + 2 β(1)a(a ub) + γ̃(1)σab + γ(1) 1

d
θ hab,

where the coefficients in g
(1)
ab are given by (4.115) with (4.105-4.108). In writing

(4.124) we have implicitly introduced an additional notational redefinition with
respect to the previous section

αy(1) → α(1) 1
d

θ; βy(1)
a → β(1)aa; γ̃

y(1)
ab → γ̃(1)σab; γy(1) → γ(1), (4.125)

and we have set L = 1 for convenience and all the fluid parameters are assumed
to depend on ya. In order to interpret such metric as a deformation of the CFT
at infinity we first need to bring (4.124) into Fefferman-Graham form

ds2 =
dρ2

ρ2 +
1
ρ2 Gab(z, ρ) dzadzb. (4.126)
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Such metric can be expanded near the asymptotic boundary located at ρ = 0

Gab(z, ρ) = Gab(z) + G
(2)
ab (z)ρ2 + . . . , (4.127)

and the leading order contribution Gab(z) is conventionally interpreted according
to AdS/CFT as the fixed source associated to the dual stress tensor. In what
follows we want to show that in the case at hand, where the Dirichlet boundary
condition has been imposed on Σc, the asymptotic boundary value Gab(z) depends
on the hydrodynamic expansion and in particular it is non flat beyond the leading
order. More precisely, since the hydrodynamic expansion has been performed in
Eddington-Finkelstein coordinates y rather than the Fefferman-Graham ones z, at
the end of the game we will be actually interested in the quantity Gab(z(y)). So
let us start playing.

Leading order in a hydrodynamic expansion. In order to find the Fefferman-
Graham form (4.126) of the black brane solution (4.124) we need to solve the fol-
lowing equations order by order for the variables ρ(r, y), za(r, y) and the metric
Gab(ρ, z)

(∂rρ)2 + Gab(z, ρ) ∂rza ∂rzb = 0, (4.128)

(∂rρ) (∂aρ) + Gcd(z, ρ) ∂rzc ∂azd = − ua√
hc

ρ2,

(∂aρ) (∂bρ) + Gcd(z, ρ) ∂azc ∂bzd = ρ2 gab(y, r),

with

ρ(y, r) = ρ(0)(y, r) + ρ(1)(y, r) + . . . ,

za(y, r) = z(0)a(y, r) + z(1)a(y, r) + . . . ,

Gab(z, ρ) = G
(0)
ab (z, ρ) + G

(1)
ab (z, ρ) + . . . . (4.129)

At leading order this is given by

ρ(0)(y, r) =
1
r

(
2

1 +
√

h(r)

) 2
d+1

=
1
r

√
A(ρ(r)),

z(0)a(y, r) = ya + k(r)ua, (4.130)

G
(0)
ab (z, ρ) = A(ρ)

(
hab − h(r(ρ))

hc
uaub

)
; (4.131)

where

A(ρ) =
(

1+
1
4

(rH ρ)d+1
) 4

d+1

, (4.132)

and

k(r) =
√

hc

r
2F1

(
1,

1
d + 1

, 1 +
1

d + 1
,

rd+1
H

rd+1

)
; ∂rk(r) = −

√
hc

r2h(r)
. (4.133)
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The inverse transformation is given by

r(0)(ρ) =
1
ρ

√
A(ρ); y(0)a(z, ρ) = za − k(r(ρ))ua. (4.134)

It is now straightforward to perform the near-boundary expansion (4.127) of the
leading order Fefferman-Graham metric just derived (4.131) to get

G
(0)
ab (y) = ηab + (1 − 1/hc)uaub, (4.135)

and it is clear that at this order in hydrodynamic expansion there is no difference
between ua(z) and ua(y). Note that the deformation in the background metric
appears to arise already at zeroth order in the hydrodynamic expansion. This was
to be expected because, as discussed in Section 4.3.2, we started from a seed metric
in which the time Killing vector is normalized to one at the cutoff hypersurface
which implies that its norm at infinity is not canonical. One can therefore rescale
the coordinates so that the zeroth order term in (4.135) is flat; this is achieved by
rescaling the direction parallel to the velocity by a factor of

√
hc but leaving the

directions perpendicular to the velocity unchanged.

First order in a hydrodynamic expansion. Interesting results come at first
order. Life is more complicated now since we have to consider that the just derived
zeroth order Fefferman-Graham metric (4.131) depends on the Fefferman-Graham
coordinates z through the fluid velocities ua(z) and on the Eddington-Finkelstein
coordinates y through rH(y)

G
(0)
ab (z, ρ) = A(y, ρ)

(
hab(z) − h(y, r(ρ))

hc(y)
ua(z)ub(z)

)
. (4.136)

Hence, it is useful to first perform a Taylor expansion in the Fefferman-Graham
coordinates z in order to obtain expressions in y only

ua(z) = ua(y) + k(r(ρ)) aa(y), (4.137)
G

(0)
ab (z, ρ) = G

(0)
ab (y, ρ) + uc(y) k(r(ρ)) ∂cG

(0)
ab (y, ρ) =

= A(ρ)
(

hab(y, r(ρ)) − h(y, r(ρ))
hc(y)

ua(y)ub(y)
)

+

+2 k(r(ρ))A(ρ)
(

1 − h(y, r(ρ))
hc(y)

)
a(a(y)ub)(y).

We can now use these expressions into the equations (4.128) to derive the first order
hydrodynamic corrections in the expansions of the coordinate transformations and
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the Fefferman-Graham metric (4.129). Parameterizing them in the following way

z(1)a(y, r) =
1
d

l(r) ua θ + m(r)aa,

ρ(1)(y, r) =
1
r

√
A X(1)(y, r)

1
d

θ,

G
(1)
ab (y, ρ) = φ(y, r(ρ))

1
d

θ uaub + ψ(y, r(ρ))
1
d

θ hab +

+Γ(y, r(ρ)) σab + 2 Σ(y, r(ρ)) a(aub), (4.138)

and making use of the on-shell equations (4.103), we can derive

l′(r) =
1
r

√
hc

h
k′ + k′k − 2k′ 1

r

√
hc

h
+

1
2

k′k(d + 1)
(1 − hc)

hc
+

1
r2 k′ hc

h
α(1),

m′(r) =
1
r

k′ (1 −
√

hc)√
hc

δ(rc) +
1
r2 k′β(1) + k k′,

X(1)(y, r) = k +
1

r
√

hc h

(
rd

c r

rd+1
H

(1 − hc) − 1

)
, (4.139)

and

φ(y, r) = 2 A k
h

hc
− 2

A

r

1√
hc

+ A k h
(1 − hc)

h2
c

(d + 1) +
1
r2 A α(1) − 2 A X(1) h

hc
,

ψ(y, r) = −2 A k +
1
r2 A γ(1) + 2 A X(1),

Σ(y, r) =
A k h

hc
(1 − δ(rc)) +

A δ(rc)
r

√
hc

− A k h
(1 − hc)

2h2
c

(d + 1)δ(rc) +
1
r2 A β(1),

Γ(y, r) = −2 A k +
A

r2 γ̃(1). (4.140)

Notice that all the above solutions reduce to the expressions given earlier in [160]
after using the diffeomorphism which redefines (4.121) and then sending rc → ∞.

Finally we can extract the metric at asymptotic infinity using the expressions
(4.115) with (4.105-4.108) into (4.140). Performing the near boundary expansion
(4.127) we can read off

Gab(y) = ηab − 2
rc h

1/2
c

1
d

θ uaub +
δ(rc)
rchc

a(aub) + (4.141)

−2
(

k(rc) +
1

(d + 1)

√
hc

rH
ln hc

)
σab + · · · ,

where we included the zeroth order contribution (4.135) and we also performed the
rescaling in the ua directions by factors of

√
hc to restore a flat metric at leading

order as already discussed. Dots in the last line denote higher orders contributions
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to the hydrodynamic expansion. As anticipated the metric Gab(y) characterizes
the background metric for the dual field theory on the asymptotic boundary or,
equivalently, the source for the dual stress energy tensor. Whenever rc is finite
and hence hc �= 1, the metric Gab(y) is clearly not flat at nontrivial order in a
hydrodynamic expansion. Imposing a Dirichlet boundary condition on the finite
cutoff surface Σc therefore translates into making a specific deformation of the
original CFT defined on asymptotic infinity: a non-flat background metric for
the field theory fluid. Hence in terms of such CFT the fluid lives in a dynamical
background metric, namely a metric which depends on the fluid velocity and tem-
perature; a similar interpretation was given in [125]. When rc → ∞ the boundary
metric (4.141) is just ηab as expected.

***

4.6 Other examples

In this section we are going to discuss other possible examples of the bulk stress-
energy tensor setting the stage for their more general exploration.

4.6.1 Vanishing cosmological constant: Λ = 0

For the case Λ = 0 the equation of state (4.40) degenerates and allows two possible
nontrivial solutions

ε = 0; ε = − 2d

d − 1
P. (4.142)

Rindler fluid. The first solution is the well-known case of Rindler geometry as
discussed extensively in literature, see e.g. [112]. Einstein equations (4.26-4.28)
with the redefinitions (4.21) solved by

g(r) = const.; f(r) = r, (4.143)

giving, after rescaling the coordinates to get as usual a metric in the form (4.18),
the Rindler geometry in rescaled Eddington-Finkelstein coordinates

ds2 = − r

rc
dt2 + dxidxi + 2

1√
rc

dt dr. (4.144)
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The null surface r = 0 acts as an horizon for accelerated observers and the pressure
(4.34) and energy density (4.35) can be computed knowing that G(r) = 1, F (r) =
r/rc and λ = 1/

√
rc

ε = 0; p =
1√
rc

. (4.145)

Hydrodynamic solutions nearby the Rindler geometry have been found in [112] up
to second order. In our setting such a geometry is important since it arises in the
near-horizon limit of the AdS black brane metric. We have seen for thermodynamic
configurations in Section 4.5.1 how the near-horizon limit gives the values of the
pressure and energy density above (4.100) and (4.101). In the same way, also the
transport properties in AdS in Section 4.5.2 in the limit rc → rH give

η(rH) = 1; ζ(rH) = 0 (4.146)

with the usual shear viscosity over entropy universal bound being satisfied as
s = 1/4π, in agreement with Rindler fluid transport properties found in [112].

Taub geometry. The second solution in (4.142) is a negative energy equation of
state. It can be realized within the other possible solution to Einstein equations
with

g(r) = r2; f(r) =
c3

rd−1 , (4.147)

The resulting metric in the rescaled coordinates is then

ds2 = −rd−1
c

rd−1 dt2 +
r2

r2
c

dxidxi + 2
√

rd−1
c dt dr, (4.148)

which is of the type of Taub geometry, namely a vacuum, homogeneous but
anisotropic solution of Einstein gravity first found in four bulk spacetime dimen-
sions in [161]. There is a curvature singularity at r = 0 which is timelike and
naked. One can associate a pressure and energy density given by

ε = −2 d r(d−3)/2
c ; P = (d − 1)r(d−3)/2

c , (4.149)

to such solution, but as noticed in [113] there is way to associate a causal horizon
to such geometry. Moreover given the thermodynamic relation P + ε = Ts such
geometry would give a negative temperature. Hence the interpretation of this
geometry in terms of a dual field theory at finite temperature might be problematic.

4.6.2 Positive cosmological constant: Λ > 0

Let us now turn to the case in which the bulk stress-energy tensor is simply given by
a positive cosmological constant Λ = d(d+1)

2l2 . The spacetime metric (4.16) solving
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Einstein equations (4.26-4.28) with the redefinitions (4.21) can be obtained from
the AdS black brane solution (4.90) through a Wick rotation of the time coordinate
t → −i t, of the radial coordinate r → i r and of the AdS radius L2 → −l2, namely

ds2 =
r2

l2

(
h(r)dt2 + dxidxi

)
+ 2 dt dr with h(r) = 1 −

(
rH

r

)d+1

. (4.150)

Such metric represents a de Sitter brane in the so-called inflationary patch; de
Sitter is not static so one should not expect the ansatz to produce a spacetime
foliated by timelike hypersurfaces. In fact the the induced metric on hypersurfaces
of constant r is positive definite and the unit normal vector is now timelike. One
can still write down the Brown-York tensor on the foliating hypersurface Σc, but it
cannot be interpreted as a perfect fluid stress-energy tensor since the hypersurface
is spacelike. This would only be the case after the analytic continuation mentioned
above, but this would trivially reproduce all the results discussed in Section 4.5.

4.6.3 Fluids for which Trr = 0

There are cases for which the matter bulk stress-energy tensors compatible with
the static ansatz (4.16) will in addition satisfy Trr = 0, as we have seen for e.g.
the case of a simple cosmological constant. The significance is that if Trr vanishes,
then one can immediately integrate the (rr) Einstein equation (4.26) with (4.21)
to obtain

g(r) = (c1r + c2)2. (4.151)

Again vanishing c1 is generically not consistent with the other Einstein equations
unless the bulk stress-energy tensor is zero. Hence, as we did for the negative
cosmological case, we are going to assume c1 �= 0 and absorb both constants into
a redefinition of the origin and scale of the radial coordinate, (c1r + c2) → r.
Integrating the remaining Einstein equations (4.27) one obtains the solution for
f(r) in terms of the bulk stress tensor component Ttr

f(r) =
c3

rd−1 +
2

d rd−1

∫ r

dr′Tr′t(r′)d. (4.152)

The class of stress energy tensors for which Trr = 0 includes in particular gauge
fields. In fact a vector field stress energy tensor is expressed in terms of the field
strength Fμν as

T (F )μν = 2
(

FμρF ρ
ν − 1

4
F ρσFρσgμν

)
+ m2

(
AμAν − 1

2
AρAρgμν

)
, (4.153)

then the metric ansatz together with the antisymmetry of Fμν forces the (rr) com-
ponents in the first term to vanish. The second term involves the mass parameter
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of the vector field and the vector potential Aμ; the (rr) components vanish if
m2 = 0 (i.e. it is a gauge field) or Ar = 0. However the latter is generically
not implied by the symmetries of the equilibrium static solution, which permit a
non-zero Ftr(r).

Consider the case in which the bulk stress energy tensor consists of a cosmological
constant and a gauge field. The gauge field equation give

Ftr =
q

rd
, (4.154)

with the conserved charge being proportional to q and the general solution for f(r)
hence becomes

f(r) =
c3

rd−1 − 2
d(d + 1)

Λr2 +
2q2

d(d − 1)r2(d−1) . (4.155)

For negative cosmological constant we therefore recover AdS charged branes, as
expected.

For Λ = 0 the solution with c3 > 0 describes what might be called a charged
Taub fluid: the metric is not asymptotically flat and has a naked singularity at
r = 0. For c3 < 0 f(r) is positive for 0 < r < rH and negative for r > rH where
f(rH) = 0. In the inner region hypersurfaces of constant r are timelike, but there
is a naked singularity and the region is bounded by a horizon. In the outer region
hypersurfaces of constant r are spacelike, and both t and r are null coordinates as
r → ∞.

One can understand the relationship of the latter solution to the regions inside a
Reissner-Nordstrom black hole as follows. Consider four-dimensional black holes
(the generalization to d > 2 being straightforward). Start from the metric in
ingoing coordinates

ds2 = −
(

1 − 2M

R
+

Q2

R2

)
dv2 + 2dvdR + R2dΩ2

2. (4.156)

Now zoom into the neighborhood of a point on the two sphere, which without loss
of generality can be chosen to be the north pole, by letting θ = εx with ε � 1 i.e.

dθ2 + sin2 θdφ2 ≈ ε2(dx2 + x2dφ2). (4.157)

In addition scale the radial coordinate such that r = εR remains finite and the
time coordinate such that t = v/ε stays fixed, and also holding fixed

2m ≡ 2Mε3; q ≡ Qε2. (4.158)

Under such rescalings one can see immediately using

R± = M ±
√

M2 − Q2 (4.159)
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that the outer horizon at R+ is pushed to infinity (in the r coordinate) while the
inner horizon at R− remains at a finite value of r. The resulting metric is

ds2 = −
(

q2

r2 − 2m

r

)
dt2 + 2dtdr + r2(dx2 + x2dφ2), (4.160)

which is the d = 2 case of the metric given above. As discussed above this metric
covers the region between an outer horizon, an inner horizon and the singularity.

For Λ > 0, the solution with c3 > 0 describes a charged solution with a singularity
at r = 0 and a horizon at a finite value of r = rH . The hypersurfaces of constant
r are only timelike in the region r < rH . The solution with c3 ≤ 0 is more inter-
esting: whilst the behavior of f(r) at very small r and very large r is unchanged,
the function can pass through zero more than once in the intermediate region,
corresponding to inner and outer horizons.

4.6.4 Fluids for which Trr �= 0

Many common matter Lagrangians induce stress energy tensors which are compat-
ible with the static ansatz (4.16) but have Trr �= 0. In such cases the (rr) Einstein
equation (4.26) does not decouple and one cannot in general immediately solve
for g(r) (and hence for the other defining functions); the Einstein and matter field
equations remain coupled.

Examples can be found within a class of Lagrangians which have recently received
considerable attention in the context of AdS/CMT: (neutral) scalars coupled to
vector fields, so-called Einstein-Maxwell-Dilaton models. Expressing the matter
action for a single such scalar φ coupled to a vector field Aμ as

Sm = −
∫

dd+2x
√

−g
(1

2
(∂φ)2 + V (φ) +

1
4

eαφF 2 +
1
2

eβφm2A2
)

, (4.161)

with the scalar potential and the parameters (α, β, m2) defining the model, then
the equations of motion are known to admit Lifshitz, hyperscaling violating Lif-
shitz solutions and other charged dilatonic black holes for various choices of these
parameters. The matter stress energy tensor is

Tμν =
1
2

(∂μφ)(∂νφ) − 1
4

(∂φ)2gμν − 1
2

V (φ)gμν + (4.162)

+
1
2

eαφ(FμρF ρ
ν − 1

4
F ρσFρσgμν) +

1
2

m2eβφ(AμAν − 1
2

AρAρgμν),

and the matter field equations are

�φ = V ′(φ) +
1
4

αeαφF 2 +
1
2

βm2eβφA2; (4.163)

∇μ(eαφF μν) = 2m2eβφAν ,
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with ∇μ the covariant derivative. Consistency with the static, spatially homoge-
neous ansatz requires

φ = φ(r); Aμdxμ = a(r)
(

dt − dr

f(r)

)
(4.164)

but then Trr �= 0 whenever φ(r) �= 0 and/or m2a(r) �= 0. The metric plus matter
is characterized by four functions but the equations of motion are coupled and
non-linear so cannot be solved analytically in general. For example, in the case
of the pure massive vector (no scalar field) an exact solution at zero temperature
with Lifshitz scaling symmetry is known, see e.g. [162], but corresponding finite
temperature blackened solutions have only been found numerically, see for example
[163, 164, 165, 166]. The zero temperature Lifshitz solution can be written in our
coordinate system as

f(r) =
r2

z2 ; g(r) =
(r

z

)2/z

; a(r) = 2
√

z − 1
z2 r; m2 =

d2

2z2 . (4.165)

In this case the (rr) Einstein equation can be integrated to give an analytic solution
for the function g(r), but the latter is no longer given by g(r) ∝ r2. The usual
form of the Lifshitz metric, i.e.

ds2 =
dρ2

ρ2 +
(

−dτ2

ρ2z
+

dxidxi

ρ2

)
, (4.166)

is obtained by the redefinitions

r = zρ−z; dτ =
(

dt − dρ

ρ

)
. (4.167)

***

4.7 Discussion and Outlook

In this Chapter we have presented a construction of generic (d + 2)-dimensional
near equilibrium metrics corresponding to the hydrodynamic regime of putative
(d + 1)-dimensional holographic fluids associated with timelike hypersurfaces foli-
ating a general bulk spacetime, i.e. with general bulk stress energy tensor. Using
the method of Hamiltonian holographic renormalization we gave a prescription for
the fluid stress-energy tensor in the case of (conformally) flat Dirichlet boundary
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conditions on these timelike hypersurfaces. Our prescription is consistent with
standard holographic results in the limit where the timelike hypersurface is taken
to the conformal boundary. The resulting stress tensor is proportional to the
Brown-York stress tensor of the corresponding hypersurface plus certain bound-
ary terms. These boundary terms are in principle uniquely defined when the
hypersurfaces are taken to the asymptotic boundary and represent the necessary
counterterms to ensure the on-shell action to be finite. On a finite cutoff the above
mentioned boundary terms cannot be fixed uniquely but we have shown that in
the hydrodynamic regime they only provide a redefinition of the thermodynamic
quantities without affecting the thermodynamic relation nor hydrodynamics.

Another possible source of boundary terms is the UV part of the spacetime be-
tween the finite cutoff and the boundary at infinity which we have not considered
here. In the spirit of Wilsonian holographic renormalization described in Section
2.2.2, this part of the geometry is dual to the contribution of high energy de-
grees of freedom which can be integrated-out giving rise to a boundary effective
action. Our results in this Chapter are related instead to the IR region of the
spacetime. We have not computed the on-shell SIR action but we know what is
the momentum conjugate to the metric γab(rc) on the finite cutoff. It would be
interesting to see how, in the hydrodynamic regime, our results can be matched to
the local contributions coming from the so called UV part of spacetime as derived
in Chapter 3. This would represent an improvement to the membrane paradigm
coupling (3.106) expressed for linearized gravitational perturbations. In this way
one could handle the dissipative contributions coming from the event horizon in a
fully nonlinear way.

In this Chapter relatively to earlier works (see for example [125, 157]) we have
clarified a number subtleties. In particular, we have emphasized the fact that dif-
ferent coordinate systems give physically distinct fluids on timelike hypersurfaces
obtained at any given radial cutoff. At leading order in the hydrodynamic expan-
sions we can simply perform coordinate transformations and relate the pressures
and energy densities but the hydrodynamic expansions are taken about different
hypersurfaces and in particular with respect to different dual field theory space-
time coordinates; hence out of equilibrium we are dealing with physically different
fluids. In the case of pure AdS gravity this subtlety does not arise with a flat or
conformally flat Dirichlet boundary condition on the finite cutoff due to the fact
that the conformal factor does not depend on the field theory coordinates but the
issues discussed here would be relevant for dealing with hydrodynamics for cases
such as AdS R-charged black holes (obtained as decoupling limits of rotating D3-
branes, see [167]). One of the conclusions of [125, 157]) was that the fluid changes
from a relativistic to non-relativistic fluid as the radial coordinate decreases. Here
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we found that the near horizon description is the Rindler fluid of [111, 112], which
indeed can be viewed as a non-relativistic fluid.

After discussing classes of spacetimes with a general bulk stress tensor at ther-
modynamic equilibrium, we concentrated on the specific case of Einstein gravity
in AdS and verified the consistency of our prescription for the fluid stress tensor
with standard holographic results when the timelike hypersurface is taken to the
conformal boundary of AdS. Having at our disposal the holographic dictionary
at conformal infinity we gave a precise interpretation of the fluid on the cutoff
hypersurface in terms of a specific deformation of the UV CFT. The resulting UV
fluid can be thought of as living in a non-flat background, depending on the fluid
velocity and temperature.

Finally, we have also explored the near-horizon limit of the cutoff AdS fluid, which
up to first order in a gradient expansion is effectively a Rindler fluid. We will show
in Chapter 5 what are the differences of this holographically defined fluid near the
horizon and the membrane fluid discussed in Section 2.2.1.

Recently an interesting connection between asymptotically flat spacetimes and
asymptotically AdS black holes has emerged [102, 103]: it has been shown that
asymptotically AdS black holes compactified on tori correspond to certain asymp-
totically flat Schwarzschild black branes and the holographic dictionary for the
stress energy tensor has been derived through generalized dimensional reduction.
It would be interesting to see how our construction would fit into this framework,
and also how our construction can be applied to blackfolds [168, 169] which inter-
polate between asymptotically AdS and asymptotically flat regions.
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Appendix A: Details of the hydrodynamic expansion

General hydrodynamic construction of Section 4.4.

The zeroth order Christoffel symbols for the metric (4.53) are

Γ(0)r
rr = 0, Γ(0)a

rr = 0, Γ(0)r
ra = 1

2
λF ′ua, (4.168)

Γ(0)r
ab = −1

2
λ2F

(
G′hab − F ′uaub

)
,

Γ(0)a
rb = 1

2
G′

G
ha

b , Γ(0)c
ab = −1

2
λuc

(
G′hab − F ′uaub

)
,

with Γ(0)μ
μr = 1

Gd/2 ∂rGd/2; Γ(0)μ
μa = 0.

The linearized Christoffel symbols can be formally computed to all orders using the
definition (4.62) and (4.168) to express explicitly ∇(0)

μ giving

δΓ(n)μ
rr = 0, (4.169)

δΓ(n)r
ra = 1

2
λuc∂rg(n)

ca − 1
2

λ
G′

G
uchd

ag
(n)
cd ,

δΓ(n)r
ab = −1

2
λ2F ∂rg

(n)
ab + 1

2
λ2 (

G′hab − F ′uaub

)
ucudg

(n)
cd ,

δΓ(n)a
rb = 1

2
1
G

hac∂rg
(n)
cb − 1

2
G′

G2 hachd
b g

(n)
cd ,

δΓ(n)c
ab = −1

2
λuc∂rg

(n)
ab + 1

2
λ

G

(
G′hab − F ′uaub

)
hceuf g

(n)
ef ,

with δΓ(n)ρ
ρr = 1

2
∂r

( 1
G

hcdg
(n)
cd

)
; δΓ(n)ρ

ρa = 0.

The linearized Ricci tensor to all orders can be computed using the definition (4.61) and
the result (4.169)

δR(n)
rr = −1

2
hab∂2

r

( 1
G

g
(n)
ab

)
− 1

2
G′

G
hab∂r

( 1
G

g
(n)
ab

)
; (4.170)

λ−1δR(n)
ra = 1

2Gd/2 ub∂r

(
Gd/2∂rg

(n)
ab

)
+ 1

4
F ′uahcd∂r

( 1
G

g
(n)
cd

)
+

− 1
2Gd/2 uchd

a∂r

(
G′

G
Gd/2g

(n)
cd

)
; (4.171)

λ−2δR
(n)
ab = −1

4
F

(
G′hab − F ′uaub

)
hcd∂r

( 1
G

g
(n)
cd

)
− 1

2Gd/2 ∂r

(
Gd/2F ∂rg

(n)
ab

)
+

+G′F
G

hc
(a∂rg

(n)
cb) + F ′G′

G
u(ahc

b)u
dg

(n)
cd − F ′u(auc∂rg

(n)
cb) +

−1
2

F G′2

G2 hc
(ahd

b)g
(n)
cd − 1

2
G′2

G
habucudg

(n)
cd +

+ 1
2Gd/2 ucud∂r

(
Gd/2(G′hab − F ′uaub)g(n)

cd

)
. (4.172)

Such expressions can now be used in (4.59) together with (4.63) to derive Eq. (4.65-4.68)
in the main text.
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General first order hydrodynamics.

Christoffel symbols up to first order obtained from the seed metric (4.53)

Γ(1)μ
rr = 0, (4.173)

Γ(1)r
ra = 1

2
λ ua F ′ + 1

2
aa − 1

2
D⊥

a ln λ,

Γ(1)r
ab = −1

2
λ2F

(
G′hab − F ′uaub

)
− λ KabG + u(aab)λ F +

+u(aλ D⊥
b)F − 1

2
λ uaubDF − 1

2
λ habDG + λ F u(a∂b) ln λ,

Γ(1)a
rb = G′

2G
ha

b + 1
Gλ

Ωa
b + 1

2Gλ
aaub − 1

2λG
ub D⊥a ln λ,

Γ(1)c
ab = −ucKab + ucu(aab) − 1

2
λ uc

(
G′hab − F ′uaub

)
+

− (G − F )
G

(
2u(aΩc

b) + acuaub

)
+ 1

G
hc

(a∂b)G +

− 1
2G

habD⊥cG + 1
2G

uaubD⊥cF + ucu(a∂b) ln λ.

and useful contractions

Γ(1)ρ
ρr = 1

Gd/2 ∂rGd/2;

Γ(1)ρ
ρa = 1

Gd/2 ∂aGd/2 + uaD ln λ − D⊥
a ln λ. (4.174)

The Ricci tensor components at first order are

R̂(1)
rr = 0, (4.175)

R̂(1)
ra = ua

(
G′

2G
∂cuc + d

2G
DG′ − dG′

4G2 DG

)
+ d

4
G′

G
aa +

−(d − 1) 1
2G

D⊥
a G′ + (d − 1) G′

2G2 D⊥
a G − d

4
G′

G
D⊥

a ln λ, (4.176)

λ−1R̂
(1)
ab = uaub

(1
2

F ′∂cuc − dG′

4G
DF + dF ′

4G
DG − 1

2
d

G′F
G

D ln λ
)

+

+hab

(
−1

2
G′∂cuc − DG′ − (d − 2)

2
G′

G
DG

)
+ u(aD⊥

b)F
′ +

+u(aab)

(
F ′ + (d − 2)

2
G′F
G

)
+ (d − 2)

2
G′

G
u(aD⊥

b)F +

−d

2
G′Kab + u(aD⊥

b) ln λ

(
F ′ + 1

2
(d − 2)G′F

G

)
. (4.177)
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AdS black brane hydrodynamics of Section 4.5.

Equations of motion for the AdS black brane nonlinear perturbations at first order are

∂2
r

(
r2

c

r2 γ(1)
)

+ 2
r

∂r

(
r2

c

r2 γ(1)
)

= 0, (4.178)

d hc
r

L2 α(1)′ + hc
d(d − 1)

L2 α(1) +
(

(d + 1)
L2 + (d − 2)

L2 h

)
γ(1) +

− r

L2

(
(d − 1)h+ 1

2
rh′

)
γ(1)′ − 1

2
r2

L2 hγ(1)′′ − 2d
r

rcL

√
hcθ = 0, (4.179)

β(1)′′
a + (d − 2)

r
β(1)′

a − 2(d − 1)
r2 β(1)

a − d

r

L

rc

√
hc

δ(rc)aa = 0, (4.180)

∂r

(
rd+2h(r)∂r

(
γ̃

(1)
ab

L2

r2

))
+ 2d

√
hc

L3rd−1

rc
σab = 0. (4.181)

The general solution to such equations is

γ(1) = (γ0 r + γ1 r2)θ,

β(1)
a = r

(
β0 r + β1

rd
− L

rc

√
hc

δ(rc)
)

aa, (4.182)

α(1) = α0

rd−1 θ + L

d h
3/2
c

r

rc
((d − 1)(h − 1) + 2(hc − 1)) θ,

γ̃
(1)
ab = 1

2
L

√
hc

rcrH
r2 (4k(r) + γ̃0 + γ̃1 ln h(r)) σab,

where k(r) is given by (4.109) and γ0, γ1, β0, β1, α0, γ̃0 and γ̃1 are integration constants.
Dirichlet boundary conditions fix some of them to

γ1 = −γ0

rc
, β1 = rd

c

(
−rcβ0 + L

rc

√
hc

δ(rc)
)

, (4.183)

α0 = − (d + 1)
d

Lrd−1
c

h
3/2
c

(hc − 1) , γ̃0 = −4k(rc) − γ̃1 ln hc.

Landau gauge conditions (4.81-4.82) fix the other integration constants to

γ0 = 2L

rc

√
hc

, (4.184)

β0 = −
L

(
d hc(2 + (d − 1)δ(rc)) − (d + 1)(2 + d δ(rc))

)
2(d + 1)r2

c h
3/2
c

δ(rc),

and requiring regularity on the horizon rH gives

γ̃1 = 4
d + 1

, (4.185)

leading to the solutions (4.105-4.65).
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Appendix B: The Bianchi identities

The Bianchi identities at order n are

(∇μGμν)(n) =
n∑

k=0

∇(n−k)
μ G(k)μν = 0. (4.186)

Using the Einstein equations at each order and the conservation of the bulk stress energy
tensor at order n, (∇μT μν)(n) = 0, the following identity holds

∇(0)
μ G(n)μν = ∇(0)

μ T (n)μν or ∇(0)
μ R(n)μν = ∇(0)

μ T̄ (n)μν . (4.187)

Knowing that

λ−2δR(n) = −1
2

F

Gd/2 ∂r

(
Gd/2∂r

( 1
G

g
(n)
cd hcd

))
− 1

2
F ′∂r

( 1
G

g
(n)
cd hcd

)
+ (4.188)

− 1
2Gd/2+1 ∂r

(
Gd/2F ∂rg

(n)
cd hcd

)
+ 1

Gd/2 ∂r

(
Gd/2∂rg

(n)
cd ucud

)
+

+ d

2Gd/2+1 ∂r

(
Gd/2G′g(n)

cd ucud
)

− d

2
G′2

G2 g
(n)
cd ucud + G′F

2G2 ∂rg
(n)
cd hcd,

and using the leading order equations of motion (4.26) one can show from (4.187) that
the following expressions are identically satisfied

λF δR(n)
ar ua + δR

(n)
ab uaub =

(
− 1

d
T (0) + λT (0)

re ue
)

g
(n)
ab uaub,

λF δR(n)
ar ha

c + δR
(n)
ab ubha

c =
(

− 1
d

T (0) + 1
d

1
G

T (0)
ef hef

)
g

(n)
ab ubha

c . (4.189)

Using

λF T̄ (n)
ar + T̄ (n)

ab ub = λF T (n)
ar + T (n)

ab ub − 1
d

T (0)g
(n)
ab ub − 1

d

n−1∑
k=1

g
(k)
ab ubT (n−k),

(4.190)

integrating (4.189) and evaluating them on Σc gives(
λ(R̂(n)

ar −T (n)
ar ) + (R̂(n)

ab −T (n)
ab )ub

) ∣∣∣
Σc

= f (n)
a (x)

∣∣∣
Σc

, (4.191)

where f
(n)
a (x) arises as an integration constant. The Gauss-Codazzi equations on Σc at

order n are then given by

∇bT
BY(n)
ab

∣∣∣
Σc

= −2R(n)
aμ nμ

∣∣∣
Σc

= −2(R̂(n)
aμ + δR(n)

aμ )
∣∣∣
Σc

nμ =

= −2
(

λR̂(n)
ar + R̂

(n)
ab ub

) ∣∣∣
Σc

= −2nμT (n)
aμ − 2f (n)

a (x)
∣∣∣
Σc

. (4.192)

As discussed around (4.42), conservation of the fluid stress tensor requires that Taμnμ

vanishes to all orders, which in turn requires that T (n)
aμ nμ = 0 to all orders n since

nμ does not change due to the required Dirichlet boundary conditions. If the fluid is
not conserved then T (n)

aμ nμ �= 0 characterizes this non-conservation. In both cases the
integration constant arising from integrating the Bianchi identities is therefore zero for
the fluid stress energy tensor to satisfy the required conservation equation.
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5 The Membrane

Paradigm

On a Membrane covering the interior of a Black Hole and how

accurate it is from an Asymptotic observer point of view

The membrane paradigm is a simplified point of view on black hole physics. Its
relevance in the flow of arguments of this thesis is depicted by its role in appropri-
ately neglecting the interior of a black hole. In this Chapter, based on parts of [2]
and on [3] we are going to question the limits of applicability of this approximation
scheme. The lessons turn out to be of general relevance beyond the holographic
point of view.

5.1 Introduction

In Section 2.2.1 of the Introduction we reviewed the membrane paradigm from
a historical point of view, emphasizing its multiple formulations. One of those,
the most famous one, is what we called the membrane fluid, where the membrane
is thought to behave as a nonrelativistic fluid with simple physical properties
as discussed around (2.46). However, we also noticed that this fluid has some
pathological properties such as a negative bulk viscosity and moreover it is not
clear how to couple this part of the spacetime to the exterior and make use of
this approximation. In Chapter 4 we identified another type of fluid living on
a hypersurface close to the horizon of a black hole assuming a holographic-like
dictionary there, that is a Rindler fluid. We will show in Section 5.3 how these
two pictures are different from one another and how the holographic Rindler fluid is
richer in many ways, since, for example, it encodes the regular boundary condition
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on the event horizon. In fact one could also take the Rindler fluid as an improved,
nonlinear definition of the membrane paradigm itself as it has been suggested in
[157].

We also discussed a more modern interpretation of the membrane paradigm as
a simple boundary condition (2.51) mimicking the ingoing behavior of the fields
at the horizon or at a stretched horizon. One might think that one can always
smoothly connect the generic membrane response on a stretched horizon (2.51) to
the ingoing behavior on the horizon itself (2.50). We will show in Section 5.2 that
this turns out to be almost always the case. We will present a general argument
showing that there is a domain of frequencies for which the membrane paradigm
effectively reproduces the outgoing behavior on the horizon instead. The regime of
applicability does not comprise, for example, the short-living gapped quasinormal
modes, those which decay very fast after the equilibrium of a black hole has been
perturbed. Our argument is general since it relies only on the near-horizon region
of a nonextremal, non necessarily AdS, black hole.

We will test our general argument in the context of the AdS/CFT correspondence.
As we saw in Section 2.2.1, the definition of the membrane paradigm as a boundary
condition is particularly useful when it comes to couple it to the UV spacetime.
The latter transmits the information to the boundary at infinity where the dual
field theory correlators can be holographically read off. By coupling the membrane
paradigm to the UV spacetime we will be able to see whether all the correct
dual observables are reproduced at infinity having replaced the IR part of the
spacetime with a simple boundary condition. We will focus our attention on
studying quasinormal modes as they are better suited to illustrate our arguments,
given that the limitations on the membrane paradigm are found for a certain
domain of the frequencies of the probe fields. In Section 5.2.1 we will explicitly
show that the gapped quasinormal modes in a black brane in AdS3 cannot be
reproduced at infinity and in section 5.2.2 we will show that the opposite is true
for hydrodynamic modes in AdS5. However, the latter case will exhibit some
complications due to the fact that here the bulk fields transform nontrivially under
some local symmetry. For this reason the solutions in the external UV region
depend also on certain gapless degrees of freedom, namely the Goldstone bosons
of a spontaneously broken symmetry as we discussed extensively in Chapter 3. In
particular one of those corresponds to a non hydrodynamic degree of freedom and
needs to be discarded when seeking for the hydrodynamic regime on a stretched
horizon.

***
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5.2 Regime of applicability

We start by investigating in detail the scalar field φ case and focus on its univer-
sal near-horizon behavior in the presence of any non extremal black hole. The
expansion has been given already in eq. (2.48), and we write it here again for
completeness

φ = e−iωt+i�k·�x
{

cout(1 − u)iω/4πT
(

1 + α1(1 − u) + . . .
)

+

cin(1 − u)−iω/4πT
(

1 + β1(1 − u) + . . .
)}

, (5.1)

where T is the temperature of the black hole, u is the radial coordinate, u = 1 is
the rescaled horizon radius and αi and βj depend on the number of dimensions,
the mass of the field and its momentum. If we use this expansion in the membrane
paradigm boundary condition

4πT (1 − u)
∂uφ

iωφ

∣∣∣∣∣
u=uδ

= σ (5.2)

we readily obtain a relation between the outgoing and the ingoing modes

cout

cin
= (1 − uδ)−iω̃ (1 − σ)ω̃ + β1 (2i + (1 − σ)ω̃) (1 − uδ) + . . .

(1 + σ)ω̃ + α1 (−2i + (1 + σ)ω̃) (1 − uδ) + . . .
(5.3)

where we have rescaled ω̃ = ω/2πT . Using σ = 1 and keeping only the leading
order terms, eq. (5.3) reduces to

cout/cin = (1 − uδ)1−iω̃ × iβ1

ω̃
. (5.4)

It is easy to see that for values of ω̃ such that Im(ω̃) > −1, this formula has the
desirable effect, i.e. it leads to |cout/cin| � 1 for uδ → 1, and the infalling behavior
of the field is recovered on the horizon. However for Im(ω̃) < −1 it effectively
leads to outgoing boundary conditions |cout/cin|  1 as uδ → 1 instead. Note
that this holds no matter how close to the event horizon the membrane is.

The root of this discrepancy is that σ = ±1 is formally correct only at the event
horizon and away from it is slightly different. This “flow” of the membrane con-
ductivity can be constructed perturbatively in the 1 − uδ expansion allowing a
general form for σ = σ(ω̃, k̃, uδ) in (2.51). Eq. (5.3) implies that we may be able
to cover a somewhat wider range of imaginary parts of the frequency if we include
a finite number of these corrections in σ. It is clear though that in order to cover
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the whole complex frequency plane the value of the exact membrane conductivity
at any uδ �= 1 is required, which is equivalent to knowing the whole solution with
the ingoing boundary condition at the event horizon. However, this defies the
purpose of introducing the membrane paradigm on a stretched horizon.

In holography, solutions of the equations of motion for a scalar satisfying ingoing
boundary conditions at the event horizon encode the retarded two-point function
of a dual scalar operator in the thermal state. Conversely, imposing the outgoing
boundary conditions leads to the advanced two-point function. This implies that
using the membrane paradigm on the stretched horizon with σ = 1 only yields
a good approximation to the retarded Green’s function if Im(ω̃) > −1, whereas
for Im(ω̃) < −1 we obtain instead an approximation to the advanced Green’s
function. This means that, at best, the membrane paradigm will reveal only a few
of the lowest lying quasinormal modes if any. In particular only hydrodynamic
modes are reproduced, namely those which vanish ω̃ → 0 when k̃ = k/2πT → 0.

We will now illustrate and confirm our general findings with two explicit examples
within holography.

5.2.1 Gapped quasinormal modes in a BTZ3 black brane

Consider the exactly soluble case of a massless scalar field in 2 + 1 dimensions in
the Banados-Teitelboim-Zanelli (BTZ) black brane background in Einstein gravity
with a negative cosmological constant [133, 127]. The metric is

ds2 =
du2

4u2f(u)
− (2πT )2

u
f(u)dt2 +

(2πT )2

u
dx2, (5.5)

where f(u) = 1−u, the horizon is at u = 1 and we set the AdS radius to unity. We
will work in Fourier space where the scalar field exhibiting the same symmetries
of the background can be parametrized as

φ(t, x, u) =
∫

dω dk

(2π)2 e−iωt+ikxφ(ω, k, u). (5.6)

For simplicity, we will set the momentum k to zero. The near boundary expansion
of the the scalar field1 is

φ(u) = φ(0) + (φ(1) − 1
4

ω̃2φ(0) log u)u + . . . , (5.7)

and it is given in terms of two coefficients. One is the Dirichlet boundary condition
interpreted holographically as the source φ(0) of the dual operator O and the other

1This scalar is dual to an operator O of conformal dimension Δ = 2 in the dual (1+1)-
dimensional conformal field theory.
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φ(1) is fixed as a function of φ(0) after requiring a membrane boundary condition
(5.2) on a stretched horizon. The retarded/advanced Green’s function can be
computed using the holographic prescription (2.72) and the result is

GR/A

/ (
2π2T 2

k2
3

)
= G̃R/A =

φ(1)

φ(0) − 1
2

ω̃2, (5.8)

where k3 is proportional to the Newton constant in 2 + 1 dimensions and G̃ is the
zero temperature retarded/advanced Green’s function. As we discussed in Section
2.2.2 of the Introduction, quasinormal modes appear as poles of GR. When the
membrane is taken to be at the event horizon, which is equivalent to impose the
usual ingoing boundary condition in holography, the retarded Green’s function
reads

G̃R =
i ω̃

2
− ω̃2

4
− γ ω̃2

2
− ω̃2

2
ψ0

(
1 − i ω̃

2

)
(5.9)

with γ the Euler constant and ψ0(x) = Γ′(x)/Γ(x), and diverges (with single pole
singularities) at

ω̃ = −2 i n for n = 1, 2, . . . , (5.10)

which are all gapped quasinormal modes of the scalar field in a BTZ background
in AdS3 as discussed in (2.73).

However, if we move the membrane slightly away from the horizon these quasi-
normal modes are no longer captured. In fact relying on an intermediate step
as described in Section 2.2.1, we solve the scalar field equation of motion for the
configuration obeying Dirichlet boundary conditions2 at u = 0 and u = uδ,

φ(u = 0) = φ(0) and φ(u = uδ) = φδ, (5.11)

and subsequently use eq. (5.2) to express φδ in terms of φ(0). This, in turn,
determines φ(1), which is enough to evaluate eq. (5.8). The results are summarized
in Fig. 5.1 and nicely confirm the general expectations obtained above, as we indeed
see that the retarded Green’s function is not well approximated for Im(ω̃) < −1
and the advanced Green’s function is not well approximated for Im(ω̃) > 1. This,
in particular, implies that none of the quasinormal modes in this setup are captured
by the membrane paradigm, unless it is taken exactly to be at the event horizon.

We repeated the same calculation in 4+1 dimensions and found similar behavior.
This is an example where the implementation of the membrane paradigm on a
stretched horizon is strictly necessary, since exact analytic solutions are not avail-
able and one needs to perform numerical calculations. Numerics requires in fact

2For a massive field, we would typically demand that at u = 0 the leading fall-off of the
solution is fixed.
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Figure 5.1: Absolute value of the inverse of the retarded/advanced Green’s function
(green/red) and the membrane paradigm approximations of the former at uδ = 0.9
(blue) and uδ = 0.999 (magenta) as a function of �(ω̃) for �(ω̃) = 0 (left) and
�(ω̃) = 5 (right). One can clearly see that the stretched horizon approximation
works for Im(ω̃) > −1, whereas for Im(ω̃) < −1 it leads to the advanced Green’s
function, in line with the approximation in eq. (5.4). Zeros of the green curve
correspond to the locations of the quasinormal modes, as given by eq. (5.10), and
lie beyond the range of applicability of the membrane paradigm.

to have a very small but finite deviation from the exact location of the horizon
radius where differential equations are singular. Only after assuming a nontrivial
membrane coupling σ = σ(ω, k) we are able to recover the lowest lying gapped
quasinormal modes, but as we anticipated this procedure goes beyond the mem-
brane approximation3.

5.2.2 Hydrodynamic modes in an AdS5 black brane

Let us now consider gravitational perturbations δhμν(t, �x, u) of a 4+1 dimensional
black brane in AdS

ds2 =
du2

u2f(u)
− (2πT )2

u
f(u)dt2 +

(2πT )2

u
d�x2, (5.12)

where f(u) = 1 − u2, the horizon is at u = 1 and we have set the AdS ra-
dius L = 2. Actually we have already shown in Chapter 2 that the membrane
paradigm approach on the stretched horizon is a good approximation to compute
long-wavelength quasinormal modes for such perturbations4. In fact in Section
3.5.1 we correctly derived the sound and shear dispersion relations up to second
order in a hydrodynamic expansion. However, for completeness and clearness of

3This approach would be equivalent, for example, to [170] where (asymptotic) gapped quasi-
normal modes are found from an increasingly accurate near-horizon expansion of the field.

4Earlier approaches to this problem include [171, 93, 52, 27, 139].
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the exposition, we will give here a shorter version of the same findings highlighting
the presence of an additional gapless non hydrodynamic mode on the stretched
horizon.

Sound channel perturbations with momentum in the x-direction are the interesting
ones since they include the above mentioned additional mode. The non-vanishing
metric variations in a radial gauge δhμu = 0 are

δhtt, δhxt, δhxx and δhαα =
1
2

(δhyy + δhzz), (5.13)

which in Fourier space are

δhμν(t, x, u) =
∫

dω dk

(2π)2 δhμν(ω, k, u)e−iωt+ikx. (5.14)

The standard approach [135] in dealing with the gravitational perturbations (5.13)
is to introduce the linearized gauge-invariant variable

Z(u) = 2 k2f(u)Htt(u) + 4 ω k Hxt(u) + 2 ω2Hxx(u) +
+Hαα(u)

(
k2(1 + u2) − ω2)

, (5.15)

where we redefined for convenience Hab := |gac|δhcb and gμν is the inverse of
the black brane metric (5.12). Using all linearized Einstein equations one obtains
a decoupled second order ordinary differential equation for Z, and therefore the
problem of finding the retarded stress tensor correlator in the sound channel is
completely analogous to the scalar field case studied in the previous section. Hence,
to test the membrane paradigm we once more impose the universal relation (5.2)
on a stretched horizon uδ with φ simply replaced by Z.

A generic solution for Z can be found analytically order by order in a hydrodynamic
expansion

Z(u) = cin(1 − u2)−iω̃/2 (X0(u) + λ X1(u) + . . . ) +
+ cout(1 − u2)iω̃/2 (Y0(u) + λ Y1(u) + . . . ) , (5.16)

where λ is a bookkeeping parameter counting powers of ω̃ � 1 and k̃ � 1. To
leading order in λ the solution reads

X0(u) = Y0(u) =
k2(1 + u2)−3ω2

5k2−3ω2 , (5.17)

which, together with the membrane paradigm (5.2), give a relation between the
outgoing and ingoing coefficients cout and cin on the stretched horizon uδ analogue
of eq. (5.3)

cout

cin
= (1 − uδ)−iω̃ (1 − σ)

2iω̃(σ + 1)
+ (1 − uδ)1−iω̃ b(ω̃, k̃, σ)

(σ + 1)2ω̃
(
3ω̃2 − 2k̃2

) + . . . , (5.18)
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where b is an analytic function of ω̃, k̃ and the membrane coupling σ. One can
clearly see that for small ω̃ and k̃ one indeed obtains from (5.18) a very small
ratio of cout/cin unless ω̃ = ±

√
2/3 k̃. With some work, one can also determine

the approximate retarded Green’s function, and from its poles one obtains two
branches of solutions, which for small enough δ read

ω̃ = ±
√

1
3

k̃ + O(k̃2) (5.19)

and

ω̃ = ±
√

2
3

k̃ + O(k̃2). (5.20)

The mode (5.19) is just the standard hydrodynamic sound wave, whereas the sec-
ond one is spurious, as it does not solve the linearized equations of hydrodynamics
of the underlying microscopic theory and seizes to exist when one imposes the
ingoing boundary condition at the event horizon. Moreover, the presence of a pole
in the second term in eq. (5.18) implies that the solution with the membrane
paradigm boundary condition on a stretched horizon and with ingoing bound-
ary conditions on the event horizon are not smoothly connected to each other
for ω̃ = ±

√
2/3 k̃. Hence, the mode (5.20) has to be discarded. This yields one

more model-dependent restriction on the allowed frequencies for the membrane
paradigm on the stretched horizon.

The same conclusions can be obtained at the level of Goldstone bosons. We have
showed in Section 2.1.2 of the Introduction that hydrodynamics can be recasted
as a theory of gapless degrees of freedom, namely Goldstones of certain sponta-
neously broken symmetries. In fact the sound wave dispersion relation (5.19) is
naturally associated to the so-called longitudinal Goldstone. Here we will show
that also (5.20) can be naturally associated to a Goldstone boson, though non
hydrodynamical.

In calculating the above leading order dispersion relations (5.19) and (5.20) we
kept σ arbitrary and the result did not depend on the value of σ. This suggests
that both modes are not an intrinsic property of the membrane. We should then
be able to obtain the same result considering the UV part of the spacetime alone.
Indeed, the emergence of gapless modes in the holographic context can be thought
of as Goldstone bosons arising due to spontaneous symmetry breaking by the
classical solution with double-Dirichlet boundary conditions, one on the confor-
mal boundary and one on the stretched or event horizon as discussed in Chapter
3. Such Goldstones are non-local Wilson-line like objects already encountered in
(3.97)

πt =
∫ uδ

0
Htu(u)du, πx =

∫ uδ

0
Hxu(u)du, (5.21)
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where fδ is a shortcut for f(uδ). In radial gauge Hμu = 0, where these pertur-
bations are redefined as ∂uHuu := u

√
f(u) δhuu and Hau := 2πT |gac| δhcu, com-

binations (5.21) arise as nontrivial boundary conditions H̃δ
ab say on the stretched

horizon

H̃δ
tt = 2 i ω̃ πt − (1 + u2

δ)
2fδ

Huu(uδ), (5.22a)

H̃δ
xt = i ω̃ πx − i k̃ fδ πt, (5.22b)

H̃δ
xx = −2 i k̃ πx +

1
2

√
fδHuu(uδ), (5.22c)

H̃δ
αα =

1
2

√
fδ Huu(uδ), (5.22d)

once Dirichlet boundary conditions on the other boundary have been fixed. The
gravitational constraint equations, ua- and uu-components of the Einstein equa-
tions, turn out to be dynamical equations for the quantities (5.21) and for Huu. In
the limit where the stretched horizon is very close to the event horizon, at leading
order in k̃ and ω̃ and after solving for Huu(uδ), the remaining constraint equations
are (

3 ω̃2 − k̃2)
πx = 0,

(
3 ω̃2 − 2k̃2 )

π̂t = 0, (5.23)

where π̂t =
√

fδ πt. This near-horizon redefinition would be natural if equations
(5.23) would follow from an action principle in which the Goldstone bosons appear
quadratically5. Eq. (5.23) for the longitudinal and timelike Goldtone, to leading
order in δ, directly lead to the sound waves (5.19) and the spurious mode (5.20)
respectively. Note however that in the strict horizon limit the πt Goldstone decou-
ples from the dynamics and one is only left with the hydrodynamic sound wave
excitation.

Hence in short we have seen that the membrane paradigm is capable in revealing
hydrodynamic modes, though in the specific case of gravitational perturbations
another mode is present in the spectrum on the stretched horizon. Such a mode
can be naturally associated to the timelike Goldstone πt which decouples in the
near-horizon limit. Therefore, in the case the strict horizon limit is unaccessible
and one is forced to deal with quantities defined on the stretched horizon, the
additional spurious mode has to be discarded when aiming in uncovering only the
hydrodynamic spectrum of the dual field theory. In principle one could try to
remove the spurious mode already from the start by making the cutoff uδ to be k̃

and ω̃ dependent, but superficially this would require significant fine-tuning and
would go beyond the scope of the simple membrane response approximation.

***
5We have seen explicitly in Chapter 3 that this is indeed the case.
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5.3 The membrane fluid

In this Section we first derive the nonrelativistic Navier-Stokes equations (2.46)
governing the dynamics of an event horizon. In particular we make manifest
their origin as a degenerate subset of Einstein equations with no information on
the regular behavior of the horizon surface. Subsequently we make an explicit
comparison between the just derived membrane fluid with recent developments of
fluid/gravity duality on finite cutoffs, such as a Rindler fluid discussed in Chapter
4. It will be clear that the latter approach is richer in many ways than the ad hoc
rewriting of Einstein equations (2.46).

5.3.1 Derivation of the membrane fluid equations

Spacelike foliation of a hypersurface H

Consider a generic d + 1-dimensional spacelike, timelike or null hypersurface H
embedded in a (d + 2)-dimensional spacetime with metric g and further foliate it
by d-dimensional spacelike hypersurfaces Sτ such that H =

⋃
τ∈R

Sτ , as in [172].
The metric q induced by the spacetime metric g onto Sτ is positive definite and
in components can be expressed

qμν = gμν + lμkν + kμlν , (5.24)

where (l, k) is a pair of null vectors normal to Sτ satisfying

l · l = 0; k · k = 0; l · k = −1. (5.25)

Such pair is uniquely defined provided we introduce the evolution vector h

h = l − Ck; h · h = 2C, (5.26)

whose defining properties are that of being tangent to H, orthogonal to Sτ at any
point in H and

Lhτ = hμ∂μτ = 1, (5.27)

where Lh is the Lie derivative along h. The property (5.27) shows that any point
of Sτ is transported to Sτ+δτ by the vector δτ h and Lh becomes the evolution
operator along H. The character of h gives the character of the hypersurface H,
in particular if C < 0, then H and h are timelike.

The vectors (l, k) are co-linear to the pair (l̃, k̃) with parameters A and B respec-
tively

l = A l̃; k = B k̃, (5.28)
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where (l̃, k̃) are defined as the null normal vectors to two families of null hyper-
surfaces generated by outgoing and ingoing light rays orthogonally from Sτ

l̃ = −du; k̃ = −dv, (5.29)

with u and v parameterizing the dual-null foliations6 in the dual-null formalism of
e.g. [173].

A natural additional vector that can be constructed out of (l, k) is

m = l + Ck; m · m = −2C; m · h = 0. (5.30)

Notice that if h is timelike, m is necessarily spacelike and it defines the normal
vector to the hypersurface H, which, together with h spans the orthogonal space
to Sτ .

Given a generic tensor T on the bulk spacetime, one can canonically define another
tensor of the same covariance type on the subspace Sτ using the projector qa

b

defined out of (5.24)

(q∗T )i1...im
j1...jn

:= qi1
μ1 . . . qim

μm
qν1

j1
. . . qνn

jn
T μ1...μm

ν1...νn
. (5.31)

A tensorial field T for which q∗T = T is said to be tangent to the surface Sτ . For
any such tangent tensorial fields T we can define the covariant derivative D on the
spacelike surfaces Sτ

DT := q∗∇T, (5.32)

where ∇ is the covariant derivative on the (d + 2)-dimensional bulk spacetime.

Extrinsic geometry of a spacelike surface Sτ

Given a vector field v orthogonal to the spacelike surface Sτ , the deformation
tensor along this field is defined as

Θ(v) := q∗(∇v); Θ(v)
ij = qμ

i qν
j ∇μvν , (5.33)

which measures the variation of the metric in Sτ when the surface Sτ is displaced
along v7. The deformation tensor is symmetric and can be decomposed into a
traceless symmetric shear tensor and a trace contribution

σ
(v)
ij := Θ(v)

ij − 1
d

θ(v)qij ; θ(v) := qijΘ(v)
ij , (5.34)

6Such construction always exists and it is uniquely defined when H is spacelike or timelike.
In the case such hypersurface is null there is freedom in choosing the null foliation outside H.

7From the definition of the Lie derivative ∗q (Lvq) = ∗q ∇vq+2Θ(v) and using the idempotent
property of the projector ∗q ∇vq = 0 we have that Θ(v) = 1

2
∗q (Lvq).
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the latter measuring the change of the area element in Sτ when displaced by v.

The variation of the normal fields to Sτ with respect to each other is instead
contained in the normal fundamental forms, which for the pair (l, k) can be written
as

Ω(l) :=
1

k · l
k · ∇ql ; Ω(l)

i =
1

kμlμ
kν qρ

i ∇ρlν ; (5.35)

Ω(k) :=
1

k · l
l · ∇qk ; Ω(k)

i =
1

kμlμ
lν qρ

i ∇ρkν , (5.36)

with the relation
Ω(k) = −Ω(l). (5.37)

Kinematics of a spacelike surface Sτ

Covariant derivatives of the normal vectors l and k can be decomposed using
quantities defined on the spacelike surface Sτ after using the projector (5.24)

∇μlν = Θ(l)
μν + Ω(l)

μ lν − lμ∇klν − ν(l)kμlν , (5.38)

∇μkν = Θ(k)
μν − Ω(l)

μ kν − kμ∇lkν − ν(k)lμkν , (5.39)

where we have used equations (5.28-5.29) to derive

∇ll = ν(l)l; ν(l) := Ll ln A; (5.40)
∇kk = ν(k)k; ν(k) := Lk ln B, (5.41)

where ν(l) and ν(k) are the inaffinity parameters of the null vector fields. Combining
(5.38-5.39) and using the definitions (5.26) and (5.30) we can derive the covariant
derivatives for m and h

∇μmν = Θ(m)
μν + Ω(l)

μ hν − lμ∇klν − ν(l)kμlν +
+(∇μC)kν − Ckμ∇lkν − Cν(k)lμkν , (5.42)

∇μhν = Θ(h)
μν + Ω(l)

μ mν − lμ∇klν − ν(l)kμlν +
−(∇μC)kν + Ckμ∇lkν + Cν(k)lμkν , (5.43)

where we also used the properties

Θ(m) = Θ(l) + CΘ(k); Θ(h) = Θ(l) − CΘ(k), (5.44)

which follow straightforwardly from definition (5.33).
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Dynamics of a spacelike surface Sτ

Dynamical equations for the extrinsic geometry quantities can be obtained by
inserting the Ricci identity for a generic vector field vμ

Rμ
νρσvν = (∇ρ∇σ − ∇σ∇ρ)vμ, (5.45)

in the Einstein equations
Rμν = T̄μν , (5.46)

where T̄μν is the traceless bulk stress energy tensor. There are as many equations
as many independent ways to project the Einstein equations along m, h and q.
Projection along e.g. q and m results in a dynamical equation for the normal
fundamental form Ω(l)

α along the evolution vector h as previously derived in [172]

q∗LhΩ(l)
i + θ(l)Ω(l)

α = −Djσ
(m)j
i +

(d − 1)
d

Diθ
(m) +

+Di

(
ν(l) + Cν(k)

)
− θ(k)DiC + q∗T̄iμmμ. (5.47)

Another example is given by the evolution equation for θ(m) along m by projecting
twice along m

∇mθ(m) + Lm

(
ν(l) + Cν(k)

)
+ Θ(m)

ij Θ(m)ij − Llν(l) − ν(l)θ
(l) +

−2C Ω(l)iDi ln A − (θ(k) + ν(k)) LmC − C ∇μ(∇klμ + ∇lk
μ) +

+4C Ω(l)iΩ(l)
i − 2C ν(l)ν(k) − C2ν(k)θ

(k) − C2∇kν(k) +
+T̄μνmμmν = 0, (5.48)

or the evolution equation for θ(m) along h by projecting Einstein equations along
h and m

∇hθ(m) + Lh

(
ν(l) + Cν(k)

)
+ Θ(h)

ij Θ(m)ij − Llν(l) − ν(l)θ
(l) +

−(θ(k) + ν(k))LhC + C ∇μ (∇klμ − ∇lk
μ) + Cν(k)θ

(k) +
+C2∇kν(k) + T̄μνmμhν = 0.

An example of a tensorial equation is the evolution equation of the shape tensor
Θ(m)

ij which is

q∗LhΘ(m)
ij = Θ(m)

ik Θ(h)k
j + ν(l)Θ

(l)
ij + C ΩiDj ln A +

+Θ(k)
ij LhC − C∇μ (∇klν − ∇lkν) qμ

i qν
j +

−C2ν(k)Θ
(k)
ij + hρRμνρσmνqσ

i qμ
j . (5.49)

All the details of the derivations can be found in Appendix A.
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The null limit

The equations derived above are valid for a generic hypersurface H. The limit
in which the hypersurface H is null such as the horizon of a black hole can be
achieved by sending

C → 0. (5.50)

This implies that the two former orthogonal vectors h and m now coincide h, m → l

and the null vector l plays the double role of being tangent and normal to the null
hypersurface H. In this way the system of equations derived above degenerates
down to the usual dynamical equations for null hypersurfaces, see e.g. [174].
Equations (5.47) become the so called Damour-Navier-Stokes equations

q∗LlΩ
(l)
i + θ(l)Ω(l)

i = −Djσ
(l)j
i +

(d − 1)
d

Diθ
(l) + Diν(l) + q∗T̄iμlμ, (5.51)

which are equivalent to Navier-Stokes equations (2.46) after identifying the normal
fundamental form Ω(l) with the surface momentum density P, the affinity param-
eter ν(l) with the pressure P and the external force f with a suitable projection of
the bulk stress energy tensor T̄

Pi = −Ω(l)
i ; P = ν(l); fi = q∗T̄iμlμ, (5.52)

and the bulk and shear viscosity as in (2.47). Equations (5.48-5.49) degenerate to
the so-called null Raychaudhuri equation

∇lθ
(l) + Θ(l)

ij Θ(l)ij − ν(l)θ
(l) + T̄μν lμlν = 0, (5.53)

and the tensorial equation (5.49) becomes the tidal force equation for Θ(l)
ij

q∗LlΘ
(l)
ij = Θ(l)

ik Θ(l)k
j + ν(l)Θ

(l)
ij + q∗(lνRjμνj lμ). (5.54)

5.3.2 Membrane fluid Vs Rindler fluid

Let us here illustrate the properties of the membrane fluid equations (2.46):

• they are intrinsically nonrelativistic,

• they do not contain information about thermodynamic equilibrium,

• they model a fictitious intrinsically first order dissipative fluid with a negative
bulk viscosity (2.47),

• they are not decoupled but part of a bigger set of equations which collectively
defines the evolution of the event horizon. The remaining equations such as
the null Raychaudhuri eq. (5.53) and the tidal force eq. (5.54) do not have
a natural interpretation in terms of fluid quantities,
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• they are obtained without any specific information on the horizon, besides it
being a null degenerate surface through the limit (5.50) of equations (5.47).

All these properties of the membrane fluid equations (2.46) have to be compared
with the properties of another type of fluid which can be associated with a hologra-
phy inspired approach to a region in the proximity of the horizon of a nonextremal
black hole, that is the Rindler fluid. Here, as opposed to conventional fluid/gravity
duality where the dual fluid lives on the boundary of spacetime, the fluid lives on
a timelike hypersurface very close to the horizon, i.e. the stretched horizon. We
refer to Chapter 4 for a more detailed explanation and let us highlight some of the
relevant properties of the holographic Rindler fluid equations:

• they are fully relativistic,

• the existence of a thermodynamic equilibrium is assumed by the presence of
an equilibrium seed metric,

• dissipative behavior is obtained after perturbing the thermodynamic solution
around equilibrium. This formalism systematically incorporates in principle
all orders in a hydrodynamic expansion,

• all components of the Einstein equations are needed to work out the fluid
equations,

• transport properties are derived after explicitly solving Einstein equations
providing regular boundary conditions on the horizon.

Let us conclude here by saying that the membrane fluid and the Rindler fluid are
substantially different. On one side the membrane fluid equations (2.46) are just
a rewriting of a subset of Einstein equations (5.51) with suitable ad hoc identifica-
tions (5.52) in order to formally resemble Navier-Stokes equations. Fluid/gravity
duality approach for Rindler fluids enables instead to systematically account for
the low energy behavior of the dual field theory on a stretched horizon. Of course
one could easily use the explicit form of the horizon metric and some derivative
expansion in the membrane fluid equations (2.46), but this would be equivalent
of taking the holographic point of view and would for example spoil the original
structure of the membrane fluid equations. In other words membrane fluid dy-
namics is incomplete in accounting for the near-horizon region of a black hole. A
better way to model the near-horizon IR spacetime is the Rindler fluid dynamics
which can be eventually coupled to the external spacetime.

***
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5.4 Discussion and Outlook

In this Chapter we have studied the range of validity of the membrane paradigm
as a particular boundary condition imposed on a stretched horizon, and which
is supposed to represent the response of the interior of a black hole to external
perturbations. Though we mostly worked in the context of the AdS/CFT corre-
spondence, we expect our results to hold in more general gravitational setups as
they rely on generic properties of horizons. We found that the membrane paradigm
works very well except for the case of gapped quasinormal modes of probe fields
in a black hole background. The spectrum of hydrodynamic quasinormal modes
is correctly reproduced instead as long as one neglects the contribution on the
stretched horizon of an additional non hydrodynamic mode.

So far the membrane boundary condition of the form (5.2) has been assumed, but
it would be nice to derive it from a variational principle point of view as an action
modeling the IR physics. This same question is linked to the desire of finding a
general action principle for dissipative fluid dynamics and would require the use
of the full Schwinger-Keldysh formalism. Moreover, recent developments showed
that at a quantum level the black hole horizon is nothing like a regular surface
but it might develop a firewall [175]. Hence, it would be interesting to understand
what are the implications of a quantum reasoning to the membrane paradigm, in
particular how modifications of the horizon boundary conditions translate from
the boundary field theory point of view.

In this Chapter we have also emphasized the differences between the membrane
fluid and the holographic Rindler fluid interpretation of a near-horizon region
of the spacetime. In particular we have showed in Chapter 4 how through a
holographic construction one can obtain fluid equations up to arbitrary order in
a gradient expansion in contrast to the membrane fluid which is only a suitable
rewriting of certain components of Einstein equations into a fluid-like fashion. We
concluded that the holographic Rindler fluid dynamics could be an alternative
better nonlinear definition of the membrane paradigm as it can be coupled to
the external part of the spacetime. It would be nice to check how this coupling
happens for example by matching the IR Rindler fluid dynamics to the UV part
of the spacetime discussed in Chapter 3.
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Appendix A: Details on the d+1+1 foliation of the spacetime

Knowing (5.27), (5.28) and (5.29) it is possible to show the following identities

DiB = 0; Di(C/A) = 0 on H. (5.55)

These can then be used to derive the useful relations

qν
i ∇klν = −Ω(l)

i + Di ln A; qν
i ∇lkν = Ω(l)

i . (5.56)

Let us first consider

(∇j∇i − ∇i∇j)mj = ∇jΘ(m)j
i + hj∇jΩ(l)

i + Ω(l)
i θ(h) + Ω(l)

i ν(l) +

−Cν(k)Ω
(l)
i + Θ(h)j

i Ω(l)
j − Θ(l)j

i Dj ln A +

+miΩ(l)jΩ(l)
j − liΩ(l)jDj ln A − li∇j(∇klj) +

+miν(l)ν(k) − kiLlν(l) − ν(l)∇lki − ν2
(l)ki +

−ν(l)kiθ
(l) + (θ(k) + ν(k))∇iC − Cki∇j(∇lk

j) +

−ν(k)liLkC − CliLkν(k) − Cν(k)∇kli − Cν2
(k)li +

−Cν(k)θ
(k)li − ∇iθ

(m) − ∇i(ν(l) + Cν(k)) +

−Θ(k)j
i DjC + ν(k)li∇kC, (5.57)

where we repeatedly used (5.42). By further projecting on q, using (5.56-5.55) and the
relations

qν
i ∇μΘ(m)μ

ν = DμΘ(m)μ
i + Θ(m)μ

i Dμ ln A, (5.58)

qν
i LhΩ(l)

ν = qν
i hμ∇μΩ(l)

ν + Θ(h)μ
i Ω(l)

μ , (5.59)

as well as Einstein equations (5.46) we get the generalized Damour-Navier-Stokes equa-
tion (5.47). Equations (5.48-5.49) can be derived similarly.

To derive equation (5.49) we consider

hρ∇ρ∇μmνqμ
i qν

j = hρ (Rνσρμmσ + ∇μ∇ρmν) qμ
i qν

j , (5.60)

and repeatedly make use of (5.42-5.43), (5.56) and

qμ
i qν

j LhΘ(m)
μν = qμ

i qν
j ∇hΘ(m)

μν + Θ(m)
iρ Θ(h)ρ

j + Θ(m)
jρ Θ(h)ρ

i . (5.61)
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Notation

ηab flat metric on the boundary spacetime

(−1, +, . . . , +) mostly plus signature

c = � = 1 Planck units

2k2
(d+1) = 16πG

(d+2)
N Gravitational coupling constant, sometimes set to 1

(d + 2) bulk spacetime dimensions

(d + 1) boundary spacetime dimensions

d boundary space dimensions

μ, ν, . . . bulk spacetime indices with μ = 1, . . . , d + 2

m, n, . . . bulk space indices with m = 1, . . . , d + 1

a, b, . . . boundary spacetime indices with a = 1, . . . , d + 1

i, j, . . . boundary space indices with i = 1, . . . , d

xμ = (t, xi, r) bulk spacetime coordinates

r or u bulk radial coordinate

xa = (t, xi) also sometimes x = xa, buondary spacetime coordinates

A(aBb) = 1
2 (AaBb + AbBa) symmetric combination

A[aBb] = 1
2 (AaBb − AbBa) antisymmetric combination

A〈aBb〉 = 1
2 (AaBb + AbBa − 1

dim AcBcδab) symmetric traceless combination

∂μ = ∂
∂xμ partial derivatives
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Flüıda

Het water in de Amsterdamse grachten, de lucht in de atmosfeer en bijvoorbeeld
honing hebben tenminste een gemeenschappelijke eigenschap: het zijn allemaal
flüıda. Een flüıdum kan betrekking hebben op een vloeistof, een gas of een plasma.
Zij hebben de neiging de ruimte waarin zij zijn besloten te vullen, in tegenstelling
tot vaste stoffen, die hun eigen vorm behouden.

Het vakgebied dat zich bezighoudt met de wiskundige beschrijving van bewegende
flüıda wordt aangeduid als de vloeistofdynamica of de stromingsleer. Een belangri-
jke aanname in de theoretische beschrijving van flüıda is dat de bijdrage van indi-
viduele deeltjes kan worden verwaarloosd ten opzichte van het collectieve gedrag
van het medium, waarvoor een effectieve beschrijving kan worden gegeven. Een
voorbeeld van dit principe ziet men in de beschrijving van de golven die ontstaan
als een steen in het water valt. De vloeistofdynamica beschrijft de golven en niet
de bewegingen van de individuele watermoleculen; dat zou onnodig lastig zijn. De
stromingsleer geeft een goede en efficiënte beschrijving in tal van toepassingen,
bijvoorbeeld bij het voorspellen van het weer, het beschrijven van de oceaanstro-
mingen of bij de studie van luchtstromen die aan een oppervlak grenzen, zoals de
lucht die langs de vleugel van een vliegtuig stroomt.

Men zou kunnen veronderstellen dat het gedrag van flüıda universeel zou moeten
zijn wanneer het individuele gedrag van deeltjes kan worden genegeerd. Dat is
gedeeltelijk waar, in de zin dat ieder flüıdum dat in equilibrium is golfverschijnse-
len laat zien wanneer het wordt verstoord. Daarnaast zien we dat deze golven in
water een heel andere snelheid hebben dan in bijvoorbeeld honing. Dus ook al
geeft de vloeistofdynamica een algemene beschrijving van een flüıdum, een aantal
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eigenschappen van een flüıdum moet worden gespecificeerd. Een voorbeeld van
zo een intrinsieke eigenschap is de viscositeit. Viscositeit is de mate waarin een
flüıdum de beweging van een aangrenzend object doorgeeft, ofwel hoe dissipatief
een flüıdum is. In een viscoos flüıdum, zoals honing, zullen aangrenzende delen
een relatief vergelijkbare snelheid hebben. Water heeft een lage viscositeit, zodat
aangrenzende delen relatief verschillende snelheden kunnen hebben doordat de be-
weging niet efficiënt wordt doorgegeven door het medium. Dit soort intrinsieke
eigenschappen volgen niet uit de effectieve vloeistofdynamische beschrijving, om-
dat ze voortkomen uit de specifieke interacties tussen de individuele deeltjes. In
de vloeistofdynamische beschrijving moeten de parameters van deze eigenschap-
pen van tevoren worden gegeven. Deze parameters kunnen worden bepaald door
middel van experimenten of op basis van berekeningen. Deze berekeningen moeten
worden gedaan met behulp van een fundamentele beschrijving van de deeltjes en
hun interacties. In sommige gevallen kan dit worden gedaan, maar wanneer de
interacties tussen de deeltjes sterk zijn, zijn deze berekeningen erg moeilijk. De
meeste rekentechnieken werken juist goed in het regime waarin de interacties tussen
de deeltjes relatief klein zijn.

Naast de bovengenoemde voorbeelden van bekendere vloeistoffen komen er ook
meer exotische vloeistoffen voor in bijvoorbeeld de relativistische Heavy Ion Col-
lider (RHIC) in Brookhaven in de Verenigde Staten en in de Large Hadron Col-
lider (LHC) in Genève in Zwitserland. In beide laboratoria worden experimenten
gedaan waarbij bundels atomen met grote snelheden op elkaar botsen. De energie
is daarbij dermate hoog dat de atomen na de botsing oplossen in hun elemen-
taire bestanddelen, de zogenaamde quarks en gluonen. Gedurende een fractie van
een seconde, voordat de elementaire deeltjes weer samengaan, gedragen zij zich
als een sterk gekoppelde vloeistof bij een zeer hoge temperatuur en een zeer hoge
dichtheid. Deze exotische vloeistof wordt ook wel quark-gluon plasma (QGP)
genoemd8. De omstandigheden die in deze experimenten worden gecreëerd zijn
vergelijkbaar met de omstandigheden vlak na de Oerknal, toen ons universum nog
te heet was voor de vorming van atomen en het quark-gluon plasma dominant was.
Het experimenteren met en het beschrijven van een quark-gluon plasma geeft ons
dus een inkijkje in een zeer vroeg stadium van het heelal en kan nuttig zijn bij
het verklaren van waarnemingen. Echter, als we de vloeistofdynamische beschri-
jving willen vergelijken met waarnemingen is het noodzakelijk dat de parameters
van de intrinsieke eigenschappen van de vloeistof, het quark-gluon plasma, bekend
zijn. Aangezien het quark-gluon plasma een sterk gekoppelde vloeistof is, is de

8Een plasma is een toestandsvorm die binnen de definitie van flüıda valt. Een verschil tussen
een vloeistof of een gas en een plasma is dat het plasma bestaat uit geladen deeltjes, zoals bij een
elektromagnetisch plasma. De deeltjes in het quark-gluon plasma hebben ook een lading, maar
dan met betrekking tot de quantum-chromodynamische interacties.
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berekening van bijvoorbeeld de viscositeitscoëfficiënt erg moeilijk.

***

Flüıda in zwaartekracht

Vloeistofgedrag speelt ook een rol in de context van de zwaartekracht en zwarte
gaten. Zwarte gaten werden al een eeuw geleden voorspeld, maar zijn niet di-
rect waargenomen. Er wordt verondersteld dat er zich een zwart gat bevindt in
het midden van ieder melkwegstelsel. De belangrijkste eigenschap van een zwart
gat is dat niets aan de zwaartekracht kan ontsnappen wanneer de zogenaamde
gebeurtenissenhorizon is overschreden; zelfs licht niet. De gebeurtenissenhorizon
kan veranderen met de tijd. Een zwart gat wordt groter wanneer het materie ab-
sorbeert. Als we iets in een zwart gat zouden kunnen gooien, dan zou de geome-
trie en in het bijzonder de gebeurtenissenhorizon beginnen te fluctueren en zouden
zwaartekrachtsgolven worden gecreëerd, op vergelijkbare manier als waarop golven
ontstaan wanneer we een steen in het water gooien. Deze fluctuaties zouden zich
met een bepaalde snelheid voortplanten totdat het systeem terugkeert naar een
evenwichtstoestand. Men zou kunnen suggereren dat een zwart gat, dat objecten
die de gebeurtenissenhorizon overschrijden opslokt, een natuurlijk dissipatief ob-
ject is. Dit gedrag komt ook voor in de vloeistofdynamica. Deze observatie heeft
geleid tot pogingen om deze analogie preciezer te maken.

De eerste pogingen leidden in de jaren tachtig tot de formulering van het zoge-
naamde membraan paradigma. Het membraan paradigma stelt dat we een generiek
zwart gat kunnen modelleren door het zwarte gat te vervangen met een membraan,
dat aan nog een aantal verder te specificeren eigenschappen voldoet. In één spec-
ifieke formulering van het membraan paradigma gedraagt het membraan zich als
een vloeistof, die ook wel membraan flüıdum wordt genoemd. Deze vloeistof heeft
een negatieve viscositeit, wat een opmerkelijke eigenschap is, want dat zou namelijk
beteken dat het membraan energie levert aan de vloeistofstroom. Het is de vraag
of we kunnen spreken van een echte fysieke vloeistof, of dat het vloeistofmodel
simpelweg een handig model is van een gebeurtenissenhorizon. In dit proefschrift
betogen we dat het membraan niet als een echte vloeistof kan worden gezien; het
concept van een membraan als vloeistof is dus misleidend. Het raamwerk van
de holografische zwaartekracht, dat we hieronder introduceren, biedt een beter
perspectief om de relatie tussen vloeistofgedrag en zwaartekracht te verklaren.
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Holografie, ontwikkeld in het midden van de jaren negentig, betreft het idee dat een
zwaartekrachtstheorie holografisch is. Dat wil zeggen dat we een zwaartekrachts-
theorie ook kunnen modelleren op een holografisch scherm. Een zwaartekrachts-
theorie in drie dimensies kunnen we bijvoorbeeld wiskundig coderen op een tweedi-
mensionaal hologram, waarbij het model op het holografische scherm geen zwaarte-
kracht kent. Dit idee is precies gemaakt voor een specifiek type geometrie, namelijk
de zogenaamde Anti de Sitter (AdS) ruimtetijd. Het is mogelijk om een holo-
grafisch woordenboek te construeren tussen de twee totaal verschillende gedaantes:
de zwaartekrachtstheorie in de AdS ruimtetijd en het hologram dat bestaat uit
een theorie zonder zwaartekracht op een ruimtetijd met één dimensie minder. Met
andere woorden, er is een recept waarmee we het hologram kunnen (de-)coderen.
Grootheden die gedefinieerd zijn in de zwaartekrachtstheorie kunnen worden gere-
lateerd aan grootheden die gedefinieerd zijn in de theorie met één dimensie minder.
Een belangrijke eigenschap van holografie is dat het niet alleen een equivalentie
geeft tussen twee theoriën, maar ook een dualiteit: als het ene model een sterke
koppeling heeft, dan heeft het andere model een zwakke koppeling en andersom.
Dat is handig, omdat we op deze manier via holografie in staat zijn om een sterk
gekoppelde theorie te beschrijven in termen van een zwak gekoppelde theorie.

Er zijn zwarte gaten in AdS ruimtetijd die door middel van het holografische wo-
ordenboek geassocieerd kunnen worden aan een duale theorie die sterk gekoppeld
is. Deze duale modellen beschrijven deeltjes die zich in een thermische toestand
bevinden, waarbij de temperatuur eindig is. Een interessante observatie is dat
fluctuaties van deze zwarte gaten kunnen worden gerelateerd aan het vloeistofge-
drag van de deeltjes in het duale model. Dit collectieve gedrag van de deeltjes in
het duale model lijkt bovendien erg op het gedrag van het quark-gluon plasma. De
intrinsieke eigenschappen van de vloeistof kunnen nu expliciet berekend worden,
door de berekening te doen in de zwaartekrachtstheorie en het resultaat met behulp
van het holografische woordenboek uit te drukken in termen van het duale model.
De viscositeit blijkt bijvoorbeeld positief en zeer klein te zijn, wat overeenkomt met
de verwachtingen over het quark-gluon plasma. Holografie biedt dus niet alleen een
raamwerk om vloeistofeigenschappen te verklaren, maar kan ook gebruikt worden
om problemen op te lossen in sterk gekoppelde theoriën.

***
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Motivatie en de belangrijkste resultaten

Dit proefschrift is een reis in de wereld van de begrippen die we hierboven intro-
duceerden. Wij zijn zowel gëınteresseerd in wat de zwaartekracht ons kan vertellen
over de vloeistofdynamica, als in hoe de vloeistofdynamica ons kan helpen bij het
begrijpen holografie.

Zo zijn er vele formuleringen van de vloeistofdynamica die allemaal dezelfde resul-
taten zouden moeten geven. Sommige van deze formuleringen zijn oud en bekend,
maar er zijn ook nieuwere formuleringen waarvan niet duidelijk is hoe betrouwbaar
ze zijn. In dit proefschrift dragen we hieraan bij doordat we voor zo een minder
conventionele formulering van de vloeistofdynamica vloeistofgedrag vinden voor
bepaalde zwarte gaten in AdS ruimtetijd. We bevestigen dat in de situaties die
wij beschouwen bepaalde kenmerken van deze formuleringen correct zijn. Via
holografie worden de eigenschappen van het duale model en het vloeistofgedrag
beschreven, zodat het relatief makkelijk is om expliciete berekeningen te doen.
Anderzijds zeggen onze resultaten ook iets over holografie zelf, aangezien we het
holografische woordenboek uitbreiden met de onconventionele formuleringen van
de vloeistofdynamica.

Als we veronderstellen dat elke zwaartekrachtstheorie holografisch is, is het noodza-
kelijk om de techniek van holografie te ontwikkelen voor geometrieën die algemener
zijn dan alleen de AdS ruimtetijd. In dit proefschrift stellen we een holografisch
woordenboek op dat geldig is in het regime van vloeistofgedrag, voor een aantal
typen zwarte gaten in algemenere ruimtetijden die niet noodzakelijkerwijs van het
Anti de Sitter type zijn. We doen dat met name op vlakken in het inwendige van
de ruimtetijd, terwijl men gewoonlijk juist de rand van de ruimtetijd gebruikt,
die zich op oneindige afstand bevindt. We laten zien dat wanneer dit opper-
vlak dichtbij de gebeurtenissenhorizon van een zwart gat is, de duale holografische
vloeistof zich juist heel anders gedraagt dan het membraan flüıdum. Zo zijn er geen
vreemde verschijnselen als een negatieve viscositeit. Daarmee beantwoorden we
een aantal openstaande vragen met betrekking tot de vloeistofbeschrijving van het
membraan. In het bijzonder concluderen we dat een holografische vloeistofbeschri-
jving van de nabije omgeving van de horizon beter werkt dan de beschrijving door
middel van het membraan flüıdum.

Gelukkig hoeven we het membraan paradigma niet helemaal los te laten. Het
membraan paradigma geeft een andere en meer algemene formulering. In dit
proefschrift laten we zien dat deze formulering een goede benadering is zolang we
het inwendige van het zwarte gat buiten beschouwing kunnen laten, zolang we in
het vloeistofregime zijn. Er zijn echter ook andere regimes dan het vloeistofregime.
Na het verstoren van een zwart gat ontstaan er fluctuaties. De snelste fluctuaties
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verspreiden zich zeer snel. Andere fluctuaties zijn persistenter en kunnen worden
geassocieerd met het vloeistofgedrag. Het begrijpen van de structuur van deze
fluctuaties is belangrijk in bijvoorbeeld het astronomisch onderzoek naar zwarte
gaten. Na het aanbrengen van een verstoring keert ieder zwart gat op zijn eigen
specifieke manier terug naar een evenwichtstoestand; een zwart gat heeft zijn eigen
specifieke set van kortdurende en langdurende trillingen. Deze trillingen kunnen in
principe worden waargenomen en zij geven daarmee eigenlijk een vingerafdruk van
het zwarte gat. In dit proefschrift geven we ook een algemeen argument waarmee
we laten zien dat het membraan paradigma gedeeltelijk faalt in het beschrijven
van de hierboven genoemde snelle fluctuaties van een zwart gat. Het membraan
paradigma werkt dan alleen als wordt aangenomen het membraan overal precies
samenvalt met de gebeurtenissenhorizon.

***
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Fluidi

L’acqua che scorre nei canali di Amsterdam, l’aria che circola nell’atmosfera che
ci circonda e per esempio il caffè che beviamo ogni mattina hanno una proprietà
in comune: queste sostanze sono dette fluidi. A differenza dei solidi, che hanno
una forma definita, i fluidi sono per definizione capaci di assumere la forma del
recipiente in cui sono contenuti e sono capaci di scorrere o meglio fluire. Per-
tanto, diversamente dal linguaggio comune, in fisica il termine fluido si riferisce ad
entrambe le fasi della materia, quella liquida e quella gassosa.

Il modello teorico che studia il comportamento di tali fluidi é la fluidodinamica (o
idrodinamica), che è una descrizione effettiva cioè basata sull’ipotesi fondamentale
in cui il fluido è visto come un mezzo continuo che si comporta in modo collettivo,
senza considerare il contributo di tutte le particelle infinitesime che lo compongono.
Per esempio, per sapere quali sono le correnti create nell’aria dopo una giornata di
alta o bassa pressione, non è necessario sapere come si muovono tutte le particelle
che la compongono, che francamente sarebbe un compito molto complicato, ma è
sufficiente sapere la velocità, la temperatura ed altri parametri delle correnti iniziali
per predire come cambierà il tempo in futuro. La fluidodinamica è proprio in grado
di prevedere questi fenomeni, infatti non solo viene applicata alla meteorologia ma
anche per esempio allo studio del moto dell’aria interagente con superfici solide
come l’ala di un aereo. Questo diventa utile per capire come deve essere costruito
l’aereo stesso affinché il suo moto nell’aria sia più efficiente e per l’appunto più
fluido.

Anche se la fluidodinamica è una descrizione generica valida per tutti i fluidi,
sappiamo già che non tutti i fluidi si comportano allo stesso modo. Ad esempio,
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ponendo del miele su un cucchiaino e rovesciandolo, si può osservare che questo
resiste molto al movimento tendendo a rimanere molto compatto e a cascare molto
lentamente, mentre se si ripete la stessa operazione con l’acqua, questa scivola via
subito. Queste proprietà sono dovute ai particolari tipi di interazioni che avven-
gono tra le particelle che compongono un fluido e ogni fluido avrà chiaramente tipi
di particelle, e quindi tipi di interazione, differenti. Questi specifici effetti si pos-
sono incorporare nella descrizione della fluidodinamica con dei semplici parametri
come la viscosità. Un fluido molto viscoso, come il miele, tende a muoversi lenta-
mente mentre un fluido poco viscoso come l’acqua tende a scorrere facilmente. La
viscosità misura quindi la capacità di un fluido di dissipare l’energia di movimento
e convertirla in calore, più un fluido è viscoso e più è dissipativo. La viscosità e
altri parametri simili possono essere misurati sperimentalmente oppure calcolati
da un punto di vista teorico se si ha a disposizione una descrizione completa del
comportamento delle particelle individuali, quindi conoscendo le leggi matematiche
fondamentali che le descrivono. In alcuni casi determinare questi parametri risulta
essere facile, ma ci sono altri casi, in cui le particelle sono fortemente interagenti
dove i calcoli teorici diventano molto difficili se non impossibili. La maggior parte
dei nostri strumenti teorici attuali sono infatti più adatti al regime opposto dove le
particelle sono debolmente interagenti. Infatti quando le particelle interagiscono
poco passa molto tempo prima che una incontri l’altra, quindi per un certo periodo
in prima approssimazione si può pensare che la particella sia libera o isolata che
risulta essere una semplificazione notevole.

Oltre ai fluidi comuni che abbiamo incontrato fino ad ora, ne esistono di altri più
esotici che si possono trovare per esempio al Relativistic Heavy Ion Collider (RHIC)
a Brookhaven, negli Stati Uniti oppure presso il Large Hadron Collider (LHC) di
Ginevra, in Svizzera. In questi due laboratori ci sono stati e sono attualmente in
corso, esperimenti che realizzano collisioni fra due fasci di atomi contrapposti e ac-
celerati ad altissima energia. L’energia risulta essere cos̀ı alta che, dopo l’impatto,
gli atomi si disgregano nei loro costituenti elementari, i cosiddetti quark e gluoni.
Per un lasso di tempo molto breve, prima di raffreddarsi e di ricombinarsi in altri
atomi, queste particelle si comportano collettivamente come un fluido fortemente
interagente ad alta temperatura e ad alta densità, chiamato Plasma di Quark e
Gluoni 9. L’ambiente ricreato in questi esperimenti riproduce le caratteristiche
dell’universo pochi istanti dopo la grande esplosione che creò l’universo, il cosid-
detto Big Bang. In quel momento l’ambiente circostante e l’universo stesso era
cos̀ı caldo ed energetico che gli atomi ancora non si erano formati e il plasma di

9Il plasma si comporta come un fluido, ma a differenza dai liquidi o dai gas, le particelle
che lo compongono sono cariche. In particolare, le particelle del plasma di quark e gluoni sono
cariche rispetto alla forza chromodinamica, che é la forza che per esempio tiene insieme i protoni
e neutroni nel nucleo di un atomo.
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quark gluoni dominava la scena. Quindi, analizzare il comportamento di questo
plasma da un punto di vista sperimentale ci permette di capire l’universo nelle sue
primissime fasi di vita e ci aiuta a spiegare perché l’universo sia esattamente cos̀ı
come lo osserviamo. Tuttavia, per poter fare qualsiasi predizione da poter con-
frontare con i risultati sperimentali per mezzo del modello teorico di cui siamo a
disposizione, la fluidodinamica, bisogna conoscere il valore dei parametri intrinseci
di questo plasma, che abbiamo detto essere fortemente ingrediente, quindi proprio
in quel regime dove i calcoli risultano essere difficili.

***

Fluidi in gravità

In modo del tutto inaspettato, i fluidi si possono trovare anche in ambito grav-
itazionale ed in particolar modo nel contesto dei buchi neri. Questi ultimi sono
oggetti celesti che popolano il nostro universo e che presumibilmente si trovano al
centro di ogni galassia. I buchi neri, come le comuni stelle, sono oggetti massivi
capaci di attrarre altri oggetti che passano nelle loro vicinanze. La forza di at-
trazione dei buchi neri é peró talmente elevata che anche la luce viene attratta, e
una volta oltrepassata una certa superfiecie detta orizzonte degli eventi non ne puó
piú uscire. Curiosamente tale superficie è dinamica, cioè può evolvere nel corso del
tempo. Infatti se gettassimo qualcosa dentro un buco nero, il suo orizzonte degli
eventi, e tutto lo spazio circostante, o meglio lo spaziotempo10, inizierebbe ad os-
cillare in un modo molto simile alle onde che vengono create in acqua dopo averci
gettato un sasso. Inoltre, dato che l’orizzonte degli eventi è una superficie oltre la
quale la materia e l’energia vengono perse completamente, i buchi neri assumono
naturalmente un carattere dissipativo. Tutto questo particolare comportamento
assomiglia moltissimo ad un fluido, infatti ci sono stati molti sviluppi per rendere
tali idee più concrete.

La prima volta in cui queste idee hanno preso piede è stato negli anni ’80 nel
contesto del cosiddetto paradigma di membrana. Questo modello teorico è una
versione semplificata del buco nero che viene visto come una membrana, cioè una
superficie dotata di semplici caratteristiche fisiche come per esempio la proprietà di

10Lo spaziotempo può essere pensato come un tessuto che può essere distorto da una massa, un
po’ come quando saliamo su un tappeto elastico e questo si deforma con il nostro peso. Quando
questa massa si muove e cambia nel tempo, si possono creare delle onde di spaziotempo che si
propagano: le onde gravitazionali.
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condurre elettricità. In particolare, in una delle molte formulazioni del paradigma,
questa membrana si comporta come un fluido, che d’ora in poi chiameremo flu-
ido di membrana. Tuttavia, questo fluido risulta avere delle proprietà patologiche
come per esempio una viscosità negativa, cioè muovendo parti del fluido verrebbe
prodotta energia anziché dispersa. Quindi anche se il paradigma di membrana
risulta essere una semplificazione notevole nello studio dei buchi neri come li ve-
diamo per esempio dalla terra da dove tutto quello che si trova dietro l’orizzonte
degli eventi è comunque inaccessibile, la sua interpretazione come fluido forse non
è la più conveniente. Infatti il modo migliore in cui si può vedere il comportamento
di fluido in gravità è nel contesto della gravità olografica.

L’olografia è un concetto sviluppatosi intorno alla metà degli anni ’90. L’idea fon-
damentale sta nel fatto che per ogni teoria gravitazionale, una teoria che descrive
lo spaziotempo come un sistema dinamico, si possa associare una teoria di parti-
celle ma in una dimensione inferiore. In un certo senso la dimensione aggiuntiva e
la gravità stessa possono essere viste come un ologramma matematicamente codi-
ficato su una qualche superficie di dimensione inferiore nel linguaggio di una teoria
di particelle dove la gravità è assente. In questo modo l’olografia stabilisce una
equivalenza tra due teorie completamente diverse che ora possono e devono essere
considerate come due facce di una unica teoria sottostante. Basta sapere come
decodificare l’ologramma per andare, per esempio, dalla descrizione geometrica ad
una descrizione particellare. La cosa più importante e sorprendente è che questa
equivalenza avviene in modo molto speciale, cioè quando una teoria è debolmente
interagente l’altra risulta essere fortemente interagente e vice versa, per cui le due
teorie sono dette duali tra loro. Questo fatto ha conseguenze molto profonde, dato
che, quando risulta conveniente, si può usare la teoria debolmente interagente per
calcolare quantità relative alla teoria fortemente interagente che non si sarebbe in
grado di derivare normalmente.

Un esempio concreto di gravità olografica è stato realizzato per una classe di
spazitempo specifica, quelli con curvatura negativa11 chiamati anti-de Sitter. In
questo caso infatti è stato stabilito un preciso dizionario olografico, cioè una ricetta
in grado di tradurre in modo esplicito quantità espresse nel linguaggio geometrico
in quantità definite nel linguaggio della teoria delle particelle e vice versa. Ad
esempio, uno spazio di anti-de Sitter vuoto stabilisce la condizione di non avere
nessuna particella nella teoria duale. Un buco nero nello spazio di anti-de Sitter
corrisponde invece ad avere un insieme di particelle in equilibrio termico. Analoga-
mente, i buchi neri leggermente perturbati, quindi con una geometria leggermente
diversa e dinamica, corrispondono al comportamento fluidodinamico della teoria

11Un esempio di spazio con curvatura negativa è la sella di cavallo, mentre uno spazio con
curvatura positiva è la sfera.
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duale. Inoltre tale fluido è un parente stretto del plasma di quark e gluoni forte-
mente accoppiato discusso in precedenza. Adesso però, le sue proprietà intrinseche,
come la viscosità, possono essere calcolate facilmente analizzando la geometria dei
buchi neri in spazio di anti-de Sitter. Pertanto, non solo l’olografia rende esplicito
come il comportamento fluidodinamico può essere realizzato in gravità, ma può
anche essere usata come strumento teorico per studiare certe teorie di particelle
fortemente interagenti mediante la geometria gravitazionale duale che è in generale
più facile da gestire.

***

Motivazione e riassunto dei risultati principali

In questa tesi faremo un viaggio tra i concetti di cui sopra. Saremo interessati sia
a quello che la gravità può insegnarci sulla fluidodinamica, cos̀ı come nel modo in
cui la fluidodinamica possa aiutarci a comprendere l’olografia in sé.

Per esempio, abbiamo stabilito che l’idrodinamica é una descrizione valida che
comprende il comportamento dinamico di ogni fluido, tuttavia tale descrizione non
è unica. Vi è una formulazione convenzionale, abbastanza datata e consolidata,
e altre formulazioni più recenti che sono motivate dal desiderio di riscrivere la
teoria più sistematicamente, in un linguaggio che richiede possibilmente meno
principi fondamentali. Tuttavia, questi nuovi approcci alla fluidodinamica sono
meno studiati e non è chiaro quanto siano affidabili. In questa tesi aiutiamo a
chiarire in parte tali questioni per mezzo dell’olografia. Utilizzando un buco nero
leggermente perturbato in spazio di anti-de Sitter riusciamo a mostrare come il
comportamento di fluido viene alla luce proprio in una di queste formulazioni non
convenzionali. Siamo quindi in grado di confermare, almeno nel nostro esempio,
alcune caratteristiche di queste formulazioni.

In questa tesi dimostriamo inoltre l’esistenza del comportamento fluidodinamico in
gravità attraverso un modo leggermente diverso da quello convenzionale di realiz-
zare l’olografia. Solitamente la teoria delle particelle si dice essere codificata su una
superficie a dimensione inferiore che si trova sul bordo dello spaziotempo di anti-
de Sitter. Qui invece consideriamo questa superficie da qualche parte all’interno
dello spazio, senza specificare nessun tipo di geometria in cui si trova e tenendola
generale fino ad un certo punto. In questo modo siamo in grado di generalizzare
il dizionario olografico nel regime di fluido per spazitempo che non sono neces-
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sariamente anti-de Sitter. Inoltre in questa tesi spostiamo tale superficie verso
l’orizzonte degli eventi di un buco nero per vedere se il fluido olografico cos̀ı ot-
tenuto si comporta similmente al fluido di membrana discusso sopra. Mostriamo
che invece i due tipi di fluido sono molto diversi tra loro chiarificando alcune vecchie
questioni collegate con l’interpretazione di fluido del paradigma di membrana.

Tuttavia, il paradigma di membrana non deve essere completamente scartato dato
che può essere definito in un altro modo. Anche in questo caso l’interno del buco
nero viene completamente dimenticato e l’unica informazione che viene necessari-
amente mantenuta è il fatto che tutto quello che circonda il buco nero nelle sue
vicinanze un giorno o l’altro cadrà nel buco nero stesso oltrepassando l’orizzonte
degli eventi. In questa tesi ci chiediamo se tale approssimazione ai buchi neri
funziona sempre e dimostriamo che è cos̀ı ad eccezione di alcuni casi particolari.
Per esempio, ci sono certe perturbazioni dello spaziotempo di un buco nero che
non possono essere descritte da un regime fluidodinamico della teoria duale. Per
essere più precisi quando si perturba un buco nero prima del regime di fluido,
vi è un’altra configurazione molto complessa in cui non solo ci sono onde che si
propagano, ma anche perturbazioni che decadono molto velocemente. L’olografia
è in generale in grado di catturare questo tipo di fenomeno, mentre il paradigma
di membrana risulta leggermente più restrittivo.

***
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all about. C’é anche un riassunto in italiano per chi volesse approfondire un po’
l’argomento della tesi!

This thesis is the culmination of an adventure which started four years ago and it
would not have been possible without the invaluable help and guidance of many
people. It is only with their constant support that I can deliver this piece of proof
that I actually made it through!

I would like to thank my advisor Jan de Boer for your patience, motivation and
immense knowledge. Your guidance helped me in all the time of research, providing
insights into what is important and interesting and how to get straight to the point
in the sharpest possible way. My sincere thanks also goes to Marika Taylor for
giving me the opportunity to join the string theory group in Amsterdam. Even
from long distance you were always able to patiently answer all my questions and
dig through all the details. I would also like to thank Michal Heller for your
enthusiasm, for your precious career advices, and for teaching me that things will
eventually work out if one uses enough dose of concentration and perseverance. I
am truly grateful for having had such an excellent collaborator.

I would like to thank my fellow officemates, colleagues and friends Daniel and
Benjamin with whom I truly shared all the good and bad moments of this PhD.
We are the ones who started together and I am sincerely happy that everyone
could find his own future path even if this means that an era is ending and we will
be spread all over the world. Also thank you Benjamin for completely taking care
of the Dutch summary!

163



209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva209974-L-bw-fokeeva

Acknowledgements

A PhD is a long journey and I had the privilege to encounter many people with
whom I could talk about physics, share coffees, beers and occasional volleyball and
soccer matches. I would like to thank Marco B. and Juan J. for being so kind,
friendly and for welcoming me to the group, Goffredo, Jacopo and Pinuccio for the
nice laughs, Diego C., Laurens, Fotios, Francesca, Irfan, Eva, Paul, Robert, Kris,
Sam, Manus, Gerben for creating such a nice group of PhD students, also many
thanks to Alejandra, Diego H., Ben F., Jan Pieter, Eric, Miranda, Bert, I-Sheng,
Nabil, Hai Siong, Marcel, Daniel R., Blaise, Matth, Jelena, Milena, Johannes for
all the lively lunch chats. I would also like to thank the people on the other side
of the street Andrea, Sander, Rob and others for all the times at the Brouwerij.
Special thanks goes to my friend Giuseppe for always being present, kind and for
being my witness!

My sincere thanks goes also to the wonderful support staff at the university of
Amsterdam: Anne-Marieke, Yocklang, Natalie, Joost and Adri, always ready to
help you in all possible ways in everything making your everyday life a lot easier
with competence and efficiency.

Grazie a tutti i miei amici delle Sieci e dintorni che nonostante la distanza sono
sempre riusciti a volermi bene e qualche volta anche a venirmi a trovare fino a
queste latitudini. Un ringraziamento speciale va alla mia mamma, al mio babbo
e a Daniele che mi hanno sempre supportato nelle mie decisioni anche in questi
anni in cui sono stata un po’ assente. Ma grazie soprattutto a te Edo che sei la
persona che ha seguito tutte le mie imprese da piú vicino, che mi ha consolato,
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