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this paper, we discuss how electroweak symmetry breaking arises in this model through
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1. Introduction

One of the leading candidates for TeV scale physics is the supersymmetric extension of

the SM [1] since it resolves an outstanding SM conceptual issue: the gauge hierarchy

problem (or why MZ ¿ MPl is stable under radiative corrections). It also leads to gauge

coupling unification as well as a candidate for dark matter of the universe if two additional

assumptions are made: a grand desert untilM ∼ 1016 GeV for gauge unification, and exact
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R-parity for dark matter. In addition it has the potential to explain the origin of sponta-

neous breaking of electroweak symmetry. Of course, SUSY has to be a broken symmetry

to conform with observations because no superpartner particles have been observed yet.

Understanding the nature and origin of this SUSY breaking is a major challenge which

has commanded a great deal of attention. An attractive and elegant mechanism is to use

the superconformal anomaly [2, 3] to break supersymmetry in the manner that has been

dubbed AMSB. AMSB provides an ultra-violet insensitive way to determine the soft SUSY

breaking parameters [4, 5] as they depend only on the TeV scale gauge Yukawa couplings

of the low energy theory. Consequently, it considerably reduces the number of arbitrary

parameters of the SUSY breaking sector. It also provides a heavy gravitino which has a

number of cosmological advantages.

A major problem of AMSB is that when implemented in the MSSM , it leads to

negative slepton mass-squares — an unacceptable scenario since it leads to the breakdown

of electric charge (sometimes called the tachyonic slepton problem). Another stumbling

block to realistic AMSB model building is EWSB: the explicit µ term in the MSSM gives

a Bµ that is too large, while extensions like the NMSSM fail to generate a µ term that

is large enough. A number of attempts have been made to extend the MSSM in order to

cure these problems [6 – 15], usually with a focus on the tachyonic slepton problem.

Since in AMSB models the SUSY breaking profile is crucially dependent on the low

energy theory, an interesting question arises as to whether AMSB still has the same prob-

lems when the MSSM extended to accomodate neutrino masses. In a recent paper [16],

we pointed out that when the MSSM is minimally extended to the SUSYLR model with

B−L = 2 triplets to implement the seesaw mechanism, the low energy particle content and

interaction profile changes just enough to cure the negative slepton mass square problem.

A key feature responsible for this cure is the appearance of a naturally light SU(2)L triplet

and a doubly-charged singlet which have leptonic Yukawa interactions. In ref. [16], we

explained how SUSYLR fixes the tachyonic slepton problem of AMSB and also noted some

of the gross distinguishing features of the model — such as the appearance of B − L = 2

triplets, doubly-charged Higgs bosons, and a pair of additional heavy Higgs doublets all

with masses around the mass scale of conformal SUSY breaking, Fφ—typically in the tens

of TeVs. Since then another paper has explored the relationship of neutrinos and AMSB

in the context of defltected AMSB [17].

In this paper, which should be viewed as a sequel to ref. [16], we attempt to present a

complete phenomenologically acceptable model addressing questions such as EWSB, and

dark matter. A summary of our results is as follows:

• We show that the model below the Fφ scale is the NMSSM with a singlet superpo-

tential mass term, µN . This term is necessary for EWSB and can arise from the

SUSYLR framework necessary for the solution to the tachyonic slepton problem.

• One implication of the similarity to the NMSSM below the TeV scale is that the

magnitude of the Bµ-term is of the desired magnitude.

• We present the sparticle spectrum of the model for a generic choice of the parameters
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and in particular we display the lightest superparticle which can be the dark matter

of the universe. We find that same generation sleptons are degenerate and that a

possibility exists for degenerate sleptons and squarks.

• We find that the mass difference between the chargino and the lightest neutralino in

our model is much larger than the Minimal AMSB models where a universal scalar

mass corrects the tachyonic slepton mass problem.

The paper is organized as follows: in section 2, we review the basic ingredients of

the SUSYLR model that is the framework of our discussion; in section 3, we show the

multi-TeV scale spectrum of the model and discuss how it solves the negative slepton mass

square problem of the model; in section 4, we discuss the effective theory below the FφTeV

scale and show how electroweak symmetry breaking arises. In section 5, we display the

sparticle spectrum and compare it with that in some other benchmark SUSY models with

different SUSY breaking mechanisms. For the allowed parameter space of our model, we

find a Higgsino-wino mixture to be the LSP and mention its prospects as the dark matter

of the universe. We finish with a brief discussion of the ultraviolet consequences of this

model in section 6 and a conclusion.

2. Minimal supersymmetric left-right model cures the problems

of anomaly mediated supersymmetry breaking: a brief review

In generic AMSB models the soft SUSY breaking parameters associated with the superfield

combination ΦiΦ
j∗ are determined by the anomalous dimensions γij

(
ga, Y

`mn
)
and the

scaling functions βag
(
gb, Y

ijk
)
, βijkY

(
ga, Y

`mn
)
of the low energy theory:

(
m2
)i
j
= −1

4
|Fφ|2

[
1

2

∂γij
∂ga

βag +
∂γij

∂Y `mn
β`mnY + h.c.

]
(2.1)

aijk = βijkY Fφ (2.2)

Mλa =
βag
ga
Fφ (2.3)

Here Fφ is the SUSY breaking scale in the gauge where the conformal compensator φ has

the form

φ = 1 + Fφθ
2 (2.4)

with Fφ as an input parameter having a value in the 10s of TeV range. The remainder of

our notational conventions can be found in appendix A.

It is clear from eq. (2.1) that when this formula is applied to the MSSM, the slepton

mass-squares are negative due to the positive (asymptotically non-free) SU(2) × U(1)Y
gauge couplings’ β functions and the nearly zero lepton Yukawa couplings1. As pointed out

in ref. [16], this problem is cured by extending the MSSM to SUSYLR due to the following

1While the Yukawa coupling of τ might be significant, the first and second generation leptons have

negligible Yukawa couplings
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Fields SU(3)c × SU(2)L × SU(2)R ×U(1)B−L
Q (3, 2, 1,+1

3)

Qc (3̄, 1, 2,−1
3)

L (1, 2, 1,−1)
Lc (1, 1, 2,+1)

Φa (1, 2, 2, 0)

∆ (1, 3, 1,+2)

∆̄ (1, 3, 1,−2)
∆c (1, 1, 3,−2)
∆̄c (1, 1, 3,+2)

S,N (1, 1, 1, 0)

Table 1: Assignment of the matter and Higgs fields’ representations of the left-right symmetry

group (except for U(1)B−L where the charge under that group is given.)

property: the effective theory below the seesaw scale vR contains a set of SU(2)L triplets and

doubly-charged fields, both having Yukawa couplings to the left- and right-handed leptons

respectively. Their masses are naturally in the multi-TeV range despite the high seesaw

scale due to an accidental global symmetry of the theory [18, 19]. Furthermore, provided

these new couplings are of order 1, the slepton masses squares can be made positive. Thus,

SUSYLR not only explains the small neutrino masses by means of the seesaw mechanism,

but its marriage with AMSB cures the negative slepton mass-square problem. The resulting

theory combines the predictive power of AMSB, explains neutrino masses, and retains a

natural dark matter candidate due to the theory’s automatic conservation ofR-Parity below

the right-handed scale. It also contains a mechanism for generating an appropriate singlet

VEV in the effective low energy NMSSM-like superpotential. In the following subsections,

we fill in the details.

2.1 The left-right model

The particle content of a SUSYLR model is shown in table 1. As the model is left-right

symmetric, it contains both left- and right-handed higgs bosons — in this case B−L = ±2
triplets so that R-parity may be preserved (a task for which B − L = 1 doublets are not

suitable). The presence of both SU(2)L and SU(2)R triplets means that parity is a good

symmetry until SU(2)R breaks. While the seesaw mechanism may be achieved with only

SU(2)R higgs fields, demanding parity forces the presence of left-handed triplets. The

inclusion of both these fields then leads to positive left- and right-handed slepton masses.

To be explicit, the fields of table 1 transform under parity as

Q↔ −iiτ2Q
c ∗ L↔ −iiτ2L

c ∗ Φa → Φ†a

∆↔ ∆c † ∆̄↔ ∆̄c † S,N → S∗, N∗

so that the fully parity symmetric superpotential is

WSUSYLR =WY +WH +WGSPNR +WGSVNR (2.5)
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with

WY = iiyaQQ
T τ2ΦaQ

c + iiyaLL
T τ2ΦaL

c + iifcL
cT τ2∆

cLc + iifLT τ2∆L (2.6)

WH = (M∆φ− λSS)
[
Tr
(
∆c∆̄c

)
+Tr

(
∆∆̄

) ]
+M2

Sφ
2S +

1

2
µSφS

2 +
1

3
κSS

3

+ λabNN Tr
(
ΦTa τ2Φbτ2

)
+

1

3
κNN

3 (2.7)

WGSPNR =
λA
MXφ

Tr2
(
∆∆̄

)
+

λcA
MXφ

Tr2
(
∆c∆̄c

)

+
λB
MXφ

Tr(∆∆)Tr
(
∆̄∆̄

)
+

λcB
MXφ

Tr(∆c∆c) Tr
(
∆̄c∆̄c

)

+
λC
MXφ

Tr
(
∆∆̄

)
Tr
(
∆c∆̄c

)

+
λS

MXφ
Tr
(
∆∆̄

)
S2 +

λc
S

MXφ
Tr
(
∆c∆̄c

)
S2 + · · · (2.8)

WGSVNR =
λD
MPlφ

Tr(∆∆)Tr(∆c∆c) +
λ̄D
MPlφ

Tr
(
∆̄∆̄

)
Tr
(
∆̄c∆̄c

)

+
(λσ)

ab

MPlφ
Tr
(
∆∆̄

)
Tr
(
ΦTa τ2Φbτ2

)
+

(λcσ)
ab

MPlφ
Tr
(
∆c∆̄c

)
Tr
(
ΦTa τ2Φbτ2

)

+
2λαε

ab

MPlφ
Tr
(
∆Φaτ2Φ

T
b τ2∆̄

)
+

2λcαε
ab

MPlφ
Tr
(
∆cτ2Φ

T
a τ2Φb∆̄

c
)

+
λN

MPlφ
Tr
(
∆∆̄

)
N2 +

λc
N

MPlφ
Tr
(
∆c∆̄c

)
N2

+
λs

MPlφ
Tr
(
ΦTa τ2Φbτ2

)
S2 +

λM

MPlφ
S2N2 + · · · (2.9)

Furthermore, parity demands that the couplings be related as

yaQ =
(
yaQ
)†

yaL = (yaL)
† f = f∗c M∆ =M∗

∆

λS = λ∗S M2
S =

(
M2

S

)∗
µS = µ∗S κS = κ∗S

λN = λ†N κN = κ∗N

We have also imposed a discrete 3 symmetry on eq. (2.5) with

(Q,Qc, L, Lc,∆,∆c,Φa, N)→ ee2iiπ/3(Q,Qc, L, Lc,∆,∆c,Φa, N),

(∆̄, ∆̄c)→ ee4iiπ/3(∆̄, ∆̄c)
(2.10)

and S invariant. This symmetry is necessary to keep one singlet light below the right-

handed scale since it forbids terms such as

W 6 � 3 = κ12SN
2 + κ21S

2N + λcNN Tr
(
∆c∆̄c

)
(2.11)

which would generate a large, O(vR), mass forN . Yet because it is a global symmetry, it will

be violated by gravitational effects2 leading to eq. (2.5) containing the non-renormalizable

terms of eq. (2.9) (which are accordingly suppressed by the planck scale MPl).

2For example, if a particle charged under this symmetry falls into a blackhole, there is no way to ascertain

the amount of this charge the blackhole contains. This can be contrasted with a gauged symmetry where

Gauss’s law may be utilized to determine the charge enclosed
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The superpotential eq. (2.5) must also contain the additional non-renormalizable terms

given by eq. (2.8) if the theory is to preserve R-parity and be phenomenologically viable [18,

19]. These terms preserve the 3 symmetry and are therefore suppressed by the next new

scale of physics, which we have chosen to call MX . We will show that it is possible to fix

MX in section 3, where we consider the Fφ scale theory.

Meanwhile, the Higgs potential given by eq. (2.7) dictates that the VEV for the right-

handed superfields are

〈S〉 = M∆

λS
φ (2.12)

〈∆c〉
〈
∆̄c
〉
= 〈S〉

(
M∆κS
λ2
S

+
µS
λS

)
φ+

M2
S

λS
φ2 (2.13)

With M∆ ∼ µS ∼ vR ∼ 1011 GeV, where vR is the right-handed breaking scale. eq. (2.12)

should be evident from the form of the superpotential; eq. (2.13) requires eq. (2.7) to be

recast as

WH ⊃
[
−λS Tr

(
∆c∆̄c

)
+M2

Sφ
2 +

1

2
µSφS +

1

3
κSS

2

]
S (2.14)

The non-renormalizable terms will shift the right-handed scale VEVs by at most ∼
M2

∆/MX ¿M∆ so they may be safely be ignored. The theory then remains UV insensitive

below vR [9] and hence respects the AMSB trajectory below this scale. Yet even though

the particles remain on their AMSB trajectory, the negative slepton mass-squares problem

is still solved due to the additional low-scale yukawa couplings f and fc.

To see why these yukawas survive, consider the Higgs sector of eq. (2.5) before SU(2)R
breaks and setting the non-renormalizable terms to zero — essentially leaving just the terms

in eq. (2.7). This superpotential has a complexified U(6) symmetry3 involving the ∆’s and

the ∆c’s (similar symmetry arguments are discussed in [20], but because the authors used

a parity odd singlet, there was only a complexified U(3) symmetry). When SU(2)R breaks,

the U(6) is reduced to a U(5) yielding 22 real degrees of freedom that are massless. The

D-terms and the gauge fields consume 6 of these, leaving a total of 16 massless modes. The

surviving 16 massless real degrees of freedom are the two doubly-charged SU(2)L singlets

and the two left-handed triplets.

Only the non-renormalizable terms of eqs. (2.8) and (2.9) break the U(6) symmetry,

and therefore the mass of the Higgsino must be

µ∆,∆̄ ∼ µDC ∼
v2
R

MX
(2.15)

The SUSY breaking bilinear terms generated by AMSB will force these masses to be at

least Fφ giving

MX .
v2
R

Fφ
. (2.16)

3A complexified U(6) is a U(6) with its parameters taken to be complex. Its existence in eq. (2.7) can

be seen by defining two new fields
�
≡ (∆,∆c) and ¯� ≡ (∆̄, ∆̄c)—which are complex 6-vectors — and

combining the trace over each separately to Tr
` � ¯�

´

– 6 –
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Thus, the scale of new physics is determined by the right-handed scale and the SUSY

breaking scale.

The mass matrix for the left-handed triplets and doubly-charged Higgses have a similar

form, here we state the doubly-charged matrix:

MDC = µ2
DC

(
1 1− ε∆

1− ε∆ 1

)
(2.17)

where µDC ' Fφ and ε∆ = 1− B∆
µDC

. The eigenvalues of this mass matrix arem2
DC = ε∆µ

2
DC

and M2
DC = 2µ2

DC . Since ε∆ depends on µDC , and µDC can be adjusted through the

coupling it contains, one doubly-charged Higgs can be made light. On the whole, we expect

the two doubly charged scalar masses to be above 1TeV (for the lighter one) and Fφ (for

the heavier one). Note that there is no such splitting between the fermionic partners, which

remain heavy with a mass of about µDC . A similar argument applies to the left-handed

triplets.

Finally, because the masses of the SU(2)L triplets and the doubly-charged particles

will be around Fφ, they are of the correct size to influence the low-scale theory: if the

masses had been large, Fφ ¿ µDC ¿ vR, then they would have merely introduced another

trajectory preserving threshold that decoupled from the low scale theory. However, because

these particles remain in the low-scale theory, the effect of their couplings is important.

For the sleptons the relevant terms are

W ⊃ fc∆
c−−ecec + iifLT τ2∆L (2.18)

with the surviving yukawa couplings fc and f providing positive mass-squares to the scalar

leptons4

To make this explicit we write down the slepton masses with the contributions of

these additional interactions (taking the SU(2)L × U(1)Y gauge couplings to be g2 and g1

respectively):

m2
ec =

1

2

|Fφ|2

(16π2)2

[
8f †c (Y

a
L )

T (Y a
L )
∗ fc + 12(Y a

L )
† ff †Y a

L

+ 8f †c fc
[
(Y a

L )
† Y a

L + 4f †c fc +Tr
(
f †c fc

) ]
+ 4(Y a

L )
† Y a

L

[(
Y b
L

)†
Y b
L + 2f †c fc

]

+ 2(Y a
L )
† Y b

L

[
2
(
Y b
L

)†
Y a
L +Tr

(
3
(
Y b
Q

)†
Y a
Q +

(
Y b
L

)†
Y a
L

)
+ 4
(
λcbN

)∗
λcaN

]

− 2g2
1

(
24f †c fc + 3(Y a

L )
† Y a

L + 26g2
1

)
− 6g2

2(Y
a
L )
† Y a

L + h.c.

]
(2.19)

m2
L =

1

2

|Fφ|2

(16π2)2

[
6f(Y a

L )
T (Y a

L )
∗ f † + 4Y a

L f
†
c fc(Y

a
L )
†

4Note that slepton mass squares can also be positive for theories with a right handed scale lower than

1011GeV. We choose the high scale version since neutrino masses in this case do not require any fine tuning

of Yukawa couplings.
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+ 6
[
(Y a

L )
† Y a

L + 12ff † + 2Tr
(
f †f

) ]
ff † + 2

[
Y b
L

(
Y b
L

)†
+ 3ff †

]
Y a
L (Y

a
L )
†

+ Y b
L(Y

a
L )
†
[
2Y a

L

(
Y b
L

)†
+Tr

(
3
(
Y b
Q

)†
Y a
Q +

(
Y b
L

)†
Y a
L

)
+ 4
(
λcbN

)∗
λcaN

]

− g2
1

(
18ff † + 3Y a

L (Y
a
L )
† + 13g2

1

)
− 3g2

2

(
14ff † + Y a

L (Y
a
L )
† + 3g2

2

)
+ h.c.

]
(2.20)

Taking

man =
Fφ
16π2

, (2.21)

assuming that f , fc are diagonal in flavor space (an assumption required to satisfy con-

straints from lepton flavor violating experiments [21]), and neglecting the first and second

generation yukawa couplings simplifies eqs. (2.19) and (2.20) to

m2
ec = m2

an

[
40f4

c1 + 8f2
c1

(
f2
c2 + f2

c3

)
− 48f2

c1g
2
1 − 52g4

1

]
(2.22)

m2
e = m2

an

[
84f4

1 + 12f2
1

(
f2

2 + f2
3

)
− 6f2

1

(
3g2

1 + 7g2
2

)
− 13g4

1 − 9g4
2

]
(2.23)

for the first generation.5 We then only need

f1(Fφ) ' f2(Fφ) ' fc1(Fφ) ' fc2(Fφ) & 0.6 (2.24)

to make the sleptons positive (from the detailed analysis of section 5.2).

These couplings and the masses of the doubly-charged field and the left-handed triplets

are experimentally constrained from muonium-antimuonium oscillations [22] which de-

mands that
fc1fc2

4
√
2m2

DC

≈ f1f2

4
√
2m2

∆,∆̄

< 3× 10−3GF ; (2.25)

The minimum f values that satisfies eq. (2.24) implies a lower bound on the masses of

the doubly-charged and left-handed triplet Higgs field to be about mDC ,m∆ ≥ 2TeV. The

lighter end of this range is clearly accessible at the LHC .

It is worth noting that even though the f, fc are diagonal, one may obtain large neutrino

mixing. As already noted, the neutrino masses arise from the type I seesaw [23 – 27] formula

given by:

Mν = −MT
DM

−1
R MD

=
v2
wk sin

2 β

v2
R

yTν f
−1
c yν (2.26)

Note that the Yukawa coupling matrix yν is arbitrary and can be easily arrange to give

large mixings even though f is diagonal and we can fit the neutrino data by appropriate

choice of parameters.

5The expressions for the smuon may be gotten by taking f1 ↔ f2 and fc1 ↔ fc2.
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3. Between Scales: vR to Fφ

Once SU(2)R breaks around the seesaw scale of 1011 GeV, the effective theory contains the

NMSSM, an extra set of higgs doublets, a pair of left-handed triplets, and the doubly-

charged fields6. The non-renormalizable terms of eq. (2.5) also influence the form of the

lower scale theory and produce some important effects that aid in construction of a real-

istic low-energy theory. One significant contribution comes from the higher dimensional

operators: the generation of a mass term for N . Specifically the terms

λc
N

MPlφ
Tr
(
∆c∆̄c

)
N2 +

λM

MPlφ
S2N2 (3.1)

generate a superpotential term of µNφN
2 when ∆c, ∆̄c, and S get a VEV. The mass µN

is given by7

µN ≡
λc
N

MPl
〈∆c〉

〈
∆̄
c〉

+
λM

MPl
〈S〉2 ' v2

R

MPl
(3.2)

Because the vR threshold preserves the AMSB trajectory, this explicit mass term pro-

duces a SUSY breaking bilinear term proportional to Fφ
∫
d2θ µNφN

2 ⊃ µNFφN
2 ≡ bNN

2 (3.3)

with bN given as

bN = µNFφ '
v2
R

MPl
Fφ. (3.4)

In section 4 this term will be shown to play an important role in EWSB; for now it suffices

to note that if bN is to be of the expected order of M 2
SUSY, then the right-handed scale

must be around vR ' 1011 GeV. Constraining vR automatically determines the scale of

new physics MX from eq. (2.16): MX . 1016–1018 GeV. The end result is that the order

of magnitude of all the scales of the theory are fixed.

Furthermore, the non-renormalizable terms can also be used to simplify the low-energy

theory, though this is not necessary. Consider the terms

(λcσ)
ab

MPlφ
Tr
(
∆c∆̄c

)
Tr
(
Φaτ2Φ

T
b τ2

)
+

2λcαε
ab

MPlφ
Tr
(
∆cτ2Φ

T
a τ2Φb∆̄

c
)

(3.5)

which yield a low energy mass matrix for the Φ’s that is not symmetric between Φ1 and

Φ2 (due to the second term). The asymmetry generates an operator of the form:

W ⊃ iiMHu2τ2Hd1 (3.6)

without the corresponding Hu1Hd2 term. This allows a large mass, say of order Fφ, for

Hu2 and Hd1 while leaving Hu1 and Hd2 light. The resulting VEVs for Hu2 and Hd1 will

then be suppressed by M and will not play a role in the theory below Fφ.

6The resulting theory with the additional particle content might be aptly labeled the NMSSM++
7We choose to denote the scalar component of the superfield X as X to avoid confusion between the

superfield and its scalar component. This allows us to write more meaningful expressions such as 〈X〉 /〈X〉 =

φ
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Finally, as discussed in section 2, the non-renormalizable terms yield masses around

Fφ for the left-handed triplets as well as the doubly-charged fields. These fields therefore

decouple from the electroweak scale theory along with the extra bi-doublet due to the

doublet-doublet splitting mechanism discussed above. This leaves the low energy theory

as the NMSSM and we use this to explore electroweak symmetry breaking as well as the

remaining consequences of the low-energy theory.

4. EWSB

Naively it would be expected that the resulting low-energy theory is merely the NMSSM

(since the remaining particle content is precisely that theory), but if this were the case,

the model would not be able to achieve a realistic mass spectrum — the singlet N would

get a very small VEV, and the Higgsino would be lighter than allowed by experiment [28].

The origin of this problem is best illustrated with a toy model:

4.1 Toy exposition

Consider a superpotential given by

Wtoy =
1

3
κN3 (4.1)

where N is a singlet field with no gauge symmetries. The resulting scalar potential, in-

cluding SUSY breaking, is

Vtoy = κ2|N |4 + 1

3

(
aκN

3 + a∗κN
∗3)+m2

N |N |2 . (4.2)

Assuming the parameters κ, aκ, and 〈N〉 are real, the minimization condition for

eq. (4.2) is

2κ2〈N〉2 + aκ〈N〉+m2
N = 0 (4.3)

and the solution is given as

〈N〉 =
−aκ ±

√
a2
κ − 8κ2m2

N

2κ2
(4.4)

The soft couplings aκ and mN are determined by AMSB via eqs. (2.1) and (2.2):

aκ =
Fφ
16π2

6κ3

m2
N =

|Fφ|2

(16π2)2
12κ4

(4.5)

Substituting these into eq. (4.4) yields

〈N〉 = Fφ
16π2

κ

4

(
−6±

√
−60

)
(4.6)

and the large negative under the radical demonstrates the inability to achieve a real, non-

zero VEV in this model.

– 10 –
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The source of the problem can be identified by examining the potential of N . To

expose the difficulty, it is helpful to define

x ≡ κ〈N〉
man

(4.7)

and re-write eq. (4.2) as

〈Vtoy〉
4m4

an

=
1

4κ2
x4 + x3 + 3κ2x2 (4.8)

where the AMSB expressions of eq. (4.5) have been substituted. For the potential to have

a non-trivial minimum, it is necessary that the cubic term dominate for some value of x

(since this term is the only one that provides a negative contribution to the potential);

however, for large κ, the x2 term will always be larger than the cubic term. Meanwhile,

for small κ the quartic term will dominate the expression. Therefore, if there is any chance

for the x3 term to create a minimum other than zero, it must be that κ ' 1. This leaves

the potential as

〈Vtoy〉
4m4

an

=
1

4
x4 + x3 + 3x2 (4.9)

where it now becomes clear that neither large x, x ∼ 1, nor small x will have the cubic

term dominate the expression — leaving the only minimum as the trivial one. Thus, the

heart of the problem is that AMSB predicts the cubic term’s coefficient such that it will

always be weaker than either the quartic or quadratic regardless of the parameter regime.

The same problem carries over to the full NMSSM , as pointed out in [28]. In this

model, the additional coupling of N to Hu and Hd does not alter the relative strengths

of N ’s quartic, cubic, or quadratic terms, but it does add a linear term to the potential,

aλvuvdN . The induced linear term shifts the trivial minimum away from zero, but keeps

it small. The minimization condition for N can then be approximated as

µ̃2
N 〈N〉 −

1

2
√
2
aλv

2 sin 2β = 0 (4.10)

with µ̃2
N ' m2

an being essentially the AMSB predicted soft SUSY breaking mass for N .

The maximum value occurs when sin 2β = 1 so we have that

〈N〉 . aλv
2

2µ̃2
N

√
2
' 1

2
√
2

v2

man
' 22 Gev (4.11)

The small 〈N〉 then results in a chargino mass which falls below the LEP II bound of about

94GeV.

Given this limitation of the NMSSM, it is desirable to explore methods that either

alter the relative strengths of the terms or yield a large tadpole term for N . The former

may be done by adding vector-like matter (as in [6]), while the latter was explored in [28]

by introducing a linear term for N . We propose here a different solution that alters the

relative strengths and is already present in the model.

– 11 –
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4.2 Low energy theory

The superpotential of eq. (2.5) contains in its non-renormalizable terms the key to solving

the small 〈N〉 problem: as discussed in section 3, the terms of eq. (2.9) generate a mass

term for N given by eq. (3.2). This mass term then yields a SUSY breaking bilinear term

given by eq. (3.4). The size of bN is quite conveniently around the SUSY breaking scale

and also provides a means of turning the net mass-square of N negative. To establish this

property we now turn to the effective MSUSY-scale theory.

The effective superpotential responsible for EWSB (valid for MSUSY < Q¿ Fφ) is

W
∣∣
MSUSY

= iiyuQ
T τ2Huu

c + iiydQ
T τ2Hdd

c + iiyeL
T τ2Hde

c

+ iiλNHT
u τ2Hd +

1

2
µNN

2 +
1

3
κN3 (4.12)

and the SUSY breaking potential is

VSB

∣∣
MSUSY

= m2
QQ

†Q+m2
ucu

c†uc +m2
dcd

c†dc +m2
LL

†L+m2
ece

c†ec

+m2
Hu
H†
uHu +m2

Hd
H†
dHd +m2

NN
∗N

+
[
iiauQ

T τ2Huu
c + iiadQ

T τ2Hdd
c + iiaeL

T τ2Hde
c + h.c.

]

+

[
iiaλNH

T
u τ2Hd −

1

2
bNN

2 +
1

3
aκN

3 + h.c.

]

− 1

2
(M3λ3λ3 +M2λ2λ2 +M1λ1λ1 + h.c.) (4.13)

The resulting Higgs sector potential is

V = VF + VD + VSB (4.14)

with VF and VD the typical SUSY contribution:

VF = |λ|2 |N |2
(
|Hu|2 + |Hd|2

)
+
∣∣iiλHT

u τ2Hd + µNN + κN2
∣∣2 (4.15)

VD =
1

8

(
g2

1 + g2
2

) (
|Hu|2 − |Hd|2

)2
+

1

2
g2

2

∣∣∣H†
uHd

∣∣∣
2

(4.16)

The potential of eq. (4.14) can be made to spontaneously break electroweak symmetry

giving

〈Hu〉 =
1√
2

(
0

vu

)
〈Hd〉 =

1√
2

(
vd
0

)
〈N〉 = n√

2
(4.17)

and we take the usual definitions: vu = v sinβ and vd = v cosβ. The minimization

conditions are

m2
Hu
− 1

8

(
g2

2 + g2
1

)
v2 cos 2β +

1

2
λ2
(
n2 + v2 cos2 β

)
− n√

2

(
ãλ +

λκn√
2

)
cotβ = 0 (4.18)

m2
Hd

+
1

8

(
g2

2 + g2
1

)
v2 cos 2β +

1

2
λ2
(
n2 + v2 sin2 β

)
− n√

2

(
ãλ +

λκn√
2

)
tanβ = 0 (4.19)
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Figure 1: Constant n contours in the µN -κ(vR) plane where the curves, from top to bottom,

correspond to n = −10000,−7500,−5000,−2500 and −1000GeV. A constant value of tanβ = 3.25

has been assumed with Fφ = 33TeV and λ(vR) = 0.5.

m̃2
N + κ2n2 +

1

2
λ2v2 +

nãκ√
2
− 1

2
v2

(
ãλ

n
√
2
+ λκ

)
sin 2β = 0 (4.20)

The tilded variables are introduced to display the deviations from the usual NMSSM due

to the presence of the term µN in eq. (4.12). These constructs are defined as

ãλ ≡ aλ + λµN (4.21)

ãκ ≡ aκ + 3κµN (4.22)

m̃2
N ≡ m2

N + µ2
N − bN (4.23)

Of particular interest is eq. (4.23), which may be recast using eq. (3.4) of section 3:

m̃2
N = m2

N + µ2
N − µNFφ

≈ m2
N − µNFφ

'
(

λ4

(16π2)2
Fφ − µN

)
Fφ

The second line follows from the fact that µN ∼ O
(
M2
SUSY

Fφ

)
∼ O

(
Fφ

(16π2)2

)
and therefore

the µ2
N term is negligible compared to the the other terms. The last line uses the AMSB

expression for the scalar mass-squared, assuming it is dominated by the λ contribution. As

can be seen, due to the λ4 suppression, it is relatively easy to adjust µN to the appropriate

value to make m̃2
N negative and therefore induce a singlet VEV of the correct size. Given

that λ(MSUSY) . 0.5 (from constraints of perturbativity to the right-handed scale) and

that µ = λn√
2
, it is only necessary for n & 300 GeV to achieve chargino masses above the

LEP II bound.

Figure 1 shows that such values are easily attainable in this situation. In the figure,

constant n contours are plotted in the µN–κ(vR) plane treating the VEVs of the Higgs
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doublets as constant background values with tanβ = 3.25, Fφ = 33TeV, and λ(vR) = 0.5.

The ample parameter space therefore demonstrates that this inherent property of our model

easily provides a means to resolve the conflict between AMSB and the NMSSM.

The resulting mass spectrum for this ÑMSSM is quite similar to the NMSSM

(see [29])—particularly for the scalar and charged Higgses8 whose mass matrices are given

by

M2
S =




v2u
4

(
g2

1+g
2
2

)
+ nvd√

2vu
ÃΛ

vdvu
4

(
4λ2+g2

1+g
2
2

)
− n√

2
ÃΛ λ2nvu− vd√

2
ãλ−λκvdn

vdvu
4

(
4λ2+g2

1+g
2
2

)
− n√

2
ÃΛ

v2
d

4

(
g2

1+g
2
2

)
+ nvu√

2vd
ÃΛ λ2nvd− vu√

2
ãλ − λκvun

λ2nvu− vd√
2
ãλ − λκvdn λ2nvd− vu√

2
ãλ − λκvun 2n2κ2+ n√

2
ãκ+

vuvd√
2n
ãλ




(4.24)

and

M2
C =

v2

2vdvu

[√
2nÃΛ + vdvu

(
1

2
g2

2 − λ2

)]
; (4.25)

defining ÃΛ ≡ ãλ +
λκn√

2
.

On the other hand, the pseudoscalar mass matrix gets a contribution from the bN
term which is rather large and typically guarantees that the heavier pseudoscalar is mostly

singlet. Its mass matrix is given by:

M2
P =

(
1√
2
ÃΛ

v2n
vuvd

v√
2

(
aλ − λµN −

√
2λκn

)

v√
2

(
aλ − λµN −

√
2λκn

)
vuvd
n
√

2

(
ãλ + 2λκn

√
2
)
− 3ãκ

n√
2
+ 2bN + 8κµN

n√
2

)

(4.26)

The neutralino and chargino mass matrices remain similar to the NMSSM, and in the

bases
(
B̃, W̃ , H̃u, H̃d, Ñ

)
,
(
W̃+, H̃+

u , W̃
−, H̃−

d

)
they are:

Mχ0 = (4.27)



M1 0 MZ sinβ sin θW −MZ cosβ sin θW 0

0 M2 −MZ sinβ cos θW MZ cosβ cos θW 0

MZ sinβ sin θW −MZ sinβ cos θW 0 − λ√
2
n − λ√

2
vd

−MZ cosβ sin θW MZ cosβ cos θW − λ√
2
n 0 − λ√

2
vu

0 0 − λ√
2
vd − λ√

2
vu

√
2κn+ µN




Mχ± =

(
0 XT

X 0

)
; X =

(
M2

√
2MW sinβ√

2MW cosβ µ

)
(4.28)

respectively.

8Simply substitute the appropriate variables with their tilded form: (aκ, aλ,m
2
N ) → (ãκ, ãλ, m̃

2
N ) Typ-

ically, however, µN is rather small and so the untilded variables make a good approximation to the tilded

ones.
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MX

vR

mDC

MSUSY

AMSB
valid

SU(3)c × SU(2)L × SU(2)R × U(1)B−L

〈∆c〉,
〈

∆̄c
〉

, 〈S〉

NMSSM++

ÑMSSM

1

Figure 2: A schematic of the SUSYLR+AMSB model showing the complete picture through all

the energy scales.

4.3 A brief summary of scales

With EWSB achieved and the mass spectrum given, we now have a complete picture of the

physics starting at the high scale vR and coming down to the electroweak scale. The theory

starts as a parity-conserving SUSYLR model with AMSB generating the SUSY breaking,

breaks down to the NMSSM++ (but without introducing new SUSY breaking effects), and

finally ends up at MSUSY as the ÑMSSM (as elucidated in figure 2). We may now turn our

attention to the rich phenomenological consequences of this theory.

5. Phenomenology

The following numerical values are based on our parameter running scheme. We run the

gauge coupling values from the electroweak scale to the right-handed scale, vR = 2× 1011

taking the Fφ threshold into account by decoupling the triplets and doubly charged fields.

Yukawa couplings are then inputs at the right-handed scale: the third generation values

for the SM couplings (yQ, yL) and all three generations of the seesaw couplings (f, fc).

These are evolved down to the SUSY scale [30, 31]. Because of parity f = fc at the

right-handed scale and all of the off diagonal terms are taken to be negligible due to lepton

flavor violating constraints. We also assume that the first and second generation seesaw

couplings are equal (f2 = f1) for simplicity. Soft terms follow their AMSB trajectory, given
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Sfermions Masses (GeV) Bosinos and Higges Masses (GeV)

ũ 623 g̃ 472

d̃ 627 χ̃0
1 417

ẽ 623/484 χ̃0
2 472

ν̃e 621/479 χ̃0
3 561

ũc 654 χ̃0
4 713

d̃c 662 χ̃0
5 1644

ẽc 587/438 χ̃+
1 421

t̃1 496 χ̃+
2 565

b̃1 547 h0 116

τ̃1 587/438 A0 518

ν̃τ 621/479 H0 523

t̃2 641 H+ 526

b̃2 603 A0
2 2086

τ̃2 625/485 H0
3 1284

Table 2: Mass spectrum for the LR-AMSB point given in figure 3. Slepton masses are reported

for f1(vR) = f3(vR) = 3.5/1.4. Higgs masses are also reported here as well as the mostly singlino

neutralino.

by eqs. (2.1), (2.2) and (2.3) down to the Fφ scale, below which the soft terms are evolved

to the SUSY scale using the usual RGE of the NMSSM [32]. Note that due to the mass

splitting between the Higgsinos and Higgses of both the doubly charged and left-handed

triplets descriped in section 2.1, there will be some corrections to the SUSY RGEs. These

corrections will depend on the mass splitting and will be fairly small.

Numerical results will be compared to popular SUSY breaking models: mSUGRA,

mGMSB and Minimal AMSB — an AMSB in which the slepton mass problem is fixed by

adding a universal mass, m0 to all sfermion soft masses [3]. Note that slepton phenomeno-

logical comparisons to Minimal AMSB also apply to [11] since the additional R-parity

violating lepton sector Yukawa coupling is analogues to adding a universal slepton mass.

5.1 The spectrum

Before engaging in the full details of the various sectors of the model, it is helpful to take a

step back and look at the overall spectrum. figure 3 examines the bosinos and figure 4 the

sfermions in this model and compares their masses to similar points in parameter space

for mSUGRA, mGMSB and Minimal AMSB calculated from isajet [33] (matching between

the different points were done based on the gluino mass). The columns of the bosino

chart, figure 3, from left to right are gluino, neutralino and chargino. The columns of the

sfermion chart, figure 4 from left to right are: left-handed first generation, right-handed

first generation, lightest mass third generation (and third generation neutrinos), heaviest

third generation and gluinos — for comparison with the bosino chart. The Higgses and

the mostly singlino neutralino have not been included to keep from clottering the plots,

although their masses are reported in table 2.
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0
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0
2

χ̃
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χ̃
+
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+
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g̃

χ̃
0
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0
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χ̃
0
3

χ̃
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+

1

χ̃
+
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0
1
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0
2
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0
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0
4
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+

1

χ̃
+

2

1

Figure 3: From left to right, columns correspond to charginos, neutralinos and gluino masses at

tanβ = 3.25 and sgnµ = +1. The parameter points are: Fφ = 33TeV, f1(vR) = f3(vR) = 3.5

for LR-AMSB; m0 = 209GeV, m 1

2

= −300GeV and A0 = 265GeV for mSUGRA; Λ = 99TeV,

Mmess = 792TeV and N5 = 1 for mGMSB; Fφ = 33TeV and m0 = 645GeV for Minimal AMSB

(here we also matched to the lightest slepton).

The most striking general feature of these figures is the degeneracy of the spectrum

between colored and electroweak particles in LR-AMSB. While this is very dependent on

the seesaw couplings (table 2 shows slepton masses that are lighter than the squarks due

to smaller values of the seesaw couplings), it is a possibility that is difficult to achieve in

other models. table 2 also shows the Higgs masses. Here H3 and A2 are the mostly singlet

scalar and pseudoscalar. Due to the large size of the singlet VEV, these fields decouple

from the spectrum as does the mostly singlino χ̃0
5. The neutral scalar Higgs masses stated
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g̃ g̃
g̃ g̃

ũ d̃

ν̃e

ẽ

ũc d̃c

ẽc t̃1,τ̃1

b̃1

ν̃τ

t̃2

b̃2

τ̃2

ũ d̃

ν̃e

ẽ

ũc

d̃c

ẽc

t̃1

b̃1

ν̃τ

τ̃1

t̃2
b̃2

τ̃2

ũ d̃

ν̃e

ẽ

ũc

d̃c

ẽc

t̃1

b̃1

ν̃τ

τ̃1

t̃2b̃2

τ̃2

ũ,ν̃e

d̃,ẽ

ũc d̃c

ẽc

t̃1

b̃1

ν̃τ

τ̃1

t̃2

b̃2

τ̃2

1

Figure 4: From left to right, columns correspond to first generation left-handed, first generation

right-handed, lightest third generation and heaviest third generation sfermions. The final column

consists of gluino masses for comparison with figure 3. Input parameters are as given in figure 3.

include the full radiative corrections due to top and stop loops [34]. These corrections

need mt̃ & 600GeV which implies Fφ & 33TeV to allow the Higgs to be above the LEP

II bound. In the following subsections, we will continue to explore this spectrum, focusing

on the sleptons, squarks and finally the neutralinos and charginos.

5.2 Sleptons

We start this discussion by analyzing the seeseaw yukawa couplings f and fc. In all the work

that follows, we take their maximum value at vR to be ∼
√
4π ∼ 3.5 based on perturbativity

arguments. Of immediate note is the fixed point-like behavior of these couplings. This can

be seen in figure 5, which plots fc1 verses the log of the energy scale for initial values
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Figure 5: Plots of fc1 verses the log of the energy scale. The lines correspond, in ascending order,

to f1(vR) values of 0.25, 0.5, 0.75, 1, 2.25 and 3.5 for (a) f3(vR) = 0 and (b) f3(vR) = 3.5.

f3 f1 fc3 fc1

Fixed Point Value 0.64 0.64 0.67 0.67

Table 3: Fixed point values at the DC scale for the seesaw couplings assuming initial values are

above 1.5 for the data point used in figure 5.

of (a) f3(vR) = 0 and (b) f3(vR) = 3.5; the curves, in ascending order, correspond to

f1(vR) = 0.25, 0.5, 0.75, 1, 2.25, 3.5. Increasing the initial value of f3 decreases the value

of f1 at the TeV scale as can be seen by comparing figure 5(a) and figure 5(b).

Similar plots can be drawn for the other couplings: f1, fc3 and fc1, but their qualitative

behavior follows those in figure 5. table 3 illustrates the quantitative differences in the

values of the fixed points. For initial values of f1 and f3 greater than 1.5, these values are

correct up to 2%. The higher values for the right-handed sector (fc) are due to the slower

running caused by the broken SU(2)R symmetry.

This fixed point like behavior translates into an upper bound for the slepton masses.

This can be seen in figure 6, which displays the dependence of the selectron masses on

the initial value of the seesaw coupling. For this plot f1(vR) = f3(vR) has been assumed

for simplicity. For f ≥ 0.5 the yukawa coupling contribution is comparable in size to

– 19 –



J
H
E
P
0
4
(
2
0
0
8
)
0
9
1

0.5 1 1.5 2 2.5 3 3.5

100

200

300

400

500

600

700

0.5 1 1.5 2 2.5 3 3.5

100

200

300

400

500

600

700

mχ̃1

Mass

(GeV)

f(vR)

Figure 6: Plot of mẽc (dashed) and mẽ as a function of f1(vR) = f3(vR) for Fφ = 33TeV. The

greyed-out region has been excluded by LEP II and the line at around 417GeV is the mass of the

neutralino, the LSP in this case.

the gauge coupling contribution in the AMSB mass expression, e.g. eq. (2.19). The mass’

quartic dependence on the seesaw couplings is reflected in its steep rise near 0.5 and its

rapid surpassing of the LEP II bound. At a value of f ∼ 1 this steep ascent slows down

indicating the onset of the fixed point behavior, beyond which the low energy observable

f(Fφ) values are approximately 0.6.

The masses of the other sleptons follow the behavior of figure 6, a general feature of

which is the mild degeneracy between the left and right -handed slepton masses. This

seems a bit contrary to eqs. (2.22) and (2.23), which show that the factor for f 4
1 term for

the left-handed sleptons is twice as large as that of the right-handed sleptons. However,

this term is capped by the fixed-point of f1 and the negative SU(2)L contribution happens

to be a little less than half of this value (an accidental cancelation) yielding the degeneracy.

This is an interesting situation phenomologically since it numerically falls in between

mSUGRA/mGMSB and Minimal AMSB. In mSUGRA, left-handed slepton masses get

larger positive contributions from M2 as they run from the ultraviolet. In mGMSB bound-

ary conditions dictate that the left-handed to right-handed mass ratio is about 2 : 1.

Meanwhile, in Minimal AMSB, both sectors get the same contribution from m0, the uni-

versal masses needed to make the sleptons non-tachyonic, which drops out in the mass

splitting at tree level. Furthermore, there are accidental cancellations in the anomaly in-

duced splittings related to the gauge contributions and in the D-term contributions [7, 35].

The upshot of this is that the mass splitting is usually dominated by loop-level effects and

is quite small [7].

As a concrete example for Minimal AMSB, including the first loop leading log, the

difference between the masses squared with tanβ = 3.25 and Fφ = 33TeV is given by

∆e = m2
ẽL
− m2

ẽR
∼ 751 GeV2 [7, 35]. The corresponding percent difference, defined

as ∆e

(mẽL
+mẽR

)2
, is then highly dependent on the masses of the selectrons. For selectron
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Figure 7: Constant contours of mẽ−mẽ
c

mẽ+m
ẽ

c

× 100% in the f3(vR) − f1(vR) plane. The unlabeled

contours on the left side of the plot, from left to right, correspond to 2%, 3%, 4% and 5%. The

dashed vertical (horizontal) contour corresponds to a τ̃1 (ẽc)constant contour of mass equal to that

of the LSP (417GeV). The shaded region is excluded by LEP II bounds of 81.9GeV (94GeV) on

the mass of τ̃1 (ẽc).

massses above the mass of the LSP given in figure 6, ∼ 450GeV, the percent difference

is less than 1%. However, in LR-AMSB, the percent difference can rise as high as 5%

as demonstrated in figure 7, which gives contours for constant mass percent differences.

Resolution of slepton masses from end-point lepton distribtution of the selectron decays at

lepton collider is roughly 2% [36] making the measurement of such mass differences feasible.

Therefore, measurements of mild mass differences of about 3−5% will signle this model out

from the large mass differences of mSUGRA and mGMSB while potentially discriminating

it from the small mass differences of Minimal AMSB (although this will highly dependent

on the values of the seesaw couplings).

Constant mass contours for the right-handed selectron are plotted in figure 8 in the

f3(vR)–f1(vR) plane. This plot allows a study of how the masses change with respect

to both seesaw couplings. The horizontal and vertical grayed-out contours are ruled out

due to LEP II bounds on the lightest stau and selectron masses of 81.9GeV and 94GeV

respectively. Mass contours increase from left to right and correspond to mẽ = 200, 300,

417 (the mass of the lightest neutralino, indicated with a dashed contour) 500, 550, 600,

610, 615, 620, 625, 630GeV. The horizontal dashed curve represents a constantmτ̃1 contour

at the mass of the lightest neutralino. Since the selectron is a first generation slepton its

mass is mainly governed by f1, eq. (2.20), explaining the small dependence on f3 for smaller

values of f1. Two things are clear from this plot: the fixed point like behavior — reflected

in the fact that for large f1 an equal change in mass requires a larger change in f1—and

the decrease of the f1 fixed point with the increase of f3. This latter point is responsible

for the curving to the right of the contours at high f1 values and was mentioned earlier

with regards to figure 5.
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Figure 8: Mass contours for the right-handed selectron mass, mẽ in the f3(vR)–f1(vR) plane. The

horizontal and vertical grayed-out contours are ruled out due to LEP II bounds on the lightest stau

and selectron masses of 81.9GeV and 94GeV respectively. Constant mass contours for the selectron

mass mẽ = 94 (the LEP lower bound), 200, 300, 417 (the mass of the lightest neutralino, indicated

with a dashed contour) 500, 550, 600, 610, 615, 620, 625, 630GeV, for Fφ = 33TeV. The dashed

horizontal curve corresponds to a mτ̃1 constant contour equal to the mass of the lightest neutralino.

The influence of f3(vR) is apparent at large values of f1(vR) and f3(vR). Larger increases in f1(vR)

are needed for as the mass increases because of the fixed point like behavior of f1.

As a final remark on the sleptons, notice that the contours in figure 8 correpsonding

to the LSP suggest more stringent lower bounds on the seesaw couplings than the LEP II

bounds. These are necessary so that the lightest neutralino will be the LSP and therefore a

possible dark matter candidate. The values indicated in the plot correspond to low energy

values of the seesaw couplings that are only about 10% off from their fixed-point value,

fc1, fc3, f1, f3 ∼ 0.6. Therefore, for succesful dark matter, the seesaw couplings can be

expected to be larger than about 0.5. This can be checked by a quick calculation, since the

lightest neutralino mass is approximately the wino mass (see section 5.4) and depends only

on Fφ. Meanwhile, the selectron mass depends on f1 ∼ f3 ≡ f , which we can set equal to

each other as an approximation, and Fφ. Given that the selectrons must be heavier then

the LSP, for a viable dark matter candidate, yields

f(Fφ) & 0.58. (5.1)

5.3 Squarks

Squark masses in Minimal AMSB decrease with energy due to the increase of SU(2)L
and U(1)Y gauge couplings, which contribute negatively [37] to their masses. At a certain

energy scale, the negative contributions take over and the AMSB expressions for the squark

soft masses become negative. In our case this happens at an earlier scale due to the

increase size of the SU(2)L and U(1)Y beta functions from the extra triplet and the doubly

charged fields. Normally we would have expected this to show up at high temperatures
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and lead to breakdown of color gauge symmetry. However, at high temperatures the

vacuum of the theory is also affected by temperature corrections. Consequently the mass-

square term of the squarks will have the form µ2(T )q̃ ' (−M2
AMSB + λT 2). The first term

only grows logarithmically with temperature whereas the second term grows quadratically.

The coefficient λ is positive so that the net effect is that µ2(T )q̃ remains positive at high

temperature and leaving color gauge symmetry intact in the early universe.

It is also worth noting that because non-asymptotically free gauge couplings con-

tribute negatively to masses, the right-handed squarks are slightly heavier than left-handed

squarks. This is different than mSUGRA and mGMSB where all gauge couplings yield

positive contributions making left-handed squarks heavier, see figure 4. Furthermore, the

squarks in this model can be degenerate with the sleptons.

5.4 Bosinos and the LSP

Because all superpartners eventually decay into the LSP, its makeup is an important part

of SUSY collider phenomenology and dark matter prospects. Therefore understanding that

makeup is an important task. Cosmological constraints rule out a charged or colored LSP

[38], hence limiting the choices to the sneutrino or the lightest neutralino. The former, in

typical models, makes a poor dark matter candidate (relic abundances are too light; much

of its mass range ruled out by direct detection [39, 40]. It is therefore more interesting

to consider the lightest neutralino as the LSP, the candidate in common SUSY scenarios

(except in mGMSB where it is the next to lightest SUSY particle but has the same collider

significance [41]).

The lightest neutralino will be some mixture of the wino, bino and Higgsino. Its

gaugino composition follows from the gaugino mass ratio which is easily calculated and

relatively independent of the point in parameter space. In AMSB this ratio depends on

both the gauge couplings and the gauge coupling beta functions, b. The latter is important

since this is where the effects of the light triplets and doubly-charged Higgs are felt (see

table 4 for b for values in LR-AMSB compare to AMSB based on MSSM particle content).

It is calculated to be: M3 :M2 :M1 ∼ 1.3 : 1 : 1.3. The striking characteristic of this ratio

is its degeneracy when compared to mSUGRA/mGMSB, M3 : M2 : M1 ∼ 3 : 1 : 0.3 or

even Minimal AMSB M3 :M2 :M1 ∼ 8 : 1 : 3.5.

Specifically then, the LSP will have a large wino component where in Minimal AMSB

it is all wino, and there will also be some non-negligible mixing with the bino. Note that

in mSUGRA (mGMSB) the sole contribution to this ratio is from the gauge couplings

and therefore the LSP (NLSP) is always mostly bino. The Higgsino contribution is not

independent of other parameters and therefore is not as predictable, but numerical results

show that it is typically a little bit lighter than the wino (its value decreases compared to

the wino as Fφ is increased). Therefore, the LSP will be some combination mostly Higgsino

with significant wino content and and a little bit of bino. The mixed Higgsino state will

correspond to χ0
2; χ

0
3 and χ+

2 will be mostly wino with some Higgsino (percent values will

be complementary to those of χ1), and χ
0
4 will be mostly bino.

An immediate consequence of the degeneracy of the gauginos is a more natural heavy

LSP, closer in mass to both the gluinos and squarks. Naturalness suggests that squark
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b1 b2 b3

MSSM 33
5 1 −3

LR−AMSB 78
5 6 −3

Table 4: Values for the b parameter in the MSSM and LR-AMSB. Note the larger values in

LR-AMSB for SU(2)L and U(1)Y .

masses are not much larger than 1TeV, to minimize fine tuning in the Higgs mass, therefore:

Fφ . 63 TeV

yielding:

M1 . 1350 GeV

M2 . 980 GeV (5.2)

This is a much larger value than the upper bound in Minimal AMSB M2 . 200GeV [35]

and therefore has less of its parameter spaced ruled out by experimental data.

Another point to consider is that the Higgsino and wino form isospin doublets and

triplets with the appropriate charginos. Therefore when they play the role of the lightest

neutralino, there is potential for a very small mass difference between the lightest neutralino

and the lightest chargino. This is very pronounced in Minimal AMSB where the mass

difference of the mostly wino neutralino and chargino is on the order of 100s of MeVs

including leading radiative corrections. Analytical approximations for this quantity for

large µ have been given in [7, 42, 35]. Such approximations are not as useful in LR-AMSB

since the relevant mass scales: µ, M1, and M2 are relatively of the same order (the singlino

contribution is much larger than these); however, an analytic expression for the minimum

of the mass difference is attainable.

First note that a Higgsino mixing exists in the neutralino matrix, absent in the chargino

sector. This mixing goes to zero as tanβ → 1 hence indicating that for tanβ = 1 the mass

difference is minimal (when tanβ → 1 and tan θW → 0 the global custodial SU(2) becomes

an exact symmetry making the mass difference zero). The eigenvalues of the two matrices

can than be expanded for tanβ = 1 using the approximation M1 ∼ M2 > µ À MZ , this

yields, to first order:

∆χ̃1 ≡ mχ̃±1
−mχ̃01

> 2 sin2 θW
M2

Z

M1
(5.3)

The second order term is positive definite so that ∆χ̃1 can in fact be used as a minimal

value for the mass splitting. Notice that the ∆χ̃1 → 0 as tan θW → 0 as argued above (and

that ∆χ̃1 → 0 as M1 →∞ since this also restores the custodial symmetry when tanβ = 1.

The form of eq. (5.3) is convenient since the only free parameter it depends on is Fφ
(through M1), which also controls the squark masses. Applying the natural upper bound

for M1 from eq. (5.2) yields:

∆χ̃1 > 1.4 GeV (5.4)
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Figure 9: Mass difference of the lightest chargino and neutralino as a function of µ for λ =

0.26, tan β = 3.25 and the singlino mass term 2
(
µN + 1√

2
nκ
)

= 2M1. From top to bottom,

M2 = 1.1µ, 1.5µ, 2µ and 3µ. The line at 0.165GeV is the asymptotic value for large M2 in

Minimal AMSB, while the dotted curve is represents where squark masses are at about a TeV.

Below this curve, the Higgs mass is somewhat fine-tuned.

This is larger than the Minimal AMSB value of a few 100s of MeV. Exact values for the

mass difference are given in figure 9 as a function of µ ≡ 1√
2
λn with: λ = 0.26, tanβ = 3.25

and the singlino mass term 2
(
µN + 1√

2
nκ
)

= 2M1. The line at 165GeV represents the

asymptotic value for large M2 in Minimal AMSB at the one loop level [7] and below the

dotted line the squark masses are above a TeV and hence the Higgs mass becomes fined

tuned.

5.5 Collider signatures

The small size of ∆χ̃1 can potentially be problematic at a collider because the soft decay

products, X, in the process χ+
1 → Xχ0

1, will not be visible. This is a feature shared by

both LR-AMSB and Minimal AMSB. The difference is that the larger value of ∆χ̃1 for LR-

AMSB might produce prospects of detection if X = τ or a hard µ; however, this advantage

is counterbalanced by a faster chargino decay eliminating chances of long-lived charged

tracks with no muon chamber activity. Regardless, similar situations have been analyzed

and found to be manageable for both letpon colliders [43] and the Tevatron [42, 44].

On the other hand, LHC studies of Minimal AMSB have focused on mSUGRA like

signals [45, 37]. Such signals are heavily dependent on lepton final states and are based

on left-handed squark decays to mostly wino charginos and neutralinos. These in turn can

decay leptonically producing trilepton signals or same sign dilepton signals [46, 1], both of

which have potentially manageable backgrounds. For in Minimal AMSB, though, the the

wino states are the lightest and will not decay leptonically. Hence the the right-handed

squarks take the place of the left-handed ones decaying into the mostly bino neutralino
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mSUGRA

and mGMSB MAMSB LR-AMSB

M3 : M2 : M1 3 : 1 : 0.3 8 : 1 : 3.5 1.3 : 1 : 1.3

|M1| , |M2| (GeV) Naturalness upperbound 130, 260∗ 640, 200 1350, 980

Same generation slepton mass percent difference ∼ 150% ∼ 2% ∼ 4%

Possibility of slepton-squark degeneracy No No Yes

Table 5: A list of phenomenological characteristics of interest in mSUGRA, mGMSB, Mini-

mal AMSB and LR-AMSB.
∗ mGMSB only, in mSUGRA sfermion and gaugino mass are determined by two seperate parame-

ters.

(which can decay leptonically). Yet, since there is no corresponding chargino to the bino,

signals such as the trilepton and the same sign dilepton signal may not be possible.

The situation in LR-AMSB is more analogous to mSUGRA: right-handed squarks

will decay to the LSP which has some bino content. Meanwhile, the left-handed squarks

may decay either to the lightest chargino/neutralino, or, more likely (because of their

higher wino content), to χ0
3 and χ+

2 . These may then decay leptonically depending on

the slepton masses (e.g f(vR) = 1.4 in table 2) giving the familiar signals: trilepton and

same sign dilepton. Note that it is also possible that decay of χ+
1 will produce leptonic

signals since ∆χ̃1 is larger. These considerations would help differntiate this model from

Minimal AMSB, while the degeneracies in the gaugino sector and same generation slepton

will differentiate it from mSUGRA and mGMSB. These differences between the various

scenarios are summarized in table 5.

5.6 Triplets and doubly-charged higgses

The interplay between AMSB and the left-handed and doubly-charged Higgses leads to

interesting phenomenology and is worth summarizing here. Because they play the central

role of saving the slepton masses from a tachyonic fate, their masses must be around the

Fφ scale. This puts a bound on the right-handed scale scale, vR . 1012 GeV, which is

not the case when these particles appear in mSUGRA and mGMSB [20, 47]. It is also

possible, through mixing due to bilinear b-terms eq. (2.17), that one triplet and one doubly

charged Higgs will be light, O(1 TeV) and therefore accessible at the LHC. Their presence

would also be felt indirectly in upcoming muonium-antimuonium oscillation experiments

since their couplings to first and second generation leptons must be large. For sleptons

above the LEP II bound:

f1(Fφ) ∼ f2(Fφ) ∼ fc1(Fφ) ∼ fc2(Fφ) ∼ 0.5 (5.5)

and for sleptons above the lightest neutralino (for a good dark matter candidate):

f1(Fφ) ∼ f2(Fφ) ∼ fc1(Fφ) ∼ fc2(Fφ) ∼ 0.6 (5.6)

Based on figure 5(a) and figure 8. On the other hand, all the triplet and doubly-charged

Higgsinos will remain heavy, O(Fφ), and undetectable at the LHC or low energy experi-

ments.
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5.7 Dark matter

As noted in the previous section, the LSP in our model is a predominatly Higgsino wino

mix with very little bino (about 1%). Since the annihilation rate for such an LSP is

large, its relic density from conventional annihilation arguments is not enough to explain

the observed Ωm of the universe of 20%. This issue has been discussed earlier in ref. [48],

according to which the decay of the gravitino in the late stage of the universe to non-thermal

winos will generate enough density to make it a viable dark matter. A similar mechanism

would work in this mostly Higgsino case since the crucial ingredients are similar: the LSP

mass (this a similar), its interactions with the gravitino (again, this is similar between the

two cases because of the similar masses) and its annihilation rate (these are also the same

since wino and Higgsino annihilation takes place through a t-channel chargino exchange

proportional with α2 strength). Like [48], we have scanned over the parameters and found

that such dark matter does evade current bounds on direct detection set by CDMS Soudan

and EDELWEISS but will be detectable by future experiments.

6. Beyond vR

In this section, we comment on the ultraviolet behaviour of the theory. As we see from

figure 10 below, despite the new contributions to SU(2)L and U(1)Y beta functions, all

couplings remain perturbative until about 1011–1012 GeV. Our effective field theory ap-

proach below this scale should hold without any problem. Once we are above this scale,

the couplings could maintain perturbativity if there are extra dimensions [49] due to neg-

ative contributions from vector gauge KK modes of the theory if the inverse radius of the

extra dimensions are around 1011 GeV or so. Such extra dimensions could also be the origin

of the Planck suppressed operators that we have used in our discussion.

7. Conclusion

In summary, we have elaborated on our suggestion that minimally extending MSSM to

account for neutrino masses in a way that R-parity remains an automatic symmetry of the

theory allows for a solution to the tachyonic slepton problem of anomaly mediated super-

symmetry breaking. Interestingly, the solution requires that parity symmetry remain exact

above the vR scale. Among the new results, we show how to obtain radiative electroweak

symmetry breaking and a reasonable Bµ term in this class of models. We also discuss the

sparticle spectrum of the model in detail and show how it differs from that of Minimal

AMSB as well as other widely discussed supersymmetry scenarios. A new feature of this

model is the presence of new TeV scale SU(2)L triplets and doubly charged SU(2)L singlet

fields, whose phenomenology has been the subject of many papers [50 – 55]. We believe

that the model discussed here is a serious alternative to the Minimal AMSB whose further

phenomenological implications need to be explored in detail.
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due to parity.
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A. Notation conventions

In this appendix we summarize our notational conventions. Given a superpotential defined

as

W = LiΦi +
1

2!
µijΦiΦj +

1

3!
Y ijkΦiΦjΦk +

1

4!

λijk`

M
ΦiΦjΦkΦ` + · · · (A.1)

with a corresponding lagrangian of

L =

∫
d4θ

(
ZijΦiΦ

j∗ + · · ·
)
+

[∫
d2θ (W +WαWα) + h.c.

]
(A.2)

the anomalous dimensions, γij , and β-functions, β
i
L, β

ij
µ , β

ijk
Y , at a given energy scale Q are

defined by

γij =
d lnZij
dlnQ

= 4Ca(Φi) g
2
aδ
i
j − YjpqY ipq (A.3)

βiL =
dLi

dlnQ
= −1

2
Ljγij (A.4)

βijµ =
dµij

dlnQ
= −1

2
µipγjp + (j ↔ i) (A.5)

βijkY =
dY ijk

dlnQ
= −1

2
Y ijpγjp + (k ↔ i) + (k ↔ j) (A.6)
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Furthermore, we choose the sign of the soft SUSY breaking terms by specifying that

VSB =
1

2

(
m2
)i
j
ΦiΦ

j∗ + `iΦi +
1

2!
bijΦiΦj +

1

3!
aijkΦiΦjΦk + h.c. (A.7)

B. Between scales: vR To Fφ

The superpotential between the vR and Fφ scale is:

WNMSSM++ = iiyatQ
T τ2Huat

c + iiyabQ
T τ2Hdab

c + iiyaτQ
T τ2Hdat

c

+ fcie
c
i∆

c−−eci + iifiL
T
i τ2∆Li

+ iiλabNHuaτ2Hdb +
1

2
µNN

2 +
1

3
κN3 (B.1)

Where a = 1, 2, the MSSM Yukawa matrices have been approximated by the third genera-

tion diagonal term, the seesaw Yukawa couplings are diagonal and the subscript i represents

lepton generation and is summed. The gamma functions for the theory between the vR
and Fφ are:

γQ3 = −
1

8π2

(
ya∗t y

a
t + ya∗b y

a
b −

8

3
g2

3 −
3

2
g2

2 −
1

30
g2

1

)
(B.2)

γQ1 = −
1

8π2

(
−8

3
g2

3 −
3

2
g2

2 −
1

30
g2

1

)
(B.3)

γtc = −
1

8π2

(
2ya∗t y

a
t −

8

3
g2

3 −
8

15
g2

1

)
(B.4)

γuc = −
1

8π2

(
−8

3
g2

3 −
8

15
g2

1

)
(B.5)

γbc = −
1

8π2

(
2ya∗b y

a
b −

8

3
g2

3 −
2

15
g2

1

)
(B.6)

γdc = −
1

8π2

(
−8

3
g2

3 −
2

15
g2

1

)
(B.7)

γL3 = −
1

8π2

(
ya∗τ y

a
τ + 6|f3|2 −

3

2
g2

2 −
3

10
g2

1

)
(B.8)

γL1 = −
1

8π2

(
6|f1|2 −

3

2
g2

2 −
3

10
g2

1

)
(B.9)

γτc = −
1

8π2

(
2ya∗τ y

a
τ + 4|fc3|2 −

6

5
g2

1

)
(B.10)

γec = −
1

8π2

(
4|fc1|2 −

6

5
g2

1

)
(B.11)

γN = − 1

8π2

(
2|κ|2 + 2λab∗λab

)
(B.12)

γHub

Hua
= − 1

8π2

(
3ya∗t y

b
t + λacλbc − δab

(
3

2
g2

2 +
3

10
g2

1

))
(B.13)

γHdb

Hda
= − 1

8π2

(
3ya∗b y

b
b + ya∗τ y

b
τ + λca∗λcb − δab

(
3

2
g2

2 +
3

10
g2

1

))
(B.14)
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γ∆ = − 1

8π2

(
2|f3|2 + 2|f2|2 + 2|f1|2 − 4g2

2 −
6

5
g2

1

)
(B.15)

γ∆̄ = − 1

8π2

(
−4g2

2 −
6

5
g2

1

)
(B.16)

γ∆c−− = − 1

8π2

(
2|fc3|2 + 2|fc2|2 + 2|fc1|2 −

24

5
g2

1

)
(B.17)

γ∆̄c−− = − 1

8π2

(
−24

5
g2

1

)
(B.18)

These expressions were used for the slepton masses in eqs. (2.22) and (2.23). The third

generation squark masses can also be written down (here we assume real yukawa couplings

for simplicity):

m2
Q3 =

1

4
F 2
φ

{
− b1α

2
1

72π2
− 3b2α

2
2

8π2
− 2b3α

2
3

3π2
(B.19)

+
4yat
16π2

[
yat

16π2

(
3(yct )

2 + (ycb)
2 − 13

9
g2

1 − 3g2
2 −

8

3
g2

3

)
+

yct
16π2

(
3yat y

c
t + λadλcd

)]

+
4yab
16π2

[
yab

16π2

(
3(ycb)

2 + (yct )
2 + (ycτ )

2 − 7

9
g2

1 − 3g2
2 −

16

3
g2

3

)

+
ycb

16π2

(
3yab y

c
b + yaτ y

c
τ + λdaλdc

)]}

m2
tc =

1

4
F 2
φ

{
−2b1α

2
1

9π2
− 2b3α

2
3

3π2
(B.20)

+
8yat
16π2

[
yat

16π2

(
3(yct )

2+(ycb)
2 − 13

9
g2

1−3g2
2−

8

3
g2

3

)
+

yct
16π2

(
3yat y

c
t + λadλcd

)]}

m2
bc =

1

4
F 2
φ

{
− b1α

2
1

18π2
− 2b3α

2
3

3π2
(B.21)

+
8yab
16π2

[
yab

16π2

(
3(ycb)

2 + (yct )
2 + (ycτ )

2 − 7

9
g2

1 − 3g2
2 −

16

3
g2

3

)

+
ycb

16π2

(
3yab y

c
b + yaτ y

c
τ + λdaλdc

)]}

Were the first generation squark masses can be found by using the third generation

mass expressions with yukawa couplings set to zero and bA =
(

78
5 , 6,−3

)
for A = (1, 2, 3).

Typically, the largest contribution to these are given by:

m2
q̃ ∼ F 2

φ

α2
3(Fφ)

2π2
. (B.22)

The present LEP bound on the Higgs mass of 114GeV can then roughly be translated

to give a lower bound of about 600GeV on the top squark mass. Using α3(Fφ) ' 0.08 in

the above expressions, we can translate this squark mass bound to a lower limit on Fφ of

about 30TeV. We have used this in all our calculations in the text.
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Addendum

The purpose of this addendum is to clarify certain aspects of the detailed model imple-

menting the idea described in the main body of the paper [56]. We first show that the

model defined in eqs. (2.5)–(2.9) has new diagrams at the Fφ scale that dominate the con-

tributions noted in the text, making the sleptons tachyonic below Fφ. It is then noted that

the model permits an additional term in the kähler potential that is crucial to restoring

the low-energy phenomenology and leaves the presented results unaltered.

To elucidate the issues at the Fφ scale, it is useful to first consider a simplified model

with a superpotential of

Wsimp = (λSS −M∆φ)
(
∆c∆̄c −M2

Sφ
2
)
+

λcA
MXφ

Tr2
(
∆c∆̄c

)
+

λcB
MXφ

Tr(∆c∆c) Tr
(
∆̄c∆̄c

)

(B.23)

and fields as defined in the text. The mass scales M∆, MS are assumed to be of the same

order as vR, the right-handed scale.

The superfields of eq. (B.23) acquire a VEV given by

〈S〉 = M∆

λS
φ (B.24)

〈∆c〉 =
〈
∆̄c
〉
=MSφ (B.25)

and, as expected, the VEVs are proportional to φ indicating this is an AMSB preserving

threshold. It is worth noting that preserving AMSB is a direct result of the superconformal

invariance of the VEV structure which is itself a result of the VEVs being induced by terms

that preserve the superconformal symmetry.

Now once the superfields are shifted by their VEVs, the non-renormalizable terms give

rise to an effective mass term for the (otherwise massless) doubly-charged fields:

Wsimp ⊃
M2

Sφ
2

MXφ
∆c−−∆̄c++ = µDCφ∆

c−−∆̄c++, (B.26)

where µDC ≡ M2
S

MX
.

As discussed in the text, µDC ≥ Fφ to avoid tachyonic doubly-charged particles; how-

ever, given the form of eq. (B.26), it is evident the threshold associated with the doubly-

charged particles also preserves AMSB, which is true even if it is at Fφ.

But µDC ∼ Fφ has additional threshold corrections to the remaining low-scale particles

that are important [57, 8]. These effects are governed by the ratio

δ ≡ bDC
µ2
DC

=
Fφ
µDC

(B.27)

which measures the splitting of the messenger scalar fields’ masses due to SUSY breaking.9

The usual AMSB expressions for the low-scale particles are zero order in δ, and are domi-

nant for µDC À Fφ; however, for µDC ∼ Fφ the one-loop yukawa-mediated contributions

9If the scalar mass matrix of eq. (2.17) has the eigenvalues m2±, then (m2+ −m2−)/µ
2
DC = 2δ
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Figure 11: One loop yukawa mediated contributions to the selectron from integrating out the

doubly-charged particles at µDC . The fields d++, D++ represent the mass eigenstates of the scalars

∆c−− and ∆̄c++.

also become important. For the selectron, all such diagrams are shown in figure 11. The

sum of the graphs in figure 11 yield a scalar mass-squared correction of

∆m2
ec = −

2

3

f2
1µ

2
DC

16π2
δ4 ∼ −2

3

F 2
φ

16π2
f2

1 , (B.28)

where the second expression takes µDC around Fφ. This expression is always negative and

larger in magnitude than the AMSB expressions, which are suppressed by an additional

factor of 1/16π2.

At this stage it would appear that combining the seesaw mechanism with AMSB has

actually made the problem worse, since the sleptons are now ‘more negative’ by a factor of

16π2. This is not, however, the situation because the model itself permits additional terms

that are not expressed in the superpotential. In fact, the full model of eqs. (2.5)–(2.9) allow

the kähler potential term

K ⊃ k
φ†

φ
Tr
(
∆∆̄ +∆c∆̄c

)
(B.29)

with k an order one constant.

A term such as eq. (B.29) has been studied before[59, 60], and it was pointed out that

it yields an effective superpotential term of

∫
d4θ K ⊃

∫
d4θ k

φ†

φ
Tr
(
∆c∆̄c

)
=

∫
d2θ k

F †φ
φ

Tr
(
∆c∆̄c

)
↔ W ⊃ k

F †φ
φ

Tr
(
∆c∆̄c

)
.

(B.30)

The presence of this effective SUSY mass term then alters the mass matrix for the doubly-

charged particles given in eq. (2.17) to

MDC =

( ∣∣µDC + kF †φ
∣∣2 µDCFφ − |kFφ|2

µ†DCF
†
φ − |kFφ|

2
∣∣µDC + kF †φ

∣∣2

)
(B.31)
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with µDC ∼ v2
R/MX as before. Since k and µDC are free parameters (k is an arbitrary

O(1) constant while µDC depends on the non-renormalizable couplings), eq. (B.31) may

be tuned so that all the fields are at MSUSY:

∣∣µDC + kF †φ
∣∣2 ∼ |Fφ|

16π2

µDCFφ − |kFφ|2 ∼
( |Fφ|
16π2

)2

(B.32)

The tunings eq. (B.32) permit both the doubly-charged fermions and the doubly-charged

scalars to remain in the theory to the TeV scale and retain the AMSB trajectory for all the

particles. A similar argument allows the left-handed triplets to persist until MSUSY. While

both the doubly-charged scalars and fermions survive to the TeV scale, the muonium-

antimuonium constraints given in eq. (2.25) still force these particles’ masses to be at

or above 2 TeV. If they reside right near this lower bound, the LHC may produce both

doubly-charged scalars and fermions (as opposed to just the scalars as presented in the

paper).

Because this new particle content survives to the TeV scale, the AMSB expression may

be utilized at that scale to determine the soft masses. The presence of the new yukawa

couplings f and fc for the sleptons will then cause them to be positive. In the analysis of

section 5, these AMSB expressions were evaluated at Fφ for both squarks and sleptons, then

used as boundary conditions to evolve the masses down to MSUSY. As the parameters do

not run significantly from Fφ to MSUSY (it is only two orders of magnitude), the numerical

results presented in the paper remain valid within the expected uncertainty.

Note. After this paper was published, the authors were informed of [61] which discusses

an alternative scenario to avoiding tachyonic sleptons. The authors regret this omission

and their oversight which prevented it appearing in the printed paper.
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