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Energy conditions can play an important role in defining the cosmological evolution. Specifically 
acceleration/deceleration of cosmic fluid, as well as the emergence of Big Rip singularities, can be 
related to the constraints imposed by the energy conditions. Here we discuss this issue for f (R)

gravity considering also conformal transformations. Cosmological solutions and equations of state can 
be classified according to energy conditions. The qualitative change of some energy conditions when 
transformation from the Jordan frame to the Einstein frame done is also observed.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The observed cosmic acceleration [1–5] points out that a revi-
sion of the cosmological picture, based on the General Relativity 
(GR) and the standard model of particles, is needed. The puzzle 
can be addressed either introducing some form of dark energy or 
assuming modifications of GR. In other words, one can act either 
on the r.h.s. of the Einstein equations by introducing some new 
matter–energy fluid on the l.h.s. modifying or improving geometry. 
In this latter perspective, f (R) gravity is the straightforward mod-
ification of GR where, instead of assuming the gravitational action 
strictly linear in the Ricci scalar R , one takes into account a gen-
eral function of R . The paradigm is that the form of f (R) can be 
fixed according to the cosmological and astrophysical observations 
ranging from local to cosmological scales [6–15].

Beside phenomenological approaches, first principles like en-
ergy conditions, causal structure and the classification of singu-
larities can be considered to restrict the possible forms of f (R)

models [16–23]. In particular, energy conditions, originally for-
mulated in Ref. [24] for GR, can play an important role to fix 
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physically consistent f (R) models [19]. In this debate, the role 
of conformal transformations is crucial because, also if the Jordan 
and Einstein frames are mathematically equivalent, the meaning of 
energy conditions can depend on the frame where they are for-
mulated [25–28]. In particular, the effective pressure and effective 
energy definitions changes according to the frame [31,19–23,29,30]
not only in f (R) gravity but also in other alternative theories of 
gravity [32]. In general, it is important to define the role of further 
geometrical terms in the stress–energy tensor [33–36] and to re-
cast the energy conditions accordingly. Conformal transformations 
and their physical meaning are crucial in the perspective of deter-
mining self-consistent energy conditions. For review, see [37–45].

In this paper, we are considering the role of energy condi-
tions in of f (R) cosmology. In particular, we discuss the conformal 
transformations of the f (R) effective energy–momentum tensor. 
This issue is extremely relevant to address the attractive/repulsive 
behavior of f (R) cosmological models in relation to the equation 
of state.

The paper is organized as follows. In Sec. 2, we consider the 
energy conditions in GR. Their definition for Extended Theories of 
Gravity (ETG) is taken into account in Sec. 3. The effective energy–
momentum tensor, containing curvature terms, is discussed in 
Sec. 4. The relations of this generalized energy–momentum ten-
sor to the cosmological equation of state are considered in Sec. 5. 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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As an example of the above general results, we assume the case of 
power-law f (R) gravity in Sec. 6. Conclusions are drawn in Sec. 7.

2. Energy conditions in General Relativity

Let us start from the Einstein field equations(
Rμν − 1

2
gμν R

)
= κ2

2
Tμν, (1)

where Rμν is the Ricci tensor, R is the Ricci scalar, and Tμν is 
energy–momentum tensor of the matter fields. Such equations de-
termine the causal and geodesic structure of space–time. The Ein-
stein field equations can be written also as

Rμν = κ2

2

(
Tμν − 1

2
T gμν

)
, (2)

where the analog role of matter and geometry into dynamics is 
evident. Due to this aspect, we can deal with geometrodynamics af-
ter Wheeler [46]. Since such equations are addressing the causal 
(metric) and geodesic structure of the space–time, the energy–
momentum tensor has to satisfy some conditions. We can take 
into account a timelike vector uα normalized as uαuα = −1 for the 
signature (− +++). It is the four-velocity of an observer in space–
time, and an arbitrary, future-directed null vector kα , i.e. kαkα = 0. 
The energy conditions are contractions of timelike or null vector 
fields with respect to the Einstein tensor and energy–momentum 
tensor coming from field Eqs. (1) or (2). We obtain four conditions 
[24,47] which are

• The WEC (WEC) which states that at each point of the space–
time p ∈ M the energy–momentum tensor satisfies the in-
equality

Tμνuαuβ ≥ 0 , (3)

for any timelike vector u ∈ TpM. If uα is a four-velocity of 
an observer, then the quantity Tμνuαuβ is the local energy 
density and the inequality (3) is equivalent to the assumption 
that the energy density of a given matter source, measured 
by an arbitrary observer, is non-negative. The canonical form 
of the energy–momentum tensor [24] can be written in the 
orthonormal basis as T μν = diag(ρ, p1, p2, p3) and then, one 
obtains

ρ ≥ 0 , ρ + pi > 0 , i = 1,2,3 . (4)

Following [35], it can be written as

Rμνuμuν ≥ −κ2

4
(ρ −

3∑
i=1

pi) . (5)

• The Null Energy Condition (NEC) considers future-directed 
null vector kμ

Tμνkαkβ ≥ 0 , (6)

from which one gets ρ + pi ≥ 0.
• The Dominant Energy Condition (DEC) states that matter 

flows along timelike or null world lines. By contracting the 
energy–momentum tensor with an arbitrary, future-directed, 
timelike vector fields, the quantity −T μ

ν uν becomes a future-
directed, timelike or null vector field. It is called the matter 
momentum density that a given observer can measure. This 
means that, in any orthonormal basis, the energy dominates 
the other components of the energy–momentum tensor being 
T 00 ≥ |T ij |:
ρ ≥ 0 , ρ ≥ |pi | . (7)

• The Strong Energy Condition (SEC)(
Tμν − 1

2
T gμν

)
uμuν ≥ 0 (8)

is a statement about the Ricci tensor:

Rμνuμuν ≥ 0 , (9)

and together with the Raychaudhuri equation [48–51] gives 
that gravity has to be attractive.

All these considerations are related to standard matter which sat-
isfies regular equations of state and is minimally coupled to the 
geometry. They can be generalized to other theories of gravity as-
suming that at least causal structure is preserved.

3. Energy conditions in Extended Theories of Gravity

Any alternative theory of gravity should be confronted with en-
ergy conditions which assign the fundamental causal and geodesic 
structure of space–time. In particular Extended Theories of Gravity 
(ETGs) [6–8], which are straightforward extensions of the Einstein 
gravity, can be recast in such a way to be dealt under the standard 
of energy conditions. As discussed in [35,36], the field equations of 
any ETG can be written in the form

g(�i)(Gμν + Hμν) = κ2

2
Tμν , (10)

where Gμν = Rμν − 1
2 gμν R is the Einstein tensor, g(�i) is a gen-

eralized coupling with the matter fields which contributes to the 
energy–momentum tensor Tμν . �i represents curvature invariants 
and/or gravitational fields which contributes to the dynamics. Hμν

is a geometric tensor term including all geometrical modifications 
given by the given ETG. General Relativity is recovered assuming 
g(�i) = 1 and Hμν = 0.

The contracted Bianchi identities and the covariant conservation 
of the energy–momentum tensor give the conservation law

∇α Hμν = − κ2

2g2
T μν∇α g , (11)

which is zero if one deals with vacuum and the coupling g has 
a non-diverging value (i.e. Gμν = −Hμν ). For energy conditions in 
ETGs, the combination of Gμν and Hμν is relevant while, in GR, 
one needs only the conditions for the Einstein tensor. Specifically, 
the extended SEC has the form

g(�i)

(
Rμν + Hμν − 1

2
gμν H

)
uαuβ ≥ 0 , (12)

from which one concludes that the condition Rμνuμuν ≥ 0, valid 
for GR, does not guarantee the attractive nature of gravity. In other 
words, also in the case where SEC is valid, one can obtain repulsive 
gravity in ETGs, in particular in f (R) gravity, as discussed in [52].

Physical quantities which are measured by an observer are the 
components of the energy–momentum tensor

T αβ = ρuαuβ + phαβ + �αβ + 2q(αuβ) , (13)

where ρ = Tαβuαuβ and p = 1
3 Tαβhαβ are the energy-density

and the isotropic pressure, respectively. �αβ = (
hασ hβγ −
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1
3 hαβhσγ Tσγ

)
is the anisotropic stress tensor and qα = uσ Tσγ hαγ

denotes the current vector of the heat/energy flow. The quantity 
hα

β = δα
β + uαuβ , is an orthogonal projection tensor.

The last two components of (13) vanish if one considers a per-
fect fluid medium. In that case it is very convenient to choose an 
observer comoving with the fluid [53,56,57]; it means that the ob-
server is at rest with respect to the flow of the fluid.

Any ETG can be described as an effective theory [7] bringing 
the further geometric/field components on the r.h.s. of the Einstein 
field equations

Gαβ = κ2

2
T eff
αβ , (14)

where T eff
αβ is an effective energy–momentum tensor defines as 

T eff
αβ = T (m)

αβ /g − κ2

2 Hαβ . Here Tαβ is the ordinary matter content 
and the quantity g Hαβ can be seen as an extra energy–momentum 
tensor related to scalar fields and curvature invariants [35]. The 
terms in the tensor (13) can be defined for any ETG as

ρ̃ = (g Hαβ)uαuβ , (15)

3p̃ = (g Hαβ)hαβ , (16)

�̃αβ = (g Hαβ)

(
hασ hβγ − 1

3
hαβhσγ

)
, (17)

q̃α = (g Hαβ)uσ hαγ , (18)

where a straightforward fluid-dynamical picture is restored. The 
above physical quantities can be measured by an observer uα

(m) co-
moving with the perfect fluid described by the energy–momentum 
tensor Tαβ . Below, we will specify these considerations for the 
case of f (R) assuming a Friedmann–Robertson–Walker (FRW) cos-
mology.

4. Definitions of the energy–momentum tensor in f (R) gravity

The action of the f (R) gravity is given by [6,7,10,11,54]

S f (R) =
∫

d4x
√−g

[
f (R)

2κ2
+L(m)

(
�i, gμν

)]
. (19)

Here L(m) is the Lagrangian density of the matter and �i ’s express 
all the matter fields involved into dynamics. By the variation with 
respect to the metric gμν , we obtain the following equation,

1

2
gμν f (R)− Rμν f ′(R)− gμν� f ′(R)+∇μ∇ν f ′(R) = −κ2

2
T (m)
μν .

(20)

Here T (m)
μν is the energy–momentum tensor for the matters, which 

satisfies the conservation law,

0 = ∇μT (m)
μν = 0 . (21)

Eq. (20) can be rewritten as

Rμν − 1

2
gμν R = κ2

2
Tμν ,

Tμν ≡ 1

f ′(R)

[
T (m)
μν − 1

2

(
f ′(R)R − f (R) + 2� f ′(R)

)
+ ∇μ∇ν f ′(R)

]
. (22)

Then the Bianchi identity tells that Tμν is also conserved,

0 = ∇μTμν = 0 , (23)
and Tμν can be regarded as an effective energy–momentum ten-
sor. We may identify the matter independent part of Tμν in (22)
as a contribution from the dark energy,

T DE1
μν ≡ 1

f ′(R)

[
−1

2

(
f ′(R)R − f (R) + 2� f ′(R)

) + ∇μ∇ν f ′(R)

]
,

(24)

although T DE1
μν is not conserved. In general, the linear combination 

of T(m) μν and Tμν is conserved. Especially we may define an con-
served energy–momentum tensor,

T DE2
μν ≡

(
1

f ′(R)
− 1

)
T (m)
μν

+ 1

f ′(R)

[
−1

2

(
f ′(R)R − f (R) + 2� f ′(R)

) + ∇μ∇ν f ′(R)

]
,

(25)

which vanishes in the limit of the Einstein gravity, where f (R) →
R . Therefore we may regard T DE2

μν with the conserved energy–
momentum tensor of the dark energy including the corrections 
from matters. We should note that Eq. (22) or (25) tells the mat-
ters including the dark matter interact with the dark energy.

One can also rewrite f (R) gravity in the scalar–tensor form 
[54]. By introducing the auxiliary field A, the action (19) of the 
f (R) gravity is rewritten in the following form:

S = 1

2κ2

∫
d4x

√−g
{

f ′(A) (R − A) + f (A)

+ 2κ2L(m)

(
�i, gμν

)}
. (26)

By the variation of A, one obtains A = R . Substituting A = R into 
the action (26), one can reproduce the action in (19). Furthermore, 
we rescale the metric in the following way,

gμν = eσ g̃μν , σ = − ln f ′(A) . (27)

Then we obtain the Einstein frame action,

S E = 1

2κ2

∫
d4x

√
−g̃

[
R̃ − 3

2
g̃ρσ ∂ρσ∂σ σ − V (σ )

+ 2κ2L(m)

(
�i,eσ g̃μν

)]
,

V (σ ) = eσ h
(
e−σ

) − e2σ f
(
h

(
e−σ

)) = A

f ′(A)
− f (A)

f ′(A)2
. (28)

Here R̃ is the scalar curvature given by g̃μν and h 
(
e−σ

)
is given 

by solving the equation σ = − ln
(
1 + f ′(A)

) = − ln f ′(A) as A =
h 

(
e−σ

)
. Due to the scale transformation (27), a coupling of the 

scalar field σ with usual matter arises.
By the variation of the action (28) with respect to the metric 

g̃μν , we obtain the Einstein equation,

R̃μν − 1

2
g̃μν R̃ = κ2

{
κ2

[
3

2
∂μσ∂νσ

− 1

2
g̃μν

(
3

2
g̃ρσ ∂ρσ∂σ σ + V (σ )

)]
+ e−σ Tμν

}
.

(29)

Here Tμν is defined by

Tμν ≡ 2√−g
gμρ gνσ

δ

δgρσ

(∫
d4x

√−gL(m)

(
�i, gμν

))∣∣∣∣
gμν=eσ g̃μν

= 2eσ√−g̃
g̃μρ g̃νσ

δ

δ g̃ρσ

(∫
d4x

√
−g̃L(m)

(
�i,eσ g̃μν

))
, (30)
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and identical with Tμν in (51). The Bianchi identity ∇̃μ
(

R̃μν −
1
2 g̃μν R̃

)
tells that the quantity

T̂μν ≡ κ2
[

3

2
∂μσ∂νσ − 1

2
g̃μν

(
3

2
g̃ρσ ∂ρσ∂σ σ + V (σ )

)]
+ e−σ Tμν , (31)

has to be conserved ∇̃μ T̂μν = 0.

5. Energy–momentum tensor in FRW space–time and energy 
conditions

By the scale transformation gμν = eσ(t) g̃μν , the metric of the 
FRW universe is transformed by

ds2 = −dt2 + a(t)2
3∑

i=1

(
dxi

)2 → ds̃2 = e−σ (t)ds2

= e−σ (t)

(
−dt2 + a(t)2

3∑
i=1

(
dxi

)2
)

. (32)

Then we define the new time coordinate t̃ and the new scale factor 
ã
(
t̃
)

by

dt̃ ≡ e− σ (t)
2 dt , ã

(
t̃
) = e− σ

(
t
(
t̃
))

2 a
(
t
(
t̃
))

. (33)

We may assume the energy density ρ and the pressure p in the 
original frame satisfy the equation of state with the equation of 
state (EoS) parameter w , p = wρ . We also assume they satisfy the 
conservation law,

0 = dρ

dt
+ 3H (ρ + p) = dρ

dt
+ 3H (1 + w)ρ . (34)

Here H = 1
a

da
dt . Eq. (34) tells that ρ behaves as

ρ = ρ0a−3(1+w) . (35)

If we define

ρ̃ ≡ e
3(1+w)σ

2 ρ , p̃ ≡ e
3(1+w)σ

2 p , (36)

we find

0 = dρ̃

dt̃
+ 3H̃

(
ρ̃ + p̃

)
, p̃ = wρ̃ . (37)

Here H̃ = 1
ã

dã
dt̃

. Here we should note dã
dt̃

= e
σ(t)

2 dã
dt .

Then if ρ and p satisfy any of the following energy condition 
in the FRW universe,

◦ NEC: ρ + p ≥ 0 (38)

◦ WEC: ρ ≥ 0 and ρ + p ≥ 0 (39)

◦ SEC: ρ + 3p ≥ 0 and ρ + p ≥ 0 (40)

◦ DEC: ρ ≥ 0 and ρ ± p ≥ 0 (41)

ρ̃ and p̃ satisfy the same energy condition,

◦ NEC: ρ̃ + p̃ ≥ 0 (42)

◦ WEC: ρ̃ ≥ 0 and ρ̃ + p̃ ≥ 0 (43)

◦ SEC: ρ̃ + 3p̃ ≥ 0 and ρ̃ + p̃ ≥ 0 (44)

◦ DEC: ρ̃ ≥ 0 and ρ̃ ± p̃ ≥ 0 (45)
For the matters with a constant EoS parameter w , when we as-
sume ρ > 0, if w > −1, the NEC (38) and the WEC (39) are sat-
isfied. If |w| ≤ 1, the DEC (41) is satisfied. On the other hand, the 
SEC (40) requires w ≥ − 1

3 .
We now try to write the EoS parameter w in a covariant form. 

Because

T (m) ≡ gμν T (m)
μν = −ρ + 3p = (−1 + 3w)ρ ,

T (m)
μν T (m)μν = ρ2 + 3p2 =

(
1 + 3w2

)
ρ2 , (46)

we obtain

α ≡ T (m)
μν T (m)μν

T (m)2
= 1 + 3w2

(−1 + 3w)2
. (47)

By solving (47) with respect to w , we obtain

w = 3 ± √
9 − (9α − 3) (α − 1)

9α − 3
. (48)

In the covariant form, the energy–momentum tensor can be ex-
pressed by using ρ and p, as follows,

T (m)
μν = (ρ + p) uμuν + gμν p . (49)

Here uμ is the four velocity of the fluid satisfying uμuμ = −1. 
Then the conservation law 0 = ∇μTμν = 0 can be rewritten as

0 = uμuν∂μρ + (
uμuν + gμν

)
∂μp

+ (ρ + p)
(∇μuμuν + uμ∇μuν

)
. (50)

If the EoS parameter w is a constant, Eq. (49) can be rewritten as

T (m)
μν = {

(1 + w) uμuν + wgμν

}
ρ . (51)

Then the conservation law in (50) has the following form

0 = {
(1 + w) uμuν + wgμν

}
∂μρ

+ (1 + w)ρ
(∇μuμuν + uμ∇μuν

)
. (52)

By multiplying (50) and (52) with uν , we obtain the reduced ver-
sion of conservation,

0 = uμ∂μρ + ∇μuμ (ρ + p) = uμ∂μρ + (1 + w)∇μuμρ . (53)

Under the scale transformation, uμ transforms as

uμ = e
σ
2 ũμ . (54)

We also note that the connection is transformed as

�
μ
νρ = �̃

μ
νρ − 1

2

(
δ
μ
ν∂ρσ + δ

μ
ρ∂νσ − g̃νρ g̃μσ ∂σ σ

)
. (55)

Then by using (36), we find the reduced conservation law (53), 
again,

0 = ũμ∂μρ̃ + (1 + w) g̃μν∇̃μũνρ̃ . (56)

Here ∇̃μ is given in terms of �̃μ
νρ in (55). We should note that we 

did not redefine the coordinate not as in (33).
Motivated in (27), (36), (51), and (54), we may define

T̃ (m)
μν = e

(1+3w)σ
2 T (m)

μν . (57)

We should note that T̃ (m)
μν satisfies the identical energy conditions 

(42), (43), (44), and (45) with those (38), (39), (40), and (41) for 
Tμν . Then we find
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∇̃μ T̃ (m)
μν = g̃μρ∇̃μ T̃ (m)

ρν

≡ e
3(1+w)σ

2 gμρ

(
∇μT(m)ρν + (1 + 3w)

2
∂μσ T (m)

ρν

+ 1

2

{(
δτ

μ∂ρσ + δτ
ρ∂μσ − gμρ gτσ ∂σ σ

)
T (m)
τν

+
(
δτ

μ∂νσ + δτ
ν∂μσ − gμν gτσ ∂σ σ

)
T (m)
ρτ

})
= e

3(1+w)σ
2 gμρ

(
∇μT (m)

ρν + (−1 + 3w)

2
∂ρσ T (m)

μν

+ 1

2
∂νσ T (m)

μρ

)
. (58)

Therefore even if T (m)
μν is conserved, that is, 0 = ∇μT (m)

μν in the Jor-

dan frame, T̃ (m)
μν does not conserved. By using (27), (36), (51), and 

(54), we find

e
3(1+w)σ

2 gμρ

(
(−1 + 3w)

2
∂ρσ T (m)

μν + 1

2
∂νσ T (m)

μρ

)

= (−1 + 3w) (1 + w)

2

{
g̃μρ∂ρσ ũμũν + ∂νσ

}
ρ̃ . (59)

By multiplying gνρ ũρ with Eq. (59), we find

e
3(1+w)σ

2 gμρ

(
(−1 + 3w)

2
∂ρσ T (m)

μν + 1

2
∂νσ T (m)

μρ

)
gνρ ũρ = 0 ,

(60)

which is consistent with (56). Eq. (59) tells that T̃ (m)
μν conserved in 

case of the radiation 
(

w = 1
3

)
, which is scale invariant, and also 

in case of the cosmological constant, where ρ and p are invariant 
under the scale transformation as clear from (36).

We now consider the energy conditions of T̂μν in (31). Al-

though e−σ T (m)
μν in the r.h.s. of (31) satisfies the identical energy 

conditions with T (m)
μν , due to the contribution from σ , T̂μν in (31)

does not always satisfy the identical energy conditions with those 
of T (m)

μν (38), (39), (40), and (41). Let write the energy density and 
the pressure given by T̂μν as ρ̂ and p̂. For the FRW space–time in 
(32), they are explicitly given by

ρ̂ = κ2
(

3

2
σ̇ 2 + V (σ )

)
+eσ ρ , p̂ = κ2

(
3

2
σ̇ 2 − V (σ )

)
+eσ p .

(61)

We should note that the potential V (σ ) can be negative in gen-
eral. Eqs. (32) tells that even by the scale transformation (27), the 
FRW space–time is transformed into the FRW space–time, there-
fore, where the space–time is expanding or shrinking, and there-
fore the energy density ρ̂ should be positive,

ρ̂ > 0 , (62)

which gives the lower bound for V (σ ),

V (σ ) > −3κ2

2
σ̇ 2 − eσ ρ > −eσ ρ . (63)

Because now we have

ρ̂ + p̂ = 3κ2σ̇ 2 + eσ (ρ + p) ≥ eσ (ρ + p) , (64)

Therefore if ρ and p satisfy the NEC (38) and WEC (39), ρ̂ and p
also satisfy the Conditions. We also find

ρ̂ + 3p̂ = 2κ2
(

3σ̇ 2 − V (σ )
)

+ ρ + 3p , (65)
which tells that when ρ and p satisfy the SEC (40), ρ̂ and p̂ also 
satisfy the SEC if 3σ̇ 2 > V (σ ). On the other hand, because

ρ̂ − p̂ = 2κ2 V (σ ) + eσ (ρ − p) , (66)

if ρ and p satisfy the DEC (41) and the potential V (σ ) is positive, 
ρ̂ and p̂ also satisfy the Dominant Energy Condition.

6. The case of power-law f (R) gravity

Let us now assume that f (R) behaves as f (R) ∝ f0 Rm . When 
we include the contributions from the matter with a constant EoS 
parameter w , if we assume the FRW universe (32), the solution is 
given by

a = a0th0 , h0 ≡ 2m

3(1 + w)
,

a0 ≡
[
−3 f0h0

κ2ρ0

(
−6h0 + 12h2

0

)m−1 {(1 − 2m) (1 − m)

− (2 − m)h0}
]− 1

3(1+w)

. (67)

Here ρ0 is defined in (35). Then the effective EoS parameter, which 
is given by Tμν in (22), is

weff = −1 + w + 1

m
. (68)

Then even if w > −1, when m < 0, all the energy conditions (38), 
(39), (40), and (41) are not satisfied for Tμν . Because R behaves 
as A = R ∝ 1

t2 , e−σ = f ′(A) behaves as e−σ ∝ t−2(m−1) . Then the 
equations in (33) show that

t̃ ∝ t2−m , ã ∝ t−(m−1)+ 2m
3(1+w) = t

−3(m−1)w−m+3
3(1+w) ∝ t̃− 3(m−1)w−m+3

3(2−m)(1+w) .

(69)

In case that the matter with the EoS parameter w minimally cou-

ples with gravity, the scale factor behaves as a ∝ t
2

3(1+w) , which 
shows that the effective EoS parameter wE

eff in the Einstein frame, 
which is defined by using T̂μν in (31), is given by

wE
eff = −1 + 2(2 − m)(1 + w)

−3(m − 1)w − m + 3

= −1 + 2(2 − m)(1 + w)

−(3w + 1)m + 3(1 + w)
. (70)

Then even if w > − 1
3 , when

3(w + 1)

3w + 1
= 1 + 2

3w + 1
< m < 2 , (71)

we find wE
eff < −1, all the energy conditions (38), (39), (40), and 

(41) are not satisfied but the inequality (71) is consistent when 
w > 1

3 , which might be unnatural.
Eq. (67) or (68) tells that there occurs the Big Rip singularity 

in the Jordan frame when w+1
m < 0 and therefore all the energy 

conditions (38), (39), (40), and (41) are not satisfied for Tμν . We 
should note that the energy conditions of the matter follow the 
relations which have been mentioned after (45):

• When w > −1, the NEC (38) and the WEC (39) are satisfied.
• When |w| ≤ 1, the DEC (41) is satisfied.
• When w ≥ − 1 , the SEC (40) is satisfied.
3
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Table 1
The region satisfying the energy conditions when we vary w .

NEC, WEC DEC SEC

w < −1 m <
3(w+1)
3w+1 or m > 2 2 < m < 1+w

2w or m > 2 3(1+w)
2 or m > 2

−1 < w < − 1
3

3(w+1)
3w+1 < m < 2 1+w

2w < m < 2 3(w+1)
3w+1 < m <

3(1+w)
2

− 1
3 < w < 0 m < 2 or m >

3(w+1)
3w+1

1+w
2w < m < 2 m <

3(1+w)
2 or m >

3(w+1)
3w+1

0 < w < 1
3 m < 2 or m >

3(w+1)
3w+1 m < 2 or m > 1+w

2w m <
3(1+w)

2 or m >
3(w+1)
3w+1

w > 1
3 m <

3(w+1)
3w+1 or m > 2 m < 1+w

2w or m > 2 m <
3(w+1)
3w+1 or m >

3(1+w)
2

Table 2
The region satisfying the energy conditions when we vary m.

NEC, WEC DEC SEC

m < 0 w < −1 or w > − 3−m
3(1−m)

w < −1 or w > 1
2m−1 w < −1 + 2

3 m or w > − 3−m
3(1−m)

0 < m < 1
2 w < − 3−m

3(1−m)
or w > −1 w > −1 or w < 1

2m−1 w < − 3−m
3(1−m)

or w > −1 + 2
3 m

1
2 < m < 1 w < − 3−m

3(1−m)
or w > −1 −1 < w < 1

2m−1 w < − 3−m
3(1−m)

or w > −1 + 2
3 m

1 < m < 2 −1 < w − 3−m
3(1−m)

−1 < w < 1
2m−1 −1 + 2

3 m < w < − 3−m
3(1−m)

m > 2 w < −1 or w > − 3−m
3(1−m)

w < −1 or w > 1
2m−1 − 3−m

3(1−m)
< w < −1 + 2

3 m
In the Einstein frame, if we define the energy–momentum ten-
sor of the matter by (57), all the energy conditions of the mat-
ter do not change from those in the Jordan frame. For the total 
energy–momentum T̂μν (31) in the Einstein frame, by using (70), 
we find

• When 2(2−m)(1+w)
−(3w+1)m+3(1+w)

> 0, the NEC (38) and the WEC (39)
are satisfied. That is,
– If w < −1, m < 3(w+1)

3w+1 or m > 2.

– If −1 < w < − 1
3 , 3(w+1)

3w+1 < m < 2.

– If − 1
3 < w < 1

3 , m < 2 or m > 3(w+1)
3w+1 .

– If w > 1
3 , m < 3(w+1)

3w+1 or m > 2.
or
– If m < 0, w < −1 or w > − 3−m

3(1−m)
.

– If 0 < m < 1, w < − 3−m
3(1−m)

or w > −1.

– If 1 < m < 2, −1 < w − 3−m
3(1−m)

.

– If m > 2, w < −1 or w > − 3−m
3(1−m)

.

• When 2 ≥ 2(2−m)(1+w)
−(3w+1)m+3(1+w)

≥ 0, the DEC (41) is satisfied. That 
is,
– If w < −1, 2 < m < 1+w

2w or m > 2.
– If −1 < w < − 1

3 , 1+w
2w < m < 2.

– If − 1
3 < w < 0, 1+w

2w < m < 2.
– If 0 < w < 1

3 , m < 2 or m > 1+w
2w .

– If w > 1
3 , m < 1+w

2w or m > 2.
or
– m < 0, w < −1 or w > 1

2m−1 .

– 0 < m < 1
2 , w > −1 or w < 1

2m−1 .

– 1
2 < m < 1, −1 < w < 1

2m−1 .

– 1 < m < 2, −1 < w < 1
2m−1 .

– m > 2, w < −1 or w > 1
2m−1 .

• When 2(2−m)(1+w)
−(3w+1)m+3(1+w)

≥ 2
3 , the SEC (40) is satisfied. That is,

– If w < −1, m < 3(1+w)
2 or m > 2.

– If −1 < w < − 1
3 , 3(w+1)

3w+1 < m < 3(1+w)
2 .

– If − 1
3 < w < 1

3 , m < 3(1+w)
2 or m > 3(w+1)

3w+1 .

– If w > 1
3 , m < 3(w+1)

3w+1 or m > 3(1+w)
2 .

or
– If m < 0, w < −1 + 2 m or w > − 3−m .
3 3(1−m)
– If 0 < m < 1, w < − 3−m
3(1−m)

or w > −1 + 2
3 m.

– If 1 < m < 2, −1 + 2
3 m < w < − 3−m

3(1−m)
.

– If m > 2, − 3−m
3(1−m)

< w < −1 + 2
3 m.

We should note that in the Einstein frame, when 2(2−m)(1+w)
−(3w+1)m+3(1+w)

<

0, we have the phantom phase when 0 < 2(2−m)(1+w)
−(3w+1)m+3(1+w)

< 2
3 , 

we have quintessence phase, and when 2(2−m)(1+w)
−(3w+1)m+3(1+w)

> 2
3 , we 

have the deceleratedly expanding universe.
The above results are summarized in Table 1 and Table 2.
We have considered the case that f (R) behaves as f (R) ∝

f0 Rm , which may be realized in some limit or any extremal cir-
cumstance as in the early universe like inflation. Not in such an 
extremal case, if f (R) is a smooth function of R , for example, 
f (R) ∼ eαR and we consider the era when R = R0 in the back-
ground, we can expand f (R) around the background curvature R0

as follows,

f (R) = f (R0) + f ′(R0) (R − R0) +O
(
(R − R0)

2
)

. (72)

The terms of O
(
(R − R0)

2) are subdominant and we may neglect 
them. Then we can identify f (R0) − f ′(R0)R0 as a cosmologi-
cal constant and f ′(R0) as the inverse of Newton’s gravitational 
constant. Therefore the gravity can be described by the Einstein 
gravity and therefore the energy conditions are not changed from 
those in the Einstein gravity. Of course, if we include O

(
(R − R0)

2)
corrections, there could be small deviation of the effective energy 
conditions.

In the Einstein frame, when f (R) = f0 Rm , Eq. (28) gives the 
following potential,

V (σ ) = m − 1

m2 f
2m−3
m−1

0

e
m−2
m−1 σ . (73)

Then if we define ρ̃ and p̃ by (36), the energy conditions (42), 
(43), (44), and (45) for ρ̃ and p̃ do not changed from the energy 
conditions (38), (39), (40), and (41) for the original energy density 
ρ and pressure p. Therefore in the Einstein frame, as in the Ein-
stein gravity, we have NEC when w > −1, DEC when |w| ≤ 1, and 
SEC when w ≥ − 1

3 .
We should note weff given in (68) and wE

eff given in (70) are 
different from the EoS parameter w , which is defined by w = p
ρ



S. Capozziello et al. / Physics Letters B 781 (2018) 99–106 105
using the matter energy density and the pressure of the matter as 
given before (34). The EoS parameter w is defined in the Jordan 
frame but it does not change even in the Einstein frame if we use 
ρ̃ and p̃ in (36), that is, p

ρ = p̃
ρ̃

= w . On the other hand, weff is 
given by Tμν in (22) and wE

eff is given by T̂μν in (31).
As a concrete example, we consider the case that the matter is 

dust with w = 0, where all the energy conditions for the matter 
energy–momentum tensor T (m)

μν (49) in the Jordan frame and T̃ (m)
μν

(57) in the Einstein frame are satisfied. Eq. (67) or (68) tells that if 
m is negative, there is a Big Rip singularity at t = 0 in the Jordan 
frame. This tells the dark energy–momentum tensor T DE1

μν in (24)

or T DE2
μν in (25) in the Jordan frame does not satisfy any energy 

condition. As clear from the above analysis, even if m < 0, all the 
energy conditions can be satisfied for the total energy momentum 
tensor T̂μν (31) in the Einstein frame. We should note that Eq. (69)
tells the time for the Big Rip singularity in the Jordan frame, t = 0, 
corresponds to t̃ → ∞ and there does not occur the singularity in 
the finite time in the Einstein frame. See also [55,59].

7. Discussion and conclusions

The role of energy conditions is crucial to define self-consistent 
and physically motivated theories of gravity. Specifically, any fluid 
assumed as source of the field equations has to be compatible with 
causal and geodesic structure of space–time so then energy condi-
tions can be seen as a sort of “selection rule” for viable relativistic 
theories. In the case of ETGs, the further degrees of freedom re-
lated to geometric invariants and scalar fields can be represented 
as contributions in the effective stress–energy tensor. This means 
that, also by preserving the physical meaning of energy conditions, 
dynamics can be affected and modified with respect to the stan-
dard GR because the stress–energy tensor results modified with 
respect to the one of standard matter.

In this paper, we have considered energy conditions in f (R)

cosmology. The main role for the discussion is played by the defi-
nition of the stress–energy tensor that can be defined in the Jordan 
and in the Einstein frame under a conformal transformation. The 
further degrees of freedom of f (R) gravity can be modeled out 
as a scalar field that modifies the energy–matter content and the 
affects the dynamics. In particular, we showed that dark energy 
behaviors, and then generalization of EoS giving rise to accelerated 
(repulsive) gravity are compatible with energy conditions that, in 
any case, preserve causality and geodesic structure. Specifically, in 
the case of power-law f (R) gravity, both the EoS (i.e. w) and the 
specific cosmological models (given by the power m of Rm) can 
be combined with energy conditions. The emerging classification 
selects viable ranges of w and m. In particular, the accelerating/de-
celerating behaviors (then dark energy behaviors), the presence/ab-
sence of Big Rip singularities and other important cosmological 
features, strictly depend on the given energy condition that have 
to be satisfied.

In general, theoretical constraints on the functional form of 
f (R) can be derived from energy conditions. As discussed in 
[52,35,36,58], we can consider the cosmic fluid evolution, given 
by the Raychaudhuri equation for the congruence of timelike 
geodesics, as the dynamical equation to be compared with the en-
ergy conditions. It is

dθ

dτ
= −θ2

3
− σμνσ

μν + wμν wμν − Rμνξμξν . (74)

Here ξμ = dxμ/dτ is a tangent vector, θ, σμν, wμν are the ex-
pansion, the shear and the twist of the congruence of geodesics 
respectively; τ is the proper time of an observer moving along 
a geodesic. According to this approach, it is possible to define a 
function Mξμ ≡ −Rμνξμξν which is related to the geodesic focus-
ing. The sign of such a function is crucial: for Mξμ > 0, we have 
geodesic defocusing; for Mξμ < 0, there is geodesic focusing, for 
Mξμ = 0 there is no contribution. For example, according to the 
notation in [52] where F (R) = R + f (R), the SEC is satisfied if

Mξμ ≤ R f ′ − f + (∇α∇α − 2ξμξν∇μ∇ν) f ′

2(1 + f ′)
, (75)

and then the form of f (R) results constrained. Furthermore, more 
precise constraints can come from cosmography. In fact, being the 
cosmographic parameters Hubble H , deceleration q, jerk j, and 
snap s parameters, defined as

H = ȧ

a
, q = − 1

H2

ä

a
, j = 1

H3

...
a

a
, s = 1

H4

....
a

a
, (76)

it is worth to define the Ricci scalar and its derivatives in FRW 
metric as:

R = 6H2(1 − q) ,

Ṙ = 6H3( j − q − 2) ,

R̈ = 6H4(s + q2 + 8q + 6) . (77)

According to observations [1–5], the cosmographic parameters (76)
can be fixed in a model independent way. Starting from Eq. (75), 
we get

Mξ
μ
F RW

≤ − f /2 + c1 f ′ + c2 f ′′ + c3 f ′′′

1 + f ′ , (78)

where primes indicate derivative with respect to R . The coeffi-
cients ci can be related to cosmography as

c1 = 3(1 − q)H2 ,

c2 = −9(s + j + q2 + 7q + 4)H4 ,

c3 = −54( j − q − 2)2 H6 . (79)

Eq. (78) fixes the range of possible f (R) models according to the 
SEC as soon as the set of numbers {H, q, j, s} is given by the ob-
servations.

Besides, theoretical and observational constraints can come 
from other physical requirements like the absence of ghost modes, 
gravitational wave constraints, compatibility with fifth force and 
large scale-structure, see for example [60–63].

In a forthcoming paper, this approach will be developed for 
other ETGs and confronted to the observations.
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