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Burt Richter, at SLAC, has called for a design of a 0.5 + 0.5 TeV c+e- 
collider with a luminosity of at least loss cmm2 set-r. In order to find 
whether such a machine is possible, I have collected here approximate for- 
mulae for many of the relations governing the design of a linear collider. It 
must be emphasized that these are often only approximate relations whose 
accuracy is not expected to be better than about lo%, and in some cases 
may be worse. Units throughout will be meter-kilogram-second (mks) un- 
less otherwise stated. Given these relations, their interdependence is studied 
and parameter choices made. A self-consistent solution is found that meets 
Richter’s specification and does not involve any exotic technologies. 

1.1 Emittance 

It is assumed that electrons and positrons are obtained from damping rings, and that these are of 
the continuous wiggler type [1,2]. It is assumed that the phase advances per cell are sufficiently small 
and that straight sections are sufficiently short so that a smooth approximation (p E constant) can be 
used. All bending magnets in the ring consist of at least one inward bend and one outward, so that the 
average bending field (Bd) is lass than the local fields Bd in the magnets. I define 

Fm = fraction of ring filled by dipoles 

c = vertical/horizontal emittance due to mixing 

The emittances both vertical and horizontal are damped by the emission of synchrotron radiation 
with a time constant (31: 

8.3 1 
rw = J 

r,y Bjr Fm 
(mks) , (1) 

where Jz, Jr are the partition functions [3], usually J. = J, = 1. 

The horizontal (2) emittance does not reduce to zero, however, but to an equilibrium value. At 
high energies this value is set by the effect of quantum fluctuations: 

qhl = 2.2 x 1o-‘O pz Bd $ , 
(Jz + SJ”) $, 

Q% = Sqkzn , 

where < is a mixing parameter, /I, is the average function (pz = R/Q,), and Qs is the tune of the ring. 
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At bwer energies intrabeam scattering sets an equilibrium emittance [4]: 

1.2 x lo-‘0 
efsn - 

Bd 

&yn = f&m , 

dp t*n = 7 - a, . 
P 

N A 1/a 112 cm -I Fm QsV. + ~4,) 01 i% I 
(3) 

We note from the different 7 dependencies that there must be an optimum r. for which e~ = qc 
(see Fig. 1). 

10-6 

where 

01 0.2 05 1.0 2.0 

. I L (Gev) ..$*. 

Fig. 1. The normalized emittance of a sample ring, as a function of operating electron 
energy. As E is varied the ring is varied to keep the bending field Bd, the focussing field B, 
and the tune Q fixed. At low energies the emittance is dominated by intrabeam scattering, 
at high energies by quantum fluctuations. 

N 419 1 213 
70 e 2.1 x 10-r (BvIB$‘~ 

cl,, Bj.5 s(Jz + &,)‘/* F,,, k;‘* 10 E,, ’ (4) 

(5) 

a = quadrupole aperture 

B, = quadrupole pole tip field (SC 1.5 Tesla) 

Fq = fraction of ring full of quads (= .2) 

kr = .14, for a lattice scaled from the SLAC damping ring. 

When contributions from both quantum fluctuations and intrabeam scattering are comparable, 
then the equilibrium emittance is given [4] by 



cs,(equilib) = f [q&n + (qE:n + 4,E:y*] , 

thus for q~.n = c~z,, 

s,,(equilib) w 1.6 q~zn . (7) 

Actually a minimum equilibrium is obtained at a 7 somewhat below that given by Eq. (4) and it is a 
reasonable approximation to use 

E.n = 1.4 qr., . (8) 

The wiggle is assumed to consist of a sufficient number of inward and outward bends, so that the 
contribution to the emittance from the rate of change of dispersion is negligible. This condition requires 
the maximum wiggler pole length & to satisfy 

‘Lafy= p!g!, 
d- m 

where p is the bending radius in a wiggler and R is the average machine radius. In these examples I 
assume L, = 1/3(eE”) and the contribution to the equilibrium emittance is then less than l/Q. 

1.2 Other Requirements 

The impedance requirement for stability is taken to be: 

2 < (2n)3’ra, (E/e) au; 
n - CCN , (10) 

where 
R rl=-, 
0; (111 

aa 02) 

n’ote that the approximation for the momentum compaction (I also requires condition [Eq. (Q)]. 

Other relations are: 

9 = : e ; 1.1 x lo- (rB)‘12 , (13) 
L 

P2 Dispersion n cz $ , 

Sextupole length FI cz Fq $ , 

1 acceptance czn m 6xlO+yRQY 
0:. ’ 

06) 

RF Volts/turn U E 3.2 x 10’ 2 (17) 

where h is the harmonic number of the RF, 

energy loss/turn V = 5.78 x lo-’ 7’ . &RF,,, 

4 
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2. ACCELERATION 

2.1 Acceleration Cavity 

I assume that acceleration takes place in a 2n/3 disk-loaded-structure as used in the SLAC linac, 
but following Z. D. Farkas [s], I allow the group velocity to depart from that of the SLAC structure. 
Since the group velocity is a function of the iris aperture divided by the wavelength, we can choose these 
parameters separately and use an approximate fit to Farkas’ calculation using the program TWAP [5] 
(see Fig. 2a): 

&,=2 E exp{3.1-2.4(;)1’z-.Q(;)} . 
C 

The normalized corrected elastance is given approximately by (see Fig. 2b) 

sot m 5.7 x 101opt (VmC-‘) . 

(19) 

(20) 

This normalized and corrected elastance is related to the unnormalized elastance by 

sot = 81 a2 , (21) 

where st is defined by 

fa is the average accelerating field in a section and W, is the energy, assuming no losses, needed to 
generate that acceleration. This energy is not the same as that required (w) to fully fill the section 
because since the particle and fields are moving down the section at finite velocity, the length of the 
required field pulse is less than that of the section. Thus 

and 

where the uncorrected elastance, as defined by D. Farkas is 

E2 &!=A. 
W 

Note also that s is related to the loss parameter defined by P. Wilson: [6] 

ko=;. 

(25) 

(26) 
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Fig. 2. Parameters of a SLAC-like accelerating cavity as a function of the group velocity 
vr/c = pp. (a) the iris radius a divided by wavelength X; (b) the normalized corrected 
elastance s,t; (c) the attenuation time constant TO in psec, for X = 10.5 cm; (d) the peak 
RF field in the cavity &,k divided by the average accelerating field f,; (e) the outer cavity 
radius b divided by the iris radius a; (f) the relative peak rf power. In each case the line 
is obtained from Z. D. Farkss [5] and the dots are for the approximation used here. 

When losses are included, the energy needed is increased. If the attenuation time of the RF pulse, 
passing down the section, is defined ss To, then for a section of length L the energy required for the 
same average acceleration will be: 

WI 7’ 
WRP = - = wj 

VP (1 - e-7)2 ’ (27a) 

where up is the section efficiency, and 

L T T = To=% . CW 

This is for a uniform structure (i.e., C,, falling off along its length). Note that as r -+ 0, w,, -+ WI but 
the peak power per unit length goes to 00. 
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The attenuation time 2’0 is given approximately by (see Fig. 2~)): 

To sz 42 x lo-’ (1 + 1.29p;.s) Xrs , 

also (see Figs. 2d and e): 

w 

b EC 1.04 + 0.29 Ln 
a (;) +.~a bn (i-1’ , 

where f,,k~ is the maximum field within the structure and b is the inside radius of the cavity. In all cases 
the length of a cell is assumed to be X/3. 

All of the above approximate relations were obtained by fitting curves shown in Farkas and Wilson’s 
paper 151. 

2.2 Focussing in the Linac 

Assuming a symmetric FODO structure, the average strength of the focussing is given by 

(A) = (y i 2.%J2 ) (31) 

where p is the phase advance per half cell (taken ss 45’), BP is the pole tip field (taken as 1.5 Tesla), 
Fq is the fraction of linear length devoted to quadrupoles, and ac, the aperture of the quad, is taken to 
be 1.2 x a.“. Normally, a,, is the iris radius, but if the iris is elliptical with radii a and b: 

aa, = ’ (32) 

which is the radial distance at 45”. 

3. NTTANCE P RESERVATION 

3.1 Transverse Wake Fields 

The transverse wake field Wt depends on the geometry of the cavities. As a function of the length 
z along the bunch, the wakefield is observed [6] to have an initial linear rise: 

for 2 < a: lWt(z) E 6.64 x 10” ?- , a3.5 x.5 (33) 

and a maximum of 

at z w a: zWt(z) = 3.28 x 10” -& . (34) 
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Fig. 3. The scale invariant transverse wakefield (a3 Wt) as a function of the distance P 
divided by the iris radius a for (a) a/x = .105 (as for SLC), and.(b) a/X = .2 

For values of Wt at s/a < 1, a reasonable fit to the form of W [at least for the SLAC geometry 
(see Fig. 3)] is obtained if we take: 

w, = 
1 

( > 

112 * (35) 

&+& 

The approximation is seen to be reasonable in the region z < a. 

In the case of an elliptical iris with dimensions a and b, I assume the same form as given above 
with the substitution of a or b according to whether we are calculating Wt in the z or y directions. 

3.2 Landau Damping 

I assume that transverse wake effects are effectively controlled by Landau damping [7], providing 
an energy spread AE is maintained between the front and back of the bunch where, in the two bunch 
approximation: 

2E0, sz AE a~ f NWt(2oz) P2 I (36) 

where N is the number of particles per bunch, /3 the focussing strength in the linac and Wt(z) is the 
wake field potential. Both Wt and /3 are allowed to be different in the vertical and horizontal directions, 
but chosen so as to give the same required AE. For tolerance reasons that will appear below, I assume 

P r,y a e l/3 9 

thus 

up a lm113 . (33) 

where e is the length along the linac. If not specified, p and AE are given for the end of the linac - 
i.e., at full energy. 
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I will ‘dssume that the momentum spread dp/p = or, required for Landau damping is maintained 
until the end of all acceleration, but then removed prior to the final focus by an acceleration section of 
length fJ, operating at a phase advance of 90’. The length required is 

where p ls the final momentum, X the wavelength, f. the accelerating gradient and u. the rms bunch 
length. 

3.3 mnce Problems 

A severe tolerance problem comas from the effects of the finite momentum-spread and strong 
focussing needed to Landau damp the transverse wake field effects. From R. Ruth I take the required 
rms alignment for phase advance per cell +, to be [8]: 

where 

and Nr, the number of quadrupoles, is 

Np = 
/ 

2dt 
p(e)cCI’ 

0 
. 

and from Eq. (36) we have 

Lw2 up a - 
7 ’ 

so 

(40) 

(41) 

(42) 

(43Q) 

(436) 

We see that unless the p is reduced at lower 7, the tolerances get tighter at lower 7. However, the 
quadrupole tip fields needed to obtain a given B also fall with -y [from Eq. (31)]. 

( > 

112 
WI a g , 

so it is not difficult to assume, for instance: 

P(e) 0: 7 113 o( @I3 ) 

which gives 

Tolerances: (dy) = constant , 

9 

(44Q) 

(444 



Then from Eq. (42), 

Landau: 0, a qs113 , 

Focus B: B, a 7113 . 

Np = 1.5 
2L [ 1 R=@’ 

(dy) = 1.63 -$=& (&)l” 
P 

(44c) 

(45) 

This tolerance concerns the alignment and steering precision within the linac: If all components 
were truly aligned to this accuracy, it would meet the requirement, but it can also be met by an 
appropriate combination of alignment and corrective steering that is somewhat less severe. 

Another interesting quantity is the change in phase advance Ad over the momentum spread inte- 
grated along the full accelerator. If this quantity is small compared to 1, then the dispersive errors due 
to misalignment appear at the end as a single lateral dispersion that could in principle be measured and 
corrected. 

L 
Ad = 

J 
dt 

0 

CPV) P(e) 1 

(46) 
= 1.5 Lo,(maxE) 

B(m=E) ’ 

A tolerance of a different kind concerns the allowable random movement of components from pulse 
to pulse. Fixed misalignments can often be corrected, but random movements cannot. The most severe 
restriction is on random motion of the linac focusing quadrupoles. For 90’ phase advance per cell: 

W 9 (dd , = ; $$ , (47) 

where N,, is the number of quadrupoles from Eq. (42) or (45). 

3.4 Longitudinal Wakes 

The Longitudinal wake for very short bunches tends towards a constant that is dependent only [Q] 
on the iris aperture ‘a’: 

.z<a : 1W = 1.78 x 10” L 
a2 . 

For the elliptical case, I assume 

t<a : 1W = 1.78 x 10” 

(48) 

(49) 

For bunches of length of the order of ‘a’ one finds (91: 
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zwa : SW = 1.25 x 10” (y i (;>“’ . 

And for the elliptical case I assume 

z=a : aW= 1.25 x 10” ($” (;+$) (i)“’ . 

For intermediate values of t, a reasonable fit to the SLAC case is obtained (see Fig. 4): 

113 

W,(z) = 
1 ( 1. l + l yiFp 

z N 0 

0.03 

0.02 

0.0 I 

(50) 

(51) 

(52) 

Fig. 4. The scale invariant longitudinal wakefield (a2 WC) ss a function of the length z 
divided by the iris radius a for (a) a/X = .105 (as for S&AC), and (b) a/x = .2 

To properly obtain the momentum spread produced in a bunch by the longitudinal wake, one 
should perform integrations of the wake potentials over the charge distribution of the bunch [6]. The 
effects are relatively complex: 

1) There is an average energy loss of the bunch (zeroth order). 

2) There is a greater loss to the back of the bunch compared with the front (first order). 

3) If the bunch is long there is a significant second order term with the rate of change of momentum 
falling at the back. 

4) There is a significant third order term that arises if the bunch is Gaussian rather than uniform in 
current density. 

Since all these are significant, the minimum number of sub-bunches that we can use to approximate 
the whole is four. I use four equal bun:hes: two at f1.4~~ and two at &.2u,. (These give correct u, 
and (It\)). The energy losses of the four bunches are then: 

11 
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Vl = z V(O)) , 
v2 = g {W(O) +W(1.20*)} ) 

v3 = i {W(0)+W(.4uz)+W(1.6ug),) , 

, 

a 

v, = s {w(o) + w(l.20;) + W(1.60,) + W(2.80,)) . 
a 

These values are compared with a full integration in Fig. 5. 

0 

-4 -2 0 2 4 

. 81 z/o, 5’,6LS 

Fig. 5. The longitudinal wakefield generated momentum spread generated in a Gaussian 
bunch passing through a SLAC-like structure. The smooth line is a calculation by P. Wilson 
161. The dots represent the results of the four-bunch approximation used here. These points 
have been normalized to the P. Wilson calculation. 

The average slope gives a Ap at la of 

Iup = 
.2(v3 - vz) + 1.4(v4 - v,) 

4 

The half spread due to the second order effect is: 

flap = (V3 + V2) - (V4 + Vl) 
4 , 

and the half spread from third order: 

(53) 

(54) 

(55) 

3Qp = 
.g7(V3 - Vz) + .13(v4 - vl) 

4 
(56) 

The first and second of these effects can in prisciple be cancelled by the RF. The first order effect 

12 



being cancelled by a phase shift in the RF given by 

x 
tan&o, = & lop ; . (57) 

However, some momentum spread is required for Landau damping so that the phase required at the end 
is, instead, given by 

rup - up(Landau)) $ . (58) 

The net second order momentum spread, including the RF is 

2xu, 2 
2op (total) = sop - 5 - 

( > x . 

For the purposes of designing the final focus system, I assume that the first order term is fully 
cancelled by the RF and use: 

VP (focus) = ( rop(total)2 + 343 2 
+.o, I 

I (6OQ) 

where 

Em 
IQP = z 9 (6Ob) 

which is the contribution to the momentumspread from the finite longitudinal emittance in the damping 
ring. 

4. FI AL F N ecus 

The parameters for the final focus are obtained by scaling one of two designs provided by K. Brown 
[lo]. In both cases the minimum 4 is calculated for a given momentum spread assuming no chromatic 
correction. The value of p’ that can be obtained with chromatic correction is less than pi by a factor S 

S, in a design similar to that in the SLC is expected (lo] to scale: 

s=3! 0.04 
c-. 

UP UP 

(61~) 

(6lb) 

This relation gives a factor of eight for up = &.5% as is obtained for the SLC. 
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Fig. 6. Final focus lens designs used (a) for solutions requiring a round focal spot and 
(b) for solutions requiring a flat beam. 

The two designs used are shown in Fig. 6. The triplet is used for the symmetric csse and the 
doublet for all asymmetric cases. The scaling involves the modification of all length dimensions by one 
factor and all transverse dimensions by another. We define scale factors J’ and a’. a* is the aperture 
in the first quadrupole, and the ‘ideal’ focal length is f’: 

B’ is the pole tip field in the first quad, E/ e is the beam energy in electron Volts, and c is the velocity 
of light. 

For any magnet system we can now express the performance in terms of these scaling parameters, 
a* and f’, and of invariant constants (T,, T,, A,, A, and L). The constants depend on the details of 
the magnet system considered. 

Given f’ and a’ for any magnet system scaled from the original design (all longitudinal distances 
scaled with f’ , all transverse distances scaled with a', all pole tip fields the same) then we can write 

P’ oz,y = Tw.2up.f’ , (63) 

e^z,y = a’ 
AI,Y’ 

l1=Lf’ . 

(64) 

(651 

where (1 is the free space before the first quad, e^ is the maximum angular acceptance, up is the rms 
dp/p momentum spread. The definitions are such that for an ‘ideal’ focussing system that can focus in 
both directions (such as a lithium or plasma lens) T E A m L a 1. 
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Combining Eq. (63) with Eq. (61), one obtains: 

C&u 4~) E/c e^ 8’ = so y $f up’ w (66) 

Values for T,,, and A,,, for the two focus designs given are: 

TZ 
TU 
-4, 
AU 
L 

TvAv 
SO 

Triplet 
2.96 
2.96 
4.3 
3.2 
1.36 
9.47 
0.04 

1.1 
3.6 
2.0 
1.1 
2.2 
0.04 

We note that the product TvAv which determines the S; obtainable is over four times smaller for 
the quadrupole solution. 

The maximum acceptance angle e^ is controlled by the disruption angles or beam size depending 
on whether the crossing is head-on or at a finite angle. In the head-on case the disruption angles are 
discussed in the next section and we take 

iz3, = - se b(z, Y) 3 

where So is a safety factor taken to be three. In the finite angle case 

ku = se d g* (68) 

where Se, the safety factor, is now taken to be six. 

T I 5. IKTERACTIOh POIAT 

5.1 Luminosity 

When the two bunches collide, the luminosity obtained is 

L _ N’fHzH, 
4ao,a, qL ’ (69) 

where 

P’ 

( > 

Ew r,y 
112 

0 r,u = I 
7 

(67) 

(‘0) 
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and nL is an efficiency factor to allow for effects of both a finite angle of crossing and a 0’ not very much 
larger than the bunch length oz. 

2 7r = - 7 -p{-(~)*[l+~(l+(:lpI)I)]} ds 
u*fi o 1+ (4P*)2 (71) 

where 6’d = az/uz is the diagonal angle, 8, is the crossing angle, and PI is the 8: at the final focus. 

Hz and H, in Eq. (69) are enhancement factors due to the pinch effect. I have assumed here that 
these enhancements can be factorized and that 

H 0,Y = Wz,,) 3 (72) 

where D,,, are disruption parameters defined by 

D 0. 
w = ; 3 f, 

(73) 

and jz,v are the effective focal length of the focussing of one bunch on the other, calculated for the 
center of Gaussian bunches. 

Assuming a beam in which oz 2 us then [ll] 

For round beams D, = D,, but for flat beams with u, > try, D, cz 0. In the intermediate region we 
take [II] 

Dz = reNo, 2 
Tz .iq’ 

The enhancements are given approximately [12] by 

H r,y (76) 

For round beams the more conventional enhancement factor H = HzHy = (Hy)2. This, calculated by 
this approximation, is plotted in Fig. 7 against D and compared with values given by other simulations 

1121. 
” 

- Yohoyo 

IO * Hollebeeh 
. FII 

“0 

,E 

5 
x .I x 

2 

0.2 0.5 1.0 2 5 IO 20 
4 *. D .,,‘.I ~ 

Fig. 7. The luminosity enhancement HD for round beams as a function of the disruption 
parameter D. The smooth line shows the results of K. Yokoya’s calculation [13]; the crosses 
are Hollebeck’s; the dots are the approximation used here. 
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5.2 . Disruption Angles 

Without pinch, the maximum Disruption angle is given [13] by 

where for 

e^w = 2Nr, .& 
yu+ =a ’ 

(a) uz = uv k sz .45 

(b) 0, s u,, 
k, E: .75 
k, k 1.25 

(77) 

However, the situation is somewhat different in the three cases. For 19, and for 8, in round beams a 
well-defined maximum angle occurs for particles at a finite impact parameter near u. But for By in flat 
beams the deflecting field rises to a plateau and the maximum angle occurs only for particles in the 
extreme tail of the distribution. As a result, the mean value is much less in this case. 

With pinch, the round case has been studied by Minten and Yokoya [13] and the disruption is 
enhanced by a factor He 

(79) 

Figure 8 shows this function together with Minten and Yokoya’s simulation. 

I I I I ’ I 

2- - Yokoya 
x Hollebeek, Mlnten 

H8 

I 

o- 
0 2 4 6 

4 87 D LILSALI 

Fig. 8. The enhancement of disruption angles Ho for round beams. The line is Yokoya’s 
calculation; the crosses are Hollebeek and Minten’s; and the dots the approximation used. 

For flat beams the enhancement of maximum deflection in the vertical (y) direction should not 
occur. This is because the field for a current sheet is not a function of its thickness. However, Yokoya 
has demonstrated that with a Gaussian bunch, a strong suppression of the average vertical disruption 
angle takes place for large D due to the oscillation of a particle in the field instead of a unidirectional 
deflection. In principle the deflection of the extreme tail of the distribution is still not changed and my 
program does not include this Yokoya 1131 suppression. 

In this discussion I have not included quantum fluctuations in the disruption process. There is a 
finite probability that an electron radiates a hard photon and is then, because it has a low momentum, 
disrupted by a much larger angle: 
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eD(quantum) = 8D (8’31 

The factor E,/(E, -ET) can be large and the resulting disruption world be a serious problem. In round 
beams there seems little that can be done about it and larger quad; and the resulting weaker focus 
would have to be employed. But with finite crossing angles one can employ a bending magnet to sweep 
the low energy disrupted electrons away from the quadrupole (Fig. 9). 

Fig. 9. The use of a sweeping magnet to return disrupted particles to the axis. Such 
correction will work independent of the beamstrahlung energy loss and resulting enhancement 
of the disruption angle. 

The field length required to required to return electrons that had the maximum disruption angle 
eD is: 

4 weep = ,@D(w) 
Bc' (81) 

where E/e is the beam energy in electron volts, B is the correction field and c the velocity of light. 

5.3 Beamstrahlung 

The beamstrahlung calculations are taken from the work of R. Noble [14]. The fractional loss of 
energy of one bunch passing through the other is given by 

(82) 

where Fr sz .22, rC c 2.82 x lo-r6 m. In this form I have replaced the enhancement factor HD that 
could account for the pinch effect by replacing the unpinched spot sizes (us and ur) by effective ‘pinched’ 
values (u: and uJ 

, _ 0. 
02 - - 1 

HZ 

I=% 
OV 

Hv ’ 

(83) 
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In the-symmetric case H,H, = Ho. For a flat beam, u, w uv: 

6 ~ &r,SN27 4 
0. &Tp ’ (84) 

and is not a function of uv. Note also that in this flat beam case Hz is usually near to unity (there is 
little disruption in the wide direction), and thus there is no pinch enhancement of the beamstrahlung. 

The parameter Hr is a correction for quantum effects [14]: 

1 

> 

2 Hr = 
1 + 1.33 W ’ 

where 

(85) 

where 

F2 c .43 , Te w 2.82 x 10-1s ( A, ss 3.86 x lo-I3 m . (86b) 

Note again that I have expressed f as a function of the effective spot dimensions ul and 0:. And 
we also note again that for u: w u i, T is a function only of ui and that this is not significantly enhanced 
by pinch. This is again a reflection of the fact that the fields in a flat beam are a function of the width 
of that beam, but not of its vertical thickness. 

The approximation used in Eq. (85) is compared with Noble’s plot in Fig. 10. 

Fig. 10. The beamstrahlung factor Hr as a function of T as shown by R. Noble (line) and 
the function used here (dots). 

6. BOUND VERSUS FUEAMS 

A general choice concerns whether we allow the beams to be asymmetrical, i.e., flat. Initially it 
appears more natural to have round beams, and if we calculate the himinosity for given power in the 
two c&s, we appear to see an advantage. 
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For round beams (R = 1) and iixed beamstrablung 6, using Eqs. (69), (70), (82), (83): 

&ea~z~ 
P (cn/Y*)V2 v ’ 

which for a reasonable disruption parameter D E: 10 gives 

_ cL 6 o f(47suz) L 
P . (cnP*)lP * 

For flat beams, R W 1, we find: 

&p: 1 f@t-h”~) H 
p iiqj= v’ 

(87) 

The factor of l/2 comes from the term 2/[1+ (u~/lo~)] in Eq. (82). This term goes to one for round 
beams but two for flat beams. The absence of IIs reflects that for a flat beam negligible disruption can 
be obtained in the horizontal direction. For D, ss 10, then H, ss &6 and 

g E: 1.22 m-w*) 
(by 8p ’ 

and we see that for the same emittance and final p’ we have lost a factor of five in luminosity for given 
power. 

However, it turns out that there are a number of rather strong advantages in the asymmetric csse 
that can overcome this initial disadvantage. 

1) Damping rings are naturally asymmetric. Without m.ixing the vertical emittance would damp to 
eero. It is quite reasonable to assume mixing of only about l%, thus giving a much smaller vertical 
emittance. 

2) In an RF structure the round irises could be replaced by ellipses or slots with greatly reduced 
transverse wake fields in one direction, thus allowing the transport of an asymmetrical beam 
without blowing up its small vertical emittance. 

3) The chromatic correction section prior to the final forms will involve dipole magnets that will, 
through synchrotron radiation, blow up the beam emittance. But this blow up will occur in only 
one direction. A very small vertical emittance need not put additional constraints on the design. 

4) The final focus, if it uses conventional quadrupoles is intrinsically asymmetrical. With a quadrupole 
it is easy to focus in one direction if we do not worry about the other. Much weaker focusing is 
possible if symmetry is required. 

5) At the final intersection point for fixed 6 with round beams we have [from Eq. (87)) 

But we also find, again assuming llxed 6, 

N a (q,/3’)li2 , (92) 
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so high luminosity can only be obtained for small numbers of particle per bunch, which require for 
reasonable efficiency low accelerating wavelength and serious wake field effects. 

With flat beams, Eq. (91) becomes 

L 1 
P a (r,,/3;)‘/2 ’ 

But Eq. (92) is now: 

N a (c,,z a:)*” . (94) 

The two equations are now decoupled and we are free to keep IV, and thus the wavelength, up by 
keeping (en. /3:) W (6~ Pi)- 

6) The final advantage in using a flat beam is that it allows a ikite angle crossing at the intersection 
point. With zero angle crossing the quadrupole apertures have to be made large enough to accept 
the disrupted particles from the oncoming beam. In practice this angle is far larger than that 
taken up by the initial beam. With &rite angle crossing we arrange that the disrupted beam 
passes outside the opposite final quadrupole. Thus the quadrupole aperture can be set by the 
incoming beam rise. As a result of the smaller aperture requirement, the field gradient can be 
larger and the focusing strength greater. 

In the following section the choice of parameters for a flat beam case will be discussed in detail. 
The luminosity obtained is 10s3. A similar procedure was followed for a round beam case, but the final 
luminosity achieved was only of the order of 103’, a full order of magnitude less than for a comparable 
flat beam example. An approximate breskdown of the contributions to this difference is given below: 

/Gain Loss 

(1) from L/P calculation for 6xed 6 112 
(2) from loss of horizontal enhancement Hz l/2 - 

l2ai.m 
(1) from asymmetric damping ring x 3 
(2) from use of quadrupole focusing x 2 
(3) from finite angle crossing x 2 
(4) from use of larger N x 2 
(5) from use of higher group velocity structure x 2 

Net f-u 

7. PARAMETER 

7.1 wuction 

In the above sections we have discussed each of the collider components separately. We have noted, 
however, that in many cases the requirements of one component conflict with those of another. I will 
discuss these conflicts one-by-one, although the interwoven nature of the problem generates difficulty 
in selecting the order. In each case, I will attempt to suggest reasonable choices and thus obtain an 
example parameter list. 

I will leave discussion of the wavelength to the next section. Here 1 will attempt to make choices 
that will be reasonably independent of wavelength. 
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The energy of the collider studied will be 

E cdm = * 5+.5TeV . 
(95s) 

7.2 Accelerating Gradient 

A high gradient will reduce the overall length of the accelerator and may be expected to reduce 
a linear component of its cost. However, a higher accelerating gradient will imply a higher stored 
energy and higher ‘costs associated with the RF power supply. The best gradient to minimize costs will 
then depend on the relative linear and stored energy related costs. An upper bound will exist on the 
acceleration gradient set by breakdown, excessive heating or beam deflections due to uncontrolled field 
emission in the structure. 

Figure 11 illustrates a) the estimated liits 1151 on accelerating gradient, and b) estimated lines 
of constant cost for both linear and stored energy costs. In both cases the dependence is shown as a 
function of the accelerating gradient and wavelength. The assumptions were: 

Linear cost per meter Cl ~5! 40 K$/m 
RF source cost per Joule Cj # 2.4 K$/J 

group velocity & = .08 c 
fill time/attenuation time r = .25 

average accelerating gradient/max I),, = 0.8 

With these assumptions the linear cost 

and the RF energy cost 

St = 
5 x 10’0 

&,, (MeV/m) ’ 

which with the above assumptions gives 

gm = 7.4 x 10’ X (cm)2 f,, (MeV/m) (9’) 
The minimum cost will then be for an accelerating gradient 

fa (min. cost) w 
260 MeV/m 

A(cm) ’ 

(Sec. 8.5) 
(Sec. 7.3) 
(Sec. 7.4) 

(QW 

(96) 

(98) 

This relation is also illustrated in Fig. 11. At this gradient, the accelerator and power source would cost 
would be: 

&+SRF rs .38 X (cm) (Bg) . (99) 
The numerical constant in Eqs. (98) and (QQ) should not be taken too seriously, but rue probably 
accurate enough to indicate that for any reasonable choice of wavelength (i.e., X 1 1 cm), the optimum 
accelerating gradient is well below the estimated maximum gradient. Costs will not be lowered by higher 
acceleration gradients unless one first finds ways to lower the power source costs. 

High accelerating gradients can be imperative if there is a limitation in the length at a particular 
site. At SLAC, for instance, the longest linear collider possible is about 7 km. If a center-of-mass energy 
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Fig. 11. Lines of constant cost for 1) RF power, and 2) length of accelerator, as a function of 
accelerating gradient and wavelength. The dotted line indicates accelerating gradients chosen 
to minimize overall cost. Breakdown and surface melting limits on accelerating gradient are 
also given. 

of 1 TeV is required and allowances are made for phase advance, filling factors, efc., then a reasonable 
minimum gradient will be 

From Eq. (98) one sees that this choice is at the estimated value for minimum cost if the wavelength 
were fixed at 

Xk14mm, (101) 

and we will, in fact, be considering wavelengths of this order of magnitude. Thus, for our examples it 
will not be unreasonable to use the assumption of Eq. (100). 

7.3 RF Structure Group Velocity 

In Eq. (99) we see that the stored energy and cost of a collider is related to the wavelength; 
but a shorter wavelength in general implies a smaller iris hole, and a smaller iris hole will cause larger 
wakefields that give all kinds of problems. For short bunches these wakefields are dependent primarily on 
the iris radius ‘a’ and only weakly on the wavelength. We can thus assume that the wakefield problems 
imply a bound only on ‘a’ and not on ‘A’. 

For a given value of ‘a’ the RF energy required per meter is given by Eqs. (21)-(27). 

E2a2 
uaF= L, 

%i 9p 
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where the dependence on the group velocity /3s is contained in the normalized and corrected elastance 
8.1 which is plotted against the group velocity in Fig. 2b. 

The dependence shown is, of course, dependent on the particular choice of accelerating structure 
considered (in thii case a SLAC-like irii loaded cylindrical structure with 2r/3 phase advance per cell). 

The elastance is seen to rise (and thus the required RF energy to fall) monotonically with increasing 
group velocity. But if a higher group velocity is chosen, the peak electron field within the cavity (&,,L) 
rises (see Fig. 2d). (The RF instantaneous power pkF also rises, but not aeriously). From Fig. 11 we 
might conclude that the higher fields in the cavity are not a problem, but some reesonable compromise 
must still be made. For this example I will select 

which gives 

a0 = .08 (103) 

, 

L 
pk E 2.6 , 

r. WI 

dso: m 21 x 10’ VmC-’ . (105) 

7.4 al Time 

From Eq. (27) we see that the RF energy required depends on the parameter r: 

1 r2 
wma-= 

‘IP (1 - exp{-r})2 ’ 

T r=- ( 
To 

(10‘3) 

where T is the fill time and TO the attenuation time. For T < 1 then approximately 

TURF a (l+r) , (107) 

1+r 
&a--, r 

A compromise must be reached between the stored energy cow that falls with r and the peak 
power & that rises (see Fig. 12). For this example I take 

1 r = .25 ) 1 (109) 

yielding 

‘)p = .783 . 

7.5 Damping Ring Impedance Z/n 

From Eqs. (2) and (3) we found that the equilibrium emittance of a damping ring will always be 
lower if Q, the tune, can be raised. But from Eqs. (10) and (12) we also found that a high tune implied 
a small a and correspondingly smaller impedance requirement Z/n. 
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A 

Fig. 12. Average and peak power requirements as a function of the fill time parameter r. 
7 = fill time/attenuation time. 

As a rough constraint on the allowable tune, I assume 

1; >.5n/ . 
(111) 

7.6 Emittance Ratio E./Q . 

In the absence of intrabeam scattering, the vertical emittance in a damping ring with no mixing 
would go to zero. It is clearly desirable to use this simple fact. The limit will be set by how low a mixing 
can be obtained. For all flat beam cases, I have chosen 1% as a reasonable aim for this mixing, and thus 

(112) 

One should note that we do not gain the full factor of 100. The lower vertical emittance increases the 
intrabeam scattering and increases the cl. However, a gain of at lease m is obtainable since if cZ is 
increased by this and thus intrabeam scattering will remain the same. 

7.7 Final Focus Pole Tip Field 

We will see from our examples that the required quadrupole apertures are very small (of the 
order of .2 mm diameter). Under these circumstances it is not reasonable to use superconducting coils. 
Pulsed magnets could be built to these dimensions but it would be hard to avoid mechanical motions 
(the quads need to be steady to a few A). For these reasons, I am assuming that conventional iron quads 
are employed and limit the pole tip fields to 

pzYsz-1. . (113). 
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7.8 Crossing Angle 

, With finite angle crossing we wish the oncoming disrupted beam to pass well clear of the final 
quadrupole. If I assume negligible beam at six times the calculated maximum disruption angle, then 
the full crossing angle 8, must be 

&26eDz+eQ. I 014) 

where 00 is the angle subtended by the outside of the Ilnal quadrupole. However, a quadrupole can be 
left open on its sides (see Fig. 13) and thus, providing the vertical disrupted size 00s is small, 80s can 
be zero. Nevertheless, rome allowance for the quadrupole is needed and for these calculations I have 
assumed 

(115) 

I I\ Open Space I 

\” Between Poles ” \, 

6-87 

6 Slgmo 1 
Beam Size \ 

--- 

5756,413 

Fig. 13. Cross section at the start of the first final focus quadrupole showing incoming and 
disrupted beams. 

A luminosity loss will occur if this angle is small compared to the angle of the diagonal of the 
bunch, i.e., we require 

02 ec < edjw = z . (116) 

7.9 Particles per Bunch N 

Having fixed the wavelength, iris hole diameter and accelerating gradient we can now choose the 
number of particles per bunch and thus the loading (r)) of the cavity, defined by 



where s is the elastance [see Eq. (25)). n represents the fraction of energy stored in the cavity that is 
transferred to the. bunch. Common sense would indicate that a higher r) will give a higher luminosity, 
but it is more complicated. 

The luminosity [from Eqs. (69) and (70)], for fixed ss/ss and a=/& is: 

La 
N2 

EB’- 

But from Eq. (3) the emittance, if limited by intrabeam scattering, is 

c a N112 . 

From Eqs. (52) and (55) the uncorrectable momentum spread 

op 2 SO, a N . 

Using Eq. (66) we have for the final focus 

e 

so 

B’ o( ol13 .$I3 a N’i3 N’/6 a ~313 . 

Combining Eqs. (118), (119) and (121~): 

La N2 
~112 ~313 = constant ) 

(118) 

019) 

020) 

(1214 

(121b) 

(12lc) 

(122) 

l.c., , when we work it through we find the luminosity is not dependent on N or 9 ! 
. 

The above is only true if the final focus is indeed limited by momentum spread. If the momentum 
spread is too small, the tolerance requirements will become excessive and the dependence of Eq. (122) 
will fail. A not unreasonable lower bound on op(focus) is taken at about one third of the SLC value; 
i.e., we assume Eq. (121~) valid only if 

op(focus) 2 0.15% . (123) 

This momentum spread can come either from wakefield effects [op(wake)] or from the intrinsic longitu. 
dinal emittance of the beam [or(emittance)]. If we fix these relative contributions, c.g., if 

or(emittance) = o 7 
op(wake) * ’ 

then 

op (focus) .15% 
op(wake) 2 - = - 

m m 

Ia .12% . 

(124) 

(125) 

Given the other assumptions on irii diameter and bunch length, the above requirement on the 
longitudinal wake can be interpreted as a bound on the loading parameter n 

r) 1 1.2% . (126) 
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It could be tempting to choose a larger loading if it were not for another constraint. The momentum 
spread needed for Landau damping ls also proportional to N [from Eqs. (36) and (33)] 

o,(Landau) a N O’ /I&, , 
( > 2 (127) 

and the distance to remove this momentum spread [from Eq. (39)] 

Thus 

4 a N&,Xw3 . (129) 

Now from Eq. (31) 

SO 

&,aaaX, 

N 0. op(Landau) a - * T , 
x2 

and thus for fixed O./X (see Section 7.10) 

0304 

(1306) 

So a high value of q im&ss a long distance needed to 6x the Landau damping momentum spread. In 
our example we find if r) = 1.2%, then Le E 200 m which is already rather long. I therefore select, 

19 cc 1.2% 1 . 
(131) 

7.10 Bunch Length a, 

The bunch length is a very sensitive parameter and must satisfy many simultaneous conditions. It 
does not, however, for our energy machine, have much effect on the beamstrahlung. 

At low energies, when T -C 1 [see Eq. (86)], then the beamstrahlung parameter [Eq. (SZ)] 

6ao;’ . (132a) 

At higher energies when the parameter T > 1, then the beamstrahlung parameter [from (82), (85) 
and (SS)] 

6 a oil” . (1326) 

But in the energy region about .5 TeV we find that for oz between 5 p and 100 cc, the beamstrahlung 
is rather independent of o# (see Fig. 10). 

0. does, however, effect other things. It should be kept small because 

(1) Luminosity ls lost when o, = pi, or larger. 
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(2) Luminosity is lost if (a./~~) w ecmvhsr or larger. 

(3) Transverse wakes a oz. 

(4) The disruption parameter D a o ,, and instabilities may occur if the disruption parameter D 
ls much larger than ten. 

However o, should be kept large because 

(1) For fixed momentum spread a small o, implies a small longitudinal emittance sz which will 
increase the equilibrium emittance in the damping ring cy by Eq. (3). It should also not 
deviate too far from a convention value of the order of .02 m, or else.the RF necessary to 
obtain the needed long bunch length becomes difficult. 

(2) If o. is too small, the disruption parameter D could fall below two, and the disruptiqn en- 
hancement would be lest. 

(3) If o, is large, it is harder to correct the longitudinal momentum spread in the linac. 

It is this last constraint that seems to limit how small o, can be, so I will discuss it further. The 
first order momentum spread from the longitudinal wake, for short bunches, is approximately [Eqs. (48), 
(53), (54) and (117)I 

op(wake)a$a$aq . 

The momentum spread required for Landau damping, from Eq. (130b), 

op(Landau) a r) y . 

The phase to maintain the spread required for Landau damping is thus 

(134) 

tang a $ [op(wske) - o,(Landau)] 

a $ ( tj -constant y) 

x 
a9 0, ( > 

- constant . 

If we require that the accelerator length is not increased by more than 10% , then 

c0se 2 .Q , 

which, with the other assumptions, gives 

1 9 = 1.5 x 10-s 1 . 

7.11 Linac Focusing 

(135) 

(136) 

(137) 

The transverse wake blow up of transverse emittance can be controlled by the introduction of a 
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longitudinal momentum spread o,(Landau) where [Eq. (36)] 

aw 
, os(Landau) a x a. N /I2 , (138) 

where p is the average focus strength in the linac. In order to keep op small, it is desirable to have as 
small a /3 as possible. I assume we use quadrupoles with the least possible pole tip radius and place the 
quads between accelerator sections. I assume 

a(quadrupole) = 1.26 a @is) (as at SLAC) 

quadrupole fraction of L = 6% 

quadrupole pole tip fleld = 1.4 Tesla 

phase advance per cell - 00’ . 

From the above and from Eq. (31) 

Safiafi. 

From Eq. (33) 

aw, 1 
xa3 

from Eq. (137) 

039) 

* (140) 

(141) 

(142) 

from Eq. (126) and (117) 

NaX’. (143) 

We have 

op(Landau) a $ A X2 (6)’ = constant ) (144) 

and one finds that the momentum spread for Landau damping is independent of X. In our case 

o, E .8 x 1O-3 . (145) 

7.12 Focus Asymmetry & jp’ 

In Section 7.7 we specified the final focus maximum pole tip field, and using Eq. (66) we can 
determine the minimum 6; assuming that the quadrupole aperture is determined by the vertical beam 
size 6’s. It is important that the aperture is not determined by the horizontal beam size or else the pi will 
be compromised and the luminosity obtainable for given beamstrahlung will be reduced [see Section 6 
and Eq. (QO)]. In order to -sure this we must choose a sufficiently high ratio of &/pi. 

We note that the ratio of beam divergence angles at the intersections will be 

8, - = -.L E. B’ 
4 ( > 

v2 

% Lx * (146) 

For the flat beam cases the ratio of required aperture in the final focus is greater than this because of 
the natural asymmetry of the quadrupole system 

(147) 



We require that 

and thus 

Since in Section 7.5 we selected cs/cs = 106 we obtain 

B’ 2 2 324 . 
4 

(148) 

049) 

(156) 

Higher values could be used and would reduce the beamstrahlung, if that were required, but 324 is 
already a large asymmetry and the use of an even larger value would probably introduce tolerance 
problems. Thus I will use: 

(151) 

7.13 Wall Powa 

In the designs being considered, there is no strong constraint on the repetition rate except for the 
overall average power consumption. For these examples, I have sssumed 

Wall Power = 100 MWatts 9 
(152) 

There is no strong justification for this choice. It should depend on electrical power cost, potential 
running time per year and some reasonableness criterion. Double the power will double the luminosity 
and repetition rate, and ease the vibration requirements. 

I will assume the RF power source efficiency. 

RF power source efficiency = 36% , 
(153) 

as estimated for a relativistic klystron (see Section 8.5). 

8. CHOICE OF WAV- 

8.1 wductiqn 

I have, using the assumptions of Section 7, generated parameter sets for different wavelengths 

x = 35.01 mm ( 8.56 GHz = 3xgL~c) 
A = 26.26 mm (11.42 GHz = 4xsL~c) 
x = 17.51 mm (14.14 GHz = 6x3~~~) 
A = 11.67 mm (25.70 GIiz = 9xmc) 

These parameter lists are given in full in Appendices I and II. Here I will examine different aspects of 
these parameters in turn, and note relative advantages and disadvantages. 
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8.2 Luminosity and Bearnstrahlung 

I  Figure 14 shows limes of possible combinations of luminosity and beamstrahlung for the four wave 
lengths. In each cMe the standard solution is given by the dot. Higher beamstrahlung is obtained if 
&/fl; is chosen to be law than that given in Section 7.12, but no gain in luminosity is obtained-a 
futile exercise. Lower besmstrahlung can be obtained by lowering the number of particles per bunch (as 
indicated in the figure), but in these cases I have assumed that neither the focus or damping rings are 
modified and that no advantage is taken from the lower wakefields and impedance requirements. I am 
assuming that other limits now apply (see discussion in Section 7.9). 

I” I / I”“’ / I 
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x 0.0 

N 
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2 0 0.4 

:: 

0.2 

-35 26 

0.1 - 
0.5 0.2 0. I 0.05 

0,6Al. BEAMSTRAHLUNG 8 6.8, 

Fig. 14. Luminosity versus beamstrahlung for different wavelength solutions. 

Figure 15 shows the peak luminosity and luminosity at 6 = .l, as a function of the wavelength. 
At wavelengths above 20 mm there is little gain in maximum luminosity and a big loss in luminosity at 
fixed 6. Below 20 mm the peak luminosity falls significantly, but the luminosity at low beamstrahlung 
rises. I would conclude from these considerations 

1Omm 5 X < 20mm . (154) 

0 IO 20 30 

‘-8, A (mm) 5756A15 

Fig. 15. Peak luminosity and luminosity at Sxed bearnstrahlung, as a function of the wave- 
length chosen. 
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8.3 
. . 

Einal Focus Crlterla 

In Section 7.10 in discussing the bunch length choice, a number of criteria were listed, but only 
one used. Three of these concerned the final focus and I now examine how well these are satisfied (see 
Table I). 

TABLE I. 

Criterion 

F<l 

Wavelength (mm) 

35 26 17 12 

(1.08) .85 .61 48 

tiff<* 
(1.18) .69 .3 15 

3 < D < 10 (23) (14) 6 3 

We see here that though all these criteria are well satisfied for the 17 mm and 12 mm cases, they 
are violated for 35 mm and only marginal for 26 mm. I thus conclude 

XI2Omm. (155a) 

To avoid the loss of a diiruption enhancement when D < 3, we also need 

x212mm . (1556) 

Another criterion concerns the possible need to use a dipole field to sweep low momentum disrupted 
electrons away from the first quadrupole (see Section 5.2). The length required for this should certainly 
be less than the space available. With the assumptions made, see Table II. 

TABLE II. 

Criterion 
Wavelength (mm) 

35 26 17 12 

Length to first quad (m) 4 .47 .43 .39 .35 

Length to sweep (m) 4 weep (.84) (.56) .30 17 

Once again, the requirement is violated for the two longer wavelength examples and we require 

X~2Omm. (156) 

8.4 Tolerances 

Two kinds of tolerance have been defined in Section 3.3. 

a) Alignment tolerances can be satisfied if beam position monitors have accuracy significantly below 
the tolerance and if feedback is employed to control the average orbit. The values of tolerance 
required are calculated [using Eq. (40)] and shown in Table III below. 

The requirements are significantly more severe for the short wavelength examples than for the 
longer wavelength cases. 



These alignment requirements can be relieved by the use of elliptical iriies. In the 12 mm case the 
calculated tolerance is only 160 /A with a 2:1 elliptical irii-but the use of such asymmetric struc- 
tures is another subject. But, larger wavelengths are still preferred, and if we require tolerances 
greater than 50 p, we obtain: 

x215mm. 0571 

b) The second kind of tolerance concerns vibration. Any lmac quadrupole motion that occurs between 
one pulse and the next cannot be corrected, even if it can be measured. From Eq. (47) the rms 
allowable random motion from one pulse to the next is also given in Table III, below. 

TABLE III. 

Criterion 35 

Wavelength (mm) 

26 17 12 

Beam siee us (~1) .Q3 .77 
Number of quads Ne 336 387 

Ahgnment tolerance (A,), (p) 122 93 
. . Vrbratron tolerance (A,), (H) .02 .016 

f (Hz) 55 100 

(Ar)ground (p) .002 .OOl 

(Av)tolerance / (Ar)ground 10 16 

.60 .45 
478 579 
66 44 

.Oll DO8 
220 500 

.0005 a002 
22 40 

We note again that this tolerance is more stringent for the short wavelength cases than for the long 
wavelength case. However, the repetition frequency f is higher for the short wavelength cases and thus 
serving is easier. If, for instance, we look at a typical ground vibration [16], we see that the amplitudes 
at high frequencies are much smaller than at lower frequencies. As a result the ratio of tolerance to 
ground vibration is better for the short wavelength examples, so a small wavelength is preferred. 

It may, however, be noted that the ground vibration is in all cases less than the tolerance, so there 
is no real constraint on the wavelength. 

8.5 Damping Ring Criteria 

Some of the damping ring parameters for the different wavelength solutions are shown in Table IV. 

TABLE IV. 

Criterion 35 

Wavelength (mm) 

26 17 12 

Horizontal emittance (10m6 m) cl 4.4 3.5 2.5 1.8 

Long emittance (m) c. .044 .033 .022 .015 

Bunch length (cm) ur 3.4 2.4 1.5 1.0 

Rig radius (m) R 12.3 14.6 18.2 23.3 

Tune (Horizontal) Q. 18 21 25 32 

Impedance (fl) Z 183 300 600 1200 
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The lower wavelength solutions require damping rings with lower emlttsnce, obtained because of 
the lower number of particles per bunch. As a consequence, however, the low wavelength cases require 
larger dieter, higher tune, and will be more costly and have tighter tolerances. 

On the other hand, we note that the solutions with longer wavelength envolve relatively large 
longitudinal emittance and correspondingly long bunches. This ln turn will mean very low frequency 
RF systems that may be large, more costly, and possibly more of an impedance problem. This problem 
is compounded because the impedance requirement for the full ring (even though Z/n is the same for 
all cases) is far more severe for the long wavelength cases. 

On balance, the shorter wavelength solutions Ive probably more reasonable. If I require a bunch 
length less than 2 cm, I obtain 

A<24mm. (158) 

8.6 &F Power Source Cost 

If we assume that the linac is filled by an induction lmac powered relativistic klystron then we 
are in a position to make a very rough first guess at the cost. Let us assume that the induction linac 
is of the type now operating at Livermore. It would then consist of some multiples of klystron units 
consisting of 

1 DC power supply (50 K8 
1 880 Joule, 1 yet, modulator (80 Kb 
1 Magnetic compressor (175K t 1 
3 2 KA induction units (500K 3 

Focusing magnets (SOK t 
Bunching and extraction cavities (lOOK 8 

I do not wish to rule out the Two-Beam Accelerator concept in which the klystron beam is 
reaccelerated, and energy extracted, many times. In such a case the uk'lrlystrons" referred to here would 
be merely added together. No large cost differential would be expected. 

Such a system might be expected to have an overall efficiency of 36% (modulator SO%, induction 
linac QO%, fraction of pulse flat 66%, klystron energy extraction 66%). The energy out would then be 
320 Joules. 

The costs listed above are those given by Dan Birx for the construction of single units; they do 
not include engineering, overhead or contingency costs. 

If I sssume a factor of 1.6 to cover these extra expenses, but allow a 50% cost reduction from ma.5 
production then I obtain a cost per output Joule of 

S/Joule = s = 2.4 K$/Joule . 060) 

The Liver-more design, with minor modifications, could deliver an RF pulse length anywhere be- 
tween 100 nsec to - 14 nsec, without significant cost differential (a 10% increase could be incurred for 
1 5 25 nsec to provide a ferrite instead of metglass final pulse compression stage). A single unit could 
thus provide peak power between 3.2 GWatts and 21 GWatts without significant cost differential. It is 
the-cost per stored energy that dominates. 
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I 

k 

Using Eq. (22) and allowing for extra length because of phase advance [Eq. (136)] and the length 
needed tb correct the Landau momentum spread [Eq. (13Oc)], I 
as a function of wavelength in Table V. 

now estimate the RF systems required 

TABLE V. 

Criterion 35 

Wave&x&h (mm) 

26 17 12 

Total stored energy (kJ) 650 370 164 72 

Pulse length (nsec) 70 46 25 14 

Number of “klystrons” a) 2030 1160 512 225 

Estimated cost Bg’ 1.56 .89 .3Q .lQ *) 

meters Slystron” l ) per 3.3 5.9 13.3 30 

l ) number of induction units is approximately three times this. 
*) including 10% increase to cover possible costs associated with 14 nsec pulse length. 

When compared to a possible linear cost for a 7 KM fmac of the order of .3B$, it would appear 
that the RF costs for both 35 mm and 26 mm wavelengths are excessive (see Fig. 16). 

An alternative way of judging what is reasonable or unreasonable is to consider the number of 
PJystrons” per meter. 

For the 35 mm wavelength case we would need a complete unit every 3.3 m. Since each one is 
about 6 m long, they would have to be arranged side-by-side in a 6-m wide corridor parallel with the 
entire accelerator. This seems not reasonable. 

I I 
40 20 IO 6 

6.8, A (mm1 *766*tb 

Fig. 16. Cost of RF power supply BS a function of the wavelength. Also, this cost together 
with an assumed linear component. The dotted lines indicate uncertainty in cost estimation 
in a region of pulse lengths less than 15 nsec. 
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For the wavelengths less than 17 mm the induction units could be parallel with the main accelerator 
and take-up only a couple of meters of width. Thus from this, or from a requirement that the power 

, source cost no more than the linear cost, we obtain 

x517mm. (1614) 

There is, however, an argument against going below 12 mm since pulses of less than 14 nsec have not 
yet been achieved. 

x117mm. (161b) 

8.7 Wavelength Conclusion 

Reviewing the constraints on wavelength, we have: 

Eq. (154) lOmInI x 52omm 
Eq. (155a) x 52omm 
Eq. (155b) 12mmI x 
Eq. (156) x <2omm 
Eq. (157) 15mm< x 
Eq. (158) A 124mm 
Eq. (161a,b) 17mmI x il7mm 

From which we see that the only wavelength that satisfies all conditions is 

This conclusion should not be interpreted as an exact statement. By adjusting the parameter choices 
and criteria of Section 7, one could clearly come up with solutions for other wavelengths. But if a 
wavelength significantly different is required, then some price in luminosity, beamstrahlung, cost, length 
or other parameter would have to be paid. 

Q. CONCLUSIONS 

9.1 Warnings 

This study has made many assumptions that are uncertain, and in some csses clearly unrealistic. 
It was & intended to yield a design of a real collider. In particular we note: 

(1) No emittance dilution has been included in the calculation. Finite misalignments, wakefields, 
synchrotron radiation and higher order aberrations will lower the effective emittances and 
lower the luminosity for 6xed power. 

(2) The Landau damping calculation uses only the two bunch approximation and is not exact. 

(3) The wakefield expressions used may not be correct for the short bunches that the study 
proposes to use. 

(4) Pulse-to-pulse variations in transverse fields in the accelerating structure may be a severe 
problem, and it has not been included. 

Clearly much more study is required and this work should be taken only as a guide to what may 
be possible. 



9.2 Encouragement 

On the other hand, this study has left out many features that could make things much better. In 
particular: 

(1) More than 100 MW could be used, thus giving both more luminosity and repetition rate. 

(2) Asymmetric irises could be employed in the linac to reduce the vertical wakefields and, as a 
result, reduce the alignment tolerances. 

(3) Higher order chromatic correction in the final focus could probably be employed. Alex Chou 
[17) hss shown that when correction is only required in one direction, octupoles can improve 
the correction beyond that assumed here. 

(4) Super diiruption (181 is a concept that uses two closely spaced bunches, so that the first acts 
to focus particles of the second bunch and gives an increase in luminosity. In our case, two 
bunches would not be practical, but shaping of the bunches (the front should have a larger 
radius than the back) could probably help. 

(5) Longitudinal shaping of the bunch would lower the uncorrectable third order momentum 
spread and help the final focus. 

(6) Other focus schemes using plasmas or other high field magnets could lower the final focus p’. 

(7) The use of RF focussing elements in the linac or final focus could eliminate the need for a 
Landau momentum spread correction section. This idea is being studied at CERN (191. 

(8) Multiple bunches in the linac could dramatically increase the beam current and luminosity. 
The long term transverse wakefields make this impossible with a conventional cavity, but stud- 
ies are underway on cavities that would damp the transverse modes and allow such operation. 

10. FINAL REMARKS 

This study, with many assumptions, has generated a self-consistent and semi-conventional param- 
eter list for a .5 on .5 TeV e+e- collider with a luminosity above 10s3 cmm2 see-r. It is true that 
many of the assumptions are optimistic (see Section Q.l), but it is also true that many ideas were not 
included that could make things much better (see Section 9.2). On balance, I believe the study is very 
encouraging. 

Much work remains to be done, but I believe now that a collider with the proposed specification 
can be built in the not too distant future. The physics potentials of such a facility are well known. The 
relative ease of performing experiments with such a machine compared with the difficulties of working 
with such luminosities in a hadron collider have frequently been noted. 

For these reasons, and because of the physics differences, electron positron colliders have always 
complimented hadron machines operating in a similar energy regime. The collider described here cer- 
tainly approaches the regime of the SSC and would be an appropriate compliment to it. One hopes that 
the remaining uncertainties can be resolved and a proposal can soon be made for the construction of 
such a facility. 
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APPENDIX I. Parameters Independent of Wavelength 

Center-of-mass energy 
Maximum accelerating gradient 
Overall length (excluding final focus) 
Bunch length/wavelength 
Final spot width/height 
Vertical disruption enhancement 
Crossing~angle/maximum disruption angle Final focus quadrupole pole tip fields 
Momentum spread at final focus 
us(from long emittance)/us(from wakefields) 
,Y(horisontal)/~‘(vertical) 
Vertical 8’ reduction from chromatic correction 
Horisontal /3’ reduction from chromatic correction 

Linac quad pole tip fields, 
Quad fraction of length 
Linac quad aperture/liiac iris aperture 
Phase advance per cell 
Momentum spread for Landau damping 
Phase advance to maintain us(Landau) 
Length at end to correct ur(Landau) 
Linear momentum spread from wakes .’ 
Second order momentum spread from wakes 
Third order momentum spread from wakes 
Second order momentum spread from acceleration 

RF System 

RF Structure group velocity 
Peak RF field/acceleration gradient 
Normalized elsstance 
Fill time/attenuation time 
Fill efficiency 
RF structure loading 
RF source efficiency 
Wall power consumption, 

Damping Ring 

Damping ring longitudinal impedance, 
Damping ring ratio of emitances 
Bending fields 
Damping ring focus peak fields 
Aperture 
Beta ratio: vertical/horizontal 
Partition functions 

E = 1.0 (TeV) 
& = 186 MeV/M 
& = 6.0 km 
U./X = 1.5 x 10-s 
R = 180 
&, = 2.37 
@,I&, = 12 
Bq = 1.4 Tesla 
up(focus)= .15% 
Fop = .7 
&/p; = 324 
27 
.5 

Btq = 1.4 (Tesla) 
Ftp = 5% 
R.+, = 1.26 
&=QOO 
ur(Landau) = .8 x lo-’ 
t$ = 27O 
.& = 210 m 
1up = .SS% 
sup = .Ol% 
30, = .12% 
negligible 

VI/C = B. = .oa 
&,,I/&,, = 2.6 
dot = 2.1 x lOlo VmC-’ 
r = .25 
‘)# = .78 
t) = 1.2% 
cm = 36% 
W will = 100 MW 

&/n = .5 R 
Ez/Cy = 100 
Bd = 2 Tesla 
B, = 1.4 Tesla 
ad, = 12 mIfl 
MBV = 4 
J*, Jr, J. = 1, 1, 2 
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APPENDIX II. Parameters Dependent of Wavelength 

Criterion 
35 

Wavelength (mm) 

26 17 12 

Max Luminosity 10s3 cm-s set-’ 
Beamstrahlung E loss 
Beamstrahlung quantum parameter 
Frequency 
Final spot size (vertical) (nm) 
Final spot size (horizontal) (pm) 
Particles per bunch (lOlo) 
Bunch length (mm) 
Vertical Disruption 

r mDu 
6 
T 

HZ 

QY 
0, 
N 

0, 

Du 

2.0 
55 
1.5 
.27 
3.2 
.053 

(24) 

1.7 1.3 1.0 
.33 .17 .lO 
1.8 1.5 1.2 
100 220 500 
1.3 1.0 .8 
.23 .lQ .15 
1.8 A .35 
.04 .026 .018 
14 6 3 

1 Focus 

Final focus (vertical) 8’ (mm) a; .051 .047 .043 .038 
Final focus (horizontal) 8’ (mm) B: 17 15 14 12 
Maximum horizontal disruption angle (mrad) 8 SD 24 14 6 3 
Final convergent angle (horisontal) (mrad) @fr .016 .015 .014 .012 
Final convergent angle (vertical) (mrad) *fu .030 .027 .025 .022 
Bunch diagonal angle (mrad) ediq 5.1 5.8 7.3 8.3 
Crossing angle (mrad) 0, (6) 4 2.2 1.2 
First quad aperture (mm) QP .I5 .13 .lO .08 
Length to first quad (m) C' .47 .43 .39 .35 
Length to sweep quantum disruption (m) & (-84) (.56) .30 .17 

Transverse wake potential V PC-’ mW2 W(%) 1.5k 3.7k 12k- 43k 
Average p in linac (m) &mc 19 17 14 11 
Delta phase advance (radians) Ad .16 .18 .22 .27 
Number of quads in linac % 340 390 480 580 
Vertical alignment tolerance (pm) (Ad 122 93 66 44 
Longitudinal wake (at L = 0) V PC-~ m-* wm 580 lk 2.3k 5.2k 

Damping Ring 

Normalized emittance (vertical) IO-* m 
Normalized emittance (horizontal) lob6 m 
Longitudinal emittance m 
Energy (GeV) 
Ring radius (m) 
Tune (horizontal) 
Tune (vertical) 
bunch length (cm) 
momentum spread (10m3) 
E loss Volts/turn (MV) 
Damping time constant (msec) 
Impedance requirement (tI) 

Efw 

Ens 

E. 

Edr 
R 

Qu 
4* 
0. 
0, 

u 

t 

z 

41 

4.4 3.5 
4.4 3.5 
.044 .033 
0.98 1.0 
12.3 14.6 
17.7 20.7 

(Cl) (Z) 
.68 .69 
.17 .22 

2.35 2.28 

(183) 300 

2.5 1.8 
2.5 1.8 

.022 .015 
1.04 1.09 
18.2 23.3 
25.3 31.8 
6.3 7.9 
1.5 1.0 
.70 .72 
.29 .40 

2.20 2.11 
600 1200 



APPENDIX II, continued 

Criterion 

RF System 

Wavelength (mm) 
Elastance V PC-’ rnw2 
0 
Iris radius (mm) 

Inside cavity radius (mm) RF pulse length (nsec) 
kngth per feed (m) 
Peak power m (GW) per 

Total peak (TW) power 

Total RF energy (kJ) 

x 
St 
0 
a 

6 t 
L 

wpk/c 

WPl 

J 

Wavelength (mm) 

35 26 . 17 12 

35 26 17 12 
440 800 1760 3960 
8.3k 7.2k 5.8k 4.8k 
6.93 5.2 3.46 2.31 

14.9 11.2 7.4 71 45 25 (:;3 
1.8 1.2 .65 .35 
1.4 1.2 1.0 .82 
.92 .80 

(652) (367) ;: f: 

Parenthesised values have some difficulty or objection. 
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