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Neutron-proton bremsstrahlung in intermediate energy nucleus–nucleus collisions is proposed as a 
possible probe to study the high-momentum component in nucleon momentum distribution of finite 
nucleus. Based on the Boltzmann–Uehling–Uhlenbeck (BUU) transport model, the effects of high-
momentum component on the production of bremsstrahlung photons in the reaction of 12C + 12C
collisions at different incident beam energies are studied. It is found that the high-momentum 
component increases the high-energy bremsstrahlung photon production remarkably. Furthermore, the 
ratio of photon production at different incident beam energies is suggested as a potential observable to 
probe the high-momentum component in nucleon momentum distribution of finite nucleus.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The nucleon momentum distribution n(k) is a quantity of par-
ticular interest for both finite nuclei and nuclear matter [1]. It 
contains information of the mean-field properties as well as the 
short-range behavior of the nucleon–nucleon correlations [1]. In 
the past several years, the nucleon momentum distributions in 
both symmetric and asymmetric nuclear systems have attracted 
much attention from both theoretical and experimental sides. The-
oretical investigations have shown that the short-range-correlated 
(SRC) pairs induced by tensor force can push nucleons from low 
momenta to high momenta, creating a high-momentum tail (HMT) 
in the nucleon momentum distribution [1]. This was also investi-
gated by the high energy electron scattering experiment conducted 
by the Jefferson Lab (JLab) using finite nucleus 12C [2]. The ex-
perimental results of the JLab suggest that about 20% of nucleons 
are correlated in 12C and 90% of the correlated pairs are in the 
form of np SRC pairs [2]. The dominance of the np over pp SRC 
pairs is a consequence of the existence of tensor force in the 
np deuteron-like state [3,4]. More recently, the high energy elec-
tron scattering measurements in the JLab further show that even 
in heavy, neutron-rich nuclei (such as 27Al, 56Fe, and 208Pb), the 
short-range interactions between the nucleons can form correlated 
high-momentum pairs [5]. Both the SRC and the high-momentum 
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component in nucleon momentum distribution are closely related 
to a number of issues in nuclear structure and reaction [6–14]. 
For instance, the tensor force induced SRC is found to be particu-
larly important to determine the nuclear symmetry energy and its 
high density behavior [8,9]. It is shown that the high-momentum 
component in nucleon momentum distribution can result in much 
larger average kinetic energies of nucleons in symmetric nuclear 
matter as compared to the free Fermi gas (FFG) predictions [11,
13]. The kinetic part of symmetry energy thus turns out to be very 
small (even negative) by taking into account the high-momentum 
component in nucleon momentum distribution [11]. This interest-
ing feature is further confirmed by the more sophisticated Bruck-
ner Hartree–Fock and self-consistent Green function calculations 
[12,14,15].

The purpose of this work is to investigate the possibility to 
probe nucleon high-momentum component by using the neutron–
proton bremsstrahlung photons in nucleus–nucleus collisions. Due 
to the near absence of the meson exchange contribution and the 
relatively weak multipole radiation, the intensity of proton–proton 
bremsstrahlung is usually one order of magnitude smaller than 
that of proton–neutron bremsstrahlung [16,17]. Therefore we do 
not consider the proton–proton bremsstrahlung in the present 
work. The merit of photons is that they interact with nucleons 
only electromagnetically. The neutron–proton bremsstrahlung in 
the early stage of the reaction is found to be the main source of 
the photon production [18,19]. Once the photons are produced in 
collisions, they escape almost freely from the nuclear environment 
in nuclear reactions. This makes photon production to be a clean 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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probe in nucleus–nucleus collisions. The bremsstrahlung photons 
were successfully used to study a number of properties such as 
the nuclear caloric curve, the dynamics of nucleon–nucleon inter-
actions, and the time-evolution of the reaction process before nu-
clear break-up [20–23]. For intermediate energy nucleus–nucleus 
collisions, the high-momentum component in nucleon momen-
tum distribution increases the average nucleon kinetic energies of 
both projectile and target, and thus it is expected to increase the 
high-energy photon production from bremsstrahlung as well. This 
may provide a possible way to investigate the nucleon momen-
tum distribution in finite nucleus by measuring the high-energy 
bremsstrahlung photons produced in intermediate energy colli-
sions. In this study, we use the isospin dependent Boltzmann–
Uehling–Uhlenbeck (BUU) transport model [24–26] to simulate 
collisions of two 12C nuclei at different incident energies. We com-
pare the photon production in the 12C + 12C collisions by assuming 
two kinds of momentum distribution for 12C: 1) momentum dis-
tribution of free Fermi gas (FFG); 2) momentum distribution with 
a high-momentum tail (HMT) based on Refs. [5,6]. Investigations 
have suggested that the HMT in single-nucleon momentum distri-
bution is very similar for nuclei from deuteron to infinite nuclear 
matter [27–31], roughly exhibits a C/k4 tail where k is the nu-
cleon momentum and C is a parameter [5,6,32–34]. We choose 
the HMT with the form of C/k4 in our present simulations ac-
cording to Refs. [5,6,32–34]. By comparing the results using two 
different kinds of momentum distributions, we find that neutron–
proton bremsstrahlung and the corresponding high-energy photon 
production are sensitive to the HMT in nucleon momentum distri-
bution.

The double differential probabilities of photon production with 
different kinds of mean-field potentials and different incident 
beam energies are given in details. And the ratio of the double 
differential photon production probabilities at different incident 
beam energies is suggested as a possible probe for the nucleon 
momentum distribution in finite nucleus. This paper is organized 
as follows: In section 2, the theoretical framework of BUU model 
and the photon production formula is briefly reviewed. The nu-
merical results and discussions are presented in section 3. Finally, 
section 4 concludes the paper.

2. Brief review of theoretical framework of BUU model and 
photon production

Our present simulations of intermediate energy 12C + 12C col-
lisions are based on the isospin-dependent Boltzmann–Uehling–
Uhlenbeck (BUU) transport model [24–26]. The BUU transport 
model is quite successful in describing dynamical evolution of 
nucleus–nucleus collisions and the main equation of the BUU 
model is given by:

∂ f

∂t
+ �v · ∇r f − ∇r U · ∇p f = Icollision, (1)

where f (�r, �p, t) is the probability of finding a particle at time t
with momentum �p at position �r. The function f can be consid-
ered as a mathematical tool facilitating quantum calculations as 
long as it yields a reasonable description of final observables after 
collisions [35,36]. The quantum physics plays a role in the ini-
tial condition on f , which must respect the Pauli principle. The 
mean-field potential U is an important input for BUU model. The 
left-hand side of Eq. (1) denotes the time evolution of the particle 
phase space distribution function due to its transport and mean 
field, and the collision term Icollision on the right-hand side governs 
the modifications of f (�r, �p, t) by elastic and inelastic two body col-
lisions caused by short-range residual interactions.
Icollision

= − 1

(2π)3

∫
d3 p2d3 p2′d�

dσ

d�
v12 × δ3(�p + �p2 − �p1′ − �p2′)

× [ f f2(1 − f1′)(1 − f2′) − f1′ f2′(1 − f )(1 − f2)], (2)

where dσ
d�

is the in-medium NN cross section. v12 is the rela-
tive velocity for the two colliding nucleons 1 and 2. When the 
nucleons 1 and 2 collide they change from (�r1, �p1)(�r2, �p2) to 
(�r1, �p1′)(�r2, �p2′). Considering the Pauli blocking effect, such scat-
tering is allowed if the phase-spaces around (�r1, �p1′) and (�r2, �p2′)
are essentially empty. If they are filled, the scattering should 
be suppressed. The Pauli blocking effect is embodied in terms 
(1 − f1′ )(1 − f2′ ) and (1 − f1)(1 − f2) in Eq. (2).

Two different kinds of mean-field potentials U are implemented 
in our calculations for comparison [37,38]. One is the momentum-
dependent potential deduced from the Gogny effective interaction 
(MDI) [37]:

U (ρ, δ, �p, τ ) = Au(x)
ρτ ′

ρ0
+ Al(x)

ρτ

ρ0

+ B(
ρ

ρ0
)σ (1 − xδ2) − 8xτ

B

σ + 1

ρσ−1

ρσ
0

δρτ ′

+ 2Cτ ,τ

ρ0

∫
d3 �p′ fτ (�r, �p′)

1 + (�p − �p′)2/	2

+ 2Cτ ,τ ′

ρ0

∫
d3 �p′ fτ ′(�r, �p′)

1 + (�p − �p′)2/	2
, (3)

where τ (τ ′) = 1/2(−1/2) for neutron (proton), ρn(ρp) denotes 
neutron (proton) density, ρ = ρn + ρp is the nucleon density, 
δ = (ρn − ρp)/(ρn + ρp) is the isospin asymmetry and the val-
ues of the parameters Au(x), Al(x), B , Cτ ,τ , Cτ ,τ ′ , σ , and 	 can be 
found in Ref. [37]. The choice of parameter x has negligible effect 
on the final results of 12C + 12C collisions as 12C is a symmet-
ric nuclear system. The other is the momentum-independent soft 
Bertsch–Kruse–Das Gupta (SBKD) potential [38]:

U (ρ) = A(ρ/ρ0) + B(ρ/ρ0)
σ , (4)

where ρ is the nucleon density and ρ0 = 0.16 fm−3 is the satu-
ration density. The values of three parameters are A = −356 MeV, 
B = 303 MeV, and σ = 7/6 [38]. Besides the choice of mean-field 
potential, the value of nucleon–nucleon elastic cross section is also 
an important input in the BUU model. Here the isospin-dependent 
in-medium nucleon–nucleon cross section using nucleon effective 
mass is given by:

σ medium
NN = σ

free
NN · (μ∗

NN/μNN)2, (5)

where μNN and μ∗
NN are the free-space reduced mass and in-

medium reduced mass of the colliding nucleon pair, respectively. 
σ

f ree
NN is the free-space nucleon–nucleon cross section taken from 

experimental data [39]. In the BUU simulations, the effect of the 
nuclear equation of state (EOS) could be important for many final 
observables. However, it is already found in previous studies that 
its effect on the photon production is small [40].

Usually the bremsstrahlung photon production probability in 
intermediate energy reactions is very small, roughly a thousand 
nucleon–nucleon collisions produce a photon. The influence in-
duced by bremsstrahlung on the kinematics of nucleons is very 
small, thus a perturbative approach could be used to calculate the 
photon production probability. Specifically, the photon production 
can be calculated as a probability at each neutron–proton colli-
sion and the total photon production probability is obtained by 
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summing over all neutron–proton collisions over the entire his-
tory of the reaction. The elementary probability for neutron–proton 
bremsstrahlung can be obtained by using the semiclassical hard 
sphere collision model [41] and other methods involving more 
quantum-mechanical effects such as the one boson exchange (OBE) 
model [42–47]. Based on the OBE model, a good fitting expression 
of the double differential photon production probability is given by 
Gan et al. [47]:

d2 P

d�dEγ
= 1.6 × 10−7 (1 − y2)α

y
, (6)

where the ratio y = Eγ /Emax . Eγ is the energy of the produced 
photon and Emax is the energy available in the proton-neutron cen-
ter of momentum frame, i.e., Emax = 2 × (m − m0). m0 is the rest 
mass of proton and m is the relativistic mass of proton. The pa-
rameter α is fitted to be α = 0.7319–0.5898βi with βi = p/m and 
p is the momentum of the proton. This expression of double differ-
ential photon production probability has been successfully used in 
Refs. [39,47,48] and reproduces the experimental data reasonably 
[47].

3. Parameterization of momentum distribution and numerical 
results of BUU simulations

In the BUU simulation, before the reaction starts, an initializa-
tion is made to obtain the initial phase-space function f (�r, �p, t =
0). The initial f is dependent on the nucleon momentum dis-
tributions in both target and projectile nuclei. Thus, the nucleon 
momentum distribution enters in the BUU formalism through the 
function f . For symmetric nuclear systems, we assume that pro-
tons and neutrons have the same momentum distribution. In this 
work, two different initial single-nucleon momentum distributions 
in symmetric nuclear matter (SNM) are used for BUU simulations. 
The first one is the uncorrelated free Fermi gas (FFG) distribu-
tion that exhibits a step function, i.e., a constant for k ≤ kF , and 
zero for k > kF where kF is the Fermi momentum. The second 
one is the single-nucleon momentum distribution with a high-
momentum tail (HMT). As shown in Fig. 1, the solid line step 
function stands for n(k) of FFG, and the dashed line corresponds 
to n(k) with SRC induced HMT. The latter is given according to 
Ref. [6] as follows:

nSNM(k) =
⎧⎨
⎩

C1 (k ≤ kF )

C2/k4 (kF < k ≤ λkF ),

0 (k > λkF )

(7)

where the Fermi momentum kF is [3π2ρp(n)] 1
3 . The λ ≈ 2.75 is 

the high-momentum cutoff [6,32]. The parameters C1 and C2 are 
determined by the normalization condition:

4π

∞∫

0

nSNM(k)k2dk = 1, (8)

and the condition that roughly 25% nucleons are involved in the 
HMT [6]:

4π

∞∫

kF

nSNM(k)k2dk = 0.25. (9)

Based on the local-density approximation [47,49], the nucleon 
momentum distribution in finite nucleus such as 12C can be eas-
ily obtained from that in symmetric nuclear matter. The nucleon 
momentum distribution in finite nucleus is given by [47,49]:
Fig. 1. The single-nucleon momentum distribution in symmetric nuclear matter. The 
solid line stands for the uncorrelated FFG case, while the dashed line stands for the 
correlated case, which has a ∼1/k4 HMT.

Fig. 2. The proton momentum distribution in 12C deduced from the local-density 
approximation. The solid line denotes the FFG case while the dashed line is the 
HMT case. The dotted line is the proton momentum distribution taken from the 
state-of-the-art variational Monte Carlo calculation [50].

np(n)(k) =
∫

d3r ρp(n)(r)nSNM(k,kF (r)), (10)

where np(n)(k) is the proton (neutron) momentum distribution in 
finite nucleus 12C. nSNM(k, kF (r)) is the single-nucleon momentum 
distribution in symmetric nuclear matter. The Fermi momentum 
kF (r) is [3π2ρp(n)(r)] 1

3 and ρp(n)(r) is the proton (neutron) density 
distribution in 12C. Fig. 2 shows the calculated proton momen-
tum distribution in 12C where the solid and dashed lines stand for 
the FFG and HMT cases, respectively. The dotted line is the proton 
momentum distribution taken from the state-of-the-art variational 
Monte Carlo calculation [50]. Although we use an analytical param-
eterization to obtain the nucleon momentum distribution in 12C, it 
can be seen from Fig. 2 that our calculated np(k) with HMT can 
reasonably fit the proton momentum distribution taken from the 
state-of-the-art calculation in the important region from 0.5 fm−1

to 2.5 fm−1 [50]. The neutron momentum distribution in 12C can 
be given using the same method and thus we do not repeat it.

With two different kinds of nucleon momentum distributions 
in 12C, we firstly carry out the numerical simulations of 12C + 12C
collisions using the MDI mean-field potential at a beam energy 
of 50 MeV/nucleon. We will focus on the bremsstrahlung photons 
produced in the 12C + 12C collisions, especially the high-energy 
bremsstrahlung photons (Eγ ≥ 50 MeV). Fig. 3 shows the time 
evolution of the multiplicity of bremsstrahlung photons with en-
ergy 50 MeV ≤ Eγ ≤ 125 MeV in the head-on collisions, where the 
solid and dashed lines stand for simulation results of the FFG and 
HMT cases, respectively. It can be clearly seen that the HMT leads 
to an obvious increase of high-energy photons (50 MeV ≤ Eγ ≤
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Fig. 3. Time evolution of the multiplicity of high-energy photons with 50 MeV ≤
Eγ ≤ 125 MeV in 12C + 12C head-on collisions at the beam energy of 50 MeV/nu-
cleon, in the FFG and HMT cases.

Fig. 4. The double differential probabilities of photon production in 12C + 12C head-
on collisions at the beam energy of 50 MeV/nucleon using momentum-dependent 
interaction (MDI) and momentum-independent interaction (SKBD), respectively.

125 MeV) from bremsstrahlung. This is not surprising as the HMT 
increases the average nucleon kinetic energy in both the projec-
tile and target, and thus the yield of high-energy bremsstrahlung 
photons is increased as well.

It is noted the results in Fig. 3 are obtained by using the 
MDI mean-field potential in BUU simulations. To test the effect 
of different mean-field potentials on the photon production in 
12C +12 C collisions, we further compare the results from the 
above momentum-dependent MDI interaction [37] with another 
momentum-independent interaction, namely the SBKD interaction 
[38]. Fig. 4 gives the double differential probabilities of photon pro-
duction using MDI and SBKD interactions, respectively. It is clearly 
seen that in both cases HMT results in an obvious increase of high-
energy photon production and a decrease of low-energy photon 
production. It is also seen from Fig. 4 that the effect of different 
mean-field potentials on photon production is relatively small as 
compared with the HMT effect.

We also investigate the photon production in 12C +12 C head-
on collisions at different incident beam energies. Fig. 5 compares 
the double differential probabilities of photon production using 
MDI interaction at incident beam energies of 50 MeV/nucleon and 
140 MeV/nucleon, respectively. It is clearly shown in Fig. 5 that, for 
both energies, the HMT in nucleon momentum distribution has the 
same effect on the high energy photon production. For instance, at 
Ebeam = 50 MeV/nucleon, the multiplicity of high-energy photons 
(50 MeV < Eγ < 125 MeV) is 1.65 × 10−4 in the FFG case, but in-
creases to 2.31 × 10−4 in the HMT case. This corresponds to a 40% 
growth of the photon production. At Ebeam = 140 MeV/nucleon, 
the multiplicity of corresponding high-energy photons (140 MeV <
Fig. 5. The effects of the HMT on the double differential probability of photon pro-
duction in 12C + 12C head-on collisions at beam energy of 50 MeV/nucleon and 
140 MeV/nucleon.

Fig. 6. Ratio of double differential photon production probabilities at incident beam 
energies of 50 MeV/nucleon and 140 MeV/nucleon in 12C + 12C head-on collision. 
The bands represent the uncertainties of the calculations.

Eγ < 215 MeV) is 1.8 × 10−5 in the FFG case while 6.4 × 10−5 in 
the HMT case.

We have shown the effects of different mean-field poten-
tials and different beam energies on the photon production from 
bremsstrahlung. However, there are some other factors which may 
affect the photon production, such as the nucleon–nucleon scat-
tering cross section, the stability of initial colliding nuclei, and the 
uncertainty in photon production probability, etc. To reduce the 
effects of these unresolved factors, the ratio of some observables 
from double reaction system is possibly a way out in the present 
BUU model [39,48]. Here we use the ratio of double differential 
photon production R p at two different incident beam energies 
50 MeV/nucleon and 140 MeV/nucleon,

R p = d2 P/d�dEγ (12C + 12C,50 MeV/nucleon)

d2 P/d�dEγ (12C + 12C,140 MeV/nucleon)
. (11)

The ratio R p as a function of photon energy Eγ with the error 
bar is plotted in Fig. 6. It can be seen that the value of R p is 
less than 1 for all photon energy range (0–150 MeV). It is be-
cause that higher incident beam energy Ebeam = 140 MeV/nucleon
leads to larger photon yield as compared with the photon yield 
at Ebeam = 50 MeV/nucleon. It is also seen from Fig. 6 that R p is 
sensitive to the HMT effect by comparing with the FFG case in 
high photon energy range (Eγ > 100 MeV). In Fig. 6, we also give 
the error bar of the ratio R p . The error bar is large in the case 
of FFG for all energy range. Surprisingly, the error bar of R p in 
the HMT case becomes much smaller with the increasing of en-
ergy Eγ . This is possibly due to that the higher energy photons 
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are mainly produced from the collisions of HMT nucleons and the 
uncertainties from NN cross section and photon production proba-
bility are largely reduced. More importantly, there is no crossover 
between FFG and HMT cases with Eγ > 100 MeV. This is helpful 
to distinguish these two cases in experiments. Thus ratio R p could 
be a good probe to study the HMT in nucleon momentum distri-
bution of finite nucleus. The SRC induced HMT, in principle, should 
be included self-consistently in the nucleus–nucleus collision sim-
ulations. However, this is very difficult within the frame work of 
present BUU model, and some factors such as the nucleon off-shell 
effect can not be fully taken into account [20]. Thus the further 
development of transport model will be helpful to pin down the 
SRC induced HMT through nucleus–nucleus collisions, which is of 
great importance in studying the nuclear symmetry energy and the 
physics of neutron stars.

4. Summary

In summary, in the framework of the BUU transport model, 
we have carried out a study of the effect of nucleon momentum 
distribution on the bremsstrahlung photon production in the re-
action of 12C + 12C collision. It is found that the neutron–proton 
bremsstrahlung photons are sensitive to the high-momentum com-
ponent in nucleon momentum distribution of 12C. We also inves-
tigated the effect of different mean-field potentials and different 
incident beam energies on the photon production. Double differ-
ential probabilities of photon production are discussed in details. 
Canceling out uncertainties from mean-field potential and np scat-
tering cross section as well as from photon production probability, 
etc., the ratio of photon production at different incident beam en-
ergies is proposed to probe the high-momentum component in 
nucleon momentum distribution of finite nucleus.

Acknowledgements

This work is supported by the National Natural Science Founda-
tion of China (Grants No. 11175085, No. 11575082, No. 11235001, 
No. 11535004, No. 11375086, No. 11375239 and No. 11120101005), 
by the 973 Program of China (Grant No. 2013CB834400), and by 
the Project Funded by the Priority Academic Program Development 
of Jiangsu Higher Education Institutions (PAPD).

References

[1] A.N. Antonov, P.E. Hodgson, I.Z. Petkov, Nucleon Momentum and Density Dis-
tributions in Nuclei, Clarendon Press, Oxford, 1988.

[2] R. Subedi, et al., Science 320 (2008) 1476.
[3] M.M. Sargsian, T.V. Abrahamyan, M.I. Strikman, L.L. Frankfurt, Phys. Rev. C 71 
(2005) 044615.

[4] R. Schiavilla, R.B. Wiringa, S.C. Pieper, J. Carlson, Phys. Rev. Lett. 98 (2007) 
132501.

[5] O. Hen, et al., Science 346 (2014) 614.
[6] O. Hen, B.A. Li, W.J. Guo, L.B. Weinstein, E. Piasetzky, Phys. Rev. C 91 (2015) 

025803.
[7] B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464 (2008) 113.
[8] C. Xu, B.A. Li, Phys. Rev. C 81 (2010) 044603.
[9] C. Xu, B.A. Li, Phys. Rev. C 81 (2010) 064612.

[10] C. Xu, B.A. Li, L.W. Chen, Phys. Rev. C 82 (2010) 054607.
[11] C. Xu, A. Li, B.A. Li, J. Phys. Conf. Ser. 420 (2013) 012090.
[12] I. Vidaña, A. Polls, C. Providência, Phys. Rev. C 84 (2011) 062801(R).
[13] X. Zhang, C. Xu, Z.Z. Ren, Eur. Phys. J. A 50 (2014) 113.
[14] A. Rios, A. Polls, W.H. Dickhoff, Phys. Rev. C 89 (2014) 044303.
[15] A. Carbone, A. Polls, A. Rios, Europhys. Lett. 97 (2012) 22001.
[16] V. Herrmann, J. Speth, K. Nakayama, Phys. Rev. C 43 (1991) 394.
[17] Y. Safkan, et al., Phys. Rev. C 75 (2007) 031001(R).
[18] G.H. Liu, Y.G. Ma, X.Z. Cai, D.Q. Fang, W.Q. Shen, W.D. Tian, K. Wang, Phys. Lett. 

B 663 (2008) 312.
[19] Y.G. Ma, G.H. Liu, X.Z. Cai, D.Q. Fang, W. Guo, W.Q. Shen, W.D. Tian, H.W. Wang, 

Phys. Rev. C 85 (2012) 024618.
[20] Y. Schutz, et al., Nucl. Phys. A 622 (1997) 404.
[21] G. Martinez, et al., Phys. Lett. B 461 (1999) 28.
[22] D. d’Enterria, et al., Phys. Lett. B 538 (2002) 27.
[23] R. Ortega, et al., Eur. Phys. J. A 28 (2006) 161.
[24] B.A. Li, Z.Z. Ren, C.M. Ko, S.J. Yennello, Phys. Rev. Lett. 76 (1996) 4492.
[25] B.A. Li, C.M. Ko, Z.Z. Ren, Phys. Rev. Lett. 78 (1997) 1644.
[26] B.A. Li, C.B. Das, S. Das Gupta, C. Gale, Nucl. Phys. A 735 (2004) 563.
[27] C. Ciofi degli Atti, S. Simula, Phys. Rev. C 53 (1996) 1689.
[28] S.C. Pieper, R.B. Wiringa, V.R. Pandharipande, Phys. Rev. C 46 (1992) 1741.
[29] K.Sh. Egiyan, et al., Phys. Rev. C 68 (2003) 014313.
[30] L. Frankfurt, M. Sargsian, M. Strikman, Int. J. Mod. Phys. A 23 (2008) 2991.
[31] J. Arrington, D.W. Higinbotham, G. Rosner, M. Sargsian, Prog. Part. Nucl. Phys. 

67 (2012) 898.
[32] O. Hen, L.B. Weinstein, E. Piasetzky, G.A. Miller, M.M. Sargsian, Y. Sagi, 

arXiv:1407.8175v3, 2015.
[33] B.J. Cai, B.A. Li, Phys. Rev. C 92 (2015) 011601(R).
[34] R. Weiss, B. Bazak, N. Barnea, Phys. Rev. Lett. 114 (2015) 012501.
[35] G.F. Bertsch, S. Das Gupta, Phys. Rep. 160 (1988) 189.
[36] H.W. Lee, Phys. Rep. 259 (1995) 147.
[37] C.B. Das, S. Das Gupta, C. Gale, B.A. Li, Phys. Rev. C 67 (2003) 034611.
[38] G.F. Bertsch, H. Kruse, S. Das Gupta, Phys. Rev. C 29 (1984) 673.
[39] G.C. Yong, W. Zuo, X.C. Zhang, Phys. Lett. B 705 (2011) 240.
[40] C.M. Ko, J. Aichelin, Phys. Rev. C 35 (1987) 1976.
[41] J.D. Jackson, Classical Electrodynamics, Wiley, New York, 1962, Chapter 14.
[42] H. Nifenecker, J.P. Bondorf, Nucl. Phys. A 442 (1985) 478.
[43] K. Nakayama, G.F. Bertsch, Phys. Rev. C 34 (1986) 2190.
[44] K. Nakayama, Phys. Rev. C 39 (1989) 1475.
[45] V. Herrmann, J. Speth, K. Nakayama, Phys. Rev. C 43 (1991) 394.
[46] M. Schäffer, T.S. Biro, W. Cassing, U. Mosel, H. Nifenecker, J.A. Pinstan, Z. Phys. 

A 339 (1991) 391.
[47] N. Gan, et al., Phys. Rev. C 49 (1994) 298.
[48] G.C. Yong, B.A. Li, L.W. Chen, Phys. Lett. B 661 (2008) 82.
[49] L. Viverit, S. Giorgini, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 69 (2004) 013607.
[50] R.B. Wiringa, R. Schiavilla, S.C. Pieper, J. Carlson, Phys. Rev. C 89 (2014) 024305.

http://refhub.elsevier.com/S0370-2693(16)00140-4/bib616E74s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib616E74s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib737562s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib74656E663035s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib74656E663035s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib74656E663037s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib74656E663037s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib68656Es1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib68656E32s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib68656E32s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6C6962613038s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib787532s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib787533s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib787534s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib7875s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib766964s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib7A68616E67s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib72696F73s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib436172626F6E6532303132s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib686572726D616E6Es1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib7361666B616Es1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6D617931s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6D617931s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6D617932s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6D617932s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib73636875s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6D617274s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6427456E74s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6F727465s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6C693936s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6C693937s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6C6962613033s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib63696Fs1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib706965s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib656769s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib667261s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib617272s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib617272s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib68656E33s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib68656E33s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib636169s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib7765697373s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib62657274736368s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6C6565s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib646173s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6265727473s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib796F6E32s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6B6Fs1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6A6163s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6E6966s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6E616Bs1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib6E616B32s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib68657272s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib736368s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib736368s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib67616Es1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib796F6Es1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib766976s1
http://refhub.elsevier.com/S0370-2693(16)00140-4/bib776972s1

	Neutron-proton bremsstrahlung as a possible probe of high-momentum component in nucleon momentum distribution
	1 Introduction
	2 Brief review of theoretical framework of BUU model and photon production
	3 Parameterization of momentum distribution and numerical results of BUU simulations
	4 Summary
	Acknowledgements
	References


