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Abstract: In this paper, the problem of diagonal Bianchi type III space-time
is investigated in scale invariant theory with dark energy. The matter field is
considered in the form of perfect fluid. The field equations for scale invariant
theory has been solved by applying a variation law for generalized Hubble’s
parameter (Nuovo Cimento B 74:182, 1983). The gauge function depends on
time coordinate only (Dirac gauge). The cosmological model is constructed, its
physical and kinematical properties are discussed.
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1. Introduction

Soleheim (1966) was the first to indicate that the universe is presently in a
state of accelerated expansion. Using the observed luminosity of several clus-
ter galaxies, he found that the model giving the best fit data was one with a
non-vanishing cosmological constant and negative deceleration parameter. It is
however, only after the more recent observations of the luminosity of supernovae
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of type Ia (SNIa) that this claim has grown popularity. Cosmic observations
from supernovae (Riess et al. 1998, Perlmutter et al. 1999, cosmic microwave
background (CMB) radiation (Spergel et al. 2003, 2007; Komatsu et al. 2009),
large scale structure (LSS)(Tegmark et al. 2004; Seljak et al.2005), baryon
acoustic oscillations (BAO) (Eisenstein et al. 2005), and weak lensing ( Jain
and Taylor 2003) have implied that the expansion of the universe is acceler-
ating at the present stage. Approaches to account for the late time cosmic
acceleration fall into two representative categories: one is to introduce dark
energy (DE) in the right hand side of the Einstein equation in the framework of
general relativity (Kamionkowski 2009; Amendola and Tsujikawa 2010, Kunz
2012). The other is to modify the left hand side of the Einstein equation, called
as modified gravitational theory ( Capozziello and M De Lauretis 2011; Harko
and Lobo 2012;, Capozziello et al. 2012).

A variety of possible solutions such as cosmological constant (Weinberg
1989; Peebles and Ratra 2003), quintessence (Sahni and Starobinsky 2000;
Sahni 2004; Padmanabha 2008), phantom field (Caldwell 2002; Nojiri and Odin-
tosov 2003), tachyon field (Sen 2002; Padmanabhan 2002; Padmanabhan and
Chaudhary 2002), quintom ( Feng et al. 2005; Guo et al.2005), and the interact-
ing dark energy model like Chaplygin gas (Kamenshchik et al. 2001; Bento et
al. 2002), holographic models (Wang et al.2005; Setare 2006, 2007; Hu and Ling
2006; Kim et al. 2006) and braneworld models (Li 2004; Deffayet et al.2002),
have been proposed to interpret accelerating universe. However, none of these
models can be regarded as being entirely convincing so far. Cosmologists have
proposed many candidates for dark energy to fit the current observations such
as cosmological constant, tachyon, quintessence, phantom and so on. The ma-
jor differences among these models are that they predict different equation of
state of the dark energy and different history of the cosmos expansion. The
simplest dark energy candidate is the cosmological constant, but needs some
fine tuning to satisfy the current value of DE.

Dark energy is considered to be the best candidate to explain cosmic ac-
celeration. It is now believed that 96 percent of energy of the universe consists
of dark energy and dark matter (76 percent dark energy and 20 percent dark
matter). One of the most important quantity to describe the features of dark
energy models is the equation of state (EoS) ωDE, which is the ratio of pressure
pDE to the energy density ρDE of dark energy, defined by ωDE = pDE

ρDE
. Usually

EoS parameter is assumed to be a constant with the values −1,0, −1/3 and +1
for vacuum, dust, radiation and stiff matter dominated universe respectively.
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However, latest observations from SNIa (Padmanabhan and Chaudhary 2002)
indicated that ω is not a constant. There are two ways to describe the features
of dark energy models: one is fluid description (Nojiri et al. 2005) and the
other is to describe the action of a scalar field theory.

There is a new candidate for dark energy: Wet Dark Fluid (WDF). This
model is in the spirit of generalised Chaplygin gas (GCG), where a physically
motivated equation of state is offered with properties relevant for the dark
energy problem. Here, the motivation stems from an empirical equation of
state to treat water and aqueous solutions. The equation for WDF is

pWDF = γ(ρWDF − ρ∗) (1.1)

It is motivated by the fact that it is a good approximation for many fluids
including water, in which the internal attraction of the molecules makes negative
pressure possible. The parameters γ and ρ∗ are taken to be positive and we
restrict ourselves to 0 ≤ γ ≤ 1. Note that if cs denotes the adiabatic sound
speed in WDF, then γ = c2s (Babichev et al.2005).
To find the WDF energy density, the following energy conservation equation is
required

ρ̇WDF + 3H(pWDF + ρWDF ) = 0 (1.2)

From equation of state (1) and using 3H = v̇
v
in equation (2), one can obtain

ρWDF =
γ

1 + γ
p∗ +

k

ν1+γ
(1.3)

where k is the integration constant and ν is the volume expansion.
WDF naturally includes two components, a piece that behaves as a cosmological
constant as well as pieces those red shifts as a standard fluid with an equation
of state p = γρ.
We can show that if we take k > 0, this fluid will not violate the strong energy
condition p+ ρ ≥ 0. Thus, we get

pWDF + ρWDF = (1 + γ)ρWDF − γρ∗ = (1 + γ)
k

ν1+γ
≥ 0 (1.4)

Holman and Naidu (2005)observed that their model is consistent with the
most recent SNIa data, the WMAP results as well as the constraints coming
from measurements of the power spectrum. Hence, they considered both, the
case where the dark fluid is smooth (i. e. only the CDM component cluster
gravitationally) as well as the case where the dark fluid also clusters.
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In a homogeneous universe, it is possible to infer the time evolution of the
cosmic expansion from observations along the past light cone, since the expan-
sion rate is a function of time only. In the inhomogeneous case, however, the
expansion rate varies both with time and space. Therefore, if the expansion
rates inferred from observations of supernovae are larger for low red-shifts than
higher red-shifts, this must be attributed to cosmic acceleration in a homoge-
neous universe.
Nojiri and Odintsov (2011) developed the cosmological reconstruction method
in terms of cosmological time. Using the freedom in the choice of scalar poten-
tials and of the modified term function, which depends on geometrical invari-
ants, such as curvature and Gauss-Bonnet term, they arrived to master differ-
ential equations whose solutions solve the problem. They explicitly considered
the reconstruction in scalar tensor theory, Brans-Dicke gravity, the k-essence
model, F(R) theory and Lagrangian multiplier F(R) theory. Special attention
were paid to late-time dynamics of the effective quintessence/phantom dark
energy of arbitrary nature: fluid, particle model or modified gravity. The ad-
vantage of the approach proposed in this work is very general character. The
developed reconstruction scheme proposes the way to change the properties of
any particular theory in a desirable way. The work made here is excellent.
Motivated with the work of Nojiri and Odintsov (2011), We have considered
the scale invariant theory in dark energy, which theory necessarily includes an
arbitrary gauge function.

In recent years, there has been several modifications of general relativity.
Scale invariant theory is one prominent alternative theory among them. In the
scale invariant theory of gravitation, Einstein equations have been written in a
scale-independent way by performing the conformal or scale transformation as

ḡij = β2(xk)gij (1.5)

where the gauge function β, in its most general formulation, is a function of all
space-time coordinates. Thus, using the conformal transformation of the type
given by equation (5), Wesson (1981a,b) transforms the usual Einstein field
equations into

Gij + 2
β;ij
β

− 4
β,iβ,j
β2

+ (gab
β,aβ,b
β2

− 2gab
β;ij
β

)gij + Λ0β
2gij = −Tij (1.6)

where

Gij ≡ Rij −
1

2
Rgij (1.7)
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Here, Gij is the conventional Einstein tensor involving gij . Semicolon and
comma respectively denote covariant differentiation with respect to gij and
partial differentiation with respect to coordinates. Rij is the Ricci tensor, and
R is the Ricci scalar. The cosmological term Λgij of Einstein theory is now
transformed to Λ0β

2gij in scale invariant theory with dimensionless cosmologi-
cal constant Λ0. G is the Newtonian’s gravitational parameter. Tij is the energy
momentum tensor of the matter field. A particular feature of this theory is that
no independent equation for β exists.

Beesham (1986 a, b, c), Mohanty and Mishra (2001, 2003), Mishra (2004,
2008), Mishra and Sahoo (2012a,b, 2014)have investigated several aspects of
scale invariant theory. However, Bianchi type III space-time with dark energy
has not been considered, so far, in the scale invariant theory of gravitation.
Hence, in this paper, we have constructed the Bianchi type III cosmological
model with dark energy in scale invariant theory. Section 1 gives some literature
review and formulation of the theory. In Section 2, the metric,field equations,
physical and kinematical parameters are set up. The solution of the field equa-
tions are derived in Section 3. The physical and kinematical properties of the
parameters described in Section 2 are discussed in Section 4. The conclusions
are mentioned in Section 5 and a list of references is given at the end.

2. Metric and Field Equations

Here we consider Bianchi type III space-time with a Dirac gauge function
β = β(ct) of the form

ds2W = β2ds2E (2.1)

with
ds2E = c2dt2 −A2dx2 − e−2αxB2dy2 − C2dz2 (2.2)

The metric potentials A, B and C are functions of t only. c is the velocity of
light. ds2W and ds2E respectively represent the intervals in Wesson and Einstein
theory. Further, xi, i = 1, 2, 3, 4 respectively denote for x,y,z and t only.
Here, we have taken an attempt to build cosmological model in Bianchi type
III space-time with dark energy in scale invariant theory.
The energy momentum tensor for dark energy is given by

Tij = diag[ρ,−px,−py,−pz] = diag[1,−ωx,−ωy,−ωz]ρ (2.3)

Tij = diag[1,−ω,−(ω + γ),−(ω + δ)]ρ (2.4)
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we choose ωx = ω and the skewness parameters γ and δ are the deviations from
ω on y and z axes respectively.
Now the field equations for scale invariant theory (6) for the metric (8) and
energy momentum tensor (10) yield the following equations:

B44

B
+

C44

C
+

B4C4

BC
+ 2

β4
β

(

B4

B
+

C4

C

)

+ 2
β44
β

−
β2
4

β2
+ Λ0β

2c2 = −ωρ (2.5)

A44

A
+

C44

C
+

A4C4

AC
+2

β4
β

(

A4

A
+

C4

C

)

+2
β44
β

−
β2
4

β2
+Λ0β

2c2 = −(ω+γ)ρ (2.6)

A44

A
+
B44

B
+

A4B4

AB
−
α2c2

A2
+2

β4
β

(

A4

A
+

B4

B

)

+2
β44
β

−
β2
4

β2
+Λ0β

2c2 = −(ω+δ)ρ

(2.7)

A4B4

AB
+
B4C4

BC
+
C4A4

CA
−
α2c2

A2
+2

β4
β

(

A4

A
+
B4

B
+
C4

C

)

+3
β2
4

β2
+Λ0β

2c2 = ρ (2.8)

A4

A
−

B4

B
= 0 (2.9)

The suffix 4 after a field variable denotes exact differentiation with respect
to time t.

Eqn. (16) gives
A = k1B (2.10)

where k1 is an integrating constant which can be taken as unity without loss of
generality so that

A = B (2.11)

Use of eqn. (18) reduces field eqns.(12)-(15) as

B44

B
+

C44

C
+

B4C4

BC
+ 2

β4
β

(

B4

B
+

C4

C

)

+ 2
β44
β

−
β2
4

β2
+ Λ0β

2c2 = −ωρ (2.12)

B44

B
+
C44

C
+
B4C4

BC
+2

β4
β

(

B4

B
+
C4

C

)

+2
β44
β

−
β2
4

β2
+Λ0β

2c2 = −(ω+γ)ρ (2.13)
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2
B44

B
+

B2
4

B2
−

α2c2

B2
+ 2

β4
β

(

2
B4

B

)

+ 2
β44
β

−
β2
4

β2
+ Λ0β

2c2 = −(ω + δ)ρ (2.14)

B2
4

B2
+ 2

B4C4

BC
−

α2c2

B2
+ 2

β4
β

(

2
B4

B
+

C4

C

)

+ 3
β2
4

β2
+ Λ0β

2c2 = ρ (2.15)

The average scale factor R and volume V can be defined as

R = (B2C)
1
3 (2.16)

V = R3 = B2C (2.17)

The generalized mean Hubble’s parameter H is

H =
1

3
(H1 +H2 +H3) (2.18)

where H1 = H2 =
B4
B
,H3 =

C4
C

are the directional Hubble parameter in the
direction of x,y and z respectively. From eqns. (23)-(25), we conclude

H =
1

3

V4

V
=

1

3
(H1 +H2 +H3) =

R4

R
(2.19)

The scalar expansion θ in the model are defined by

θ = 3H = 2
B4

B
+

C4

C
(2.20)

The shear scalar σ2 can be defined as

σ2 =
1

3

(

B4

B
−

C4

C

)2

(2.21)

where σij
The average anisotropy parameter Aα defined as

Aα =
1

3
Σ

(

∆Hi

H

)2

(2.22)

where ∆Hi = Hi −H; i = 1, 2, 3.
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3. Solutions of the Field Equations

The field eqns. (12)-(15) are system of four equations with six unknowns B,C,ρ,
ω, δ and β. In order to obtain explicit exact solution, we need two additional
constraints relating these unknowns are required. With the help of special law
of variations proposed by Berman (1983) which yields constant deceleration
parameter of the models of the universe. The constant deceleration parameter
model defined as

q = −
RR44

R2
4

= constant (3.1)

which acts as an indicator of the existence of inflation of the model. If q > 0,
the model decelerates in the standard way while q < 0 indicates inflation or
accelerated expansion of the universe. Also R = (B2C)

1
3 .

Eqn(30) yields the solution

R = (at+ b)
1

1+q (3.2)

where a 6= 0 and b are constants of integration and 1+ q > 0 for the accelerated
expansion of the universe. Again using the physical condition that the shear
scalar σ is proportional to scalar expansion θ, we take

B = Cm (3.3)

where B and C are metric potentials and m is positive constant. With the help
of eqns.(18), (23), and (31), we obtain the expression for the metric potentials
as

A = B = Cm = (at+ b)
3m

(1+q)(1+2m) (3.4)

With the help of eqn. (33), the metric (9) can be written as

ds2E = c2dt2 − (at+ b)
6m

(1+q)(1+2m) (dx2 + dy2)− (at+ b)
6

(1+q)(1+2m) dz2 (3.5)

where the Dirac gauge function is considered in the form of β = 1
ct
.

4. Some Physical and Kinematical Properties of the Model

In this section, we investigated some physical properties of the model for the
Bianchi type III space-time dark energy in scale invariant theory of gravitation
as represented in eqn.(34).
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The scalar expansion of the model

θ = 2
B4

B
+

C4

C
=

3a

(1 + q)(at+ b)
(4.1)

Hence, the scalar expansion remains constant t = 0; however for large value of
t, the expansion decreases. Spatial volume found to be

V = R3 = B2C = (at+ b)
3

1+q (4.2)

It indicates that the spatial volume is zero at t = −b/a and it increases as t
increases. Thus, the universe starts evolving with zero volume at t = −b/a and
expands with cosmic time t. Also, for 1+q > 0, the universe is expanding. The
shear scalar is

σ2 =
1

3

(

B4

B
−

C4

C

)2

=

[

a(m− 1)

(1 + q)(1 + 2m)(at+ b)

]2

(4.3)

For large value of t, the shear scalar vanishes, hence the shape of the universe
remains unchanged during evolution. Moreover, σ2

θ2
turns out to be a constant,

the model does not approach isotropy for large value of t. However, for m = 1,
the model becomes isotropic. The generalized mean Hubble’s parameter H is

H =
1

3
(H1 +H2 +H3) =

a

(1 + q)(at+ b)
(4.4)

The Hubble’s parameter is zero as t → ∞, therefore it indicates that the rate
of expansion is accelerated or decelerated depends on the signature of the pa-
rameter.However, 1+ q > 0 is already indicating that the model is accelerating.

The average anisotropy parameter Aα defined as

Aα =
1

3
Σ

(

∆Hi

H

)2

=
2

3

(

m− 1

1 + 2m

)2

(4.5)

Since Aα is constant, the mean anisotropic parameter is uniform throughout
the evolution of the universe.

The energy density ρ, EoS parameter ω, skewness parameters γ and δ are
obtained as

ρ =
9ma2(m+ 2)

(1 + q)2(2m+ 1)2(at+ b)2
−

α2c2

(at+ b)
6m

(1+q)(2m+1)

−
6a

t(1 + q)(at+ b)
+
3− Λ0

t2

(4.6)
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ω =

(

a
at+b

)2[
3(m+1)

(1+q)(2m+1) −
9(m2+m+1)

(1+q)2(2m+1)2

]

+ 6a(m+1)
t(1+q)(2m+1)(at+b) +

Λ0−3
t2

9ma2(m+2)
(1+q)2(2m+1)2(at+b)2

− α2c2

(at+b)
6m

(1+q)(2m+1)

− 6a
t(1+q)(at+b) +

3−Λ0

t2

(4.7)

γ = 0 (4.8)

δ =

(

a
at+b

)2[

3(m−1)
(1+q)(2m+1) −

9(2m2
−m−1)

(1+q)2(2m+1)2

]

+ 6a(m−1)
t(1+q)(2m+1)(at+b) −

α2c2

(at+b)
6m

(1+q)(2m+1)

9ma2(m+2)
(1+q)2(2m+1)2(at+b)2 − α2c2

(at+b)
6m

(1+q)(2m+1)

− 6a
t(1+q)(at+b) +

3−Λ0
t2

(4.9)
It is observed that for large t, the parameters ρ vanishes, δ becomes constant
and the behavior of ω depends on m. However, for m < 1−q

1−2q , ω goes to zero
for large t. Moreover, ω becomes constant and δ never diverge as t vanishes.

5. Conclusions

Here, Bianchi type III dark energy cosmological models with variable EoS pa-
rameter has been investigated in scale invariant theory of gravitation. From
the above discussion and physical interpretation, it follows that the dark en-
ergy model in scale invariant theory is consistent with the recent observations
of Type Ia super novae. The EoS parameters and skewness parameter turn
out to be functions of cosmic time t. This study is significant, because dark
energy is the best candidate to explain the cosmic acceleration in the general
and alternative theories of gravitation.

Acknowledgments

BM acknowledges University Grants Commission, New Delhi, India for financial
support to carry out the Minor Research Project [F.No.-42-1001/2013(SR)].

References

[1] Amendola, L., Tsujikawa,S, 2010, Dark Energy, Cambridge University
Press, Cambridge.



DARK ENERGY COSMOLOGICAL MODEL FOR... 119

[2] E. Babichev, V. Dokuchaev, Yu. Eroshenko, 2005, Class. Quant. Grav.,
22,(2005),143.

[3] Beesham, A. 1986a, Clasic. Quant. Grav., 3, 481.

[4] Beesham, A. 1986b, Astophys. Space Sci., 119, 415.

[5] Beesham, A. 1986c, Clasic. Quant. Grav., 3, 1027.

[6] Bento, M.C. Bertolami,O., Sen, A.A. 2002, Phys. Rev. D, 66, 043507.

[7] Berman, M.S. 1983, Nuovo Cimento B, 74, 182.

[8] Caldwell, R.R. 2002, Phys. Lett B, 545, 23.

[9] Capozziello, S, Lauretis, M De. 2011, Phys. Rept.,509, 167.

[10] Capozziello, S., Lauretis,M. De, Odintsov,S.D. 2012, arXiv: 1206.4842,[gr-
qc].

[11] Deffayet,C., Dvali, G.R., Gabadadze, G. 2002, Phys. Rev. D, 65, 044023.

[12] Eisenstein, D.J., et al. 2005, (SDSS), Astron. J., 633, 560.

[13] Feng, B., Wang,X.L., Zhang, X.M. 2005, Phys. Lett. B, 607, 35.

[14] Guo, Z.K., Ohta, N., Zhang,Y.Z. 2005, Phys. Rev. D, 72, 023504.

[15] Harko,T., Lobo, F.S.N.2012, arXiv: 1205.3284, [gr-qc].

[16] Holman, R., Naidu, S. 2005, arXiv:astro-ph/0408102.

[17] Hu, B., Ling, Y. 2006, Phys. Rev. D, 73, 123510.

[18] Jain,B., Taylor, A. 2003, Phys. Rev. Lett., 91, 141302.

[19] Kamionkowski,M. 2009, Phys. Rev. Lett., 102, 111302.

[20] Kamenshchik, A.Y., Moschella, M., Pasquier, V., 2001, Phys. Lett. B 511,
265.

[21] Kim, H., Lee, H.W., Myung, S.S. 2006, Phys. Lett. B, 632, 605.

[22] Knop, R.A., et al. 2003,(Supernova Cosmology Project),Astrophys. J. 598,
102.

[23] Komatsu, E., et al., 2009, The Astrophys J. 180,330.



120 B. Mishra, P.K. Sahoo, Ch.B. Siddarth Varma

[24] Kunz, M. 2012, arXiv:1204.5482,[astr-ph.CO].

[25] Li, M. 2004, Phys. Lett. B, 603, 1.

[26] Mishra, B. 2004, Chinese. Phys. Lett., 21(12), 2359.

[27] Mishra, B. 2008, Turk. J. Phys. 32, 357.

[28] Mishra, B., Sahoo, P. K. 2012a, Int. J. pure and Appl. Maths., 80(4), 535.

[29] Mishra, B., Sahoo, P. K. 2012b, Int. J. Theo. Phys., 51(2), 399.

[30] Mishra, B., Sahoo, P. K. 2014, Astrophys. Space Sci., 349, 491.

[31] Mohanty, G., Mishra, B. 2001, Czech. J. Phys, 51, 525.

[32] Mohanty, G., Mishra, B.2003, Astrophys. Space Sci.,283, 67.

[33] Nojiri, S, Odintsov, S.D. 2003, Phys. Rev.D, 68, 123512.

[34] Nojiri, S., Odintsov, S.D. 2005, Phys. Rev. D., 72, 023003.

[35] Nojiri, S., Odintsov, S.D. 2011, Phys. Rep., 505, 59.

[36] Padmanabhan, T. 2002, Phys. Rev. D, 66, 021301.

[37] Padmanabhan, T. 2008, Gen. Rel. Grav., 40, 529.

[38] Padmanabhan, T., Roy Choudhury, T. 2002, Phys. Rev. D, 66, 081301.

[39] Peebles,P.J.E., Ratra, B. 2003, Rev. Mod. Phys., 75, 559.

[40] Perlmutter, S., et al. 1999, Astrophys. J., 517, 565.

[41] Riess, A.G.,et al. 1998, Astron. J., 116, 1009.

[42] Sahni, V. 2004, arXiv: astro-ph/0403324v3.

[43] Sahni, V., Starobinsky, A. 2000, Int. J. Mod. Phys. D, 9, 373.

[44] Seljak, U., et al. 2005, Phys Rev. D, 71,103515.

[45] Sen, A. 2002, J. High energy Phys., 0204, 048.

[46] Setare, M.R. 2006, Phys. Lett. B, 642, 421.

[47] Setare, M.R. 2007, Phys. Lett. B, 644, 99.



DARK ENERGY COSMOLOGICAL MODEL FOR... 121

[48] Solheim, J.E. 1966, Mon. Not. R. Astron. Soc., 133, 321.

[49] Spergel, D.N., et al., 2003, (WMAP), Astrophys. J. Suppl. Ser. 148,175.

[50] Spergel, D.N., et al.,(WMAP), Astrophys. J. Suppl. Ser., 170,3771.

[51] Tegmark, M., et al. 2004, (SDSS), Phys. Rev. D. 69, 103501.

[52] Wang, B., Gong, Y.G., Abdalla, E., 2005, Phys. Lett. B, 624, 141.

[53] Weinberg, S. 1989, Rev. Mod. Phys.,61, 1.

[54] Wesson, P.S. 1981a, Astron. Astrophys.,102, 45.

[55] Wesson, P.S. 1981b, Mon. Not. R. Astro. Soc., 197, 157.



122


