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Abstract 

 

The idea of reducing transverse emittance with tapered energy-loss foil is proposed by J.M. 

Peterson in 1980s and recently by B. Carlsten. In this paper, we present the physical model of 

tapered energy-loss foil and analyze the emittance reduction using the concept of eigen 

emittance. The study shows that, to reduce transverse emittance, one should collimate at least 

4% of particles which has either much low energy or large transverse divergence. The multiple 

coulomb scattering is not trivial, leading to a limited emittance reduction ratio. 

 

I. Introduction 

 

Small transverse emittances are of essential importance for the accelerator facilities generating 

free electron lasers, especially in hard X-ray region. The idea of reducing transverse emittance 

with tapered energy-loss foil is recently proposed by B. Carlsten [1], and can be traced back to 

J.M. Peterson’s work in 1980s [2]. Peterson illustrated that a transverse energy gradient can be 

produced with a tapered energy-loss foil which in turn leads to transverse emittance reduction, 

and also analyzed the emittance growth from the associated multiple coulomb scattering. 

However, what Peterson proposed was rather a conceptual than a practical design. In this paper, 

we build a more complete physical model of the tapered foil based on Ref. [2], including the 

analysis of the transverse emittance reduction using the concept of eigen emittance and 

confirming the results by various numerical simulations. The eigen emittance equals to the 

projected emittance when there is no cross correlation in beam’s second order moments matrix 

[3]. To calculate the eigen emittances, it requires only to know the beam distribution at the foil 

exit. Thus, the analysis of emittance reduction and the optics design of the subsequent beam line 

section can be separated. In addition, we can combine the effects of multiple coulomb scattering 

and transverse energy gradient together in the beam matrix and analyze their net effect. We find 

that,when applied to an electron linac or electron beam line, the energy spread increase and 

angular growth due to multiple scattering are not trivial; as a result, the transverse emittance can 

only be reduced with a limited ratio, e.g. down to about 65% the original value. 

 

The contents of this paper are arranged as follows. In Sec. II, we build the physical model of the 

tapered foil, derive the transverse eigen emittance and discuss the emittance reduction criteria. 

In Sec. III, we implement numerical simulations to verify the physical model; and in Sec. IV, we 

present numerical experiments and subsequent beam line to remove the transverse energy 

gradient to demonstrate the applicability of such method. Conclusion are given in the last 

section. 
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II. Physical model 

 

Let us consider the electron beam distribution passing through a tapered energy-loss foil, whose 

geometry is shown in Fig. 1. For convenience, we place the foil where the beam’s phase space 

distributions in three planes are all up-right ellipses. Thus, the second order moments beam 

matrix (For convenience, only show x, z planes) is 

    
  
  

          (1) 

where the 2-by-2 matrices A and B are 

   
   
  

     
      

   
  

    
    

 

 
Fig. 1 Geometry of the tapered energy-loss foil. 

 

On exiting the foil, particles at and greater than +2x will not lose energy, while particles at x =0 

lose energy E0*F and particles at -2x loss energy 2E0*F, with E0 being the beam average 

energy at the entrance of the foil, F the average energy loss factor of particles with x=0.  

 

Therefore it produces a linear relationship between momentum and x position around the new 

mean momentum at the exit of the foil, as illustrated in Fig. 2. The correlation can be represented 

as 

                (2) 

with X = (x, x’, z, )T, and Mf is 4-by-4 matrix, with diagonal elements to be 1 and Mf (4,1) = F/2x. 

The slight downward net shift of energy distribution is ignored in Eq. (2). 

 

 

Fig. 2 The beam distribution before (solid line) and after (dashed line) the foil. 

 

The beam matrix after the foil is then calculated by  

        
 .          (3) 
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Meanwhile, multiple coulomb scattering induces additional energy spread 
 and transverse 

divergence x’
2. Although there is weak correlation between x’ and  for 100% particles due to 

coulomb scattering, for the central (~96%) particles the correlations is negligible. Therefore these 

two effects are taken into account by directly adding 

and x’

2 to the beam matrix ,  

    
    
    

              (4) 

where the 2-by-2 matrices Af, Bf, Cf are  

    
   
  

     
      

     

    

   
  

    
  

   

 
    

 
    

    
 

     

 

  
 . 

 

The eigen emittance can be obtained by calculating the eigen values of the J4f [3], J4 is the four 

dimensional unit symplectic matrix, 

    
  
  

              (5) 

Where the 2-by-2 matrix J is 

   
  
   

                  (6) 

The horizontal eigen emittance is in the form 

       
 

   
          

 

   
                 (7) 

with        
     

           , 

          
        

    , 

       
            

     
         

    
      

where G, P and Q are related to the transverse energy gradient, angular growth and energy 

spread increase, respectively;  is the Lorenz factor;                          are the 

initial normalized x and z emittances. 

Note that P, Q and G are all positive, therefore on the RHS of Eq. (7), 
 

   
    

   
     

 

 
 

              . Both x0 and z0 are assumed to be larger than the target x eigen emittance. In 

other cases, like, z0 is smaller than the target x eigen emittance, one can make emittance 

exchange between x and z planes to realize the transverse emittance reduction, which is not the 

interest of the present study. 

 

  



4 
 

To achieve small emittance, it requires 

   
 

 
   

      
        

    

      
     

             
        (8) 

so that 

                         
 

 

 

  
                          (9) 

 

Due to coulomb multiple scattering, a few percent (~2%) of particles have large transverse 

divergence and away from the beam core in x, x’ phase space, and similarly in z,  phase space. In 

practice, these particles (totally about 4% percent) should be collimated. In what follows, we will 

show the expressions of G, P and Q for the remaining particles after the 4% collimation. 

 

For the central 98% particles around the mean momentum, the average energy loss factor 

(denotes as F98) and energy spread increase depend on the relative foil thickness df = Lf/L0, 

beam energy, and weakly on the foil material. For Carbon foil, it is empirically found that (refer to 

Sec. III, numerical simulations), 

      
  

 
       

  

  

  

 
 

  

 
                        (10) 

      
        

     

 

  

  
    

     

 
            (11) 

These two equations are valid for df of 10-5 to 10-3 and beam energy of 100 MeV to 12 GeV. In the 

cases of df > 10-3, the dependence of F98 and 

(98%) on the 1/ are no longer linear. 

Although F98 will increase, the 
 (98%) will increase more quickly than F98 with the 

increasing df, leading to emittance growth in three planes. 

 

For the central 98% particles, the angular growth using Gaussian approximation [4] is 

           
    

 
                           (12) 

We notice that the value of (1 + 0.038ln(df))2 varies little with df, therefore approximate this term 

with a constant value 4/9 ( it is accurate to 10% for 10-6 < df < 10-3). Then the angular growth 

approximately linearly depends on df,  

        
  

 

 
     

     

  
            (13) 

Here we make an approximation that 

(98%) and x’

2 do not depend on x, which greatly 

simplifies the analysis while does not lead to large disparity between the physical model and real 

circumstance (see below). 

 

Submit Eqs. (10), (11) and (13) into Eq. (7), we have 

         
               

             
     

 

   
   (14) 

 

From Eq. (8), to achieve small x eigen emittance, the most effective way is to increase G and 

minimize P and Q. However, Q changes monotonically with G, increasing G leads to large Q at the 

same time, which in turn limits the available minimal x,eig to be about 65% of x0 (Appendix A). 
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Let us consider a case that the beam’s normalized emittances are 0.7/0.7/1.4 m, x = 1 cm at 

the foil, rms bunch length z = 0.5 mm. With these parameters, the x eigen emittance with 

respect to the relative foil thickness df and beam energy is shown in Fig. 3. To achieve x,eig = 0.5 

m, it requires energy greater than 1.845 GeV and relative foil thickness df about 2×10-4. It is 

really hard to reduce x,eig close to the theoretical minimal x,eig ( ~0.455 m), unless we collimate 

more particles, in that case, Eqs. (10-13) should be modified, too. 

 

 

Fig. 3 X eigen emittance with respect to energy and relative foil thickness df = Lf/L0.. 

 

 

III. Numerical Simulations 

 

We verify the above analysis by making plenty of simulations with G4beamline, a particle tracking 

and simulation program well suited for beam-material interactions [5]. 

 

A. Foil with uniform thickness 

 

First, we simulate the case of mono-energetic electron beam with zero initial transverse 

divergence passing through foil with uniform thickness. The result is shown in Fig. 4. A few 

percent (~4%) of particles have large divergence and low energy. The mean energy loss factor and 

transverse divergence of 100% and 98% central particles are calculated for different foil thickness, 

as shown in Figs. 5. The average energy loss factor of all particles F100 approximately equals to df 

[4] and F98 changes linearly with df. The angular distribution of central 98% particles agrees with 

Eq. (12) fairly well, however, the simulation results become a little larger than the analytical 

prediction when df is greater than 1×10-3. Varying the beam energy, we observe the linear 

dependence of F98 and (98%) on / = E0/E (E is the electron rest mass energy), as shown in 

Fig. 6, from which, we obtain Eqs. (10) and (11) by fitting the data. 
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Fig.4 Electron beam distribution after passing through a uniform Carbon foil. Beam energy E = 

172 MeV. Foil thickness is Lf = 1.5 m. Radiation length of Carbon L0 = 18.8 cm. 

 

Fig. 5 Average energy loss factor (left) and average angular growth (rigth) with respect to relative 

foil thickness df = Lf/L0. 



Fig. 6 F98 and (98%) with respect to 1/while keeping the relative foil thickness constant, 

df = Lf/L0=2.2×10-4. 
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B. Tapered foil 

 

We then simulate an electron beam with relative practical parameters passing through a tapered 

foil (see Fig. 1). The incident beam emittances are 0.7/0.7/1.4 m, beam energy E = 300 MeV, x 

= 50 m, and phase space distributions are all up-right ellipse in three planes. A carbon tapered 

foil with middle thickness of 100 m (df = 5.3×10-4) is used in the simulation. Figs. 7 presents the 

average energy loss factor F98 and angular growth <2> of central 98% particles in different x 

slices. It shows that the physical model (Eqs. (10), (12)) keeps well when counting the x-sliced 

energy loss and angular growth. 

 

Fig. 7 Average energy loss factor and average angular growth of central 98% particles in different 

x slices. 

 

IV. Numerical experiment 

 

Here we show a numerical experiment. The main parameters of the beam and the foil are listed 

in Table 1. We collimate 4% particles with large transverse divergence and energy loss using 

collimators after the foil. Fig. 8 presents the beam distribution before and a distance after the foil. 

The x eigen emittance calculated from the beam distribution at the exit of the foil is 0.543 m, 

agrees fairly well with that calculated from the physical model 0.498 m. 

 

Table 1 parameter setting 

Parameter Amplitude Unit 

Beam energy E 2000 MeV 

Normalized emittance at foil 

entrance, x0/y0/z0 

0.7/0.7/1.4 m 

x/y at foil entrance 1/1 cm 

Bunch length at foil entrance z 0.5 mm 

Relative foil thickness for the 

central electron, Lf/L0 

2×10-4  

Foil material Carbon 

X eigen emittance after foil, 

analytical approach 

0.498 m 

X eigen emittance after foil, 

G4beamline simulation 

0.543 m 
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Fig. 8 Beam distribution before (blue plots) and a distance after (red plots) the carbon tapered 

energy-loss foil.  

 

We also simulate the case of a partially tapered foil, whose thickness varies linearly with x in the 

range of [–x, x] and constant out of this range, with the geometry shown in Fig. 9. Consider 96% 

central particles, the average energy loss factor and angular growth of difference x slice after the 

foil are shown in Fig. 10. The calculated x eigen emittance from the beam distribution at the exit 

of the foil is 0.47 m, 14% smaller than that produced by a purely tapered foil. 

 

Fig. 11 presents a 15.1m long beam line section, including four dipoles and four transverse 

deflecting cavities to remove the x, correlations. Because the beam is partially x,  correlated, 

the correlation can not be completely removed, as shown in Fig. 12. Fig. 13 shows the beam 

distribution and x slice emittances at the exit of this beam line section, which accord with the x 

eigen emittance calculation result quite well. 

 

 
Fig. 9 Geometry of the energy-loss foil. 

x

z
x

x



9 
 

 

Fig. 10 Average energy loss factor and average angular growth of central 98% particles with 

respect to different x offset of particles. 

 

 

Fig. 11 Beam line section to remove x,  correlation, including 4 dipoles (blue) and 4 transverse 

deflecting cavities (red). 

 

Fig. 12 Beam distribution after the correlation removing beam line section 
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Fig. 13 Normalized x sclice emittance 

V. Conclusion  

 

The idea of reducing transverse eigen emittance with tapered energy-loss foil is analyzed in this 

paper. The multiple coulomb scattering will cause about 4% of particles losing too much energy 

or having too large transverse divergence, which need to be collimated in practice. For the 

remaining particles, the average energy loss factor, angular growth and energy spread growth 

mainly depend on the beam energy and relative foil thickness, and weakly on foil material. We 

build a physical model of the tapered foil, and find that the energy spread growth due to multiple 

coulomb scattering is not trivial, but comparable to the transverse energy gradient; as a result, 

the available minimal x eigen emittance is only about 65% of x0. Numerical experiments and 

subsequent beam line design to remove the transverse energy gradient are presented to 

demonstrate our analysis. 
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Appendix A 

 

Let us rewrite Eq. (8-9), 

   
 

 
   

      
        

    

      
     

             
        (A1) 

                         
 

 

 

  
                           (A2) 

and recall that, G, P, Q are related to the transverse energy gradient, angular growth and energy 

spread increase, respectively; and  

Q  G/5.5.       (A3) 

To achieve small x,eig, it is natural to require the contribution of G much larger than P, i.e. 

                 
 

 
 

            
  

    
                       (A4) 

For instance, df = 1×10-4, z = 500 m, = 1 cm, x0 = 0.6 m, it needs  >> 5.5. 

 

Divide the numerator and denominator of (A1) with G2, we then have 

 
 

 
   

      
            

        

      
       

                   
 

      
         

          

     
        

             
       (A5) 

where conditions (A3) and (A4) are used in the deviation. 

 

Fig. A1 shows the value of       with respect to 4x0
2/G for 1/2 < z0/x0 < 10. There are two 

cases satisfying       << 1, 

 

Case 1, 4x0
2/G << 1 and 4z0

2/G << 1 

From Fig. A1 and condition (A5),  

 
 

 
         

    << 1           (A6) 

Submit it to (A2), we have 

       
 

 
  

 

 
          

 

 
            

 

   
 
     

     
  

 
           (A7) 

 

Case 2, 4x0
2/G  1 and z0/x0 well above 1 

In this case,  

    
 

 
   

      
         

         

     
      

            
 

    
 

   
        (A8) 

Submit it to (A2), we have 
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In conclusion, the available minimal x eigen emittance will be 65% of x0. 

 

Fig. A1 Ratio of       with respect to 4x0
2/G, provided G>>P. 
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