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In the presence of a strong magnetic field, the quark gluon plasma is magnetized, leading to anisotropic
transport coefficients. In this work, we focus on the effect of magnetization on electric conductivity,
ignoring the possible contribution from the axial anomaly. We generalize longitudinal and transverse
conductivities to finite frequencies. For transverse conductivity, a separation of contribution from fluid
velocity is needed. We study the dependence of the conductivities on the magnetic field and frequency
using a holographic magnetic brane model. The longitudinal conductivity scales roughly linearly in the
magnetic field, while the transverse conductivity is rather insensitive to the magnetic field. Furthermore, we
find the conductivities can be significantly enhanced at large frequency. This can possibly extend the
lifetime of the magnetic field, which is a key component of the chiral magnetic effect.
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I. INTRODUCTION

Relativistic hydrodynamics has been remarkably useful in
describing bulk evolution of quark-gluon plasma produced
in heavy ion collisions. Since the early success of ideal
hydrodynamics in describing elliptic flow [1,2], there have
been continuous efforts in formulate a hydrodynamics with
higher accuracy and wider regime of applicability. Both
kinetic theory approach and holographic approach have been
used, which lead to significant development of the frame-
work of relativistic hydrodynamics over the past decade.
These include transient hydrodynamics [3–6], anisotropic
hydrodynamics [7], resummed hydrodynamics [8,9], hydro-
dynamics with critical modes [10,11], see [12,13] for a
comprehensive review.
Recently, it has been realized that a strong magnetic

field can be produced in off-central heavy ion collisions.
The magnetic field plays an important role in the descrip-
tion of anomalous transport phenomena, in particular the
chiral magnetic effect [14–16]. There have been growing
efforts in applying hydrodynamics to study the chiral
magnetic effect [17–20]. These studies assume a weak
magnetic field such that the system remains isotropic.
For a strong magnetic field, both pressure and transports

become anisotropic. A systematic modification of the
current hydrodynamics framework to the so called mag-
netohydrodynamics (MHD) is needed. This has been
carried out by Hernandez and Kovtun (HK) [21], see
also dual formulation [22] and early works [23–26]. The
MHD including effect of axial anomaly is constructed in
[27]. Evaluation of anisotropic transport coefficients is
needed for application of MHD. Viscosities in magnetic
quark gluon plasma have been studied in [28,29]. Another
interesting transport coefficient is the electric conduc-
tivity. In the presence of the magnetic field, it splits into
longitudinal and transverse conductivities. The longi-
tudinal conductivity has been calculated at weak coupling
by lowest Landau approximation in [30,31] and beyond
lowest Landau approximation in [32], see also conduc-
tivity from a quasi-particle model based on lowest Landau
approximation [33]. At strong coupling, the longitudinal
conductivity has been calculated in [34–36]. The conduc-
tivity in 2þ 1 dimensional plasma has been obtained in
[37]. The isotropic conductivity in deconfined phase has
also been calculated by lattice simulation [38–43].
The situation of transverse conductivity is quite different.

The corresponding Kubo formula for longitudinal and trans-
verse conductivities is derived by HK [21], assuming a B
field in the y direction and charge neutrality of plasma [44],

lim
ω→0

1

ω
ImGyyðω; k⃗ ¼ 0Þ ¼ σk;

lim
ω→0

1

ω
ImGxxðω; k⃗ ¼ 0Þ ¼ ω2

w2
0

B4σ⊥
; ð1Þ

wherew0 ¼ ϵþ pk is the enthalpy density in equilibrium, σk
and σ⊥ are longitudinal and transverse conductivities,
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respectively. The appearance of σ⊥ in the denominator may
seem odd. Essentially, this is due to the interplay between
transverse current and fluid velocity. It holds in the regime
ω ≪ T andω ≪ B=T. The former is the hydrodynamic limit
while the latter requires the B field to be not too small. B=T
can be regarded as inverse of time scale for cyclotron motion
of plasma particles.
The aim of this work is to calculate both longitudinal and

transverse conductivities in holographic magnetic quark-
gluon plasma model. The paper is organized as follows:
In Sec. II, we give an intuitive derivation of the Kubo
formula for both transverse and longitudinal conductivities.
The derivation naturally generalize conductivities in the
hydrodynamic limit to finite frequency regime. Section III
is devoted to the calculation of conductivities in holo-
graphic magnetic brane model. We discuss our results and
phenomenological implications in Section IV.

II. KUBO FORMULAS

We can reproduce the transverse Kubo formula in the
following intuitive way: let us turn on a weak and slowly
varying homogeneous electric field E along the x1 direc-
tion. The positive and negative charged particles will move
in the �x2 direction. By the Lorentz force in the B field,
both positive and negative particles gain momentum along
x2. This induces a net flow along x2. No net flow is
generated along x1 due to the neutrality of plasma. The net
effect of the flow along x2 will cancel the current along x1,
again due to Lorentz force. This is the reason why trans-
verse conductivity enters current only at higher order in ω.
We can formulate it more rigorously in the homogeneous

limit

ji ¼ ðEi þ ϵijkvjBkÞσ⊥ þ ∂tPi;

T0i ¼ ðϵþ pkÞvi − ϵijkEjMk;

∂tT0i ¼ ϵijkjjBk: ð2Þ

Here the current ji consists of conducting current and
polarization current, with Ei þ ϵijkvjBk being effective
field experienced by plasma particles and Pi being electric
polarization vector. The energy flow T0i contains fluid
comoving contribution and medium contribution to
Poynting vector, with Mi being magnetization vector.
The third equation is momentum nonconservation equation
due to Lorentz force. When medium in equilibrium has
magnetization only, electric polarization is only induced by
motion of fluid [45,46]:

Pi ¼ ϵijkvjMk; ð3Þ

as is required by Lorentz symmetry. To compare with HK,
we note Mμ ¼ 2p;B2Bμ and p⊥ ¼ p −MB. Equation (2)
reproduces the constitutive equations of HK [21].
Equation (2) is slightly more general in the sense that

vi and σ⊥ can be ω dependent; thus, (2) in fact defines
transverse conductivity at finite frequency. Note that the
use of fluid velocity at finite frequency is in the same
spirit of resummed hydrodynamics [8,47–49].
We can then solve for vi:

vi ¼
ϵijkEjðBkσ⊥ − iωMkÞ

B2σ⊥ − iωðϵþ pk þMBÞ : ð4Þ

This gives the following current

ji ¼
ωEiððϵþ pk −M · BÞσ⊥ þ iωM2Þ

iB2σ⊥ þ ωðϵþ pk þMBÞ : ð5Þ

Note that E⃗ ¼ ∂tA⃗ ¼ −iωA⃗. We readily obtain the corre-
lator for transverse current:

Gxx ¼ −
δJx
δAx

¼ iω2ððϵþ pk −M · BÞσ⊥ þ iωM2Þ
iB2σ⊥ þ ωðϵþ pk þMBÞ : ð6Þ

Expanding (6) in ω, we easily obtain:

Gxx ¼
ðϵþ pk −MBÞω2

B2
þ i

ðϵþ pkÞ2
B4σ⊥

ω3 þ � � � : ð7Þ

We immediately see (7) gives Kubo formula for σ⊥ in (1).
However, it is singular as B → 0 due to noncommutativity
of hydrodynamic limit and isotropic limit. (6) can be
safely used in both limits. We solve the ω-dependent
conductivity as

σ⊥ðω; BÞ ¼
iωððϵþ pk þMBÞGxx þ ω2M2Þ

B2Gxx − ðϵþ pk −MBÞω2
: ð8Þ

The case of longitudinal conductivity is trivial because
Lorentz force is not relevant. The corresponding Kubo
formula is given by

σkðω; BÞ ¼
Gyy

iω
: ð9Þ

III. THE HOLOGRAPHIC COMPUTATION
OF CONDUCTIVITIES

A. Magnetic brane background

We use magnetic brane background [50] for the com-
putation of conductivities. The background is a solution to
five-dimensional Einstein-Maxwell theory with a negative
cosmological constant [51]:

S ¼ 1

16πG5

�Z
d5x

ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
− L2FMNFMN

�

− k
Z

A ∧ F ∧ F

�
: ð10Þ
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Here L is the AdS radius set to unity below, F ¼ dA is the
Maxwell field strength, and the second term in the action
corresponds to Chern-Simons term. The Chern-Simons
term corresponds to axial anomaly. The axial anomaly is
known to lead to negative magnetoresistance [52,53]. In
this study, we wish to focus on contribution from mag-
netization. To this end, we turn off the Chern-Simons term.
The resulting equations of motion (EOM) read

RMN þ 4gMN þ 1

3
FPQFPQgMN − 2FMPFP

N ¼ 0;

∇MFMN ¼ 0: ð11Þ

The magnetic solution is given by [50]

ds2 ¼ −UðrÞdt2 þ dr2

UðrÞ þ e2VðrÞððdx1Þ2 þ ðdx2Þ2Þ

þ e2WðrÞdy2;

F ¼ Bdx1 ∧ dx2: ð12Þ

The warping factor UðrÞ contains a zero at r ¼ rH, which is
the location of horizon. This corresponds to a temperature
of the plasma TH ¼ U0ðrHÞ

4π . The solution of the background
can only be obtained numerically. It is convenient to
compactify the radial coordinate by defining r ¼ rHu−1=2,
which puts the horizon at u ¼ 1. The background in terms of
u coordinate becomes

ds2 ¼ −UðuÞdt2 þ du2

4u3UðuÞ þ e2VðuÞðdðx1Þ2 þ dðx2Þ2Þ

þ e2WðuÞdy2;

F ¼ Bdx1 ∧ dx2: ð13Þ

The EOM read

−2B2e−4V þ6u3U00 þ3u2U0ð4uV 0 þ2uW0 þ3Þ−12¼ 0;

−
4

3
e−2VðB2þ3u3e4VU0V 0−3e4VÞ

−2u2Ue2Vð2uV 00 þV 0ð2uW0 þ3Þþ4uV 02Þ¼ 0;

B2−6u3e4VU0W0−3u2Ue4Vðð4uV 0 þ3ÞW0

þ2uW00 þ2uW02Þþ6e4V ¼ 0; ð14Þ

with the derivatives taken with respect to u. The numerical
solution is to be obtained by integrating the following
horizon solution to the boundary of AdS:

UðuÞ ¼ u1ðu − 1Þ þ u2ðu − 1Þ2 þ � � � ;
VðuÞ ¼ v0 þ v1ðu − 1Þ þ � � � ;
WðuÞ ¼ w0 þ w1ðu − 1Þ þ � � � : ð15Þ

We can put v0 ¼ w0 ¼ 0 by rescaling of x and y coor-
dinates. We also put u1 ¼ −2, which sets the unit by fixing
the temperature to T ¼ 1

4π. The magnetic field after the
rescaling is denoted as b, which is to replace B in (14).
The higher order coefficients in (15) can be determined
recursively from EOM as:

v1 ¼
2

3
ðb2 − 3Þ w1 ¼ −

1

3
ðb2 þ 6Þ;

u2 ¼
1

24
ð10b2 − 3Þ: ð16Þ

For a particular b we can numerically solve the metric
functions. Near boundary, the solution behaves like

U ∼
1

u
; e2V ∼

vðbÞ
u

; e2W ∼
wðbÞ
u

ð17Þ

Thus, we need the following rescaling t → t̂ ¼ t, x1 →
x̂1 ¼

ffiffiffiffiffiffiffiffiffi
vðbÞp

x1, x2 → x̂2 ¼
ffiffiffiffiffiffiffiffiffi
vðbÞp

x2, y → ŷ ¼ ffiffiffiffiffiffiffiffiffiffi
wðbÞp

y to
bring the background to the standard AdS asymptotics.
After the rescaling, the full background reads

ds2 ¼ −ŨðuÞdt̂2 þ du2

4u3ŨðuÞ þ e2ṼðuÞðdx̂21 þ dx̂22Þ

þ e2W̃ðuÞdŷ2;

F ¼ Bdx̂1 ∧ dx̂2; ð18Þ

where

B ¼ b
vðbÞ ; e2ṼðuÞ ¼ e2VðuÞ

vðbÞ ; e2W̃ðuÞ ¼ e2WðuÞ

wðbÞ :

ð19Þ

Below we use tilded symbols for metric functions with
standard AdS asymptotics.

B. Transverse and longitudinal conductivities

To calculate transverse conductivity, we consider the
following linear perturbation about the background

δgtx2 ¼ htx2ðuÞe−iωt;
δAx1 ¼ ax1ðuÞe−iωt: ð20Þ

It is convenient to use metric perturbation with mixed
indices hx2t ¼ e−2ṼðuÞhtx2ðuÞ≡Gtx2ðuÞ. After substituting
into the equations of motion we obtain the following
ordinary differential equations
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a00x1ðuÞ þ
a0x1ðuÞð4u3ŨðuÞŨ0ðuÞ þ 4u3ŨðuÞ2W̃0ðuÞ þ 6u2ŨðuÞ2Þ

4u3ŨðuÞ2 þ ω2ax1ðuÞ
4u3ŨðuÞ þ

iBωGtx2ðuÞ
4u3ŨðuÞ2 ¼ 0;

G00
tx2ðuÞ þ

G0
tx2ðuÞð8uṼ 0ðuÞ þ 2uW̃0ðuÞ þ 3Þ

2u
−
Gtx2ðuÞe−4ṼðuÞB2

u3ŨðuÞ þ iBωax1ðuÞe−4ṼðuÞ
u3ŨðuÞ ¼ 0;

4BŨðuÞa0x1ðuÞ þ iωe4ṼðuÞG0
tx2ðuÞ ¼ 0: ð21Þ

Near the horizon, the solution behave as ax1 ∼ ð1 − uÞα,
Gtx2 ∼ ð1 − uÞβ. The incoming exponent is given by
α ¼ −iω, β ¼ αþ 1. We will look for solution of the form

aincx1 ðuÞ ¼ ð1 − u2ÞαAðuÞ;
Ginc

tx2ðuÞ ¼ ð1 − u2Þ1þαGðuÞ: ð22Þ

Near the boundary, the incoming wave solution behaves
like

aincx1 ðuÞ ∼ AðuÞ ∼ Að0Þ þ Að1Þu −
1

4
ðAð0Þω2 þ iBGð0ÞωÞ

× u logðuÞ þ � � � ;
Ginc

tx2ðuÞ ∼GðuÞ ∼Gð0Þ þ Gð2Þu2 þ ð2B2Gð0Þ − iAð0ÞBωÞ
× u2 logðuÞ þ � � � : ð23Þ

In fact, this set of incoming solutions is determined by only
one parameter, which does not match the number of
unknown fields. In fact, we can find another constant
solution

aconx1 ðuÞ ¼ C2; Gcon
tx2 ðuÞ ¼

iωC2

B
: ð24Þ

This is a pure gauge solution of the following type

aM ¼ ξN∂NAM þ ∂Mξ
NAN; hMN ¼ ∇Nξ

M þ∇MξN:

ð25Þ

Fixing the background gauge field as AM ¼ −Bx2δ1M, we
find the constant solution (24) is given by ξM ¼ δM2 e

−iωt.
Note that the gauge choice of the background is necessary
to ensure the vanishing of all other perturbations. Thus, the
general solution is a linear combination of these two
solutions:

ax1ðuÞ ¼ aincx1 ðuÞ þ aconx1 ðuÞ;
Gtx2ðuÞ ¼ Ginc

tx2ðuÞ þ Gcon
tx2 ðuÞ: ð26Þ

In order to calculate the retarded correlator GR
x1x1, we need

to eliminate the contribution to current from response to
metric perturbation; thus, we should turn off the boundary
value of the metric perturbation. It amounts to setting
limu→0Gtx2ðuÞ ¼ 0. This fixes C2 to

C2 ¼
iBGð0Þ

ω
: ð27Þ

Therefore, the retarded correlator GR
x1x1 reads

GR
x1x1ðω; k⃗ ¼ 0Þ ¼ 1

2πG5

�
ωAð1Þ

ωAð0Þ þ iBGð0Þ

�
: ð28Þ

To calculate the longitudinal conductivity (in the
y direction), we only have to consider the following
perturbation:

δAy ¼ ayðuÞe−iωt: ð29Þ

The perturbed field ayðuÞ satisfies the following EOM:

a00yðuÞ þ a0yðuÞ
�
Ũ0ðuÞ
ŨðuÞ þ 2Ṽ 0ðuÞ − W̃0ðuÞ þ 3

2u

�

þ ω2ayðuÞ
4u3ŨðuÞ2 ¼ 0: ð30Þ

Near the horizon, the incoming wave solution behaves as
ay ∼ ð1 − uÞ−iω. We look for the solution of the form

ayðuÞ ¼ ð1 − u2Þ−iωDðuÞ: ð31Þ

Near the boundary, the solution behaves like

ayðuÞ ¼ Dð0Þ þDð1Þu −
Dð0Þω2

4
u logðuÞ þ � � � : ð32Þ

Therefore, the retarded correlator Gyy reads

GR
yyðω; k⃗ ¼ 0Þ ¼ 1

2πG5

�
Dð1Þ

Dð0Þ

�
: ð33Þ

We will study (28) and (33) in different regimes in the
following.

C. Hydrodynamic regime

In the hydrodynamic regime, we can solve the equation
perturbatively in ω,
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AðuÞ ¼ A0ðuÞ þ iωA1ðuÞ þ ω2A2ðuÞ þ � � � ;
GðuÞ ¼ G0ðuÞ þ iωG1ðuÞ þ � � � ;
DðuÞ ¼ D0ðuÞ þ iωD1ðuÞ þ � � � ; ð34Þ

where A, G, D are defined in (31) and (22). Let us study transverse equations first. The coupled EOM of A and G read

A0
0ðuÞ ¼ 0;

8BuA0ðuÞŨðuÞ
u2 − 1

− 4BŨðuÞA0
1ðuÞ þ ðu2 − 1Þe4ṼðuÞG0

0ðuÞ þ 2uG0ðuÞe4ṼðuÞ ¼ 0;

8BA1ðuÞŨðuÞ
u2 − 1

þ 4BŨðuÞA0
2ðuÞ − 2uG0ðuÞe4ṼðuÞ þ u2e4ṼðuÞG0

1ðuÞ þ 2uG1ðuÞe4ṼðuÞ ¼ 0;

2B2ðu2 − 1ÞG0ðuÞe−ṼðuÞ
u3ŨðuÞ − 2ðu2 − 1ÞG00

0ðuÞ −
ððu2 − 1ÞG0

0ðuÞ þ 2uG0ðuÞÞð8uṼ 0ðuÞ þ 2uW̃0ðuÞ þ 3Þ
u

− 8uG0
0ðuÞ − 4G0ðuÞ ¼ 0;

−
1

u
ð−2uG0ðuÞ þ ðu2 − 1ÞG0

1ðuÞ þ 2uG1ðuÞÞð8uṼ 0ðuÞ þ 2uW̃0ðuÞ þ 3Þ þ 2BA0ðuÞe−4̃VðuÞ
u3UðuÞ

þ 2B2ðu2 − 1ÞG1ðuÞe−4ṼðuÞ
u3ŨðuÞ þ 8uðG0

0ðuÞ −G0
1ðuÞÞ þ

8u2G0ðuÞ
u2 − 1

− 2ðu2 − 1ÞG00
1ðuÞ ¼ 0: ð35Þ

We first expand the fields htx2 and ax1 and the background
solution ŨðuÞ, ṼðuÞ, W̃ðuÞ near the horizon using (15).
And then we numerically solve (35) by giving an initial
condition on the horizon that A0ð1Þ ¼ 1. This fixes the
normalization of the solution but does not affect the result
of the correlators. Note that A0ðuÞ has a constant solution
A0ðuÞ ¼ 1 with this specific initial condition. We further
require that all higher order functions vanish on the
horizon. The perturbative solution gives the following
perturbative expansion of the transverse retarded correlator:

GR
x1x1ðω; k⃗ ¼ 0Þ ¼ ω2

Að1Þ
1

BGð0Þ
0

þ iω3
Að1Þ
1 BGð0Þ

1 − Að1Þ
1 þ Að1Þ

2 BGð0Þ
0

B2ðGð0Þ
0 Þ2

þOðω4Þ: ð36Þ

Here the functions Að0Þ
i , Að1Þ

i , Gð0Þ
i , and Gð1Þ

i are defined
through the following boundary expansions

AiðuÞ ¼ AiðuÞð0Þ þ uAiðuÞð1Þ þ � � � ; i ¼ 0; 1; 2;

GiðuÞ ¼ GiðuÞð0Þ þ u2GiðuÞð1Þ þ � � � ; i ¼ 0; 1: ð37Þ

Equation (36) is the expected form of transverse correlator
in the hydrodynamic regime. The imaginary part starts from
ω3, whose coefficient can be used to determine transverse
conductivity with the corresponding Kubo formula in (1).
The longitudinal equation can be studied similarly. The

EOM in terms of D0 and D1 is given by

2uD0
0ðuÞŨ0ðuÞ þ ŨðuÞð2uD00

0ðuÞ þD0
0ðuÞð4uṼ 0ðuÞ

− 2uW̃0ðuÞ þ 3ÞÞ ¼ 0;

2u

�
D0

1ðuÞ −
2u

u2 − 1

�
Ũ0ðuÞ þ ŨðuÞ

×

��
2u

�
D00

1ðuÞ þ
2ðu2 þ 1Þ
ðu2 − 1Þ2

�

þ
�
D0

1ðuÞ −
2u

u2 − 1

�
ð4uṼ 0ðuÞ − 2uW̃0ðuÞ þ 3Þ

�
¼ 0:

ð38Þ
Again, we numerically solve (38) by giving the initial
condition that Dð1Þ ¼ 1. For D0ðuÞ, we find that
D0

0ð1Þ ¼ D00
0ð1Þ ¼ 0; thus, it admits a constant solution

D0ðuÞ ¼ 1. Then we numerically solve D1ðuÞ. The per-
turbative solution gives the following perturbative expan-
sion of longitudinal retarded correlator

GR
yyðω; k⃗ ¼ 0Þ ¼ iωDð1Þ

1 þOðωÞ; ð39Þ

where Dð1Þ
1 is defined through boundary expansion of D1,

D1ðuÞ ¼ Dð0Þ
1 þ uDð1Þ

1 þ � � � : ð40Þ

Our boundary condition fixes Dð0Þ
1 ¼ 0. We can, thus,

simply identify D1 with longitudinal conductivity in the
hydrodynamic regime based on (1). We show in Fig. 1 the
dependence of σk and σ⊥ on B. We observe the nearly
linear dependence of σk on B. This is consistent with the
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picture that all the charge carriers are from the lowest
Landau level in the large B limit, with the density of
charge carriers proportional to B. On the other hand, σ⊥
tends to a constant at large B. Although we cannot take the
limit B → 0 in the hydrodynamic regime, we do find at
small B that σk and σ⊥ are numerically consistent with
each other. The two limits are also obtained in [54],
although, in that case, the mixing of perturbation in the
transverse case was not taken into account. Interestingly,
the approach of [54] turns out to give the correct answer in
the hydrodynamic regime. We show this with the mem-
brane paradigm in the Appendix.

D. Conductivities at arbitrary frequency

Beyond the hydrodynamic regime, we should use (8) and
(9) as definitions of conductivities at finite frequency. Note
that beyond hydrodynamic regime, the conductivities are in

general complex. We solve the transverse and longitudinal
EOM numerically to obtain complex conductivities. We
plot jσj and Arg½σ� as a function of ω in Figs. 2 and 3. jσj
characterizes the magnitude of current induced in magnetic
plasma by external electric field. Fig. 2 shows both jσkj and
jσ⊥j can be significantly larger than their hydrodynamic
counterparts at large ω. The large ω limit of jσkj is rather
insensitive to B, while for jσ⊥j, its large ω limit is
nonmonotonic in B. We also plot the B dependence of
jσ⊥j at large values of ω in Fig. 4. On the other hand, Arg½σ�
characterizes the phase difference of current and external
electric field. Asω → 0, the conductivities are real meaning
that the current is in phase with applied electric field.
The large ω limit of Arg½σk� approaches a universal curve,
independent of B. The large ω limit of Arg½σ⊥� has
nontrivial B dependence: at small B, it approaches the
same universal curve as Arg½σk�; at intermediate B, the

FIG. 1. The dependence of σk and σ⊥ on B. At large B, σk grows linearly with B, while σ⊥ tends to a constant. At small B, σk and σ⊥
agree with each other, although strictly speaking we cannot take the limit B → 0 in the hydrodynamic regime.

FIG. 2. The dependence of jσkj and jσ⊥j on ω for several B. At large ω, both jσkj and jσ⊥j can be significantly larger than its
hydrodynamic counterparts. The large ω limits jσkj and jσ⊥j show qualitative difference: The former has only weak dependence on B,
and the latter depends on B nonmonotonically.
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phase of transverse current lags further behind; at large B,
the phase lag approaches −π=2 numerically.
In fact, the large ω limit of σk can be obtained

analytically by noting that B ≪ ω2 becomes irrelevant.
Ignoring the magnetic field, we can use the known result
for retarded current-current correlator (adapted to our
choice of unit) [55]:

GR
yy ¼ 2iωþ 4ω2ðΨðð1 − iÞωÞ þΨð−ð1þ iÞωÞÞ; ð41Þ

which gives us the following asymptotics of conductivity

lim
ω→∞

σkðωÞ ¼ 2ið−iπ − lnð2Þ þ 2 lnðωÞÞω: ð42Þ

jσkj is linear in ω up to a logarithmic correction. Arg½σk�
approaches π=2 slowly from below. This is consistent with
our numerical results in Figs. 2 and 3.

The origin of the nontrivial B dependence of jσ⊥j at large
ω is instructive. Note that for B → 0, σ⊥ approach the same
universal behavior as σk at large ω. It is tempting to
attribute the difference at finite ω to the dynamics of
magnetization to external electric field. Figures 2 and 3
seem to suggest that the magnetization responds to the
longitudinal electric field weakly, but has nontrivial
response to the transverse electric field. It is also interesting
to note that the minimum of jσ⊥j in Fig. 4 corresponds to
the value of B that maximizes the phase delay of the current
in Fig. 3. More quantitative studies are needed to under-
stand the mechanism underlying this behavior.

IV. DISCUSSION

We study longitudinal and transverse conductivities at
finite magnetic field B and frequency ω. While the former is
a straightforward generalization of the static (hydrodynamic)

FIG. 4. Nonmonotonic B dependence of jσ⊥j for three large values of ω. The minimum of jσ⊥j is seem to be independent of ω.

FIG. 3. The dependence of Arg½σk� and Arg½σ⊥� on ω for several B. The large ω limit of σk for different B approach a universal curve.
The large ω limit of σ⊥ has nontrivial dependence on B. At small B, it approaches the universal curve of σk; at intermediate B, the phase
lags behind the universal curve; at large B, the phase lags approaches −π=2 numerically.
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limit, the latter involves a careful subtraction of the fluid
velocity contribution. We arrive at a Kubo formula that is
applicable at finite frequencies. It reduces to the Kubo
formula in the hydrodynamic regime [21]. We focus on
the effect of magnetization on conductivities ignoring the
possible contribution from the axial anomaly.
Using the holographic background dual to the quark

gluon plasma with the external magnetic field, we study
the B and ω dependence of conductivities. In the hydro-
dynamic regime, we find the longitudinal conductivity σk
scales linearly with B at large B, consistent with the lowest
Landau level picture. The transverse conductivity is not
sensitive to the B field in a wide region. The ω dependence
of conductivities is more interesting. We find that both
conductivities scale nearly linearly in ω at large ω. This
could be understood qualitatively as the relaxation time
increases with the frequency of the electric field. The B
dependence of the large ω limits of σk and σ⊥ differ: The
former is nearly independent of B, while the latter shows a
nonmonotonic dependence on B.
The obtained values of conductivities might be relevant

for the physics of the chiral magnetic effect [14]. The
effect of conductivity on the lifetime of the magnetic
field is studied in [56]. It is found that only very large
conductivities can extend the lifetime of the magnetic
field. In heavy ion collision experiments, the produced
magnetic field [57,58] can be estimated as B=T2 ≃
m2

π=T2 ≃ 0.26, with T ¼ 350 MeV. The magnetic field
itself might not have significant effect on conductivity
from Fig. 1. However, the rapidly decaying magnetic field
induces a rapidly changing electric field, which calls for
use of conductivities at finite frequency. Assuming a
lifetime of the magnetic field as τ ≃ 1 fm, we would
obtain ω=2πT ≃ 1=τT ≃ 0.57. At this frequency, the con-
ductivities are enhanced by a factor of 3 from Fig. 2.
A lifetime of the magnetic field τ ≃ 0.2 fm would lead to a
factor of 10 for the conductivity. A reevaluation of the
effect based on finite frequency conductivities is needed.
We leave it for future analysis.
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APPENDIX: TRANSVERSE CONDUCTIVITY
FROM HEAT CURRENT CORRELATOR

In the Appendix, we obtain the conductivities using the
membrane paradigm [59]. While the conventional mem-
brane paradigm works for σk, it fails for σ⊥ due to mixing
of the current and energy flow. The resolution is that
σ⊥ can also be obtained from the correlator of the heat
current. The corresponding Kubo formula is given by [21]

1

ω
ImGT0xT0x

¼ w2
0

σ⊥B2
: ðA1Þ

For convenience, we revert to the original r coordinate (12).
To study the current and energy flow in response to the

external electric field and metric perturbation, we turn on
the following perturbations [60–62]:

Ax1 ¼ −Etþ δax1ðrÞ;
gtx2 ¼ −ζtUðrÞ þ δgtx2ðrÞ;
grx2 ¼ δgrx2ðrÞ: ðA2Þ

We can construct the heat current in the linear order
following the procedure in [63],

Q ¼ 2
ffiffiffiffiffiffi
−g

p
Grx2 : ðA3Þ

To express it with perturbation fields, we have

Q ¼ 2
ffiffiffiffiffiffi
−g

p
Grx2 ¼ UðrÞ2e2VðrÞ−WðrÞ∂r

�
δgtx2ðrÞ
UðrÞ

�
: ðA4Þ

By the incoming wave condition and regularity on the
horizon, the perturbation behaves like

δax1ðrÞ ¼ −
E

4πT
logðr − rhÞ þOðr − rhÞ;

δgtx2ðrÞ ¼ UðrÞδgrx2ðrÞ −
ζUðrÞ
4πT

logðr − rhÞ þOðr − rhÞ:
ðA5Þ

And we can solve grx2 using the Einstein equation

δgrx2 ¼ −ζ
e6VðrÞ

4B2UðrÞ ∂rðUðrÞe−2VðrÞÞ − e2VðrÞ

B
δa0x1: ðA6Þ

Because the heat current Q satisfies ∂rQ ¼ 0, it can be
evaluated at any location of r. Thus, we evaluate it at the
horizon rh,

Q ¼ −E
πT
B

eWðrhÞþ2VðrhÞ þ ζ
π2T2

B2
e4VðrhÞþWðrhÞ: ðA7Þ

In neutral plasma where μ ¼ 0, the Kubo formula reads

lim
ω→0

1

ω
ImGR

QxQx
ðω; k⃗ ¼ 0Þ ¼ lim

ω→0

1

ω
ImGR

T0xT0x
ðω; k⃗ ¼ 0Þ

¼ 1

4πG5

∂Q
∂ζ ¼ 1

4πG5

π2T2

B2
e4VðrhÞþWðrhÞ:

Using (A1) and (1), we obtain σk and σ⊥ in terms of
horizon quantities,

σk ¼
1

4πG5

e2VðrhÞ−WðrhÞ; σ⊥ ¼ 1

4πG5

eWðrhÞ: ðA8Þ

We have confirmed that (A8) agrees with our numerical
results in the hydrodynamic regime for arbitrary B.
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