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Loop quantum cosmology (a symmetry-reduced quantum model of the Universe inspired by loop
quantum gravity) extends the inflationary paradigm to the Planck era: the big bang singularity is
replaced by a quantum bounce naturally followed by inflation. Testing for these models requires
to compute the amount of cosmological perturbations produced in this quantum background and
subsequently derives their footprints on the cosmic microwave background. This proceedings
proposes a very brief summary of this road from quantum gravity to cosmological observables,
focusing on the case of a loop-quantum model of flat FLRW spaces with cosmological perturba-
tions. The background evolution, passing through a bounce, is first presented. The case of cosmic
inhomogeneities in a perturbative treatment about a quantum background are then discussed (with
an emphasis on two specific theoretical constructions), and there respective predictions in terms
of primordial power spectra for the tensor modes are outlined.
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Introduction– Loop quantum cosmology (LQC) [1] is a tentative approach to built a quantum
model of the Universe inspired by the ideas of loop quantum gravity (LQG) –a non-perturbative
quantization of general relativity– [2], thus allowing for extending the inflationary paradigm to the
Planck era where quantum gravity effects are no more negligible. This approach relies on minisu-
perspace ideas: the entire phase space of general relativity is reduced thanks to the isotropy and
homogeneity symmetries, meaning that only FLRW metric are considered. This reduced phase
space is then quantized using the loop representation. At a quantum level, the big bang singularity
issue is solved for the transition to the null volume is forbidden, leading to the replacement of the
big bang singularity by a quantum big bounce. This is understood at a more effective level by a
regularization of the curvature. Classically, the curvature can be computed from holonomies evalu-
ated around a plaquette and then, by shrinking the area of the plaquette to zero. (The FLRW space
can be paved by identical plaquettes thanks to isotropy and homogeneity.) However, the kinemat-
ical Hilbert space in LQG is given by eigenstates of geometric (area and volume) operators which
have discrete spectra. This leads to a minimal area gap and the area of the plaquette around which
holonomies are evaluated cannot be shrinked to zero anymore, thus preventing the curvature to di-
verge. This is captured in the effective, modified Friedmann equation (for a flat FLRW metric with
holonomy correction only):

( ȧ
a

)2 = 8πG
3 ρ

(
1− ρ

ρc

)
, with ρc a maximal energy density precisely set

by the minimal area gap (ρc is of the order of the Planck energy density, though its explicit value
depends on the value of the Barbero-Immirzi parameter, γ). In the effective picture, the bounce
occurs when the Hubble parameter, H := (ȧ/a), vanishes, that is when the energy density of the
content of the universe reaches ρc. The classical equation is recovered for ρ � ρc. The cosmic
history would therefore be a phase of classical contraction (ρ � ρc and ρ increases), then a quan-
tum bounce (ρ . ρc) making contact with a classical expansion (ρ � ρc and ρ decreases). (The
efficiency of this approach has been shown thanks to both numerical and analytical arguments [3].)

Obviously, LQC is not free of any hypotheses (though following the spirit of LQG, it attempts
to make use of few of them), and its program is not fully accomplished yet. The robustness of any
bouncing cosmologies should be tested against the evolution of anisotropies through the bounce,
and now a rather wide amount of studies is devoted to this question (see [4] and references therein).
Similarly, its robustness against of full derivation of the quantum cosmological history starting from
LQG is still needed, and recent progresses have been made in e.g. spin foams or group field theory
[5]. In any case, the last years of research in this field have paved a road going from quantum gravity
to cosmological observables. Here we focus on a paradigmatic (and most advanced) example of
such a program. We consider the case of LQC for flat FLRW spaces incorporating cosmological
perturbations. The matter content is a massive scalar field allowing for having a phase of inflation
shortly after the bounce. Finally, only holonomy corrections are considered here (see e.g. [6] for
inverse volume corrections).

Background– The effective equation of motions for the background are obtained by regularizing
the curvature operator. The gravitational phase space is composed of the extrinsic curvature, k, and
p := a2 while the phase space for matter is the field configuration, ϕ , and its conjugate momentum,
Π. Their associated Poisson brackets are {k, p} = 8πGγ

3 and {ϕ,Π} = 1. The effective Hamilto-
nian is derived by replacing k→ sin(µγk)

µγ
, with µγ :=

√
∆/p and ∆ = 2πγ

√
3L2

Pl is fixed by the
minimal area gap of LQG (LPl is the Planck length). This yields the effective Hamiltonian (V (ϕ)
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is the massive potential of the scalar field): H eff = − 3
√

p
8πGγ2

(
sin(µγk)

µγ

)2
+
(

Π2

2p3/2 + p3/2V (ϕ)
)

.

From the Hamilton equations and the fact that such an Hamiltonian is a constraint (H eff ≈ 0 on
physical solutions), one easily derived the effective Friedmann equation given previously, with
ρ = (ϕ̇)2/2 +V (ϕ). Similarly, the Klein-Gordon equation governing the evolution of the scalar
field is ϕ̈ +3Hϕ̇ +∂ϕV (ϕ) = 0. The solutions of the above set of equations obviously go through
a bounce for H = 0 (with H < 0 during the classical contraction and H > 0 during the classical
expansion), corresponding to ρ = ρc

1.
Though LQC is not a complete deduction of LQG, this class of models shows interesting fea-

tures. The first of them is, obviously, the fact that the big bang singularity is systematically removed
(and there are good hints that this is a general feature of LQG [7]). Second, this approach has been
extended to non-flat FLRW metrics as well as to anisotropic models such as Bianchi models, to
show that the bounce remains [4] (note that the presence of the bounce is robust against different
sort of classical content of the universe since it is here a purely quantum gravitational feature).
Finally, if one consider our Universe to be filled by a massive scalar field during its primordial
ages (as modelled in inflation), it has been shown that most of the solutions of the effective equa-
tion go through a phase of inflation shortly after the quantum bounce with the sufficient amount
of ∼ 60 e-folds [8]. Though this a priori depends on when the initial conditions are chosen and
what is the natural PDF for them, this conclusion seems rather robust in the context of flat FLRW
spaces (see also [4] for the case of anisotropic models). The fact that the universe experienced a
phase of cosmic inflation shortly after the bounce is intuitively understood as follows. During the
contraction, the scalar field oscillates in its massive potential with a rough frequency given by its
mass. However H is negative-valued and then acts as antifriction during the contraction (through
the term 3Hϕ̇). This amplifies the amplitude of oscillations up to a point (very close to the bounce)
where the amplification is dominating the dynamics of ϕ . This pushes up the field very high in its
potential during the bounce and, as a consequence, the scalar field is very high in its potential while
the Universe has just entered in its expanding phase. This is precisely the appropriate conditions
for a phase of slow-roll inflation to start.

Inhomogeneities– These models have been extended to include the case of cosmological pertur-
bations, which are our major observationnal probe of the physics of the Universe across cosmic
times. This offers the possibility to compute the amount of cosmological inhomogeneities pro-
duced in the primordial Universe and how the peculiar cosmic history, passing through a bounce,
affects them. These possible impact can then be turned into an impact on cosmological probes such
as the cosmic microwave background (CMB) anisotropies, allowing for bridging contact with ob-
servations. These extension are not a priori solely given by the impact of a bounce on the standard
cosmological perturbations for this would not take into account the peculiar fact that these inho-
mogeneities propagate on a quantum background. Indeed, standard cosmological perturbations are
derived by perturbing the Einstein’s equations about a classical background, and, in this case, one

1In the effective approach, this scale factor is viewed classically but its evolution is dictated by a modified Fried-
mann equation. In a quantum setting, one is interested in the evolution of a wave function for the Universe. Sharply
peaked states (standing for wave functions peaked around the classical solutions in the large volume limit) are selected.
During its evolution, this state remains peaked and the scale factor solution of the modified Friedmann equation can be
interpreted as the value of the scale factor which is traced by the peak of the state.
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has to consider that our starting point is neither a classical background, nor the Einstein’s equa-
tions. Different approaches have been developped [9, 10, 11] and we will focus on two of them:
the deformed algebra approach [10] and the dressed metric approach [9].

Cosmological perturbations are obtained by extending the phase space to include inhomoge-
neous degrees of freedom in a perturbative setting: the different constraints of general relativity
(the scalar, diffeomorphism and Gauss constraints) are expanded up to second order in perturba-
tions about the FLRW background. The zeroth order leads to the background equations and the
second order generates the dynamics of the perturbations in this background. Finally, the first
order perturbation of the constraints generates the gauge transformations for perturbations: quo-
tiented the perturbative part of the phase space by these transformations allows for defining the
gauge invariant (GI), physically relevant, perturbative degrees of freedom.

In a sense, the deformed algebra approach consists in perturbing the effective, background
space [12], ensuring the perturbed theory to remain anomaly-free. Technically, the constraints ex-
panded up to the second order are phenomenologically corrected to account for the background
quantum corrections. These modifications are then univoquely determined (at least for holonomy
corrections [13]) requiring that the classical equations are recovered in the large volume limit, and,
that the constraints up to second order do form an algebra and thus remains first class, on-shell and
off-shell (as is the case in the classical theory). This univoquely defined the second order hamilto-
nian (generating the dynamics) and the first order one (generating the gauge transformations) both
modified at an effective level. (We note that for a matter content given by a single scalar field, the
GI perturbations are still composed of two tensor modes, corresponding to the two helicity states
of gravitational waves, and one scalar mode.) As an example, the equation of motion for the tensor
modes (vk is the Mukhanov-Saski variables of wavenumber k) reads v′′k +(Ωk2− z′′/z)vk = 0, with
a prime denoting differentiation with respect to conformal time, dη = dt/a(t), Ω = 1− 2ρ/ρc

and z = a/
√

Ω. It appears that this procedure can be captured by a simple modification of the
structure functions of the algebra of constraints, as compared to the classical case, which could
potentially lead to a change of signature at the effective level for ρc/2 ≤ ρ ≤ ρc [10]. Finally, the
GI perturbative degrees of freedom are quantized using Fock quantization on curved spaces.

The dressed metric approach adopts a different path, and in a sense, it is a pure minisuperspace
approach with perturbations. The perturbative part of the extended phase space is first quotiented
by the gauge transformation generated by the classical first order constraints. (The GI degrees of
freedom are thus obviously composed of two tensor modes and one scalar mode, as in the classical
theory.) The background part of the phase space is then quantized à la loop while the GI pertur-
bative degrees of freedom are quantized using techniques developped for the quantization of a test
field in a LQC, quantum background [14]. The equation of motion for the tensor modes functions
is finally given by an equation of motion similar in its form to the classical theory, but introducing
a metric which is dressed up by quantum corrections (with potential ambiguities in defining it, see
[14]). For the tensor mode, this reads v′′k +(k2− ã′′/ã)vk = 0 with ã4 =

〈
Ĥ−1/2

bckg â4Ĥ−1/2
bckg

〉
/
〈

Ĥ−1
bckg

〉
the dressed scale factor and 〈·〉 the quantum expectation value on the background state.

Primordial power spectra– The equation of motion for perturbations are the starting point for
computing the primordial power spectra of cosmic inhomogeneities evolving through (and ampli-
fied by) the classical contraction, the quantum bounce and the cosmic inflation. For tensor modes,
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Figure 1: Primordial power spectrum for tensor modes as derived in the deformed algebra approach (left,
from [15]), and in the dressed metric approach (right, from [9]).

it is defined as PT (k) = (32Gk3/π)
∣∣vk(η f )/a(η f )

∣∣2, with η f denoting the end of inflation (the
sum over the two helicity states is implicitly done here). We remind that in the pure inflationary
paradigm, the predicted primordial power spectra are given (at first order in slow-roll) by a power
law with a very slightly negative spectral index.

In the case of the deformed algebra approach, the equation of motion becomes elliptic for
ρc/2 ≤ ρ ≤ ρc: it appears more natural to set the initial conditions in the contracting phase (ρ �
ρc/2) for which a Minkowki vacuum is easily defined (the equation of motion is then hyperbolic
allowing for solving an initial value problem). The derived power spectrum essentially shows
two regimes [15] (Fig. 1, left). For k <

√
8πGρc, PT (k) is scale invariant in the infrared and

then shows some oscillations. This corresponds to modes which are amplified by the effective
space curvature (the term z′′/z) during the contraction and the bounce. For k >

√
8πGρc, PT (k)

increases exponentially. This comes from the change of signature which manifests as an instability
(the term Ωk2 is negative valued around the bounce) if one sets the initial conditions in the remote
past. (Note that one could alternatively solved a boundary value problem fixing the boundary in the
elliptic regime.) In the dressed metric case, initial conditions can be set either at the bounce or in the
remote past. An example of the spectrum chosing a 4th order WKB vacuum at the bounce is shown
on the right of Fig. 1 [9]. For k >

√
8πGρc, the standard inflationary spectrum is recovered. This

corresponds to k-modes which feel the space curvature during inflation only. For k <
√

8πGρc, the
spectrum reddens as these modes are sensitive to the space curvature during the bounce. A similar
shape is obtained for the scalar mode, meaning that the impact of LQC in this scheme translate into
a positive running of the spectral index.

Conclusion– Those primordial power spectra of cosmic inhomogeneities are the source of the
CMB anisotropies. There impact on the angular power spectra of the CMB anisotropies is eas-
ily computed from numerical solutions of the Boltzmann and radiative transfer equations. Since
LQC-spectra differs from the inflationary prediction, the specific features imprinted by the quan-
tum bounce on the cosmic inhomogeneities could in principle be searched for in the CMB data.
A quantitative study and comparison with datasets, as well as a wider exploration of the initial
conditions and the potential features of the quantum bounce, are however still to be done.
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