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ABSTRACT: We set up the AdS/CFT correspondence for topologically massive gravity
(TMG) in three dimensions. The first step in this procedure is to determine the appropriate
fall off conditions at infinity. These cannot be fixed a priori as they depend on the bulk
theory under consideration and are derived by solving asymptotically the non-linear field
equations. We discuss in detail the asymptotic structure of the field equations for TMG,
showing that it contains leading and subleading logarithms, determine the map between
bulk fields and CF'T operators, obtain the appropriate counterterms needed for holographic
renormalization and compute holographically one- and two-point functions at and away
from the “chiral point” (u = 1). The 2-point functions at the chiral point are those of
a logarithmic CFT (LCFT) with ¢, = 0,cg = 3l/Gn and b = —31/Gy, where b is a
parameter characterizing different ¢ = 0 LCFTs. The bulk correlators away from the
chiral point (u # 1) smoothly limit to the LCFT ones as yp — 1. Away from the chiral
point, the CF'T contains a state of negative norm and the expectation value of the energy
momentum tensor in that state is also negative, reflecting a corresponding bulk instability
due to negative energy modes.
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1 Introduction

Although three-dimensional Einstein gravity is locally trivial, this is generally no longer
the case once higher-derivative terms are added to the action. The addition of such terms
provides the theory with propagating degrees of freedom, i.e. three-dimensional gravitons.
The quantization of such theories therefore appears to give a richer structure than the
Einstein theory, yielding potentially interesting toy models for higher-dimensional theories
of quantum gravity.

Unfortunately, the addition of generic higher-derivative terms to the Einstein-Hilbert
action often gives ghost-like excitations which render the theory unstable. Recently a
renewed interest has been taken in the so-called topologically massive (cosmological) grav-
ity [1, 2], or TMG for short. This theory consists of the Einstein-Hilbert action with a
negative cosmological constant plus a gravitational Chern-Simons term

1

Ses = c——
< 32rGNp

/ 3z —GeM <rg’aaurgy - grg’argTr;p). (1.1)
Although adding a Chern-Simons term likely leads to instabilities for general values of
the dimensionless parameter pu, it was argued in [3] that the theory becomes stable and
chiral when p = 1. At that point, which we will call the “chiral point”, all the left-
moving excitations of the theory would become pure gauge and one would effectively have
a right-moving theory.

Other authors however found non-chiral modes at the chiral point, [4-11] (see however
also [12]). In particular in [5] a left-moving excitation of the linearized equations of motion
was explicitly written down'. From the transformation properties of the new mode of [5]
under the (Lo, Lg) operators one found a structure typical of a logarithmic conformal field
theory (LCFT) and consequently it was claimed that the theory with © = 1 was dual to
such a theory. Since LCFTs are not chiral (and not unitary either), this provided a further
argument against the conjecture.

However, near the conformal boundary the new mode does not obey the same falloff
conditions as the other modes. This has led to claims that one can ignore the new mode
by imposing strict ‘Brown-Henneaux’ [15] boundary conditions: the new mode does not

1Solutions of the non-linear equations of motion exhibiting similar asymptotic form were presented earlier
in [13, 14].



satisfy these so it then has to be discarded and the resulting theory could again be chi-
ral [16]. In [10] a non-chiral mode of the linearized equations of motion, related to that
of Grumiller and Johansson but satisfying the Brown-Henneaux boundary conditions, was
found. However, [17] argued that this mode is not a linearization of a non-linear solution.
This linearization instability was further discussed in [18]. On the other hand, in [19, 20]
it was claimed that the Brown-Henneaux boundary conditions could be relaxed to incor-
porate the non-chiral mode without destroying the consistency of the theory. At first sight
one seems to be free to choose either set of boundary conditions, supposedly leading to a
different theory for each possibility [17].

The topologically massive theory admits solutions that are asymptotically AdS so
one can use the AdS/CFT correspondence to analyze the theory. This is the viewpoint
pursued in this paper. One of the cornerstones of the AdS/CFT correspondence is that the
boundary fields parameterizing the boundary conditions of the bulk fields are identified
with the sources for the dual operators. It follows that the leading boundary behavior
must be specified by unconstrained fields, whereas the subleading radial behavior of the
fields is determined dynamically by the equations of motion and should not be fixed by
hand. Putting it differently, the subleading radial behavior is obtained by finding the most
general asymptotic solution to the field equations given boundary data. For theories that
admit asymptotically locally AdS solutions the most general asymptotic solution, which
is sometimes called the “Fefferman-Graham” expansion, can always be found by solving
algebraic equations, see [21] for a review. We would like to emphasize that the Fefferman-
Graham expansion does not have a predetermined form, as is sometimes stated in the
literature, but rather the form of the expansion is dynamically determined.

For theories that admit asymptotically (locally) AdS solutions finite conserved charges
can always be obtained [22-27] via the formalism of holographic renormalization [21]. In
particular, ref. [27] provides a first principles proof that the holographic charges are the
correct gravitational conserved charges for Asymptotically locally AdS spacetimes. One
should contrast the logic here with what is usually done in other papers. The discus-
sion there starts by selecting fall off conditions for all fields, for example Brown-Henneaux
boundary conditions, such that interesting known solutions (such as black holes etc.) are
within the allowed class and then it is checked whether these boundary conditions lead to
finite conserved charges. On the other hand, here we start by deriving the most general
Asymptotically locally AdS boundary conditions. Finite conserved charges (which satisfy
all expected properties) are guaranteed by the general results of [27]. Note that the finite
conserved charges are related to the 1-point function of the dual energy momentum tensor
via the AdS/CFT dictionary. The next simplest quantities to compute are the 2-point func-
tions of the dual operators. These are obtained from solutions of the linearized equations
of motion with Dirichlet boundary conditions.

In this paper we develop the AdS/CFT dictionary for topologically massive gravity.
We obtain the most general asymptotic solutions that are Asymptotically locally AdS and
compute the holographic one- and two-point functions of the theory at and away from the
chiral point. One new feature in this case is that the field equations are third order in
derivatives. Ordinarily higher derivative terms are treated as perturbative corrections to



two derivative actions and as such they do not change the usual AdS/CFT set-up. In the
case of TMG, however, we need to treat the Einstein and Chern-Simons terms on equal
footing. The fact that the field equation is third order implies that there is an additional
piece of boundary data to be specified. This means that we can fix both a boundary metric
(or more precisely, a conformal class) and (part of) the extrinsic curvature. The boundary
metric acts as a source for the boundary stress energy tensor, while the field parametrizing
the boundary condition for the extrinsic curvature is a source for a new operator. It turns
out that this operator is irrelevant when p > 1 and it becomes the logarithmic partner of
the stress energy tensor as p — 1.

The asymptotic expansion at g = 1 contains the subleading log piece found earlier
in [5]. The coefficient of this term corresponds to the 1-point function of the logarithmic
partner of the energy momentum tensor. As this operator is obtained as a limit of an
irrelevant operator, its source (as usual) should be treated perturbatively. This source,
which is the above mentioned boundary condition for the extrinsic curvature, appears as
the coefficient of a leading order log term in the solution to the linearized equations of
motion (not to be confused with the subleading log of [5] which relates to the 1-point
function of this operator). The results for the two-point functions at u = 1 completely
agree with LCFT expectations and the results away from g = 1 smoothly limit to the
u =1 results. Bulk instabilities when pu # 1 due to negative energy modes also neatly map
to properties of the boundary theory, namely negative norm states and correspondingly
negativity of the expectation value of the energy momentum tensor in these states.

The remainder of the paper is structured as follows. After discussing some conventions
and giving the equations of motion, we review in section 3 the standard AdS/CFT dictio-
nary, in particular the definition of Asymptotically locally AdS spacetimes, and point out
several subtleties which will be crucial in its application to TMG. In section 4 we analyze
the asymptotic structure of the bulk solutions for ;4 = 1. We compute the on-shell action,
discuss its divergences and the holographic renormalization which enables us to concretely
formulate the holographic dictionary. The holographic one point functions satisfy anoma-
lous Ward identities whose interpretation is discussed in section 5. Section 6 concerns
linearized analysis which is used to compute holographically one- and two-point functions
for 4 = 1. We then repeat this analysis for general p in section 7. We end with a short
summary and an outlook. Various appendices contain computational details as well as a
discussion of some relevant aspects of logarithmic CFTs.

2 Setup and equations of motion

The bulk part of the action has the form:
1
S —
167Gy
n 1
327TGNM

/ d*x v/ —G(R — 2A)

(2.1)
2
/ B =G (FKUBMFZV + grgarf”r;p> :

where we use the covariant e-symbol such that /—Ge®'? = 1 with 22 the radial direc-
tion denoted p below. We set A = —1 below. We use the following conventions for the



curvatures:

A
R, = 0,17, + 1,0\ — (b < v), Rup=R,;,”. (2.2)

All Greek indices run over three dimensions, all Latin indices over two dimensions. In three
dimensions the Weyl tensor vanishes identically, which means that:

1
Ruvpe = GupRoy — GupRoy — §RGHPGU,, — (p < o). (2.3)
The equation of motion derived from (2.1) becomes:
1 1
RNV - §GMVR - GMV + ;CNV == O, (24)
with C),, the Cotton tensor:
1
Cuv = €,""Vo(Rgy — 1 RGa)- (2.5)
Using (2.3) we find that the Bianchi identity becomes:
Cuw—Cyu=0. (2.6)

The last term in the r.h.s. of (2.5) is totally antisymmetric in x4 and v and therefore
merely subtracts the antisymmetric piece from the first term in the r.h.s. of (2.5). We

alternatively have:

1 g g
5 (647 VpRow + €,V Roy). (2.7)

Couw = 5

It is not hard to verify that

cl =0, V,.C" =0. (2.8)

Taking the trace of (2.4) we therefore find that:
R = -6, (2.9)

independent of p. Substituting this back, we find:
1
Ry +2Gu + —€,”V, Ry, = 0, (2.10)
1

from which we also obtain that any solution to the Einstein equations has R,, = —2G,
and is a solution to these equations as well.

3 Asymptotically AdS spacetimes and holography

In this section we will explain what Asymptotically (locally) AdS, or A(1)AdS spacetimes
are and their role in the AdS/CFT correspondence. Reviews of the mathematical aspects
discussed here can be found in [28, 29]. After introductory comments that are gener-
ally applicable, we highlight two aspects of the framework that will be important for its
application to TMG, namely irrelevant deformations and higher-derivative terms.



3.1 Conformally compact manifolds

First of all, we define a D-dimensional conformally compact manifold-with-metric (M, G)
as follows. Let M be the interior of a manifold M with boundary OM.? Suppose there
exists a smooth, non-negative defining function z on M such that z(OM) = 0, dz(OM) # 0
and the metric

G =G (3.1)
extends smoothly to a non-degenerate metric on M. We then say that (M, G) is conformally
compact and the choice of a defining function determines a conformal compactification
of (M,G).

The metric G induces a regular metric g0y on IM. This metric depends on the defining
function, as picking a different defining function Weyl rescales g(q). It follows that the pair
(M, G) determine a conformal structure (denoted [g(g)]) at OM. We call (M, [g(o)]) the
conformal infinity or conformal boundary of (M,G). This construction is same as the
Penrose method of compactifying spacetime by introducting conformal infinity.

If we compute the Riemann tensor of GG, we find that near OM it has the form:

Ruvpo = —G"V,.2V22(GrpGro — GupGro) + O(z72). (3.2)
Notice that the leading term is order =% as G is order z~2. Taking its trace we obtain that:
R=—D(D —1)G*V,.2Vz + O(2). (3.3)
We see that for a spacetime with constant negative curvature,
R=-D(D-1), (3.4)
and thus we find to leading order:
GV, 2V\z = 1. (3.5)

The Riemann curvature of such a metric thus approaches that of AdS space with cosmo-
logical constant A = —(D —1)(D —2)/2, for which R0 = —D(D —1)(G,,Gro —G1pG o)
holds exactly. A conformally compact manifold whose metric also satisfies R = —D(D —1)
is therefore also called an Asymptotically locally AdS manifold. Notice that we added the
word ‘local’ because we have not put any requirements on global issues like the topology
of OM, which may very well be different from the sphere at conformal infinity of (Eu-
clidean) AdS.

3.2 Fefferman-Graham metric

A main result of Fefferman and Graham [32] is that in a finite neighborhood of 0M, the
metric of an AIAdS spacetime can always be cast in the form:

ds* = 27 2(dz* + gijdx'dx?), (3.6)

2For the purpose of this introduction we take the manifold to be Euclidean (so in particular 9M does
not contain initial and final hypersurfaces). The Lorentzian case can be dealt with using the formalism
of [30, 31].



where the conformal boundary is at z = 0 and the metric g is a regular metric at OM,
which we can write as:

gl-j(:ck, z) = 9(0) () + ..., (3.7)

where the dots represent terms that vanish as z — 0. The coordinates in (3.6) are Gaussian
normal coordinates centered at OM.

The specific form of the subleading terms, including the radial power where the first
subleading terms appears, depends on the bulk theory under question and is not fixed a

priori. For example, for Einstein gravity in (d + 1) dimensions the expansion reads

9i = 9(0yij + 2 9@+ + 2 (9ayij + ayig log(2)) + - (3.8)

The fact that the subleading term starts at order z? is specific to pure Einstein gravity.
For example, 3d Einstein gravity coupled to matter can have the first subleading term
appearing at order z, see [33] for an example. The logarithmic term h(q) appears in Einstein
gravity when d is an even integer greater than 2. This coefficient is given by the metric
variation of the conformal anomaly [25]. This fact immediately explains why there is no
such coefficient in Einstein gravity when d = 2: in this case the conformal anomaly is given
by a topological invariant and therefore its variation w.r.t. the metric vanishes. As soon as
the bulk action contains additional fields the expansion will be modified accordingly [25, 33—
35]. For example, the asymptotic solution for three dimensional Einstein gravity coupled to
a free massless scalar field is of the form (3.8) with a non-zero hy) coefficient, see equation
(5.25) of [25]3. Note that the log term found in [5] is precisely of this form. From this
perspective the appearance of such a term in the asymptotic expansion of TMG is certainly
not surprising.

What is universal in this discussion is the structure of these expansions. The sub-
leading coefficients are determined locally in terms of g by solving asymptotically the
field equations. This procedure leads to algebraic equations that can be readily solved.
On the other hand, g(g) is not locally determined by g(g) but rather by global constraints
like regularity of the bulk metric in the interior of M. This term is related to the 1-point
function of T;;.

To repeat, according to the standard AdS/CFT dictionary the allowed subleading
terms in expansions like (3.8) (and (3.9) below) are determined by the equations of motion
rather than fixed by hand. As long as g is regular for z = 0 and therefore of the form (3.7),
the aforementioned AIAdS properties of (M, G) are unchanged. In the context of TMG
this in particular implies that we allow the logarithmic mode found in [5].

3.3 Boundary conditions and dual sources

According to the AdS/CFT dictionary [37, 38], the coefficients of the leading terms in the
radial expansion of the metric and the various matter fields are sources for corresponding
gauge-invariant operators in the CFT. For example, g(q specifies a boundary metric which

3 Ref. [36], appendix E, contains an example of 3d gravity coupled to scalars with log? terms in the
asymptotic expansion.



becomes the source for the energy-momentum tensor of the boundary theory. Similarly, a
bulk scalar field ® of mass m has the allowed asymptotic behavior:

O =)z P+ .+ Ppa—a + - (3.9)

with m? = A(A — d). We then interpret the leading term b(0) as the source for a scalar
operator O of scaling dimension A dual to .

In field theory, one computes the partition function as a functional of sources and the
same story applies in AdS/CFT. The sources like ¢y and g(g) determine the asymptotic
(Dirichlet) values of a bulk solution to the equation of motion. The aim is now to find
this bulk solution and subsequently compute its on-shell action. Since the solution of the
equations of motion is a function of ¢ and g(g), so is the corresponding on-shell action.
However, the naive action is always infinite (for example, the Einstein-Hilbert term is
proportional to the volume of spacetime which always diverges for an AIAdS spacetime).
We therefore need to regularize and then renormalize the computation of the on-shell
action. This holographic renormalization of the on-shell action depends crucially on the
asymptotic properties of the metric (which in our case is A1AdS) and this is the place where
the above framework finds a practical application.

Holographic renormalization is implemented as follows, see [21] for a more complete
discussion. One first puts the boundary of the spacetime at finite zg rather than at z =0
and then evaluates the on-shell action for this regulated solution. One finds divergences
as zg — 0 which can however be cancelled by adding local counterterms to the action. To
maintain covariance, these counterterms should be functionals of the induced metric and
other fields on the slice given by z = z5. Adding then the counterterms to the on-shell
action, one finds that the total action is finite as zg — 0.

Once the on-shell action is renormalized and finite, one can compute one-point func-
tions in the presence of sources by functionally differentiating the renormalized on-shell
action with respect to the sources like gy and ¢(). These one-point functions involve
the nonlocally determined pieces called g(4);; and ¢xa—q) and in general contain also local
terms, some of which are related to anomalies and others that are scheme dependent. One
can obtain higher-point functions by taking further derivatives of the one-point functions
and the local terms lead to contact terms in n-point functions.

Notice that the counterterms are also necessary for the appropriate variational principle
to hold: for AIAdS spacetimes one fixes g (or rather its conformal class) instead of the
induced boundary metric g/z3 which would diverge as zp — 0. This is discussed in detail
in [27].

3.4 Sources for irrelevant operators

The fact that an asymptotically AdS metric becomes that of AdS near conformal infinity
is dual to the statement that the boundary theory becomes conformal at high energies.
Asymptotically AdS metrics describe relevant deformations of the CF'T and/or vevs in the
boundary theory.

On the other hand, one may also attempt to switch on sources for irrelevant operators.
Such deformations are for example necessary to compute correlation functions of irrelevant



operators, as these are obtained by functionally differentiating the on-shell action with
respect to these sources. Switching on these sources spoils the conformal UV behavior of
the field theory. Correspondingly, the bulk solutions will no longer be AIAdS and the usual
AdS/CFT dictionary would break down. In particular, the usual counterterms no longer
suffice to make the on-shell action finite, completely analogous to the nonrenormalizability
of the field theory with such sources.

A consistent perturbative approach may however be set up by treating the sources for
irrelevant operators as infinitesimal [25]. In the bulk, this means that one starts from an
ATAdS solution and computes the bulk solution and the on-shell action to any given order
n in the sources. This approximation allows for the computation of n-point functions of
the irrelevant operator in any given state dual to the background AlAdS solution. We will
see a concrete example worked out below.

3.5 Higher-derivative terms

Higher-derivative terms in the bulk action are usually treated perturbatively and in that
case do not directly lead to a change in the setup described above. However, for TMG
we cannot afford to treat these terms as perturbations as we want to study the complete
theory around p = 1. The solution to the bulk equations of motion is then generally no
longer fixed by the specification of Dirichlet data alone and some extra boundary data is
needed; for example the z-derivatives of the metric g;; at the boundary. Correspondingly,
the on-shell action depends on these boundary data as well. We shall see below that this
is precisely what happens for TMG.

Extending the usual AdS/CFT logic, we interpret the new boundary data as a new
source for another operator in the field theory. Functionally differentiating the on-shell
action with respect to this new boundary data then yields correlation functions of this new
operator. To make contact with earlier results, notice that for TMG this operator creates
the massive graviton states in the bulk and for u = 1 it creates the logarithmic solution
found in [5]. One may say that these spaces have only a single operator insertion in the
infinite past.

It turns out that this new operator is irrelevant for p > 1, as for p > 1 we find
that switching on the corresponding source spoils the AIAdS properties of the spacetime.
Following the discussion of the previous subsection, we therefore will have to treat the
source as infinitesimal and approach the problem perturbatively to a given order in the
source. This is precisely what we will do in section 6.2.2.

4 Asymptotic analysis for up =1

In this section we return to TMG and carry out an asymptotic analysis of the equations
of motion (2.4) in the Fefferman-Graham coordinate system. Note that because of (2.9)
all conformally compact solutions of this theory are asymptotically locally AdS. However,
not all solution of TMG are conformally compact. For example, the ‘warped’ solutions
of [39] have a degenerate boundary metric, as is demonstrated in appendix E, and thus
they are not conformally compact. In this section we restrict to the AIAdS case. We



compute the on-shell action, discuss the variational principle in detail and demonstrate
how one holographically computes one-point functions in the CFT. As indicated in the
previous section, we will find irrelevant operators and therefore the complete holographic
renormalization of the on-shell action has to be done perturbatively. This is postponed until
the next section, where we will renormalize the action to second order in the perturbations.

Although this and the next section focus on the case = 1, u is sometimes reinstated
for later convenience.

4.1 Fefferman-Graham equations of motion

Following the discussion in section 3.2, we take the metric to be of the form:

dp* 1 o
ds* = 4—;)2 + ;gij(x,p)dxzdxj (4.1)
where we defined p = 22. As should be clear from the previous section, this form of

the metric is not an ansatz but it is a direct consequence of the AIAdS property of the
spacetime. In other words, the metric of any A1AdS spacetime can be brought to this form
near the conformal boundary. In this coordinate system the equations of motion (2.4) take

the following form. For the component equations we find:

1 1 1
—5tr(g™lg") + Jte(g g9 ) + e (VN’“géj + 2p(g”g‘1g’)jz‘> =0,

1 1, 1 B
<§tr(g tg") = ;ltx(g 19')]2>g@-j—g§}+59§jtr(9 ')

1 1 1 1 B
+ﬁ€ik{1vkvmg;”j + 7ViV" 0k — 5V Vltr(a7 9] + 2005+

3 3 3 -
I [3 - 5ptr(g 19’)] + Ghj ( = Str(g™g) + Jpltr(g™ g

7 7T, o
—5ptr(g Yg") + 17t g 19’)> } +ie j=0,

. . - 1T, ~
(9" — pe*)Vigl; — V; (tr(g ')+ 5otr(gg'g ) — pltr(g 19’)]2>
+2pV" (géﬁm - tr(g’lg')g£n> +po(g g )iV g =
(4.2)

whereas the trace equation R = —6 becomes:

—4ptr(g~'g") + 3ptr(9 g g7 g) — plir(9T 9P + R(g) +2te(g g = 0. (43)
A prime denotes a derivative with respect to p. The derivation of these equations is given
in appendix A.
4.2 Asymptotic solution

Rather than the usual asymptotic behavior lim,_.q gs;(p, k) = 9(0)ij (z*), the equations of
motion for g = 1 also allow leading log asymptotics for g;;. We therefore substitute the



expansion
gij = byij log(p) + g(0yij + b2yijplog(p) + g(2yij + - - (4.4)

into the equations of motion. The subleading logarithmic term b(y);; in this expansion is the

mode considered in [5]. The leading logarithmic term b(0)ij, on the other hand, changes the

ijs
asymptotic structure of the spacetime and it is no longerJAlAdS. Following the discussion
in section 3.4, we will treat b(p);; to be infinitesimal and work perturbatively in b();;. As
we will be interested in two-point functions around a background with b(g);; = 0, it suffices
to retain only terms linear in b(g);; in the equations that follow.

Under these conditions we find:

b(0)ij
9ij = (p) 2+ biayij log(p) + b2yij + 92yij + - -
brovi: brov.s
_ _ 2(0)ij (2)ig
Bm g m
g = Qb(o)ij o b(Q)ij 4+
ij P o2 ’

97 = g3, — by log(p) — b plog(p) — pg () + Olbw) + - - -
where in the last line indices are raised with gy and the O(b()) terms are of the form
b%Q)kblgg)plogZ(p) + géQ)kblgg)plog(p), but will never be needed in what follows.

Substituting this expansion in the equations of motion (4.2) and (4.3), we find the
following. To leading order we find both from the (pp) equation as well as from the R
equation that:

tr(b(o)) =0. (4.6)

Notice that traces are now implicitly taken using g(g), that is tr(by)) = g%)b(o)zj. Also, in
this subsection the e-symbol and covariant derivatives are defined using g(g). From the (i7)

equation we find that:
Bfboyr; =0, (4.7)

where we define the projection operators:

1 _ 1

i ) i 5

and we obtain no new constraint from the (pi) equation at leading order.
At subleading order we encounter various log terms. From the R equation we find at
order log?(p) that

tr(b(2)g(_0; b(O)) =0 (4.9)

and at order log(p) we then find:
— 2t1“(b(0)g(70§g(2)) + 2tI’(b(2)) + R[b(o)] =0, (4.10)
with R[b(o)] the linearized curvature:

R[g] = Rlg()] + log(p)Rlb)] + - - -, (4.11)

,10,



which can be more explicitly written as:

Rlb)] = V'Vb ()i, (4.12)

where we used the properties of b(g);; found at leading order. At subleading order in the
(pp) equation we again obtain (4.9) and (4.10). At order one in the R equation we obtain:

— 2tr(b(2)) + 2tr(g(2)) + R[g(o)] =0. (4.13)

For the (ij) equation the subleading terms at order log(p)/p give

(b©0)90) b7 + (0@ 9(0)b))is = 0, (4.14)

and at order 1/p we obtain:

_ 1
Pz‘kb(Q)kj = §(b(2)ij - eikb(Q)kj) = O(b(0)ij) (4.15)

where the right-hand side is an expression linear in b(g);; that we will not need below.
For the (pi) equation, we find at subleading order that:

_ . 1
Pik (ng(z)jk + §VkR[9(0)]) = vlb(2)lz’ + O(b(o))- (4-16)

We may apply (4.15) to rewrite schematically b(p);; — Pl-kb(g)kj +O(b(p)). Since PF and PF
are projection operators onto orthogonal subspaces we can split this equation into:

_ : 1
P <V]g(2)jk + §VkR[g(o)]> = O(b()), Vb = O(b))- (4.17)
If b(gy;; = 0 then the first of these equations agrees with [40].

4.3 On-shell action

In this section we will write the on-shell action in Fefferman-Graham coordinates and
analyze the divergences obtained by substituting the expansion (4.4).
We begin by computing the on-shell value of the Chern-Simons part of the action,

1

Iy=—"—
< 32rGnp

2
/ Bx G <F§Jau1“gy + grg’argTr;p), (4.18)

in Fefferman-Graham coordinates. Observing that the e-symbol implies that only one of
the indices A, p or v can be the radial direction, we can directly write out the various
terms. Using then (A.2) and (A.4) from appendix A we find that many terms cancel due
to the antisymmetry of €7/ and we are left with:

1

; ) B )
327Gy / d°x\/—ge” <2p(g’g 9")ij —F?bapfaj), (4.19)

where the connection coefficients and e tensor are now those associated with g;;. Substi-

tuting (4.4), it is not hard to verify that this action is finite for pg — 0 if b);; = 0, but
there are log divergences if b(g);; is nonzero.
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For the Einstein-Hilbert action, the variational principle can be made well-defined for
Dirichlet boundary conditions at a finite radial distance by the addition of the Gibbons-
Hawking term. In our conventions, this means that the Einstein part of the action is

given by:
! / Bav—G(R —20) + —— [ ay=K (4.20)

ler = 167Gy S EN
where v;; = gi;/p is the induced metric on the cutoff surface p = pg, which is kept fixed
in the variational problem. Furthermore, K is the trace of the extrinsic curvature of this
surface, which is defined using the outward pointing unit normal n,dz* = —dp/(2p).

This variational problem becomes ill-posed as pg — 0, since the induced metric ~
diverges in this limit. What one should instead keep fixed is the conformal class of ~
(or g(p) after taking into account the issues related to the conformal anomaly) [27]. This
requires introducing additional boundary terms. These boundary terms not only make
the variational problem well-posed but also make the on-shell action finite as pg — 0. In

particular, for the pure Einstein theory the counterterm action is

o= oge [ V(- 1+ FRO g ). (421)

Substituting the Fefferman-Graham form of the metric we find:

1

2 1
Iy = — dr=~/—g d?z=\/—g(4 — 2ptr(g— g
o 167TGN/ v g+ / - 9( ptr(g~g')),

1 1 1
I = 2ev/—g( — — + =R[g]1 .
o= gl /d T g( P + 4R[g] Og(po)>

1
167Gy

(4.22)

We may now substitute the radial expansion (4.4) for g;; and find the same behavior as for
the Chern-Simons part: the action Iy + Ict is finite when b(g);; = 0 but diverges otherwise.

We now define the following combined action:
I. = Igr + Les + Iet, (423)

i vanishes and needs to be supplemented
with additional boundary counterterms otherwise. As we explained in section 3, this will

which we emphasize is finite only as long as b

be done perturbatively up to the required order in b(y);;. We will do an explicit analysis to
second order in section 6, but first we discuss the variational principle and the computation
of the one-point functions in general terms.

4.3.1 Variational principle

In this subsection we compute the variation of the combined action I. defined
in (4.23), which will be needed below in the holographic computation of boundary
correlation functions.

First of all, the variation of the Einstein-Hilbert action plus Gibbons-Hawking term is

well-known:

1
167Gy

0 = /d3x(e0m) + /d2x\/—7[7in - Kij](S%-j, (4.24)
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and in Fefferman-Graham coordinates we find that:
1 1 . . T
6l = / dgx(eom) + 6rG / d*u/=g (;g” +9g" = g7tr(g 19/)>59ij7

1
d*x/=g9" 6g;;.

(4.25)

6Ict

As for the Chern-Simons part, we find that

1 — 1
Ics = Ha_~ 3 A p 7 7/ 2 - Ay Fp 4 4.2
0 327G /d —Ge C V“p + 327G N d”x e Ny Cl/p? ( 6)
with .
cp, =0r), = iGA"(V,ﬁGW + V0G0 — V0G,) (4.27)

and n, the outward pointing unit normal to the boundary and -;; the induced metric on
the boundary. Integrating the bulk part once more by parts, we find:

1
Is = ———— [ &Pz V-G po 4.2
o = gy [ A VTG (Vo )5, (4.28)

1

T SnGnn /d% VAN (0, 15,07, + 0o Ry, P0G

The first term eventually becomes the Cotton tensor in the equation of motion, using (2.3)
and the Bianchi identity.

Substituting now once more the Fefferman-Graham metric (4.1), we find n,da* =
—dp/(2p) and the surface terms can be rewritten to yield:

1 _
0les = /d3$ (eom) + m /d2$\/ —ge* ( kérgl +(d'g lég)ij —pld'g 159/)1‘3‘
+2p(g" g 59)ij — p(g’g‘lg’g‘lég)ij>, (4.29)

with all covariant terms defined using g;;. Notice that if b(g);; = 0 then all terms are finite
in the limit where the radial cutoff pg — 0, in agreement with the above analysis for the
on-shell action.

Combining then (4.25) and (4.29), the variation of the combined action I. defined
n (4.23) is

= L 20/ / T B -1 “1vij
o = J5ran / dw 9{%1 gijtr(g 9)}(9 (09)9~") (4.30)
1 2 1 k 17 1 ;1 E _1 1Nid
+7167TGW/6Z m\/_g{iAij_QPGi [gkj—i(gg 9 )i | =€ 9rj (g (09)g~ )Y
1 3
- - d2 — k1o =1 5 N —1 ij
+167TGN,U/ zv/—gpe” gr;(9~ (09')g ")

where the term A;; is a local term and is defined via:

/d2x\/ e”I’lk(SI’ /de\/—gAij@qij. (4.31)
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Explicitly, we find:

1 o
Aij =5 [eklg,’”ggn +elglgk —elg™ g + (i o J)] Vilp,

1 1
= |:_ gezkej Emnvlamgnk + (Z = .]):| + Zeklvkalgij'

(4.32)

Notice that the last term in (4.30) involves 592]» and therefore changes the variational
principle for this action. Although one may explicitly check that it vanishes if b(g);; = 0
and for pp — 0 [41], this is no longer the case for nonzero b);;. As expected for a three-
derivative bulk action, the on-shell action is a functional of both g;; and ¢/ ; at the boundary
and we can take functional derivatives with respect to both of them.

4.4 One-point functions

From the previous section it follows that there are two independent sources that should
be specified at the conformal boundary, which are asymptotically related to g;; and ggj.
According to the asymptotic solution (4.4) obtained in section 4.2 we can indeed indepen-
dently specify both b(g);; and g(g);; and one can take these as the two boundary sources.
These fields then source two operators which will be denoted ¢;; and T;;, respectively, with
T;; the usual energy-momentum tensor of the boundary theory. The standard AdS/CFT
dictionary now dictates:

() = —2_ L ) = (= “), (433)

v 7Y90) 6 g%) /90 8b7

where the subscript ‘L.’ means a projection onto the chiral traceless component,

(tij)r = P! (tkj - %gkjtf(t)>7 (4.34)

whose origin is explained in the next paragraph. The signs in (4.33) are explained in
appendix B. Notice that the on-shell action I on the right-hand sides of (4.33) coincides
with I. defined in (4.23) only to zeroth order in b(gy;;,
boundary counterterms will be needed to render it finite to higher orders in bg);;-

and as explained above additional

The projection onto the ‘I’ component originates as follows. Since Pkb( 0)kj = tr(b(o)) =
0, b(p)i; has only a single nonvanishing component. We can therefore only take functional
derivatives with respect to this component and we find that ¢;; only has one component
as well. For example, when we use lightcone coordinates and the boundary metric is
flat, g(o)ijdxidacj = dudv, then in our conventions (see appendix B) only b(g),, is nonzero.
Correspondingly, the only non-zero component of ¢;; is t,, and taking the ‘L’ piece projects
onto this component.

To make contact with the regulated on-shell action which explicitly depends on g;; and
gi;, we observe that:

900y = lim (9" + plog(p)g"), boyij = lim pg'™, (4.35)
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and therefore the one-point functions can be obtained concretely by computing:

(ti:) = i <—47T ol . ()477 5I>

i) = lim [ ————== +1o —_— |

7T \py=g oy g 605 ), (4.36)
—4n o1 '

(Ti5)

= lim —=% 2
p1—>r% V=g 0g4’

which are the main expressions that will be used in the following sections.

4.4.1 Explicit expressions for vanishing b);;

If we set b(g);; = 0 then the combined action I. is finite on-shell. Although we then cannot

take functional derivatives with respect to b(g);;, we can still compute correlation functions

Rl
involving the energy-momentum tensor by using the first equation in (4.33) with I = I..
Explicitly, this means that we use (4.30) and substitute the expansion (4.4) with bg);; = 0.

This leads to the following one-point functions:

.. —4m 4,
(Ty) = ;13}) /=g g% (4.37)
= (= gtrla ) — — (netahy + pelgl o ) ) + o Agla]
4GN ] J L 9t J ) J 2M J LI

1 1 1/, N 2 1
e (g(Z)ij + 5 Bl90)l90y — oM (Q 92)kj + (i < J)> - ;b(Z)ij + ﬂAiJ [9(0)1‘]’])

where we defined eik using g(g) and also used the various properties of b(y);; found above,

in particular the condition eikb@)kj = b(2);j which ensured the absence of a logarithmic

7
divergence. Notice that an extra sign ari;es because we functionally differentiate with
respect to the inverse metric, whereas (4.30) uses a variation in the metric itself. The
expression with energy momentum tensor with b(g);; = b(2);; = 0 was also derived previously
in [41]. The authors of [5] computed Tj; for non-zero b(y);; and flat g). The result in
equation (48) of [5] however is missing the b(y) term.

Using g(o) to raise indices and define covariant derivatives and using the above prop-
erties of b(y);; and g(z);;, we find the following Ward identities:

1 (1 1,
(71 = 1= (3R] + 5 Allao] )

1

) ) (4.38)
VI(Tyj) = e (Zeijij[g(O)] + §V]Az‘j[g(0)]> -

These results agree with analogous computations in [25, 40]. We will discuss their inter-
pretation in the next section.

Example: conserved charges for the BTZ black hole. The holographic energy

momentum can be used to compute the conserved charges, namely the mass and the angular
momentum, for the rotating BTZ black hole. The metric can be written in Fefferman-
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Graham coordinates as:

dp* 1 1 1
ds* :4% - [_ - 5(7"3 +72) + Z(ri — 7"2)24 dt?
r ' '01 ! (4.39)
+ b + 5(7“3 +17) + Z(Ti - Tg)%} d¢” + 2ryr_dtdg,
from which we find the following one-point function (using e;, = —1):
(Ty) = (Typp) = i+t 4+ —ryr |,
8GN 0
(4.40)

1 1
Tig) = — | 2r 7“—|——7“2—|—7‘2>.

Notice that our normalization of the energy-momentum tensor differs by a factor of 27
from that used in much of the AdS/CFT literature. We obtain the conserved charges:

M = —/dngtt - T Ti—i—r%—l—ghrr, ,
4G a (4.41)

s 1
J=— /dngé = Gn [2r+7"_ + ;(ri +r2)}.

Up to the change in the overall normalization, these expressions agree with [41, 42] and in
the Einstein case p — oo they reduce to the usual expressions. In lightcone coordinates
u=1t+ ¢,v=—t+ ¢ we find that

(Tuu) = G—lN ((1 + %)(ri +77) + 2(% + 1>7‘+r>,

(Too) = G—1N(<1 - i)(ri +r?2) + 2(% —~ 1>7°+7°_>.

so when p =1 only Ty, is nonzero.

(4.42)

5 Anomalies

In this section we will discuss and interpret the anomalous Ward identities (4.38). We
will first consider the diffeomorphism anomaly and show that it agrees exactly with the
expression expected from Wess-Zumino consistency conditions. We then discuss the Weyl
anomaly and again find agreement with field theory expectations.

5.1 Diffeomorphism anomaly

The diffeomorphism Ward identity from (4.38) for u = 1 reads
J 1 Ly 1 i
\Y% <Tz> = E Zei VkR[g(O)] + §V z‘j[g(o)] . (5.1)

The right-hand side is the diffeomorphism anomaly of the theory. A more explicit expres-
sion can be obtained following [43]. Consider a vector field ¢*. Then, under a diffeomor-
phism along ¢’ the metric change 0gi; = Vi(j + V;(; results in the following change in the
connection coefficients:

TS = (MO0l 4 (0:C™)TL; + (0;¢™)TE, — T20mCF + 0,0,¢". (5.2)
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We may substitute this in (4.31) and find that:
—2/d2x\/—_ngV,~Aij
= / d?x/—ge T, (gmamrg?l +(0;¢™ Tk + (™I, — T 0w CF + 8]-614’“)
- /dzm\/—_g( — ("I, Re — (0;¢")Re;! — (@Ci)ﬁklakrgz‘)
_ / Pay/=g¢ (¢! VR + M0,0,T)

(5.3)

where the first term on the third line comes from the grouping the first two terms on the

second line; to find it we used that eklrf;irgrfnn = 0 in two dimensions. Substituting the

explicit expression for V?A4;; obtained from (5.3) in (5.1) we obtain:

VITy) = M o;0,T7.. (5.4)

16G N

As explained in [43, 44], this is precisely the two-dimensional diffeomorphism anomaly that
satisfies the Wess-Zumino consistency conditions. In particular, in this case the consistency
condition requires that the anomaly under a diffeomorphism along (:

He = / d*x\/=gC"N(Tyy), (5.5)

satisfies
EqHe, — Eg,He, = H[Czﬁb (5.6)

where E¢ denotes the action of a diffeomorphism with parameter ¢.

The consistent anomaly (5.4) is not covariant [43, 44] and therefore Tj; itself is not
a covariant tensor either. One may try to remedy this by finding a symmetric local ‘im-
provement term’ Y;; such that the new object Tij defined as:

Tij = T;j + Y (5.7)

does transform as a tensor. This implies that V’Tij is also covariant, resulting in a co-
variant diffeomorphism anomaly [43]. The covariant anomaly does not however satisfy the
consistency conditions [44] and therefore Tij is not the variation of an effective action.

To better understand the form (5.1) of the diffecomorphism anomaly, we will now review
the results summarized in [43].# As we will see shortly, one may obtain the covariant and
the consistent anomaly as well as the improvement term starting from a single polynomial
P(Q) of degree d/2 + 1 whose arguments are matrix-valued forms €. (In this section such

4Our conventions differ as follows. Our Tj; has an extra 1/y/—g as opposed to the analogous object
in [43]; indeed, in our case Ti; is a tensor whereas in [43] it is a tensor density. The overall sign of the
energy-momentum tensors is however the same. The connection Ffj in [43] is defined with an extra minus
sign, but the Riemann curvature has the same sign. Finally, we always use a covariant e-symbol whereas
this is not the case in [43].
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forms are always written using bold face.) Although P generally depends on the theory at
hand, in d = 2 we find that P should be quadratic, leaving us with the unique possibility:

P(Q) =aTr(Q2 A Q), (5.8)

with a so far arbitrary normalization factor a. We will also write P(€21,22) = aTr(21 A
Q). Following the usual conventions [43, 44], we view the connection coefficients I’fj as

matrix-valued one-forms,
I =T% =T}da’, (5.9)

and the Riemann tensor as a matrix-valued two-form,
1 4 .
— pl l
R=R, = §Rz‘jk dx' A dx’. (5.10)

The consistent anomaly can be found by solving a set of descent equations which follow
from the consistency condition, see [43]. Using a matrix-valued zero-form v = v/ = 0;¢7,
the end result can be written as:

He = /d%\/—_ggvaU = /P(dv,I‘). (5.11)

With the above form of P this can be written more explicitly as:
/de\/—gCiVjTij = —a/Tr(dv AT)

= —a/(akaigj) fjdxkAdxl = —a/d2x —ge" (00;¢7) f] (5.12)

Similarly, the covariant anomaly is obtained in [43] as:
/ VT =2 / P(M,R) = —a / (Vi) Ry, da* A da’
= —a/\/—g(vizj)eklelji = —a/\/—g(vizj)Reji (5.13)

where M = —V,(7 is again a matrix-valued 0-form and R is the usual Ricci scalar. Finally,

the improvement term Y;; is given as:

/ d*e\/—gY " 5g;; = 2 / Tr(6T A X) (5.14)

in terms of the variation of the connection and a matrix-valued one-form X given again
in terms of P. We refer to [43] for the exact expression for X, which for d = 2 however
reduces immediately to X = aI'. We therefore find:

/ d*x\/—gY"8g;; = 2a / Vg€ (6TL )T, (5.15)

Let us now compare these results with our holographically computed expressions. Com-
paring (5.4) with (5.12) we find precise agreement provided that:

1

= 1
a 16Gn (5.16)
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Furthermore, we are now able to understand our original expression (5.1). Namely, it is
exactly of the form:

ViTi; = V'Ti; — VY. (5.17)
To see this, observe that the first term on the right-hand side of (5.1) agrees precisely
with (5.13) and the second term is precisely 1/(8GN)V'A;; as can be seen by compar-
ing (5.15) with (4.31). (This was recently noted in [45] as well.)

Notice that the energy-momentum tensor postulated in [40] does not include the term
%Aij that we obtained in (4.37) from the variation of the on-shell supergravity action. The
energy-momentum tensor of [40] is therefore precisely the tensor 7Tj; defined above. In
agreement with the above discussion, this Tij is not obtained from an on-shell action and
the anomaly found there is precisely the covariant anomaly (5.13).

5.2 Weyl anomaly
For the Weyl anomaly we find from (4.38):
1

(T = g (Rloo) + Alla)])- (5.18)

We have already discussed that the extra term A! [g(o)] can be removed by hand. We then
obtain the trace of the covariant energy-momentum tensor:

.. 1
<m=§E%mk (5.19)
On the other hand, in our conventions we should have:
A cr, +CRr
(17) = R[g(o)] (5.20)
24
and therefore: 5
cr, +cp=— 5.21
LHer= g (5.21)

which agrees with the analysis in section 6.4.1 below.

6 Linearized analysis

In order to compute correlation functions involving the operator t;; as well, we will proceed
perturbatively. In this section we therefore consider small perturbations 0G,, = H,,
around the AdSs background. We will first linearize the bulk equations of motion and
solve these asymptotically in order to isolate the divergent pieces in the combined action
I. defined in (4.23). We then renormalize this action to second order in the fluctuations.
Taking functional derivatives as in (4.36), we obtain finite expressions for the one-point
functions of Tj; and t;; in terms of the subleading coefficients in the radial expansion of
the perturbations. Afterwards, we find the full linearized bulk solutions for H;; so we
can express these subleading pieces as nonlocal functionals of the sources g(g);; and bg);;-
Finally, a second functional derivative then gives all boundary two-point functions involving
T;; and t;;. At the end of this section we compare our results with those expected from a
logarithmic CFT (LCFT) and find complete agreement.
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6.1 Linearized equations of motion

We will now linearize the equations of section 4.1 around an empty AdS background solu-
tion. We work in Poincaré coordinates where the background metric G, has the form

v dp2 1 7 j

An earlier investigation of the linearized equations around this background can be found
in [4, 8]. As we work in Fefferman-Graham coordinates, it is natural to pick a radial-axial
gauge for the fluctuations as well. Thus we set H,, = H, = 0 and define h;; = dg;; =
H;j/p. We therefore substitute

i5 = Mij + hij (6.2)
into the equations of motion (4.2). To leading order in h;; we find:
" 1 i miy/
—tr(h") 4+ ﬂe 0;0™ hy,; = 0,

2p0" 1}, + OF Ry, + pel* o h; — Otr(R') = 0,

1 (6.3)
—h; + nij gtr(h”)
1 k 1 L1/ 1 ly1 1 / " " . .
and for the trace equation R = —6 we obtain:
— 4ptr(R") + R(h) + 2tr(h) = 0, (6.4)
with R[h] the linearized curvature of 7;; + h;;, which can be explicitly written as
R[] = V'Vih;; — ViV;tr(h). (6.5)

Notice that all covariant symbols and traces in the above equations are defined using the
background metric 7;;.

We also obtained the linearized equations of motion in global coordinates, which can
be found in appendix C. The analysis in global coordinates would be useful should one
want to compute directly”® the correlators of the CFT on R x S' rather than R?.

6.2 Holographic renormalization

In this subsection we consider the holographic renormalization of the on-shell action. Since
we work at the linearized level, we compute the on-shell action to second order in the
perturbations around the Poincaré background. We isolate the divergences to that order
and compute the necessary covariant counterterms to cancel these divergences.

5 Alternatively, one can obtain the correlators on R x St from the ones on R? by using the fact that R x S*
is conformally related to R* and finite Weyl transformations in the boundary theory can be implemented
by specific bulk diffeomorphisms [26] (whose infinitesimal form was derived first in [46]).
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6.2.1 Asymptotic analysis
We begin by substituting the asymptotic expansion for h;;:

hij = b(oyi; 1og(p) + hoyij + byijplog(p) + hayije + - (6.6)

into the linearized equations of motion (6.3) and (6.4). We find from the linearization of

the asymptotic analysis above that:

tr(by) =0,
bij + €;"bi; = 0,

1~ 1 ai
tI‘(b(Q)) = —§R[b(0)] = —5828”)(0)

R
1.
tr(h) = =5 Rlhg)] + trbw),

1 1
beayi; — € by = 5?7zjtr(b(2)) + f@'k(akalbw)zj +0;0"boyr)

o’ <b(2)ij - 3€ikb(2)kj + 2pikh(2)kj - 2pz‘k77kj(tr(h(2)) + tr(b(z)))) =0,

where all covariant symbols and traces are defined using 7;; and R[h] again denotes the
linearized curvature of the metric n;; + h;;.

6.2.2 On-shell action and counterterms

The next step is to substitute the asymptotic expansion (6.6), together with the con-
straints (6.7), into the on-shell action (4.23). We then isolate the divergences and find the
necessary counterterm action that makes the action finite to second order h;;.

Expanding the on-shell action (4.23) in h;j, we find that the first-order term vanishes,
since it gives a term proportional to the bulk equations of motion plus the surface terms
of (4.30), which vanish identically for the Poincaré background. At the second order

we find:
1

— 2 / / ki ka1t id
T 327Gy /d x<hij = mijte(h') = 2p€; by — € hkj>h]- (6.8)

Notice that there are no contributions from the A;;-term for the Poincaré background,

I

as can be seen easily from its definition (4.31). If we now substitute the expansion (6.6)
and use the linearized equations of motion (6.7) then we find a logarithmic divergence of
the form:

1 1 | iy

The next step in the holographic renormalization is to invert the series and rewrite the

divergent terms in terms of h;; plus finite corrections. This gives:

log(p)b(oyis = hij + - - -,
h(oyij = hij — plog(p)hi; + ..., (6.10)

ij 1 ij
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and we also have:
tr(ho)) R[boy] = 2h{),0" 07 by — W7 9 Ohbioyss, (6.11)

from which we find that this divergence is cancelled by adding the following countert-
erm action:

1
321Gy

I ij

1 .. 1
/ d2x<Zh”8k8khij + phl; I — Zhgalakhkj) (6.12)
This action can be written in a covariant form as follows. The background induced metric is
written 7;; = 1;;/p and its deviation h;;/p = 0;;. The extrinsic curvature K? = —67 + pg?
and its deviation is f(i] [h] = ph;] . In this notation, the counterterm action becomes:

1 L ok ; i | p——
I2,ct = 970 /d2x\/—7<10 IV ka'ij + Klj[h]K ][h] — ZO‘iv \Y% O'kj>, (613)

where indices are now raised and covariant derivatives and traces are defined using ;;.

Notice that the counterterm action involves the extrinsic curvature K;; as well. Such
a term would not be allowed in pure Einstein theory as it would lead to an incorrect
variational principle. On the other hand, for TMG we already found that the variational
principle is different. In particular, the higher-derivative terms allow for the specification
of both «;; and Kj; at the boundary and therefore we are also allowed to use Kj; in the
boundary counterterm action.

6.2.3 One-point functions

For the total action at this order I 1ot = I2 + I3 ¢y we find the variations:

013 tot 1 k k 1z Lok L ok
i = 167G (h;] — m'jtr(h,) — 2p¢; hgj —€ h%j + §A2J [h] + 16 akhl'j — 1616 hkj ,
512,t0t

k kyp/
o = A . , .14
5h/flj 167TGNP(5Z + el )hk]7 (6 )
with A;;[h] the linearization of A;; as defined in (4.31):
1 } .
Aijlh] = 5€(9;0"hiy — 0'0this) + (i = j). (6.15)

We now substitute the expansion (6.6) and find:

by 1 ) i, 1 ~
S~ T6nC {b(2)ij — 3¢, b(oyij + 2P hayj + i §R[h(o)] + R[b(0)]
1.
+ §Pﬁ (alalh(o)kj - ajalh(o)lk> } (6.16)
01 tot P pk

ShT BnGy (b(z)kj log(p) +b2yk; + hk >

where we dropped terms that vanish as p — 0 and do not contribute below. In the above
formulas symmetrization in 7 and j is implicit. When b(y);; = 0 we can compare the first
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of these expressions with (4.37) and we find that the additional counterterms only change
the local terms.

Using (4.36) and taking into account an extra sign from the fact that g = n¥/ — ¥
we obtain the following explicit expression for the one-point functions:

lim 47T 0l Jtot
p—0 /— 5h”

1 k Dk 1
4GN {b(g) — J¢; b(g)kj +2P; h(g)kj + Nij <§

(Ti5) =

Rlh)) + R[b(oﬂ>

: (6.17)
+ §Pik (3lazh(0)kj - 3j5lh(0)zk> },

—47 61 47 61 1

) = p~0< Nt )\/—_néhiﬂ‘> 2Gn (b + hayi)

where we note that the projection to the L-component in (t;;) also removes (divergent)

terms of the form n;;(...) or PF(...)x;. .

6.3 Exact solutions

In this subsection we solve the linearized equations of motion given in section 6.2.1. From
the explicit solutions we find below, we can obtain the subleading terms b(y);; and h(g);;
that enter in (6.17) as nonlocal functionals of g(g);; and b(g);;. This will allow us to carry
out the second functional differentiation required to obtain the two-point functions.

In explicitly solving the fluctuation equations it is convenient to Wick rotate and work
in FEuclidean signature; the procedure for analytic continuation is explained in detail in
appendix B. Concretely, one starts from the metric (6.1), introduces lightcone coordinates
u=t+z,v=—t+z, and replaces v — z, u — z with (z, Z) complex boundary coordinates.
The background metric then has the form:

dp*

1
1 + dzdz (6.18)

ds® =

We will employ the notation d = 0, and 0 = 95 below.
In these coordinates, the linearized equations of motion (6.3) and (6.4) become:

—0(1+ p)hls + 0(1 + p)h%; + 2p (ORL; + ORL;) =0
o1 — p)hly; — O(1 — p)h., — 2p (OKL, + ORL,) =
—0%h. + 00K + (3 + )L, + 2ph"Y) =
—0%h._ + DO, + (3 — p)h”, 4+ 2ph'3) =0
82h122 - 52h/zz + 2,“hlz/2 =
0*hzz — 200h,z + 0%h,, + 2h.. — 4ph”. = 0,

(6.19)

where again we have temporarily reinstated p for later use. From these equations it is
straightforward to verify that h”; satisfies a Bessel-like equation:

19?1 + 8pn'Y) + (4p90 — 12 + DR, =0, (6.20)

2z
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which has the general solution:

Wl = p  PKu(avp)a+ p P L(avp) B, (6.21)

with o and (3 arbitrary functions of u and v and we defined ¢ = \/—400. Passing to
momentum space, we have ¢ > 0 and only K, is regular as p — oo and we therefore
set B = 0.

As a sidenote, in real time it is possible that ¢ < 0 and then both solutions have a
power-law divergence as p — oo. A solution that is regular at p — oo can nevertheless
be constructed from them using an infinite number of these modes [4, 8]; see also [31]
for an explicit example. Alternatively, one can solve the fluctuation equation using global
coordinates. In any case, since we work in Euclidean signature such singular behavior for
the individual modes is absent and there is no need to worry about these issues.

We can integrate (6.21) twice to find an explicit solution for h,z which for general u
involves an integral of the hypergeometric functions | F>. Notice also that as g — oo the
linearized Einstein equations become h’; = 0, so the radial dependence of the perturbation
is linear in p. This correctly reproduces the linearization of the exact solution of the
non-linear vacuum Einstein equation in three dimension in Fefferman-Graham coordinates
given in [47], which has a Fefferman-Graham expansion that terminates at p?.

For the other components, the last two equations in (6.19) may be exploited to
find that:

20°1,; = 4phtY 4+ 2(1 — p)h!, + 200,

2021, = 4ph'D + 2(1 + p)h’, + 2000

zZZz 2Z)

(6.22)

which allows us to completely solve the system.

6.3.1 Solutions for y=1

In contrast to the case for general u, for © = 1 one may use the modified Bessel equation:
1
8§<\/EK1(\/E)) = 1K) (6.23)
to integrate (6.21) twice giving:

h.s = B,:0%co + c1p + ca, (6.24)
where ¢; are integration constants which are arbitrary functions of z and z and we defined
2\/p

B..= —Tfm(qm. (6.25)
Notice that it is convenient to express h’; as:
" 1 593
hs = B.:00°¢y. (6.26)

T op
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Integrating (6.22) then results in:

= 0
hzz = —B,:00cy — QB;gCo + 501/) + c3,
3 (6.27)

hzz = _Bzz%co + gclp + ¢4,

and the last equation in (6.19) gives the constraint:
2¢1 + 0%cy + 9%cs — 200¢y = 0, (6.28)

i.e. ¢1 is not an independent integration constant, but is determined in terms of the other
integration constants.

Near the boundary p — 0 we have the following expansion:

2 p AN q\/p
B..=—= Loy 1) p1 _1ry 2
ey - 0 - ptog (1Y) - o (147) + (6.29)

with v the Euler-Mascheroni constant. Substitution in (6.27) then yields the expansions
for the components:

1
hz = ho)=z = 50108(0)0b0)zz + phyes + - (6.30)
1 - 0 dy—3
hzz = b)zz 10g(p) + h)zz — §P10g(/))aab(0)zz +p |:5h(2)zz + VT&%(O)ZZ] +..
1 o3 q\\ 9 0
hzz = ho)z + gplog(P)gb(o)zz + P[(Q’Y —1+2log <§>> 56(0)22 + gh(2)2z:| +..

where the boundary sources hg);; and b(g)zz are given by the following combinations of the
integration constants c;:

2 102
h 5 — - 5 2 h = _— ==
(0)zz = €2 q28 Co (0)zz — €4 292 €0
1
h(o)gg =c3 — 500 + 27v¢co + 2log <%>CO b(o)gg = 9. (6.31)
The normalizable mode is the combination:
2y —1
h(g).z = c1 — 72 &co — log <g>3200, (6.32)
which using (6.28) is determined by the boundary sources via:
1o 1 5 Lo
h(g)zg = —58 h(o)gg - 5({9 h(O)zz + 38h(0)zg - 58 b(o)gg. (6.33)

This is indeed the linearized form of (4.13) and (4.10) combined. Notice also that the
radial expansion (6.30) indeed shows the same asymptotic behavior as (4.4) in section 4.2.
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6.4 Two-point functions

Substituting the solutions that we found above into the holographic one point func-
tions (6.17), we find that:

1 98 ¢\ 0 B
(tzz) = 1Gn ((47 - 1)35(0)52 + 4log <§> 317(0)25 + 25h(2)zz>7
(T.z) = local,

1 [0
(T.2) = pTen 5 00y + local |,

1 /0
(Tzz) = bYen <5h(2)zz + 100a1>,

where the local pieces correspond to finite contact terms.

(6.34)

We now turn to the position space expressions for the two-point functions. These are
obtained via the following functional differentiations:

. Am 0 . 4r )

v/ —9(0) 59(0) v/ —9(0) 5b(0)
where the prefactors are explained in appendix B. Notice that in complex coordinates
ds? = dzdz so | /=9y = 1/2 whilst in our case g7 =n" — h¥ and therefore

o o o

(T -.)

(.., (6.35)

which in complex coordinates becomes:
0 1 9 0 1 9
Py - — 5 R - — . (637)
Functionally differentiating the one point functions thus results in:
- 27i 1 a\19% o _
= = — _— — 1 [ _—
(e a0 =~ | (1= ) +108 (£)] 502
(t.2(z,2)T,,(0)) = — i 6—,362(,2 Z) (6.38)
zz 9 zz 2GN 8 9
in 0%
Ts(z,2)Tsz = — Z
(T2x(2, 2)T2(0) = 50— 0%(2.2)

whilst (t,.Tzz) = (Tz:T,,) = (1..T,,) = 0 up to contact terms.
These expressions can be evaluated using the following set of identities. First no-
tice that:
—2i0%(2,2) = 6(x)d(1), 400 = 02 + 02 (6.39)
The former of these is obtained by requesting [d?26%(z,Z) = 1 and %fsz() =
—i [ d?x(...). We also need the following integral, which can be directly computed us-
ing the properties of the Bessel function Jy(x):

/dwdkeinJrikm 1 _ 127(111(1 - a/2) (T2 + x2)71+(a/2). (6.40)

472 (W2 + k222 7 T(a/2)
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Taking the limit o = 2 on both sides gives the identity:

1 24

2 A
250 #7) = g

i i
*(z,y) = 7 log(m*(7° +27)) = o log(m?|z[*) (6.41)

where m is a scale. By differentiating both sides in (6.40) with respect to a we also find:

1 27 ] 1
1 52 5) =1 2 — oo (m2(+2 2y — — Y 1062(m2l212),
08(¢) 550" (2 %) Og(q)33+3%5 (,y) = —g—log™(m*(7" +a7)) = ——log"(m"|z[")
(6.42)
Using these expressions the two-point functions become:
1
(t22(2,2)t:2(0)) = 7=—0"[Bm log(m®|2]*) — log?(m?|z[*)]
4G N
1 =3B, — 11+ 6log(m?2]?)
 2GN 24 ’
6.43
(122 T2 0) = 20" log(m?][?) = 2L 2G) o
zZz b zZz 4GN 2’4 9
_ 3/(2Gn
(Teele. DTec(0)) = LGN,

where B,, is a scale-dependent constant that can be changed by rescaling m in the first
line. In fact, the entire non-logarithmic piece in the second line can also be removed from
the correlation function by redefining t — ¢t — (3B, + 11)7,,/6. This transformation is
familiar from logarithmic CFT as we review in appendix D.

6.4.1 Comparison to logarithmic CFT

The expressions above agree with general expectations from a logarithmic CF'T, see ap-
pendix D for an introduction. The central charges can be computed as follows. From the
two-point functions of Ts; and T, which should be of the form:

cy, CR

<Tzszz> - 2—247 <T22T22> - 2—247 (644)
we find that 3
cp, =0, CR = G—N, (6.45)

which agrees with [3]. As discussed in appendix D two point functions of a logarithmic
pair of operators (7,t) in a LCFT have the structure:

(T'(z)T(0)) = 0; (T'(2)t(0,0)) = 53 (6.46)

—blog(m?|2|*)
Z4

(t(z,2)t(0,0)) =

Note that by rescaling the operator t the coefficients of the non-zero two point functions
can be changed; there is however a distinguished normalization of the operator in which the
two point functions take this form, and the coefficient b is sometimes referred to as the new
anomaly, see [48]. Comparing these expressions with (6.43) we see that our holographic
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two point functions indeed have the structure expected from a LCFT and the coefficient

b is:
3

e

This value will be confirmed below in the analysis for general .

b= (6.47)

7 Linearized analysis for general u

In this section we repeat the linearized analysis of section 6 for general p around the
Poincaré background. We define:

)\:%(u—l), w=2\+1, (7.1)
and we work around A\ = 0.
7.1 Asymptotic analysis
The linearized equations of motion give the most general asymptotic form of the solution:
hij = h(fzx)ij/f)‘ + hoyij + he)ijp + h(zfzx)szlf)‘ + h(2+2)\)ijp)\+1 +.. (7.2)
with the conditions:
tr(h(ax) =0 Pfh_on; =0 tr(h)) = —5 R[]

—R[h(_oy)]
21— NN+ 1)

tr(h—on)) = tr(h@ry2) =0 Pz‘kh(2>\+2)kj =0 (7.3)

22 -1

| (00 _anyy + 0;0h
h(2—2A)ij+m€ikh(2—2A)kj = Sugtrlhgaoan) + (00" h(—22)15 + 950" (22 )1x)

11N +1)

Notice that for integer values of 1 we see from the explicit solutions below that a logarithmic

mode appears. In what follows we will consider only the case 0 < |u| < 2 so |A| < %, with
|| = 1 the special point discussed above, so such logarithmic modes are not required. It
would be straightforward to generalize the linearized analysis to other values of A\, whilst
for A < 0 the corresponding dual operator is relevant and thus there is no obstruction to
carrying out a full non-linear analysis of the system.

Substituting the expansions into the on-shell action, the second term in the expansion
of the on-shell action I was defined for 4 =1 in (6.8) and now becomes:

L 1 1 g
Iy = 20 (B} — mitr(R) — 2p———eF R — ——— e Fh B 4
2,A 327G N /d w<hz] nijtr(h) P2>‘+1€Z i 2+ D) € hy; |h (7.4)

Substituting (7.2), we find that this action is again divergent if h(_5y) is nonzero and if

A > 0, with a leading piece of the form:

B z _ ik gig ),
IQ,A = 327G 1 /d £C<2tr(h(0))R[h(2>\)] 2>\h(2)2J h(_2)\) 2h(0)i8 17} h(72)\)]k p —: .. )
7.5
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This term is cancelled precisely by adding I c¢/(2A + 1), where I is the counterterm
action for p = 1 defined in (6.12). For A < 0 there is no divergence but the counterterm
action is then finite as well and we will continue to include it.

The variation of the total action Iy ) (ot = Io x + I2,ct/(2A + 1) is similar to (6.14):

512,)\,1:01: _ 1
Ohv 167G N

Aijlh]

l\?l»—\

<h§j — nigtr(h) + [ — 2pe"hil; — " hj; +

22 +1
1 k 1 k
+ Z@ akh,‘j — 1818 hkj s (7.6)

512)\t0t 1 k kN1
Atot ok ek
ST TenGn T )P T

To obtain the one-point functions we follow the same reasoning as in section 4.4. We have

two independent variables, h);; and h(_z));;, for which we define the corresponding CFT

ij Yijs
operators T;; and X;;, with T}; again the energy-momentum tensor of the theory. To find

their one-point functions, we first observe that:

i . ij 1 i g 1 (4]
gy = lim (h T Xh”p) B oy = lim (-thle) "

where we note that indices are raised with 7. From these expressions we find:

—4r 5[2)\1:01: i ()\ _1ox AT 0I5 ot e 4m 5[2,,\,tot>
\/—g(o 5h "o p—0 NI V=g ¢ohi )

a7 512)\1:01; T 4m 5I2Atot

" V90 ohg, e y=g ohd

(7.8)

where the signs originate from the reasoning in appendix B, plus an extra sign arising
from the fact that ¢ = n” — h"J. We inserted a factor of 47 in the definition of X;; for
later convenience. After substitution of (7.2) these expressions lead to the following finite
one-point functions:

1 1
(Tij) = @{ (55 R k) heayr; — nijtr(hay)

L prf g I
+ 30+ 1) B (5 Ohoyrj — 0;0 h(O)kl> },
AL+ \)

(Xij) = m(h(2+2)\)zj)L- (7.9)

Symmetrization in ¢ and j is again understood in these expressions.

7.2 Two-point functions

Just as in section 6.3, we can use the equations (6.21) and (6.22) (with the K, choice for
the Bessel function) to find exact solutions to the linearized equations of motion. Asymp-
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totically, they behave as follows:

1
25A— 12\ + 1)

h:z = ho)zz + ph(2).z + Ph(_anyzzp M+,

_ ~ )
hzz = h(_ax)zzp At ho)zz + 38h(—2>\)zzpl e éh(Q)zép + (7.10)

2\ — 1)
5, 27N (=21 — 1)

haz = )22 + Fh)2zp + (A+1) T2\ +1)

q4)‘7264h(,2>\)52,0>‘+1 ...,
with same trace condition as was given for ;=1 in (6.33),
h(g).z = —53 h(o)zz — 55 h(0)z= + 00h o).z, (7.11)

and integration constants hg)zz, h(0).z, R(0).z and h(_gy)zz; these are as anticipated the
sources for the dual operators.
We can substitute this solution in (7.9) to find the one-point functions:

27N T(—2) - 1) MN-2 51

X,.,) = _
20+2 0

Ty =22 % +local

< zz> 4G N (2N + 1) 8h(2)zz + loca

(7.12)
(T.z) = local

2\ 0
T.)=—————— — =,

From these expressions we obtain the following nonvanishing two-point functions:

_ it A+10%,, 3 A+11
T Ta(0)) = 7 _ 3 1
(T2 ) Te:0) = 503730 B9 = armnr 12

_ it AN 0, 30X 1
(Tez(2, 2T (00) = 53 7130 B9 = sgnnr 10

47 0

X.u(2,2) X2 (0)) = i - —(X(0)) = 2mi————(X..(0 _
(elesXen0) = i S (XO) = 2y (X O) (119

) T2~ M2)2 P(—2) — 1)q4/\_2(9452(2a Z)
Gy T2\ +2)
L AA+DEA+3) 1

~ 2GN 2N+ 1 AN

where the computation of the two-point function of the energy-momentum tensor is com-
pletely analogous to the previous section and we used the identity (6.40). Comparing now
with (6.44) we read off that:

3 A A+1 3 1 1
= - 1— =1+~ 14
(erven) = g (g o)~z (1= 1+ ) (7.14)

and from the last line in (7.13) we also find that X has weights (hr,hr) = (2+ A\, \) =
$(1+ 3, — 1). Both expressions agree with [3].
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The limit A — 0 and logarithmic CFT. As A\ — 0, we find that the (T'T")-correlators
return to the values given in section 6.4. On the other hand, the (X X')-correlator vanishes,
but we also find that the definitions for X, and T, as given in (7.8) coincide in this limit
(up to a sign). To remedy this we can introduce a new field,

1 1
t,, = __Xzz - _Tzza 1
i i (7.15)

after which we can take A — 0 in (7.8) and obtain (4.36) (up to a sign from the fact that
g =n" — h¥). We obtain for the nonzero two-point functions:

3 1 1 =3/(2Gp)

(tee(e )T (0) = —gmeyggad = — 1 o (7.16)
og(m?2|z|? 7.16
(sl 2)0)) = Dt 3G lonlel)

where the dots represent terms that vanish as A — 0. These are exactly the same correlators
as in section 6.4. The term B,,, can again be removed by a redefinition of ¢,, and from (7.16)
we again see that b = —3/Gy.

In appendix D we discuss the degeneration of a CFT to a logarithmic CFT as ¢, — 0
following Kogan and Nichols [49]. Their ¢;, — 0 limit is precisely the same limit as taken
here, i.e. the logarithmic partner of the stress energy tensor originates from another primary
operator whose dimension approaches (2,0) in the ¢;, — 0 limit. Given such a limiting
procedure, the anomaly b is obtained by inverting the relation between A (which is the
right-moving weight of X) and ¢y, given above and using (D.9) in appendix D. This results
in b= —lim.,ocr/Acr) = —3/Gn and thus agrees with (7.16). Note that there are
other distinct approaches to taking a ¢ — 0 limit, see [50] for a review, but it is the
Kogan-Nichols approach which is realized holographically here.

Energy computations. In Lorentzian signature and in global coordinates, the insertions
of the operators X, T, or T55 in the infinite past creates the massive, left-moving or right-
moving graviton states discussed in [3]. In [3] the energy of these states was computed in
the bulk and we are now able to give a CF'T interpretation of their results.

For the states created by the operators X, T,,, Tsz, the equations (70)-(72) in [3] give
energies of the form:

X, EM:%<N_%>(}LL+}LR)[---}7
T.. : EL:%<—1+i>[...], (7.17)
T, - ER:ﬁ<—1—%>[...].

The expressions in square brackets are positive, but their exact value depends on the
normalization of the solutions to the linearized equations of motion in [3] and is therefore
arbitrary. We can thus only compare the overall sign of the energies (7.17) with our
results. Notice that we put in an extra factor of the left- plus right-moving weight from
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each operator, which for T,, and T3z are just factors of 2; in [3] such factors comes from a

time derivative of the bulk modes and we will see similar factors appearing below.
Following the usual CFT logic, we may obtain the energies of a state by computing

three-point functions. For example, for the massive mode we need to compute

(Xez|Te2(2) ] X22), (7.18)
with
|X..) = X..(0,0)]0), (X..| = lim (0|X,,(z,2)22 4z (7.19)

The usual Ward identity:

= h L 0 z z
<Xzz(Zl)Tzz(Z)Xzz(22)> - ie%Q} ((Z — Zi)2 + Z— 2 8ZZ> <Xzz( I)Xzz( 2)> (7-20)
results in: con
<XZZ|TZZ(Z)|XZZ> = )2(2 L, (721)

where Cx is the normalization of the (X X)-correlator,

Cx

<XZZ(Z52)XZ,Z(O)> = W, (722)
-1 )\()\+1)(2)\+3) —1 1
= = - — 2).
R Te S Wi san Tyt

Note that the magnitude (but not the sign) of C'x can change by changing the normalization
of the operator X. This is the counterpart of the arbitrariness of the quantities in the square
brackets of (7.17) due to the normalization ambiguity of the solutions to the linearized
equations.

By using the Virasoro algebra one may also obtain that:

—m— C
(Toa|Tea (2| Tez) = (O0lL2 Y Linz ™™ Lsf0) = 5, (7.23)

meZ

with ¢y, the left-moving central charge defined in (7.14). The computation involving 7%z is
completely analogous, and of course the mixed three-point functions involving T, and 15z
vanish. To transfer these results to the cylinder we use the conformal transformation:

z = exp(iw), (7.24)
whose Schwarzian derivative is 1/2. We then find the following three-point functions on

the cylinder:

cr +cr
24

<wa|Tww(w) + T@@(’U_)) - |wa> = CX(hL + hR)

e - % (l; %) (hf;’ ) (7.25)

Tww Tww Tﬁ)ﬁ) 0) — Tww = = o~
(Tl Lo (0) + T () = BT = e1, = 3

1

_ cr+c 3 1
<T1D1?)|Tww(w) + T@@(’U)) — %|Tﬂ)’> =CR = ﬂ (1 + ;)
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Let us now compare these results with [3]. Notice first of all that the zero-point of
energy in that paper is that of global AdS, which is why we explicitly subtracted the
Casimir energy in the above expressions. Comparing now (7.25) with (7.17) we indeed
find the same structure and precisely the same signs. The computations are therefore
in agreement.

Finally, notice that in a CFT one usually divides the expressions in (7.25) by the norm
of the state (e.g. (X,,|X..)) to obtain energies that are precisely equal to the conformal
weights of the operators creating the state. On the other hand, the energies computed
using bulk methods as in [3] are the unnormalized energies of (7.25) and therefore extra
signs may arise if a state has a negative norm. This explains the sign difference between
the conformal weights and the energies found in [3].

8 Conclusions

By implementing the AdS/CFT dictionary for topologically massive gravity, we were able
to provide further evidence for its duality at 4 = 1 to a logarithmic conformal field theory.
The expressions for the two-point functions indicate problems with unitarity and positivity
as we find zero-norm states at © = 1, negative-norm states at u # 1 and negative conformal
weights at u < 1. It therefore seems problematic to consider the full TMG as a fundamental
theory, but this duality could nonetheless have interesting applications to condensed matter
systems. For example, ¢ = 0 LCFTs arise in the description of critical systems with
quenched disorder and in several other contexts.

One may try to restrict to the right-moving sector of the theory [17], which could yield
a consistent chiral theory. In order for this sector to decouple a necessary requirement is
that the (tTT) three-point function should vanish. This was shown to be the case in the
discussion of [49], see their equation (42), and their analysis can be adapted to the case
of interest, namely when only c;, — 0, leading to the same result. This suggests that one
can indeed truncate to the right-moving sector, but it would be interesting to extend our
analysis and verify the vanishing of this 3-point function by a bulk computation.

One may also perform a holographic analysis for the ‘warped’ solutions found in [39].
The asymptotics in these cases are discussed in appendix E and indicate qualitatively
different UV behavior for the dual field theory; it would be interesting to extend the
holographic setup to this class of solutions. A similar procedure could also be followed to
analyze the ‘new massive gravity’ of [51] around AdS solutions. This would allow us to
find out more about the possible dual CFTs.
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A Derivation of the equations of motion

In this appendix we derive the equations of motion in Fefferman-Graham coordinates,
where the metric has the form
dp*> 1 Co
2

ds® = 17 + ;gij(x,p)dx’dx]. (A.1)
In this section we raise indices using ¢” and the covariant derivative V; and the two-
dimensional antisymmetric tensor €;; are also defined using g;;. In the metric (A.1) the
nonzero connection coefficients are:

1 A 1.1,
e, = 5 L= —%g;» + 5(9 9); (A.2)
7 = 2gij — 2pg;; I =T5(9) s (A.3)

where the index p now denotes the coordinate p and a prime denotes radial derivative. The
curvature tensor becomes:

1
k ki
Ryii"(G) = 29 (Vigi; — Vigu) ,
1 _ 1
RipiP(G) = =2p (92']' -5y 19’)z‘j> — i (A.4)
R = Rl Lo ml o
ijk ( ) ijk (g) + pgzg]k + g]gzk +g gzk:gm] + pg gzmg]k (Z = ]) 5

The Einstein part of the equation of motion, R, + 2G,,, is given by:

1 1,
Rpp(G) +2G,, = —str(g ") + ~tr(g 'g'g'g),

2 4
1_. 1
Rzp(G) + 2Gip = §ng§z - §vitr(gilgl)7
1 _ _ _
Rij(G) +2Gi; = SR(9)gi; + gijtx(9~"9') + p[ = 20 — gistr(9™' ) + 2(d'97 "9 )is .
(A.5)
where we used that in two dimensions
1 1
Riji = §R[gikglj — (L < k)], Ry, = §Rgik- (A.6)

The trace equation R = —6 now becomes:

—dptr(g~'g") + 3ptr(g g'g ) — pltr(g7g)]* + R(g) + 2tr(g g = 0. (A7)
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We use ¢’ = 2p?c¥ to relate the three- and two-dimensional e-tensors. For the Cotton
tensor C),, defined in (2.5) we then find:

Cpp = ie“ (Vivkgzéj + 2p(9'/g*19')j@->,
Cpi = %eﬂ“ (%g@-kij — 20V 95k — ptr(g 9" )V g0k + 20V (997 9 )i
— (9ij — sz])vlglk>
Cip = ¢ < PV gl — 4Pthr(g g9 'd)+ p(g 9V + ol gV gl

1 B .
+=Vitr(g~'g') - §V]9}k>7

2
1 1 1 1
Coi =20 (g | — =R’ ——R——t 1+ ~tr(g g9 )| — =Rd,
ij = 2pe; (g]k{ 5 1 p (979) +5trlg™ 997 9)| — 7R
1 -
+ 5 VeV, — V/Nj[tr(g Y]+ 2pg0 + gi;[3 + ptr(g ™' g)]

+ giiltr(g™g) + p(tr(g™1g)) — ptr(g™'g") + §ptr(g’lg'g’lg’)]
/) —1 7 1 —1 7 no_—1 ./ 1 n
+(9'g g)kj[—3—§ptr(g g)] —3p(9" 97 9k —20(d' 97" 9" iy
+ 3p(g’g‘1g’g‘1g')kj> :
(A.8)

With these expressions we indeed find that C}/ = 0, C,; = Cj, and Cj; = Cj;. To verify
this we used the Cayley-Hamilton identity,

1 _ _ _ _ _
§gjz<[tr(9 L2 —tr(gtg'g 19’)) + (g9 )i — dutr(g™g) =0, (A.9)

the radial derivative of the two-dimensional Ricci tensor,
o= 5 (V'Vighy + VIVigly — Vg~ ViViinlo™'9) (A.10)
as well as the identity for the two-dimensional e-symbol,

€ij€kl = —Yikgjl T Gitgjk - (A.11)

As Cj; is symmetric, we can also rewrite it as %(Cl-j +C};) which allows us to drop the term
proportional to eikgkj. This, the expression for R given in (A.7), and further application
of the Cayley-Hamilton theorem eventually give:

Cij = pE/‘“< ViV g — V/Nj [tr(9~ ' 9")] + 2p9}k + 9k, [3 +ptr(g'g )}
/ 3 -1 7 3 I/ 7 -1 7 -1
+ k|~ 5trleg) + Zﬂ[tr(g 9 = ptr(g~g") + JPla g9 g)

—3p(9" 97 9"k — 20(d' 9 9" )k > T
(A.12)
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Combining the above expressions (A.5) and (A.8) leads to the full equations of motion
which are given by:

1 1, 1 . ~
—5tr(g7lg") + Jte(g g9 19')+@6”<V¢V’€g§§j+2p(g”g lgl)ji> =0,
1_. 1 . 1 /1 l
§Vj9§‘z‘ - §Vz‘t1"(9 g)+ ﬂﬁj <§gikij + 9 V'g1;
+p [ —2V,g5, — te(97 gV +2Vi(d'g 7 g )in + gélegz'kD =0,
(A.13)
—1 n 3 -1 7 =1 1 —1 /\12 //1/ —1 7 /=1 7
tr(g™g") = tr(g™ g™ g)+ltrle™ 9] ) 9 — 95— 5950009~ 9) +(9'97 9 )is
1k1vvm/ 1VV -1 7 2/// //3 -1/
+;€i 5 ViV gm; = 5ViVltr(g™ )] + 2pg5% + gk; |3 + ptr(g™g)
+l 3t -1 7 3t_1/2 t—ll/ 7t -1 7 -1
k| — 5trlgg) + 7pltr(g™ )" = ptr(g™g") + yptr(g™ g9~ g)
=3p(g"g g kj — 2p(9’9‘19”)kj> +iej=0,

where we emphasize that the symmetrization in the last equation concerns all the terms.
We can use the (pp) equation of motion to simplify the (ij) equation of motion to:

1 1, 1. 1 ~ _
<§tr(g tg") =5t g )+l 19’)]2>gzj—g§}—§g§jtr(g ')+ (g9 )
_|_l k lv \vAlL EV'VmI lv \vA -1/ 200" "3 t -1 7
AL Imi + 7 ViV G = 5ViEV5ltr(a™ )] + 2pg1 + gk |3 + ptr(gg)
/ 3 —1 7 3 —1 /\12 —1 7 -1 7 —1 7/
tgki | — 5trleT )+ pltr(gT )" = ptr(g™g") + o ptr(gT 9’9 )
"o o—1 1\ . 5 S /AN . 0
—5/)(99 g)k]—ip(gg g Nj | +iej=0.
(A.14)

If we use the first radial derivative of (A.9) we can simplify this further to:
lt(_l " lt —1,/m\12 ) ,,.. 1 llt -1,/ A15
5trlo™g") = 4 [te(9™ 9" ) 9is — 955 + 5935t1(97"9') (A.15)
1k1 m /! 1 m / 1 -1/ 1" 7 3 -1/
e (VR g + VIV G = G ViV l(gT 0]+ 20055 + 915 |3 — 5ptr(eT o)
+dq 3t —1 7 3 —1 /\12 7 -1 n 7 -1/ —1 7 . 0
i | — 5tr(gg") + oltr(g™ 9" — Spte(g™g") + 7ptr(g™ 9’9 g)| | +i = j =0

We can use the equation of motion to rewrite the Riemann tensor as:

Rop+5|G] = GasGpy — GaryGas — (BGMC&S —(a = 5)] (v 5)>, (A.16)
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Using then (A.4) for the Riemann tensor in Fefferman-Graham coordinates we obtain:
/! ro—1 7 4 1
=293+ (9’979 )ij + ;gijcpp + %Cij =0,

1 1
3 (ngéj - ngék) = ;(gijcpk = 9ikChpj);

1 - - L,
§<gik9jl_gil9jk) (— 2tr(g~ g ) +pltr(g~ g —ptr(g~'g'g 19’))

+<gjlg§k + 9ikgy + pgi gy — (i < j)) =0.
(A.17)

Taking the trace gikRijkl of the last equation results again in the Cayley-Hamilton iden-
tity (A.9). This is also the equation that one obtains from the first equation by eliminating
C;j and C), using the equations of motion. On the other hand, the second of these equa-
tions can alternatively be written as:

. . B 1 B _ .
(g™ — ue)Vigl; — Vil tr(g™'g) + sptr(g ' g'g ' g) — pltr(g g
2 (A.18)

+2pV" (9% - tr(g‘lg’)gén) +p(g"'9)iVig = 0.

B Wick rotation

Given a Lorentzian theory, the most straightforward way to find the corresponding action
in Euclidean signature is to use a complex diffeomorphism:

t=—ir. (B.1)

After this diffeomorphism (or a similar one using a different coordinate system) the metric
generally becomes positive definite and one has to be careful about the definition of the
square root in the metric determinant. The signs work out correctly if we define v/—1 =
—i [31]. As in any coordinate system, the antisymmetric tensor is still defined such that

—Ge’? = 1 with 2° now the 7-direction. Because of the volume element the e-tensor

is now complex and to comply with standard notation we make this explicit by writing

Apv A Apv

—ie™M = e where é'* is the standard antisymmetric tensor in Euclidean coordinates
which is defined such that vGé%2 = 1.

As for the action of the theory, we find that the diffeomorphism results in iS; — —Sg
with S the standard Euclidean action. In our case, (2.1) becomes:

ISy = — — /d% VG(=R +24)
Y

v 3 AUV 2
+ m /d X \/EE H <P§03MFZV + §P§0F27F5p> .

(B.2)

Notice that the implicit metric determinant present in the e-symbol cancels the one in

the volume element and there is no sign change for the Chern-Simons term. From this
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action, we see that a convenient way to determine the Euclidean equations of motion is to

replace everywhere

Apv Apv

MY e € — e, (B.3)

With these replacements the equations of motion become complex, and so do the linearized
solutions we find in the main text, but this is not a problem, see [31] for a more extended
discussion of this point.

When using component equations, the conversion between Euclidean and Lorentzian
signature is most easily done by introducing lightcone coordinates on the Lorentzian side:

u=ux+t, v=ux—t. (B.4)
In these coordinates the metric becomes:
ds* = dudv (B.5)

and we fix the sign of the e-tensor such that €,, = —%. The passage to Euclidean signature
is then implemented by defining complex coordinates:

z=x+1T, Z=ux—1ir, (B.6)
after which the metric ds? = dr? + dx? becomes:
ds® = dzdz. (B.7)

The metric determinant in complex coordinates becomes negative again and therefore ¢
is complex and € is real. We deduce that the component equations in Euclidean signature

can be obtained by the simple replacement
v — 2z, u— Z, (B.8)

in the Lorentzian equations of motion, without any modification of the e-tensor.

Incidentally, notice that the operators:

1 _ 1

take the following form in lightcone coordinates:

pPv pv P pv 1
W PY\ _ (00 Pu Py} _ (L0 (B.10)
pu py 01 pu pv 00

so that, if for example Pikb(o)kj = 0 and bz(b)i = 0 then only the b(g),, component can be
nonzero. From the above reasoning it follows that these operators take the same form in
complex coordinates and therefore only b(g)zz can be nonzero.
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Signs in correlation functions. Our conventions are such that on a Euclidean back-

ground metric g;; the energy-momentum tensor is defined as:

47 5Sp
V9097

Notice that we functionally differentiate with respect to the inverse metric. When we

E.ij (B.11)

analytically continue back to Lorentzian signature, the definition on the right-hand side
changes. Namely, from the above discussion it follows that Sp = —iSp and /g = i\/—g,
so in Lorentzian signature

47 4Sy,
V389
In terms of the generating functional of connected correlation functions, W = log(Z), we

find that:

Ty = (B.12)

4w SWg Cdm W,
T84 = /g 0gi’ Thig = Vg egi (B.13)
These expressions lead to the following identity that we use in the main text:
cAr 6
(Tij...)g=1 —(...)g (B.14)

V=997
where (...), is an arbitrary correlator in the background metric g;;. Notice that this
expression holds irrespective of the signature of the metric, provided we define the square
root as above.

Now for general correlation functions of an operator O, we customarily define the
source-operator coupling in Euclidean signature as:

- / P2/ =G b5 - Op, (B.15)

with ¢r the Euclidean source and the dot denoting various possible index contractions.
Using once more the above conventions, we find that in Lorentzian signature the cou-
pling becomes:

i / oG oL - 0L, (B.16)

and therefore

1 6Wg .1 oW
Op)=———, Or) =1 —. B.17
Or) =~ 75 56 O = 56 (347
This results in the general expression in terms of correlation functions:
1 9
O.. 0)p=t——(. )4 B.18
(O...)¢ =50 ¢< )6 (B.18)

In the context of AdAS/CFT, Wg ~ —Sg and Wy, ~ iSp with Sg and Sy, the Euclidean
and the Lorentzian on-shell bulk action, respectively. This leads to:

1 6Sg 1 65L

ST (Op) = ———°"L, (B.19)

(Or) V=9 0¢r
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On the other hand, for the energy-momentum tensor one may directly use the formu-
las (B.11) and (B.12), where now Sy, and Sg are the on-shell bulk action. It was shown
in [31] that these expressions, with in particular the above choice of signs, lead to con-
tinuous holographic expressions for the one-point functions. For example, in the case of
three-dimensional Einstein gravity one finds:

1 1
(Tij) = Gn (9(2)@' + 59(0)@']'3[9(0)]), (B.20)

independently of the metric signature. In this expression g(g);; and g(z);; the leading and
subleading terms in the Fefferman-Graham expansion (4.4). Similarly, for a scalar operator
O dual to a bulk scalar field ® one finds that:

(0) = =(2A = d)p2a-a) (B.21)

with ¢(aa_q) the coefficient of order z® in the radial expansion (3.9). Again, with the above
conventions the formula (B.21) holds both in Lorentzian and in Euclidean signature [31].

C Linearized equations of motion in global coordinates

In this appendix we will present the linearized equations in global coordinates. The usual
metric

ds® = — cosh?(r)dt* + sinh?(r)d¢? + dr? (C.1)

can be put in the Fefferman-Graham form (4.1) by defining
p=de (C.2)

after which we obtain:

dp?

vt (C.3)

1 1 1 1 1 1
ds? = —=(1+= —p?)at?+=(1-= —p? )dp?
s p( +2p+16p> +,o 2p+16p »° +
These coordinates cover all of AdS and are thus global coordinates. Notice that 0yg;; = 0
and therefore Ffj [9] = 0 (which of course does not imply that 51“?]» vanishes in the linearized

equations). We also find that:

_ 1 _ _
(9979 =205 gy — 597 d)gi; = F(p)gis  tx(97'g) = —20f(p),  (C4)

with
2

flp) = 6= 2 (C.5)

which we use to simplify the formulas below. In the expressions below traces are implicitly
taken with the aid of g~!, that is we write tr(¢’) where before we wrote tr(g~'g’).
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The linearized (ij) equation of motion (A.15) becomes:

—his=pf(p)hi;+f(p)hij+9ij Etr(h")— %tr(hg’lg”)+pf(p)(tr(h/) —tr(g'glh))}

1

1 . 1 1.

1 ‘
. (07 00 e GO0 - )|

1 . J1 1
+ ;6/“ {Zakajtr(g’g‘lh)—§3k3jtr(h’)+2ph§’/2 +3(L+0° f(p) W+ (p)Wy— f (p)hkj]]

bt = S0P -ty )] = ol ux(hg ") -]

+ (i < j) =0,
(C.6)

The linearized version of the (pi) equation given in (A.18) becomes:

A 1 .
2p({9kh;,k +(1+ 4p2f(p))({“)kh;k + ,u,ejkakh;j — §M€jk(g 1g,)2(8khil + Oihg — Orhik)

0. (™) + L4 IEO) = [ 5 +22 )| (g™ 1) it~

_ 3 _ 1
o™ | p01 — 2000010 = S p0utn(hg ™) — [+ 42 ()] [0 — S0

—2p(g7 ") E120 hyy — Optr(h)] =0
(C.7)

and the (pp) equation results in:

1 .. 1
— () g™ g) — trlhg™'g") 5o |00 — (670 (aiamhmc— iaiacmh))

+2p(W g g")i; — 20(g'g ' hg 1 g")ij + 2,0(9’9111”)@] =0. (C.8)

D Some results from LCFT

A logarithmic conformal field theory (LCFT) is a conformal field theory in which logarith-
mic structure arises in the operator product expansion. Such logarithmic structure arises
when there are fields with degenerate scaling dimensions having a Jordan block structure;
in any logarithmic conformal field theory one of these degenerate fields becomes a zero
norm state coupled to a logarithmic partner. In what follows we will be interested in the
simplest situation, in which two operators become degenerate and form a logarithmic pair,
denoted by (C, D). If the operator C' becomes a zero norm state, the two point functions
for this logarithmic pair have the structure:

bp
2Z2hL ZQhR ’

(C(z,2)C(0)) = 0; (C(z,2)D(0,0)) = (D.1)

(D(z,2)D(0,0)) = —bp logm?|z|* + Bp],

Z2hL Z2hR |:
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where the conformal weights of both operators are (hp,hr). The constant Bp may be
removed by the redefinition D — D — BpC'/bp but bp has an invariant meaning and is
a characteristic of the LCFT. One can easily generalize these formulas to the case when
there are n degenerate fields and the Jordan cell is given by an n X n matrix, in which case
the maximal power of the logarithm will be log™ |z|.

In the current context we are interested in the case where the conformal field theory
becomes logarithmic as ¢;, — 0 and one of the logarithmic pair is the holomorphic stress
energy tensor. There are several distinct approaches to taking such limits, see [50] for a
review, but the limit relevant for us was discussed in Kogan and Nichols [49]. The following
is a slightly modified version of the discussion in that paper, in which we take the limit
cr, — 0 only in the holomorphic sector.

Consider a conformal field theory with central charges (cr,cr) and holomorphic/anti-
holomorphic stress energy tensors (T'(z),T(2)) respectively, such that

TETO) = a5 (TETO) = 22 (D.2)

Let V(z,2) be a primary field of dimensions (hr,hr), normalized as

A

22hy 52hR

(V(z,2)V(0,0)) = (D.3)

If T is the only hy = 2 field present (and T is the only hg = 2 field), then the OPE for
V(z, z) is of the form

A
ZQhL 22]1}?

2h 2hp o~
1+ ZL2270) + ZE2T(0) + - - (D.4)

V (2, 2)V(0,0) ~ = -

where the ellipses denote operators of higher dimension.

Consider now the limit ¢;, — 0 with ¢g finite: if A remains finite in this limit then the
OPE is not well-defined. Suppose that as ¢y, approaches zero then there is another field X
with dimension (2 4+ A\, \) which approaches (2,0); suppose also that its normalization is
such that this field contributes to the OPE as

- A 2h, 2hp _
V(Z, Z)V(0,0) ~ m 1 + ZZ2T(O) + 522+A2)\X(0, 0) 4+ (D5)

Let the two-point function of X be given by:

B

(X(22)X(0.0) = —55 5

(D.6)

whilst (T'(z1)X (29, Z2)) vanishes as they have different dimensions. Now let us define a new

field t(z, z) via
1 1
t=—-—-T—--X. D.7

In this way the OPE (D.5) is rendered well-defined as ¢, — 0:

V(2 2)V(0,0) ~ ——gm |1+ =2 [£(0,0) + T(0) log(m?|2[*)] +--- |, (D.8)
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provided the parameter b, defined as

. cr, 1
b=-1 —_— = —— D.9
cLIEO )\(CL) )\I(O), ( )

is finite. As ¢y, — 0 the two point functions of the pair (7,¢) become:

b

TETO) =0 (TEH0,0) = 55 (D.10)
(t(z,2)t(0,0)) = o clLlEO ~ax + v i 2ABlog(m*|z*|) + - - -
For this to be well-defined as ¢y, — 0,
bA 2 3
Bler) = o) + B A" 4+ O(N?), (D.11)
and therefore B | o1 19
(t(2, 2)1(0,0)) = Dm=blog(m7|2") (D.12)

1
z
The logarithmic pair (T,¢) thus indeed has the anticipated two-point function structure
given in (D.1). We are interested in the case where cg # 0, and thus there is no such
degeneration in the anti-holomorphic sector. Note that

(T(2)£(0,0)) = 0. (D.13)

Recall that the constant By, can be changed by a redefinition of ¢; choosing t — ¢t — B,,,T'/b
removes the non-logarithmic term in the two point function (D.12).

E Warped AdS

The metric of global AdS3 can be written in ‘warped’ form as:
1
ds* = — cosh?(0)dr? + Zda2 + (du + sinh(o)dr)? (E.1)

We can define:
z=2¢7/? o = 2log(z/2) (E.2)
after which the metric becomes:

dz? 4 22
2 2 2
ds® = = —dr” +du” + <z2 - 4>dud7'. (E.3)

In this coordinate system it is manifest that this metric is conformally compact. Namely,
z can be used as the defining function: in agreement with the discussion in section 3, z has
a single zero at z = 0 and the metric:

22ds? = dz* + AdudT + . .. (E.4)

is a non-degenerate three-dimensional metric that extends smoothly to z = 0.
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On the other hand, the metric of spacelike warped AdS can be written as:

2

d
2: 3 + 4v2du® + 8v? sinh (o) dudr, (E.5)
v

ds* = ( — cosh?(0) (v +3) + 4v° sinh? (O‘)) dr* +

with v = u/3. After the coordinate transformation:

o=—Vv?+3log(z) (E.6)

it becomes asymptotically of the form:

dz?

ds? = — + 3(y2 — 1)2_2V VA3 r2 4 82y VYIS qudr + (E.7)

As z — 0, we find that the terms have a different pole structure and therefore this metric
cannot be made regular by multiplication with the usual defining function z, unless 1> = 1
(which is AdS). Furthermore, the leading term in the induced metric at slices of constant
z is proportional to d7? and so it is degenerate. Thus the spacetime with metric (E.5) is
not conformally compact. Notice that the same conclusion holds for any spacetime whose
metric asymptotes to (E.5).

For timelike warped AdS the metric has the form:

do?
v2+3

ds? = (cosh2 (0)(v* +3) — 4/ sinh2(0)>du2 + — 402d7? — 82 sinh(o)dudr. (E.8)

This is just spacelike warped AdS with the replacement 7 — du and u — 7 and we can

immediately draw the same conclusions as for spacelike warped AdS.
For null warped AdS the metric is given by:

dz? i dudv n du?

22 22 247

ds?® = (E.9)

which is a solution of TMG with ;4 = 3 or ¥ = 1. We again find a different pole structure for
the different terms, as well as a singular leading-order term in the induced metric on slices
of constant z. Again, no good defining function exists that makes the three-dimensional
metric regular on the slice z = 0 and this manifold is not conformally compact.
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