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Abstract

Theories with extended Higgs sectors constructed in view of cosmological ramifications (gravitational 
wave signal, baryogenesis, dark matter) are often faced with conflicting requirements for their couplings; 
in particular those influencing the strength of a phase transition may be large. Large couplings compromise 
perturbative studies, as well as the high-temperature expansion that is invoked in dimensionally reduced 
lattice investigations. With the example of the inert doublet extension of the Standard Model (IDM), we 
show how a resummed 2-loop effective potential can be computed without a high-T expansion, and use the 
result to scrutinize its accuracy. With the exception of Tc, which is sensitive to contributions from heavy 
modes, the high-T expansion is found to perform well. 2-loop corrections weaken the transition in IDM, 
but they are moderate, whereby a strong transition remains an option.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

With the upcoming years of the LHC probing the Higgs mechanism, and the continued di-
rect, indirect and collider searches for dark matter, together with the prospect of LISA probing 
gravitational wave backgrounds related to particle physics, it has become popular to search for a 
framework which may play a role in all contexts. Surprisingly, the Standard Model supplemented 
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by an additional scalar field, for instance in the singlet, doublet, triplet, or higher representation, 
cannot easily be excluded from these considerations. We focus here on the doublet case, simpli-
fied further by an additional Z(2) symmetry, a framework that is generally referred to as the Inert 
Doublet Model (IDM) [1–3].

The original interest in the IDM came largely from the dark matter context [4–13], which 
remains a viable option today (cf. e.g. refs. [14–21] and references therein). Many theoretical 
(cf. e.g. refs. [22–26]) and collider (cf. e.g. refs. [27–43]) constraints on the model have been 
considered. Furthermore, following early suggestions [44–48], a strong phase transition appears 
possible [49–51]. However the issue of large couplings emerges, for instance in some of the 
benchmarks of ref. [50] certain scalar couplings attain the magnitude λ3 � 3 in a normalization 
in which the Standard Model Higgs self-coupling is λ1 � 0.15.

There is a clear reason for the need for large couplings if a strong phase transition is to be 
present. Without any additional particles, the theory has no thermal phase transition at all (for a 
review, see ref. [52]). If degrees of freedom are added which are weakly coupled and massive, 
they can be integrated out, resulting in the same “dimensionally reduced” effective theory [53,
54] as for the Standard Model [55], and thereby with the same conclusion concerning the phase 
transition. To change the conclusion, we either need to add new degrees of freedom which are 
light around the transition point, or which come with large couplings, so that the effective cou-
plings of the low-energy theory change by a significant amount. Light degrees of freedom could 
experience a transition of their own and thereby indeed influence the dynamics substantially [56,
57]; this is an interesting option but will not be considered here, given that it requires a degree 
of fine tuning. Thereby we are left with large couplings as the remaining avenue. It is difficult to 
exclude the existence of such couplings phenomenologically, given that Higgs physics does not 
easily avail itself to precision inspection and that constraints from fermionic processes are largely 
missing for the inert doublet. Large couplings do imply the presence of a nearby Landau pole 
and, conversely, could originate as a low-energy description of some sort of composite dynamics.

In the context of electroweak baryogenesis, a strong phase transition refers to a discontinuity 
�v ∼ T , where v is a gauge-fixed Higgs expectation value (v � 246 GeV at T = 0), and T is the 
temperature [58]. In the Higgs phase, gauge boson masses are then of order mW ∼ gv/2 � πT , 
where g ∼ 2/3 is the SUL(2) gauge coupling. In this situation a high-T expansion in m2

W/(πT )2

works well.1 The high-T expansion is an ingredient for instance in non-perturbative studies based 
on dimensional reduction (cf. e.g. refs. [59–63] and references therein). However, new degrees 
of freedom which get a mass through a large coupling λ1/2

3 ∼ 2 may become heavy in the broken 

phase, λ1/2
3 v ∼ πT . Given that the high-T expansion is an asymptotic series, it is not clear 

whether it is numerically accurate in such a situation.
In order to test the convergence of the high-T expansion, and of the perturbative treatment in 

general, a sufficient loop order is needed. Here we go to 2-loop level for the effective potential. 
Earlier results probing the validity of the high-T expansion at 2-loop level, associated however 
with large vacuum masses rather than with large couplings, can be found in ref. [64]. Another 
related investigation, albeit restricted to an Abelian theory and without a detailed exposition of 
the “master” sum-integrals that appear, was presented in ref. [65].

1 For bosonic degrees of freedom the high-T expansion also includes non-analytic terms, such as (m2
W

)3/2/(πT )3; 
however any sum-integral only generates a finite number of such terms, associated with Matsubara zero-mode contribu-
tions, so that they do not affect the convergence of the infinite series.
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The outline of this paper is the following. After defining the IDM and the basic observables 
of our interest (sec. 2), we adopt a simple procedure for implementing the thermal resumma-
tions that are necessary for a consistent computation at finite temperature (sec. 3). Intricacies 
related to renormalization of the effective potential in the Rξ gauge and in the presence of re-
summation are briefly reiterated (sec. 4). After illustrating our results numerically (sec. 5), we 
collect together our conclusions (sec. 6). In a number of appendices, the thermal 2-loop “master” 
sum-integrals used for representing the effective potential are computed, both without and with 
a high-T expansion (Appendix A); the 2-loop Feynman diagrams are listed in terms of these 
“masters” (Appendix B); and 1-loop formulae for vacuum renormalization, both as concerns the 
initial values of renormalization group evolution and the renormalization group evolution itself, 
are specified (Appendix C).

2. Model and observables

In the IDM [1–3], the Standard Model Higgs doublet, φ, is supplemented by an additional 
doublet, χ , which has the same gauge charges as φ but in addition displays an unbroken global 
Z(2) symmetry, which forbids Yukawa couplings to Standard Model fermions. The scalar poten-
tial has the form

V0 = μ2
1 φ†φ + μ2

2 χ†χ + λ1 (φ†φ)2 + λ2 (χ†χ)2

+ λ3 φ†φ χ†χ + λ4 φ†χ χ†φ +
{λ5

2
(φ†χ)2 + H.c.

}
. (2.1)

A global phase rotation permits for us to choose λ5 purely real and negative. Several extensions 
of the IDM have also been proposed, with additional scalars and additional gauge symmetries; 
many lead to fascinating phenomenology but for brevity we restrict ourselves to the simplest case 
here, since this is sufficient for our methodological considerations.

We are interested in the behaviour of the model at finite temperature. Simple thermodynamic 
characteristics of a phase transition are its critical temperature (Tc) and latent heat (L). The 
discontinuity of the Higgs condensate (cf. e.g. ref. [66]),

v2
phys

2
≡ Zμ2

1
�〈φ†φ〉 , (2.2)

where Zμ2
1

is the renormalization factor related to the bare mass parameter μ2
1, is a gauge-

independent but scale-dependent characteristic of the transition. We choose the fixed MS renor-
malization scale μ̄ = mZ for its definition. Denoting by f ≡ F/V the free energy density and 
by �f its discontinuity across the transition (with �f = 0 precisely at Tc), we can equivalently 
write v2

phys/2 = ∂�f/∂μ2
1(mZ). The importance of vphys stems from the fact that it is strongly 

correlated with the rate of anomalous baryon number violation [67].
Other important characteristics of the transition are its surface tension at Tc, and the bubble 

nucleation rate in the whole metastability range. Determining these necessitates, however, the 
study of inhomogeneous configurations, which is a notoriously hard problem (cf. e.g. ref. [68]) 
and not addressed here. However our conclusions do support a low-energy effective theory ap-
proach, which can subsequently also be applied to this problem [69].

As a tool for computing Tc, L and vphys we employ the effective potential. At its minima, 
the effective potential equals the free energy density, f = V (vmin), up to an overall constant 
which drops out in �f ≡ V (vmin) − V (0). The effective potential is defined through a shift of 
the neutral Higgs component by a constant, v, so that the Higgs doublets can be written as
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φR = 1√
2

(
G2 + iG1

v + h − iG3

)
, χR = 1√

2

(
H2 + iH1
H0 − iH3

)
. (2.3)

Here h represents the physical Higgs boson, and H ≡ H0, A ≡ H3 as well as H± = (H1 ±
iH2)/

√
2 are the new scalar degrees of freedom. The Z(2) symmetry associated with χ is as-

sumed to be unbroken, and we check this assumption a posteriori (see below). The meaning 
of v depends on the gauge choice and also on the renormalization factors Zφ , Zv (see below). 
Nevertheless, as has been demonstrated within the high-T expansion both for covariant [70]
and Rξ [71] gauges, gauge independent observables can be obtained from V (v), in particular 
�f = V (vmin) − V (0), which in turn fixes Tc, L, and vphys as discussed above.

3. Resummation

When we are addressing the regime v � T , then the masses generated by the Higgs mech-
anism, mW ∼ gv/2, are of a similar magnitude or smaller than thermal “Debye masses”, 
mE2 ∼ gT . Therefore thermal masses play an important role. For the Standard Model, all thermal 
masses were determined in ref. [72], and a way to incorporate them at 2-loop level was worked 
out in ref. [73]. However, even though theoretically consistent, the procedure of ref. [73] is sim-
ple only in a setting in which a high-T expansion is valid: technically it amounts to carrying out a 
resummation only for Matsubara zero modes, for which it is strictly necessary. In our more gen-
eral setting, in which some degrees of freedom may become heavy in the broken phase, a split-up 
into zero and non-zero Matsubara modes is cumbersome. Therefore, we propose to implement a 
resummation for all modes.2 Of course, there is a price to pay for this “simplification”, discussed 
at the end of this section and in sec. 4.4.

The set of fields for which a resummation is needed comprises the scalar fields (φ, χ ) as well 
as, in covariant and Rξ gauges, the temporal components of the gauge fields. Consider φ as an 
example. The original (imaginary-time) Lagrangian can be written as

LB(φB) = L(φ) + δL(φ)

= L(φ) + δm2
φT φ†φ + δL(φ) − δm2

φT φ†φ . (3.1)

Here φB denotes a bare and φ ≡ φR a renormalized field, and δL contains the vacuum countert-
erms. Resummation can now be implemented by incorporating + δm2

φT φ†φ on par with vacuum 

masses in the propagators, whereas the part δL(φ) − δm2
φT φ†φ is treated as a “counterterm”. If 

we choose δm2
φT properly, i.e. as the thermal mass generated for the Matsubara zero modes, then 

this procedure is equivalent to the approach of ref. [73], up to corrections that are of higher order 
in couplings than the computation at hand.

Even though the idea just introduced is simple, the devil lies in the details, particularly in the 
precise choice of δm2

φT . At high temperatures, the parametric form is δm2
φT ∼ g2T 2 + O(g4). 

The factor T 2 originates from integrating out the non-zero Matsubara modes, so that δm2
φT ∼

g2In
=0(m) + O(g4), where In
=0(m) ≡ 

∫ ′
P

1
P 2+m2 is a tadpole integral omitting a Matsub-

ara zero mode. Following a frequent convention, we make a choice in the following that 
δm2

φT ∼ g2I (0) ≡ g2

∫
P

1
P 2 , thereby omitting corrections of O(g4T 2) and O(g2m2). Both ap-

proximations can be systematically lifted within the framework of dimensionally reduced theo-
ries, whereas within the approach of eq. (3.1) there is no unambiguous way to do this. We choose 

2 Analogous procedures have been pursued in other contexts, cf. e.g. refs. [74–78] and references therein.
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the simple procedure because it is sufficient for addressing the main goals of our study, namely 
the convergence of the high-T expansion and the magnitude of 2-loop corrections. However, it 
should be acknowledged that this approximation is numerically questionable for the IDM: large 
scalar couplings imply that corrections of O(λ2

3T
2) can be significant, and a large mass parame-

ter μ2
2 implies that mass-dependent corrections of O(λ3μ

2
2) should be included. The omission of 

these corrections leads to specific problems, discussed below.
In dimensional regularization, where the space–time dimension is D = 4 − 2ε, the sum-

integral I (0) contains terms of O(ε), cf. eq. (A.17). In loop diagrams I (0) can be multiplied 
by 1/ε, and therefore O(ε) contributions can give finite results. The thermal masses including 
these pieces are listed in eqs. (4.6)–(4.9) below.

A formal crosscheck on the consistency of the resummation carried out is that the so-
called “linear terms” cancel in the 2-loop result within the high-T expansion [79]. Such terms 
have the form ∼ g2I (0)In=0(m), where the Matsubara zero-mode part evaluates to In=0(m) ≡
T

∫
p

1
p2+m2 = −mT

4π
[1 +O(ε)]. We have analytically verified the cancellation of linear terms to 

all orders in ε within our resummation. However, as alluded to above, our simple resummation 
does not properly capture the infrared structure of the 2-loop potential in the IDM, in which sub-
stantial corrections of O(λ3μ

2
2) to the effective Higgs mass parameter can appear. This implies 

that the cancellation of linear terms is incomplete beyond the formal high-T limit: a remainder 
∼ λ3[I (μ2) − I (0)]In=0(m) is left over. In cases with μ2 �T such terms become visible at small 
v/T (cf. sec. 5.4).

4. Gauge fixing and renormalization

4.1. Gauge fixing

Perturbative computations in gauge theories require gauge fixing, even though physical ob-
servables are independent of it. For simplicity we employ the Feynman Rξ gauge in our analysis. 
We also omit the hypercharge UY(1) coupling g1, whose O(1%) influence is an order of magni-
tude smaller than our uncertainties, and denote the weak SUL(2) coupling by g ≡ g2. Then the 
gauge fixing and Faddeev–Popov terms read

Lgauge fixing = 1

2ξ

3∑
a=1

(
∂μAa

μ − ξgv

2
Ga

)2 + ξg2v

4

(
c̄a
A hca

A + εabcc̄a
A Gb cc

A

)
+ . . . , (4.1)

where only terms coupling to scalar degrees of freedom have been shown; Ga are Goldstone 
modes from eq. (2.3); and ca

A, c̄a
A are SUL(2) ghost fields.

In Rξ gauges the parameter v has two different origins: it appears as a “background field” 
in the gauge fixing term in eq. (4.1), and it originates from a shift of the Higgs field according 
to eq. (2.3). For a proper renormalization of gauge-dependent quantities, these two fields need 
to be kept track of and renormalized separately (cf. refs. [80,81] and references therein). The 
renormalization factor related to the background field is denoted by Zv: v2

B = v2(1 + δZv).

4.2. Vacuum counterterms

The bare couplings are expressed as μ2
iB

= μ2
i

(
1 + δZμ2

i

)
, λiB = λi

(
1 + δZλi

)
, g2

B = g2
(
1 +

δZg2

)
, h2

tB = h2
t

(
1 + δZh2

t

)
, where ht is the top Yukawa coupling. Because we compute the 

effective potential as a function of v and because resummation treats Aa and Aa separately, we 
0 i
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Table 1
Tree-level masses squared in the Feynman Rξ gauge (cf. sec. 4). The thermal mass corrections δm2

φT
, δm2

χT
, m2

E2 and 
m2

E3 are given in eqs. (4.6)–(4.9). By D = 4 − 2ε we denote the dimensionality of spacetime. The fields Aμ and Cμ

correspond to the gauge groups SUL(2) and SU(3), respectively, with c
A

, ̄c
A

, cC, ̄cC being the Faddeev–Popov ghosts.

Field Vacuum mass Thermal mass Degeneracy

h m2
h

= μ2
1 + 3λ1v2 m̃2

h
= m2

h
+ δm2

φT
1

G m2
G

= μ2
1 + λ1v2 + m2

W
m̃2

G
= m2

G
+ δm2

φT
3

H m2
H

= μ2
2 + 1

2 (λ3 + λ4 + λ5)v2 m̃2
H

= m2
H

+ δm2
χT

1

A m2
A

= μ2
2 + 1

2 (λ3 + λ4 − λ5)v2 m̃2
A

= m2
A

+ δm2
χT

1

H± m2
H± = μ2

2 + 1
2 λ3v2 m̃2

H± = m2
H± + δm2

χT
2

Ai m2
W

= 1
4 g2v2 m2

W
3(D − 1)

A0 m2
W

m̃2
W

= m2
W

+ m2
E2 3

c
A

, c̄
A

m2
W

m2
W

−6

Ci 0 0 8(D − 1)

C0 0 m2
E3 8

cC, c̄C 0 0 −16

t m2
t = 1

2 h2
t v

2 m2
t 12

also need to renormalize certain unphysical objects, namely wave functions and the gauge fixing 
parameter:

φ†
B φB = φ†φ

(
1 + δZφ

)
, Aa

μBA
a
νB = Aa

μAa
ν

(
1 + δZA

)
, ξB = ξ

(
1 + δZξ

)
. (4.2)

The renormalized gauge parameter is set to ξ = 1. After the shift of the Higgs vacuum expec-
tation value according to eq. (2.3), various counterterms are generated. For instance δL from 
eq. (3.1) becomes

δL(φ) = 1

2
h
(−∂2δZφ + δm2

h

)
h + 1

2
Ga

(−∂2δZφ + δm2
G

)
Ga + 1

4
δλ1h

4 + . . . , (4.3)

δm2
h = δμ2

1 + 3 δλ1v
2 , δμ2

1 = μ2
1

(
δZφ + δZμ2

1

)
, δλ1 = λ1

(
2δZφ + δZλ1

)
,

(4.4)

δm2
G = μ2

1

(
δZφ + δZμ2

1

) + λ1v
2 (

2δZφ + δZλ1

) + m2
W (δZφ + δZv + δZg2 + δZξ ) .

(4.5)

Physical on-shell Green’s functions, such as those listed in appendix C.3 for purposes of vacuum 
renormalization, are not affected by the field renormalization constants [82].

4.3. Thermal masses

With the setup introduced, the thermal mass corrections for eq. (3.1) and Table 1 read

δm2
φT =

[
6λ1 + 2λ3 + λ4 + 3(D − 1)g2

2

4

]
I (0b) − 6h2

t I (0f ) (4.6)

=
(

3g2
2

16
+ h2

t

4
+ 6λ1 + 2λ3 + λ4

12

)
T 2 +O(ε T 2) ,
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δm2
χT =

[
6λ2 + 2λ3 + λ4 + 3(D − 1)g2

2

4

]
I (0b) (4.7)

=
(

3g2
2

16
+ 6λ2 + 2λ3 + λ4

12

)
T 2 +O(ε T 2) ,

m2
E2 = g2

2(D − 2)
[
2(D − 1)I (0b) − 4nGI (0f )

]
(4.8)

=
(

1 + nG

3

)
g2

2T 2 +O(ε T 2) ,

m2
E3 = g2

3(D − 2)
[
3(D − 2)I (0b) − 4nGI (0f )

]
(4.9)

=
(

1 + nG

3

)
g2

3T 2 +O(ε T 2) ,

where the function I is defined in eq. (A.8). We have adopted a notation in which 0b and 0f

denote vanishing masses carried by bosons and fermions, respectively; and nG ≡ 3 denotes the 
number of generations. The resulting tree-level mass spectrum is listed in Table 1.

As alluded to in the paragraphs below eq. (3.1), the leading-order “massless” resummation 
of eqs. (4.6)–(4.9) is not sufficient for a precise determination of Tc: the effective Higgs mass 
parameter gets large corrections of O(λ3μ

2
2, λ

2
3T

2) which are not properly accounted for. These 
corrections could be systematically included in a dimensionally reduced investigation [55,63,64], 
whose principal accuracy our study aims to justify.

4.4. Illustration of cancellation of divergences

The resummation introduced in eq. (3.1) modifies the divergence structure of the theory at any 
given loop order. Even though the changes are of higher order than the computation carried out, 
this leads to divergences which look worrisome at first sight. We illustrate this with the help of a 
single-component scalar theory,

V0 = μ2
1 h2

2

(
1 + δZφ + δZμ2

1

)
+ λ1h

4

4

(
1 + 2δZφ + δZλ1

)
. (4.10)

At 1-loop level the counterterms read δZφ = 0, δZμ2
1
= 3λ1/(16π2ε) and δZλ1 = 9λ1/(16π2ε). 

The thermal mass correction is δm2
φT = 3λ1I (0), and we denote m̃2

h = μ2
1 + 3λ1v

2 + δm2
φT .

The 1-loop effective potential is given by the function J defined in eq. (A.1): V1 = J (m̃h). 
Writing V1 = ∑∞

n=−1 V
(n)
1 εn, let us consider the divergent part, given by eq. (A.4), viz.

V
(−1)
1

ε
= − m̃4

h

64π2ε

= −6λ1μ
2
1v

2 + 9λ2
1v

4 + 2δm2
φT [μ2

1 + 3λ1v
2]

64π2ε
+ (v-independent) . (4.11)

The T -independent divergences ∝ μ2
1v

2, v4 are cancelled by the counterterms in eq. (4.10). In 
contrast, the T -dependent divergence ∝ δm2

φT is only cancelled by a part of V2, as we show 
below. This is the peculiarity related to thermal divergences within the resummation we have 
adopted: whereas vacuum divergences are cancelled by counterterms originating from lower-
order diagrams (V0), thermal divergences are cancelled by the appearance of δm2

φT within 
higher-order contributions (V2).
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Fig. 1. Topologies of the diagrams discussed in sec. 4.4. The cross denotes a contribution from counterterms including 
the “thermal mass”, −δm2

φT
φ†φ in eq. (3.1), which is counted on par with a vertex in the resummed computation. 

Therefore, the graphs (sss), (ss) and (s) are of “2-loop order”; the graphs (a), (b) and (c) of “3-loop order”; and the graph 
(d) of “4-loop order”.

There are three diagrams contributing to V2 (cf. Fig. 1): a “sunset” diagram containing three 
propagators, denoted by (sss); a “figure-8” diagram containing two propagators, denoted by (ss); 
and a counterterm diagram containing one propagator, denoted by (s). Making use of the notation 
of Appendix A, the expressions read

V2 = (sss) + (ss) + (s) , (4.12)

(sss) = −3v2λ2
1 H(m̃h, m̃h, m̃h) , (4.13)

(ss) = 3λ1I (m̃h)I (m̃h)

4
, (4.14)

(s) =
μ2

1 δZμ2
1
+ 3λ1v

2 δZλ1 − δm2
φT

2
I (m̃h) . (4.15)

The sum of eqs. (4.13)–(4.15) contains divergences of orders 1/ε2 and 1/ε, cf. eqs. (A.11), 
(A.33) and (A.34). Writing V2 = ∑∞

n=−2 V
(n)
2 εn, the 1/ε2 divergences sum up to

V
(−2)
2

ε2
= 3λ1[δm2

φT + μ2
1 + 3λ1v

2][δm2
φT − μ2

1 − 9λ1v
2]

4(4π)4ε2
. (4.16)

The T -independent parts ∝ μ2
1v

2, v4 can be taken care of by 2-loop contributions to δZφ , δZμ2
1

and δZλ1 in eq. (4.10). However, a T and v-dependent part ∼ λ2
1v

2δm2
φT /ε2 remains. This is 

only cancelled by diagrams in which the insertion δm2
φT appears inside 2-loop topologies, which 

are counted on par with diagrams of 3-loop order (diagrams (a) and (b) in Fig. 1). There is also 
a T -dependent but v-independent term ∼ λ1δm

4
φT /ε2 which is cancelled by 2-loop topologies 

containing two insertions of δm2
φT , a contribution which is counted on par with diagrams of 

4-loop order (diagram (d) in Fig. 1).
As far as the divergences of order 1/ε go, the term proportional to δm2

φT in eq. (4.15) exactly 
cancels against the 1-loop contribution in eq. (4.11), apart from a v-independent divergence 
∼ δm4

φT /ε. This gets cancelled by a 1-loop topology dressed by two appearances of δm2
φT , 

which is counted on par with diagrams of 3-loop order (diagram (c) in Fig. 1).
A non-trivial cancellation is observed by considering 1/ε-divergences proportional to 

the non-analytic structure −m̃2
h/(4π)2 ln

(
μ̄2/m̃2

h

) + I
(0)
T (m̃h), originating from I 2(m̃h) and 

H(m̃h, ̃mh, ̃mh) as shown by eqs. (A.12) and (A.34), respectively. We find that vacuum parts 
∝ λ1μ

2
1, λ

2
1v

2 cancel from the coefficient of this divergence, as is required by renormalizability. 
The remainder reads

V
(−1)
2

ε

∣∣∣∣∣ = −3λ1δm
2
φT

2(4π)2ε

[
− m̃2

h

(4π)2
ln

(
μ̄2

m̃2
h

)
+ I

(0)
T (m̃h)

]
. (4.17)
non-analytic
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Again this is only cancelled by diagrams in which the insertion δm2
φT appears inside 2-loop 

topologies, which are counted on par with 3-loop graphs (diagrams (a) and (b) in Fig. 1).
To summarize, one price we pay for the resummation introduced in sec. 3 is that ultraviolet 

divergences do not cancel order by order in our power counting, in which the last term of eq. (3.1)
is treated as an insertion. Instead thermal divergences cancel once all insertions contributing to 
a given order in couplings have been accounted for. This “drawback” is compensated for by the 
fact that infrared sensitive terms get resummed to all orders.

5. Results

5.1. Diagrams

At tree and 1-loop levels the effective potential follows from the Lagrangian in eq. (2.1) and 
from 1-loop contributions in terms of the sum-integral J defined in appendix A.1. With masses 
and degeneracies as listed in Table 1, we get

V0 + V1 = μ2
1v

2

2
+ λ1v

4

4
+ δμ2

1v
2

2
+ δλ1v

4

4
+ J (m̃h) + 3J (m̃G) + J (m̃H ) + J (m̃A) + 2J (m̃H±)

+ 3
[
(D − 3)J (mW ) + J (m̃W )

] + 8
[
(D − 3)J (0b) + J (mE3)

]
− 12J (mt ) − (30nG − 12)J (0f ) , (5.1)

where the counterterms are from eq. (4.4). The 2-loop diagrams are given in Appendix B.

5.2. Cancellation of divergences

The cancellation of divergences through vacuum counterterms offers for a useful crosscheck 
of the computation. As illustrated in sec. 4.4, the cancellation is non-trivial and incomplete in 
the presence of the thermal resummation introduced in eq. (3.1). We briefly summarize here the 
cancellations that can be observed.

First of all, vacuum (i.e. temperature independent) divergences are cancelled by countert-
erms of a lower loop order. Parametrically, the tree-level potential V0 is of order m4/g2. The 
1-loop contribution V1 is of order m4 and contains divergences. These are cancelled by tree-level 
counterterms δZ ∼ g2, which modify V0 by effects of ∼ V0 δZ ∼ m4. Similarly, V2 is of order 
g2m4 and contains divergences. These are cancelled by contributions of ∼ g4 to δZ appearing in 
V0 ∼ m4/g2, and by 1-loop effects containing the counterterms, likewise of order V1δZ ∼ g2m4.

In contrast, thermal divergences are cancelled by higher-order effects. When the thermal 
masses of Table 1 are used within the 1-loop expression, cf. eq. (5.1), then the divergent 
part of the function J , cf. eq. (A.4), leads to temperature-dependent divergences. Writing 
V1 = V

(−1)
1 /ε + V

(0)
1 + . . . and denoting the thermal part by V (−1)

1,T , we get

V
(−1)
1,T

ε
= −δm2

φT (m2
h + 3m2

G) + δm2
χT (m2

H + m2
A + 2m2

H±) + 3m2
E2m

2
W

2(4π)2ε

+ (v-independent) . (5.2)

Recalling the divergent part of the function I as given in eq. (A.11), eq. (5.2) is cancelled by the 
parts of V2 given in eqs. (B.3) and (B.11) that contain the thermal counterterms:
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Table 2
The benchmark scenarios from ref. [50]. The values of (λ3 + λ4 + λ5)/2 and λ2 refer to the renormalization scale 
μ̄ = mZ . The smallness of (λ3 + λ4 + λ5)/2 was justified with dark matter relic density considerations, and that of λ2
with constraints from dark matter self-interactions.

Scenario mH /GeV mA/GeV mH±/GeV (λ3 + λ4 + λ5)(mZ)/2 λ2(mZ)

BM1 66 300 300 1.07 × 10−2 0.01
BM2 200 400 400 1.00 × 10−2 0.01
BM3 5 265 265 −0.60 × 10−2 0.01

(s) + (v) = −1

2

{
δm2

φT

[
I (m̃h) + 3I (m̃G)

]
+ δm2

χT

[
I (m̃H ) + I (m̃A) + 2I (m̃H±)

]

+ 3m2
E2I (m̃W )

}
. (5.3)

There is a v-independent remainder ∝ δm4
φT /ε left over which is fully cancelled only once the 

“3-loop” diagram (c) in Fig. 1 is included, as discussed in sec. 4.4.
A stringent test is given by the cancellation of non-analytic divergences, of the type in 

eq. (4.17). We find that divergences proportional to the functions I (0)
T (mW), I (0)

T (m̃W ), I (0)
T (m̃h), 

I
(0)
T (m̃G), I (0)

T (m̃H ), I (0)
T (m̃A), I (0)

T (m̃H±), I (0)
T (mW) and I (0)

T (m̃W ) do cancel, apart from terms 
proportional to thermal masses, which are cancelled by higher-order contributions as discussed 
in sec. 4.4.

In our practical procedure, we let the divergences be cancelled by the vacuum counterterms 
to the extent that this happens. The remaining divergences, which are proportional to thermal 
masses and thereby formally of higher order, are removed by hand. Furthermore, because diver-
gences proportional to thermal masses do cancel at higher order, we do not expand the thermal 
masses in ε, but remove these divergences as a whole. This implies, for instance, that the finite 
part of the 1-loop contribution in eq. (5.1) becomes

V
(0)
1 = J (0)(m̃h) + 3J (0)(m̃G) + J (0)(m̃H ) + J (0)(m̃A) + 2J (0)(m̃H±)

+ 3
[
J (0)(mW ) − 2J (−1)(mW) + J (0)(m̃W )

]
+ 8

[
J (0)(0b) − 2J (−1)(0b) + J (0)(mE3)

]
− 12J (0)(mt ) − (30nG − 12)J (0)(0f ) , (5.4)

where the functions J (−1) and J (0) are from eqs. (A.4) and (A.5), respectively. Similarly, the 
2-loop potential V (2) contains contributions of the types I (0)I (0), I (−1)I (1), H(0) and, from co-
efficients containing D = 4 − 2ε, I (−1)I (0) and H(−1).

5.3. Fixing the couplings

For numerical evaluations we focus on three benchmark points, introduced in ref. [50]. As it 
turns out, this is sufficient for addressing generic issues concerning the high-T expansion and 
the convergence of the perturbative expansion. The physical parameters associated with these 
benchmarks are listed in Table 2.

A common feature of all the benchmark points is that the mass splittings in the inert sector 
are larger than would “naturally” be expected from electroweak symmetry breaking, specifically 
mA − mH � mZ and mH± − mH � mZ . This assumption necessitates some of the inert scalar 
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Table 3
Values of MS couplings at the scale μ̄ = mZ , obtained as explained in appendix C.4. Here “2-loop” signals that a subset 
of 2-loop corrections was included in μ2

1 and λ1. For the thermal analysis the values are treated as fixed input, so more 
digits have been given than are physically accurate.

BM1 BM2 BM3

1-loop “2-loop” 1-loop “2-loop” 1-loop “2-loop”

μ2
1(mZ)/GeV2 −6669 −6568 −8463 −8127 −7392 −7251

μ2
2(mZ)/GeV2 842 842 36620 36620 −1243 −1243

λ1(mZ) 0.0670 0.0634 0.0671 0.0579 0.1021 0.0979

λ2(mZ) 0.010 0.010 0.010 0.010 0.010 0.010

λ3(mZ) 2.757 2.757 2.618 2.618 2.243 2.243

λ4(mZ) −1.368 −1.368 −1.299 −1.299 −1.127 −1.127

λ5(mZ) −1.368 −1.368 −1.299 −1.299 −1.127 −1.127

g2
2(mZ) 0.425 0.425 0.425 0.425 0.425 0.425

g2
3(mZ) 1.489 1.489 1.489 1.489 1.489 1.489

h2
t (mZ) 0.971 0.971 0.973 0.973 0.969 0.969

self-couplings to be large. In fact, the couplings are so large that 1-loop corrections to physical 
parameters, such as pole masses, are of order unity. The ingredient from vacuum renormalization 
that is relevant for our study is the determination of the values of all MS parameters at some 
reference scale, chosen as μ̄ = mZ in accordance with ref. [50]. The procedure that we have 
adopted for estimating these values is to employ a “self-consistent” prescription in order to resum 
a subset of higher-order corrections and thereby to delimit the magnitude of loop effects; details 
are deferred to appendix C.4.3 The resulting couplings are listed in Table 3. For the remainder of 
this study, we can forget about vacuum renormalization and simply use the values in Table 3 as 
input. We have checked that variations of the renormalization prescription, which lead to O(20%)

variations of μ2
1 and λ1 for BM2, nevertheless leave our physics conclusions concerning thermal 

effects qualitatively intact.
An important first observation from Table 3 is that the Higgs self-coupling λ1 can be smaller 

than in the Standard Model, λ1(mZ) � 0.07 � 0.15. A small quartic coupling favours a strong 
phase transition. However, for thermal considerations, the renormalization scale permitting to 
avoid large logarithms differs from that used for vacuum renormalization. Specifically, thermal 
fluctuations introduce logarithms of the type ln(μ̄/(πT )) [55]. Therefore at finite temperature 
we use

μ̄ = αμ̄T , μ̄T ≡ πT , α ∈ (0.5,2.0) . (5.5)

The couplings are run between μ̄ = mZ and μ̄ = αμ̄T according to 1-loop renormalization group 
equations as specified in appendix C.5. We believe that uncertainties from higher-order correc-
tions to the running are of secondary importance for the qualitative issues that we are addressing, 
particularly the convergence of the high-T expansion.

3 To summarize briefly, the Higgs sector parameters μ2
1, λ1 are evaluated à la Coleman–Weinberg; the other couplings 

are evaluated iteratively such that the same values appear on both sides of the equation.
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Fig. 2. Resummed 1-loop and 2-loop effective potentials, both with and without the high-T expansion, close to the 
respective critical temperatures, for the various benchmark points listed in Table 2. We stress that, as elaborated upon 
in secs. 4 and 5.2, the effective potential is gauge dependent and in the presence of resummation contains uncancelled 
divergences at any finite loop order, with “loop order” defined in the sense of Fig. 1; hence the plots are meant for 
illustration only. The gauge-independent results that can be derived from the effective potential are given in Table 4.

5.4. Numerical evaluation

We have evaluated the 1-loop and 2-loop effective potentials both in a closed form utilizing 
the high-T expansion, and numerically without resorting to it.

As discussed above, the computation is theoretically consistent only in stable phases: the 
“symmetric phase” at high temperatures and the “Higgs phase” at low temperatures. Outside of 
these phases the results are gauge dependent. In addition the results contain uncancelled ultra-
violet divergences at any finite loop order as discussed in secs. 4.4 and 5.2. Once the ultraviolet 
divergences are removed by hand, an uncancelled μ̄-dependence is left over. Furthermore, some 
masses may become tachyonic; we replace the masses squared by their absolute values in such 
cases. However, these ambiguities are numerically benign in comparison with the “physical” 
uncertainty associated with scale dependence, which is formally of higher order but in practice 
substantial, given the large values of some of the mass parameters and couplings. This uncer-
tainty is estimated through the scale variation in eq. (5.5).

We assume in this paper that the Z(2) symmetry related to the Inert Doublet χ is unbro-
ken. In order to verify the validity of this assumption, the effective mass squared of the χ
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Table 4
Results for the physical quantities defined in sec. 2, as well as for the gauge dependent vmin evaluated in Feynman 
Rξ gauge, for the benchmark scenarios listed in Table 2. The uncertainties were obtained through the scale variation 
in eq. (5.5). We note that the scale uncertainties, which reflect the size of higher-order corrections from large scalar 
couplings, completely dominate over ambiguities related to gauge dependence, whose size is indicated by the difference 
between vphys and vmin.

Full effective potential

Tc/GeV L/T 4
c vphys/Tc vmin/Tc

1-loop 2-loop 1-loop 2-loop 1-loop 2-loop 1-loop 2-loop

BM1 139(14) 155(21) 0.44(1) 0.34(1) 1.14(12) 0.98(4) 1.15(12) 0.98(3)
BM2 159(13) 181(22) 0.07(7) 0.03(3) 0.39(28) 0.16(16) 0.39(28) 0.17(17)
BM3 138(8) 167(19) 0.35(3) 0.20(1) 0.96(10) 0.84(6) 0.98(10) 0.81(2)

High-T expansion

Tc/GeV L/T 4
c vphys/Tc vmin/Tc

1-loop 2-loop 1-loop 2-loop 1-loop 2-loop 1-loop 2-loop

BM1 140(14) 124(8) 0.45(1) 0.49(22) 1.15(13) 1.04(31) 1.16(13) 1.05(32)
BM2 159(14) 140(9) 0.08(8) 0.16(8) 0.42(30) 0.60(19) 0.42(30) 0.60(19)
BM3 138(8) 125(3) 0.35(3) 0.37(16) 0.97(10) 0.89(23) 0.98(10) 0.91(23)

field, μ2
2 + δm2

χT in the notation of Table 1, is evaluated at the critical temperature. We find 

μ2
2 + δm2

χT � (0.6T )2 in all cases, justifying the assumption a posteriori, given that 0.6T ∼ gT

is parametrically a “heavy” scale, similar to mE2.
In Fig. 2, the 1-loop and 2-loop effective potentials are plotted at the corresponding critical 

temperatures, both with and without a high-T expansion. We note that the 2-loop corrections are 
substantial but in general they do not modify the 1-loop predictions qualitatively. For BM1 and 
BM3 they weaken the transition moderately, and for BM2 they remove the transition altogether 
for μ̄� μ̄T (in contrast they appear to strengthen the transition for BM2 within the high-T expan-
sion, however those results are unreliable because of the large value of μ2

2). With the exception 
of BM2, the high-T expansion is seen to work very well. However, the value of the critical tem-
perature does change substantially through the high-T expansion; this is easily understood and 
is elaborated upon in sec. 6.

For BM2, in which case we find a very weak transition, the problems mentioned at the end 
of sec. 3, associated on one hand with the breakdown of the high-T expansion for heavy inert 
modes (cf. Table 3), and on the other with infrared sensitive terms not captured by our simple 
thermal resummation, become visible as “linear terms” at small v/T . We do not elaborate on 
these any further, given that the transition is too weak to be of physical interest.

Physical (gauge independent) results for the quantities Tc, L and vphys, defined in sec. 2, are 
collected in Table 4. The errors originate from a variation of μ̄ in the range (0.5...2.0) πT , cf. 
eq. (5.5). These results confirm the heuristic impressions visible in Fig. 2. At least for BM1, the 
transition could be marginally strong enough to support electroweak baryogenesis.

6. Conclusions

In this paper we have developed the general technology for evaluating the full 2-loop thermal 
effective potential for the Higgs field, without resorting to a high-temperature expansion. The 
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technology has been applied to the Inert Doublet Model (IDM), incorporating thermal resumma-
tion in a particularly simple way.

Even though we did not dwell on this in the text, the largest technical effort of our work 
went into the derivation of the formulae given in Appendices A and B, and into their numerical 
evaluation, which poses a challenge of its own (some remarks can be found in a paragraph be-
low eq. (A.45)). The results of Appendix A are model-independent, and can be applied to any 
extension of the Standard Model.

A word of caution is in order on the simple resummation that we adopted (sec. 3). As explained 
at the end of sec. 3 and in sec. 5.4, the resummation is not suitable for a precise treatment of 
infrared effects; at the same time, as explained in secs. 4.4 and 5.2, it is also problematic in the 
ultraviolet, introducing spurious divergences which are only cancelled by higher-order diagrams. 
We therefore do not endorse its use for practical computations aiming at physical precision; 
for us it was just a simple tool permitting to compare two different computations (a full 2-loop 
analysis and its high-T expansion). As explained below, our final conclusion concerning the 
high-T expansion suggests the availability of other tools for addressing physical observables 
with good precision.

Applying the formalism to the IDM as an example, our main finding is that the high-T ex-
pansion works well for describing the strength of the phase transition, despite the fact that some 
degrees of freedom become heavy in the Higgs phase (cf. Fig. 2 and Table 4). This is a wel-
come observation, given that it opens the avenue for dimensionally reduced lattice investigations, 
necessary for cases in which a good precision is needed and/or properties associated with inho-
mogeneous configurations are of interest. This concerns for instance the surface tension [59,60], 
the bubble nucleation rate [69], and the sphaleron rate [67].

Based on the benchmark points considered, as well as on a parameter scan at 1-loop level, we 
find that in general the IDM transition is at most moderately strong, as long as the χ -field does 
not become so light that it would experience a transition of its own. In other models, possessing a 
stronger transition, the high-T expansion could fail. At the same time, we would expect smaller 
2-loop corrections in those cases, given that the infrared sensitive expansion parameter is ∼
g2T/(πmW ) ∼ 2gT /(πv).

There is one observable for which the high-T expansion does not work well: the critical tem-
perature Tc (cf. the 2-loop results in Table 4). This should not come as a surprise: some of the 
inert scalars are heavy and/or strongly coupled, and should not be treated with the high-T ex-
pansion nor with the leading-order resummation of sec. 3. Even though they have little effect on 
the phase transition, they “renormalize” the effective Higgs mass parameter by a large amount. 
Within a dimensionally reduced investigation [53,54], these effects can be incorporated without 
a high-T expansion [64] and including higher orders in large couplings [55], so a good precision 
can be expected also for Tc. We believe that a detour through the dimensionally reduced descrip-
tion, with effects of O(λ3μ

2
2) and O(λ2

3T
2) included in thermal masses, should be chosen even 

in purely perturbative studies, if numerical precision at or below the 10% level is needed.
Turning finally to cosmology, our study supports previous suggestions according to which the 

IDM can incorporate a phase transition marginally strong enough for baryogenesis, at least for 
the benchmark point BM1 (cf. Table 4). The 2-loop corrections weaken the transition somewhat, 
but in many cases they also reduce the scale uncertainties of L, vphys and vmin (cf. the panel “full 
effective potential” in Table 4). However the problem of obtaining sufficient CP violation is not 
alleviated by the IDM Higgs sector which contains no new physical phases. As an example of a 
work-around, it has been suggested that CP violation in the interactions responsible for neutrino 
masses could play a role for baryogenesis (cf. e.g. ref. [83]).
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Appendix A. Thermal master sum-integrals

We list here the expressions for the sum-integrals that are needed for evaluating the 2-loop 
effective potential. The results are divergent for ε → 0. For the 1-loop structures the divergences 
are proportional to 1/ε; the 2-loop result contains squares of 1-loop structures, so that the 1-loop 
structures need to be evaluated up to terms of O(ε). For genuine 2-loop structures, the terms that 
need to be tracked are of O(1/ε2), O(1/ε), and O(1).

The master sum-integrals contain both vacuum (i.e. temperature independent) and thermal 
parts. In the following, the thermal corrections are given both in an exact form suitable for numer-
ical evaluation, and analytically in a high-T expansion. In the latter case, the leading contribution 
is of O(T 4), and we list terms up to O(m4, g2m2T 2), where m2 denotes a generic mass squared 
and g2 a generic coupling constant. This is consistent with a power counting m2 �g2T 2 which 
can be used for justifying the high-T expansion. Some of the master structures are always mul-
tiplied by ∼ g2m2, in which case high-T expansions are given up to O(T 2).

Thermal corrections depend on whether the particle in question is a boson or a fermion. In 
order to compactify the expressions, we employ an implicit notation in which the statistics is 
identified through the mass carried by the particle. The distribution function is denoted gener-
ically by n, and if the argument is “bosonic”, it is to be interpreted as the Bose distribution, 
n(ω) → nB(ω) ≡ 1/(eω/T − 1). In contrast, with a “fermionic” argument, minus the Fermi dis-
tribution is to be understood, n(ω) → −nF(ω) ≡ −1/(eω/T + 1). A vanishing bosonic mass is 
denoted by 0b and a fermionic one by 0f .

A.1. Function J (m)

The master sum-integral appearing in the 1-loop result is denoted by

J (m) ≡ 1

2

∑∫
P

ln
(
P 2 + m2) = m2A(m)

D
− 1

D − 1

∫
p

p2n(ω)

ω
, (A.1)

where P = (ωn, p); ωn denote Matsubara frequencies; p ≡ |p|; the vacuum function A is given 

in eq. (C.1); D = 4 −2ε; ωi ≡
√

p2 + m2
i ; and we made use of partial integrations and properties 

of dimensional regularization. We write

J (m) = 1

ε
J (−1)(m) + J (0)(m) +O(ε) . (A.2)

Suppressing an overall μ−2ε , where μ is a scale parameter related to dimensional regularization, 
and denoting

ln μ̄2 ≡ lnμ2 + ln(4π) − γE , (A.3)

the expressions for the functions in eq. (A.2) read
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J (−1)(m) = − m4

4(4π)2
, (A.4)

J (0)(m) = − m4

4(4π)2

(
ln

μ̄2

m2
+ 3

2

)
− I

(0)
T (m)

3
, (A.5)

where I (0)
T (m) is given in eq. (A.24). In the high-T limit, the expressions depend on whether 

bosonic or fermionic particles are considered. Expanding up to O(m4), the bosonic contributions 
read

J (0)(mb) = −π2T 4

90
+ m2

bT
2

24
− m3

bT

12π
− m4

b

2(4π)2
ln

(
μ̄eγE

4πT

)
+O

( m6
b

π4T 2

)
, (A.6)

whereas the fermionic expression is

J (0)(mf ) = 7

8

π2T 4

90
− m2

f T
2

48
− m4

f

2(4π)2
ln

(
μ̄eγE

πT

)
+O

( m6
f

π4T 2

)
. (A.7)

A.2. Function I (m)

The basic 1-loop structure appearing within the 2-loop result is denoted by

I (m) ≡
∑∫

P

1

P 2 + m2
= A(m) +

∫
p

n(ω)

ω
, (A.8)

where the vacuum part A is from eq. (C.1). We write

I (m) = 1

ε
I (−1)(m) + I (0)(m) + ε I (1)(m) +O(ε2) , (A.9)

and subsequently separate each contribution into a vacuum and thermal part,

I (n)(m) = I
(n)
0 (m) + I

(n)
T (m) . (A.10)

Suppressing an overall μ−2ε , the expressions for the functions in eq. (A.9) read

I (−1)(m) = − m2

(4π)2
, (A.11)

I (0)(m) = − m2

(4π)2

(
ln

μ̄2

m2
+ 1

)
+ I

(0)
T (m) , (A.12)

I
(0)
T (m) =

∞∫
0

dp p2 n(ω)

2π2ω
, (A.13)

I (1)(m) = − m2

(4π)2

(
1

2
ln2 μ̄2

m2
+ ln

μ̄2

m2
+ 1 + π2

12

)
+ I

(1)
T (m) , (A.14)

I
(1)
T (m) =

∞∫
0

dp p2 (ln μ̄2

4p2 + 2)n(ω)

2π2ω
. (A.15)

These functions are related through I (n)(m) = μ̄2∂I (n+1)(m)/∂μ̄2. In the high-T limit, the 
bosonic contributions read
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I (0)(mb) = T 2

12
− mbT

4π
− 2m2

b

(4π)2
ln

(
μ̄eγE

4πT

)
+O

( m4
b

π4T 2

)
, (A.16)

I (1)(mb) = T 2

6

[
ln

(
μ̄eγE

2T

)
− ζ ′(2)

ζ(2)

]
− mbT

2π

[
ln

( μ̄

2mb

)
+ 1

]

− 2m2
b

(4π)2

[
ln2

(
μ̄eγE

4πT

)
− γ 2

E − 2γ1 + π2

8

]
+ O

( m4
b

π4T 2

)
, (A.17)

where the Stieltjes constant γ1 is defined through ζ(s) = 1/(s − 1) +∑∞
n=0 γn(−1)n(s − 1)n/n!. 

The corresponding fermionic expressions are

I (0)(mf ) = −T 2

24
− 2m2

f

(4π)2
ln

(
μ̄eγE

πT

)
+O

( m4
f

π4T 2

)
, (A.18)

I (1)(mf ) = −T 2

12

[
ln

(
μ̄eγE

4T

)
− ζ ′(2)

ζ(2)

]

− 2m2
f

(4π)2

[
ln2

(
μ̄eγE

πT

)
− γ 2

E − 2 ln2(2
) − 2γ1 + π2

8

]
+ O

( m4
f

π4T 2

)
. (A.19)

A.3. Function I (m)

The thermal 2-loop effective potential contains appearances of a “Lorentz-violating” 1-loop 
structure denoted by

I (m) ≡
∑∫

P

p2

P 2 + m2
= −D − 1

D
m2A(m) +

∫
p

p2n(ω)

ω
, (A.20)

where the vacuum part A is from eq. (C.1). We write

I (m) = 1

ε
I (−1)(m) + I (0)(m) + ε I (1)(m) +O(ε2) , (A.21)

and I (n)(m) = I
(n)
0 (m) +I

(n)
T (m). Suppressing an overall μ−2ε , the expressions for the structures 

in eq. (A.21) read

I (−1)(m) = 3m4

4(4π)2
, (A.22)

I (0)(m) = m4

(4π)2

(
3

4
ln

μ̄2

m2
+ 5

8

)
+ I

(0)
T (m) , (A.23)

I
(0)
T (m) =

∞∫
0

dp p4 n(ω)

2π2ω
, (A.24)

I (1)(m) = m4

(4π)2

(
3

8
ln2 μ̄2

m2
+ 5

8
ln

μ̄2

m2
+ 9

16
+ π2

16

)
+ I

(1)
T (m) , (A.25)

I
(1)
T (m) =

∞∫ dp p4 (ln μ̄2

4p2 + 2)n(ω)

2π2ω
. (A.26)
0
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These functions are related through I (n)(m) = μ̄2∂I (n+1)(m)/∂μ̄2. In the high-T limit, the 
bosonic contributions read

I (0)(mb) = π2T 4

30
− m2

bT
2

8
+O

(m3
bT

π

)
, (A.27)

I (1)(mb) = π2T 4

15

[
ln

(
μ̄eγE

2T

)
− ζ ′(4)

ζ(4)
− 5

6

]

− m2
bT

2

4

[
ln

(
μ̄eγE

2T

)
− ζ ′(2)

ζ(2)
− 1

3

]
+O

(m3
bT

π

)
, (A.28)

whereas the corresponding fermionic expressions are

I (0)(mf ) = −7π2T 4

240
+ m2

f T
2

16
+O

( m4
f

π4T 2

)
, (A.29)

I (1)(mf ) = −7π2T 4

120

[
ln

(
μ̄eγE

2T

)
− ζ ′(4)

ζ(4)
− ln 2

7
− 5

6

]

+ m2
f T

2

8

[
ln

(
μ̄eγE

4T

)
− ζ ′(2)

ζ(2)
− 1

3

]
+O

(m4
f

π2

)
. (A.30)

A.4. Function H(m1, m2, m3)

Next we consider the 2-loop “sunset” sum-integral,

H(m1,m2,m3) ≡
∑∫

P,Q

1

(P 2 + m2
1)(Q

2 + m2
2)[(P + Q)2 + m2

3]
. (A.31)

The Matsubara sums can be carried out explicitly, and for the vacuum part the spatial integrations 
are also doable [84–86]. Writing the result as

H({mi}) = 1

ε2
H(−2)({mi}) + 1

ε
H(−1)({mi}) + H(0)({mi}) +O(ε) , (A.32)

and omitting an overall μ−4ε , the results read

H(−2)({mi}) = −m2
1 + m2

2 + m2
3

2(4π)4
, (A.33)

H(−1)({mi}) = − 1

(4π)4

3∑
i=1

m2
i

(
ln

μ̄2

m2
i

+ 3

2

)
+

3∑
i=1

I
(0)
T (mi)

(4π)2
, (A.34)

H(0)({mi}) = 1

(4π)4

{
−1

2

3∑
i=1

m2
i ln2

( μ̄2

m2
i

)
− 3

3∑
i=1

m2
i ln

( μ̄2

m2
i

)
−

(7

2
+ π2

12

) 3∑
i=1

m2
i

− 1

2

[
(m2

1 + m2
2 − m2

3) ln
( μ̄2

m2
1

)
ln

( μ̄2

m2
2

)

+ (m2
1 + m2

3 − m2
2) ln

( μ̄2

m2
1

)
ln

( μ̄2

m2
3

)

+ (m2
2 + m2

3 − m2
1) ln

( μ̄2

m2

)
ln

( μ̄2

m2

)]

2 3
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+ R(m2
1,m

2
2,m

2
3)L(m2

1,m
2
2,m

2
3)

}

+ I
(0)
T (m1) ReB(0)(−im1;m2,m3) + I

(0)
T (m2) ReB(0)(−im2;m3,m1)

+ I
(0)
T (m3) ReB(0)(−im3;m1,m2) +

3∑
i=1

I
(1)
T (mi)

(4π)2

+
∞∫

0

dp dq pq n(ω
p

1 )n(ω
q

2 )

32π4ω
p

1 ω
q

2
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q

2 )2
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q
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32π4ω
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3

ln
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p
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p

2 )2(ω
q

3 )2
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+
∞∫

0

dp dq pq n(ω
p

3 )n(ω
q
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32π4ω
p

3 ω
q

1
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1 + 2pq)2 − 4(ω

p

3 )2(ω
q

1 )2

(m2
2 − m2

3 − m2
1 − 2pq)2 − 4(ω

p

3 )2(ω
q

1 )2

∣∣∣∣ ,

(A.35)

where ωp
i ≡

√
p2 + m2

i and B(0) is from eq. (C.12). For finite masses a representation of the 

undefined functions reads [86]4

R(m2
1,m

2
2,m

2
3) =

√
m4

1 + m4
2 + m4

3 − 2m2
1m

2
2 − 2m2

1m
2
3 − 2m2

2m
2
3 , (A.36)

L(m2
1,m

2
2,m

2
3) = Li2

(
− t3m2

m1

)
+ Li2

(
− t3m1

m2

)
+ π2

6
+ ln2 t3

2

+ 1

2

[
ln

(
t3 + m2

m1

)
− ln

(
t3 + m1

m2

)
+ 3

4
ln

(m2
1

m2
2

)]
ln

(m2
1

m2
2

)
, (A.37)

t3 = m2
3 − m2

1 − m2
2 + R(m2

1,m
2
2,m

2
3)

2m1m2
. (A.38)

The functions H(n) are related through H(n)({mi}) = 1
2 μ̄2 ∂H(n+1)({mi})/∂μ̄2.

Given that the function H is always multiplied by ∼ g2m2 in the effective potential, the order 
∼ T 2 in the high-T is sufficient for reaching the order ∼ g2m2T 2 for V2. To this accuracy (cf. 
e.g. refs. [87,88]),

H(mb1,mb2,mb3) = T 2

(4π)2

(
1

4ε
+ ln

μ̄

mb1 + mb2 + mb3
+ 1

2

)
+O

(εT 2

π2
,
mbiT

π3

)
,

(A.39)

H(mb1,mf2,mf3) =O
(εT 2

π2
,
mb1T

π3

)
. (A.40)

4 The function L is singular in certain limits, for instance L(m2, ε2, ε2) = −π2/6 − 2 ln2(m/ε) for ε → 0+ .
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)

)

A.5. Function H(m1, m2, m3)

The final ingredient needed is a variant of the “sunset” sum-integral in eq. (A.31), with one 
line weighted by an additional spatial momentum:

H(m1,m2,m3) ≡
∑∫

P,Q

p2

(P 2 + m2
1)(Q

2 + m2
2)[(P + Q)2 + m2

3]
. (A.41)

The Matsubara sums can be carried out as before, and for the vacuum parts Lorentz symmetry 
allows furthermore to write

H0(m1,m2,m3) = D − 1

D

[
−m2

1H0(m1,m2,m3) + I0(m2)I0(m3)
]

. (A.42)

Expressing the result like in eq. (A.32) and omitting an overall μ−4ε , we get

H(−2)(m1,m2,m3) = 3
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1(m
2
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8(4π)4

, (A.43
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, (A.45

where ωp
i ≡

√
p2 + m2

i , B(0) is from eq. (C.12), and R and L are from eqs. (A.36) and (A.37), 

respectively. The functions are related through H(n) = 1
2 μ̄2 ∂H(n+1)/∂μ̄2.

The numerical evaluation of eq. (A.45) is straightforward if all masses are of similar orders 
of magnitude. In contrast, if there is a hierarchy between the masses (cf. e.g. eq. (B.14)), care 
must be taken in order to avoid significance loss in the numerics. For instance, the coefficient 
multiplying I (0)

T (m2) has a finite limit for m2 → 0, but many individual terms within the curly 

brackets diverge as ∼ 1/m4
2. A similar problem appears in the coefficient multiplying I (0)

T (m2), 
even though divergences are only ∼ 1/m2

2 in this case. It may also be noted that the coefficients of 

I
(0)
T (m2) and I (0)

T (m2) have cusps at m2 = m1 + m3, originating from the function B(0), which 
cancel against corresponding cusps originating from the last three rows of eq. (A.45). For a 
proper cancellation of the cusps, all terms involved need to be evaluated with good precision. 
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A powerful crosscheck on the numerics is provided by the high-T limit, which can be given in 
analytic form (cf. eqs. (A.46)–(A.48)).

In the high-T limit, making use of relations determined in ref. [89],5 we get

H(mb1,mb2,mb3) = T 4

72
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4ε
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2
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,
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εT 4,

m2T 2
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, (A.47)

H(mf1,mf2,mb3) = − T 4

144

[
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4ε
+ ln
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μ̄eγE
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)
− 3 ln(2)

2
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]
(A.48)

+ D − 1

2
I (0f ) In=0(mb3) +O

(
εT 4,

m2T 2

π2

)
.

Here the so-called linear terms, of the type O(mT 3), have been written in a D-dimensional 
form, permitting for a crosscheck of their D-dimensional cancellation in the full result (cf. the 
discussion around the end of sec. 3).

The function H(m1, m2, m3) always appears in a difference containing various masses, so that 
the leading term ∝ T 4 of the high-T expansion drops out from the effective potential. Moreover, 
at O(m2), only the non-analytic terms originating from Matsubara zero modes have been kept 
in the expressions above, given that analytic terms lead to v-independent structures of the type 
∼ g2(m̃2

W − m2
W)T 2 ∼ g4T 4.

Appendix B. 2-loop diagrams

In order to list all contributions to V2, we make use of the master sum-integrals defined in 
Appendices A.2–A.5 The diagrams are of three types, illustrated in Fig. 1. We denote the par-
ticles circling in the loops by scalar (s), vector (v), ghost (g), or fermion (f). Then the various 
contributions read (some v-independent terms have been dropped for simplicity)

(sss) = −3v2λ2
1

[
H(m̃h, m̃h, m̃h) + H(m̃h, m̃G, m̃G)

]
− v2

4

[
(λ3 + λ4 + λ5)

2H(m̃h, m̃H , m̃H ) + (λ3 + λ4 − λ5)
2H(m̃h, m̃A, m̃A)

]
− v2

4

[
(λ4 + λ5)

2H(m̃G, m̃H , m̃H±) + (λ4 − λ5)
2H(m̃G, m̃A, m̃H±)

]
− v2

2

[
λ2

3 H(m̃h, m̃H± , m̃H±) + λ2
5 H(m̃G, m̃H , m̃A)

]
, (B.1)

5 We thank Y. Schröder for locating the necessary relations.
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(ss) = 3λ1

4

[
I 2(m̃h) + 2I (m̃h)I (m̃G) + 5I 2(m̃G)

]
+ λ2

2

[
I 2(m̃H ) + I 2(m̃A) + 2I 2(m̃H±)
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4

[
I (m̃H ) + I (m̃A) + 2I (m̃H±)

]2
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4

[
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, (B.2)

(s) = δm2
h − δm2
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2
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2
I (m̃G)

+ δm2
H − δm2

χT − m̃2
H δZχ

2
I (m̃H ) + δm2
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G)H(m̃W , m̃h, m̃G)

+ (m̃2
W − 4m̃2

G)H(m̃W , m̃G, m̃G)

− [
I (m̃h) + I (m̃G)

]
I (m̃G) + 2

[
I (m̃h) + 3I (m̃G)

]
I (m̃W )

+ H(m̃W , m̃h, m̃G) − 2H(m̃W , m̃h, m̃G) − 2H(m̃W , m̃h, m̃G)

+ H(m̃W , m̃G, m̃G) − 4H(m̃W , m̃G, m̃G)

− H(mW, m̃h, m̃G) + 2H(mW, m̃h, m̃G) + 2H(mW, m̃h, m̃G)

− H(mW, m̃G, m̃G) + 4H(mW, m̃G, m̃G)
}

− g2
2

8

{
(m̃2

W − 2m̃2
H − 2m̃2

A)H(m̃W , m̃H , m̃A)

+ (m̃2
W − 4m̃2

H±)H(m̃W , m̃H± , m̃H±)

+ 2(m̃2
W − 2m̃2

H − 2m̃2
H±)H(m̃W , m̃H , m̃H±)

+ 2(m̃2
W − 2m̃2

A − 2m̃2
H±)H(m̃W , m̃A, m̃H±)

− I (m̃H )I (m̃A) − [
2I (m̃H ) + 2I (m̃A) + I (m̃H±)

]
I (m̃H±)

+ 6
[
I (m̃H ) + I (m̃A) + 2I (m̃H±)

]
I (m̃W )

+ H(m̃W , m̃H , m̃A) − 2H(m̃W , m̃H , m̃A) − 2H(m̃W , m̃H , m̃A)

+ 2H(m̃W , m̃H , m̃H±) − 4H(m̃W , m̃H , m̃H±) − 4H(m̃W , m̃H , m̃H±)

+ 2H(m̃W , m̃A, m̃H±) − 4H(m̃W , m̃A, m̃H±) − 4H(m̃W , m̃A, m̃H±)

+ H(m̃W , m̃H± , m̃H±) − 4H(m̃W , m̃H± , m̃H±)

− H(mW, m̃H , m̃A) + 2H(mW, m̃H , m̃A) + 2H(mW, m̃H , m̃A)

− 2H(mW, m̃H , m̃H±) + 4H(mW, m̃H , m̃H±) + 4H(mW, m̃H , m̃H±)

− 2H(mW, m̃A, m̃H±) + 4H(mW, m̃A, m̃H±) + 4H(mW, m̃A, m̃H±)
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− H(mW, m̃H± , m̃H±) + 4H(mW, m̃H± , m̃H±)
}

, (B.4)

(sv) = 3g2
2

8

[
I (m̃h) + 3I (m̃G)

][
I (m̃W ) + (D − 1)I (mW)

]
+ 3g2

2

8

[
I (m̃H ) + I (m̃A) + 2I (m̃H±)

][
I (m̃W ) + (D − 1)I (mW)

]
, (B.5)

(svv) = −3g2
2m2

W

4

[
H(m̃h, m̃W , m̃W ) + (D − 1)H(m̃h,mW ,mW)

]
, (B.6)

(sgg) = 3g2
2m2

W

8

[
H(m̃h,mW ,mW) − 2H(m̃G,mW ,mW)

]
, (B.7)

(vvv) = −3g2
2

2

{
(D − 1)(m̃2

W − 4m2
W)H(m̃W ,mW ,mW)

+ (D − 1)
[
4I (m̃W ) − I (mW)

]
I (mW) + (D − 1)

[
H(m̃W ,mW ,mW)

− 4H(m̃W ,mW,mW) + 3H(mW,mW,mW)
]

− H(mW, m̃W , m̃W ) + 4H(mW, m̃W , m̃W ) − 3H(mW,mW,mW)
}

, (B.8)

(ggv) = −3g2
2

2

{
(2m2

W − m̃2
W)H(m̃W ,mW ,mW) + [

I (mW) − 2I (m̃W )
]
I (mW)

− H(m̃W ,mW ,mW) + 2H(m̃W ,mW ,mW) − H(mW,mW,mW)
}

, (B.9)

(vv) = 3g2
2

2
(D − 1)

[
2I (m̃W ) + (D − 2)I (mW)

]
I (mW) , (B.10)

(v) = 3

2

{
δZξ

[
I (m̃W ) − I (mW)

] + (D − 1)m2
W(δZg2 + δZφ) I (mW )

+ [
m̃2

WδZξ − m2
E2δZA + m2

W(δZg2 + δZφ)
]
I (m̃W )

}
− 3

2
m2

E2I (m̃W ) , (B.11)

(g) = −3m2
W

(
δZξ + δZg2 + δZφ + δZv

2

)
I (mW) , (B.12)

(sff) = −3h2
t

2

{
(m̃2

h − 4m2
t )H(m̃h,mt ,mt ) + m̃2

GH(m̃G,mt ,mt )

+ 2(m̃2
G − m2

t )H(m̃G,mt ,0f ) − 2
[
I (mt ) + I (0f )

]
I (mt )

+ 2I (m̃h)I (mt ) + 2I (m̃G)
[
I (0f ) + 2I (mt )

]}
, (B.13)

(gff) = 3g2
2

8

{
(m̃2

W − 2m2
t )H(m̃W ,mt ,mt ) − (D − 1)(m2

W − 2m2
t )H(mW ,mt ,mt )

+ (D − 2)I 2(mt ) + 2
[
I (m̃W ) − (D − 1)I (mW)

]
I (mt )

− 2H(mW,mt ,mt ) + 4H(mW,mt ,mt ) + 2H(m̃W ,mt ,mt )

− 4H(m̃W ,mt ,mt )
}

+ 3g2
2

2

{
(m̃2

W − m2
t )H(m̃W ,mt ,0f ) − (D − 1)(m2

W − m2
t )H(mW ,mt ,0f )

+ (D − 2)I (mt )I (0f ) + [
I (m̃W ) − (D − 1)I (mW)

][
I (mt ) + I (0f )

]
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− 2H(mW,mt ,0f ) + 2H(mW,mt ,0f ) + 2H(mW,mt ,0f )

+ 2H(m̃W ,mt ,0f ) − 2H(m̃W ,mt ,0f ) − 2H(m̃W ,mt ,0f )
}

+ 3(8nG − 5)g2
2

8

{
m̃2

WH(m̃W ,0f ,0f ) − (D − 1)m2
WH(mW,0f ,0f )

+ (D − 2)I 2(0f ) + 2
[
I (m̃W ) − (D − 1)I (mW)

]
I (0f )

− 2H(mW,0f ,0f ) + 4H(mW,0f ,0f )

+ 2H(m̃W ,0f ,0f ) − 4H(m̃W ,0f ,0f )
}

+ 4g2
3

{
(m2

E3 − 4m2
t )H(mE3,mt ,mt )

+ (D − 2)I 2(mt ) + 2
[
I (mE3) − (D − 1)I (0b)

]
I (mt )

− 2H(0b,mt ,mt ) + 4H(0b,mt ,mt )

+ 2H(mE3,mt ,mt ) − 4H(mE3,mt ,mt )
}

, (B.14)

(f) = −6m2
t

(
δZφ + δZh2

t

)
I (mt ) . (B.15)

Appendix C. Vacuum renormalization

For the thermal computations, we need to know the running couplings as functions of the MS
scale μ̄ up to a scale μ̄ ∼ πT , cf. eq. (5.5). These can be obtained from renormalization group 
equations, provided that the initial values are known at some scale μ̄ ∼ mZ . In order to obtain the 
latter, we compute physical pole masses and the Fermi constant in terms of the MS parameters, 
and then invert the relations in order to express the MS couplings at μ̄ = mZ in terms of the 
physical ones. For the Standard Model, these relations were determined up to 1-loop level in 
ref. [55],6 and here we extend the relations to the IDM. Closely related expressions for the IDM 
can be found in ref. [14].

C.1. Basis functions

In order to display the results for physical quantities, we make use of standard Passarino–
Veltman type functions, which we have defined in Euclidean spacetime:

A(m) ≡
∫
P

1

P 2 + m2
, (C.1)

B(K;m1,m2) ≡
∫
P

1

[(P + K)2 + m2
1](P 2 + m2

2)
, (C.2)

KμC(K;m1,m2) ≡
∫
P

Pμ

[(P + K)2 + m2
1](P 2 + m2

2)
, (C.3)

C(K;m1,m2) = 1

2K2

[
A(m2) − A(m1) − (K2 + m2

1 − m2
2)B(K;m1,m2)

]
, (C.4)

6 In eq. (193) of ref. [55], there is a term − 8 t2 lnh missing from within the square brackets.
3
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Dμν(K;m1,m2) ≡
∫
P

PμPν

[(P + K)2 + m2
1](P 2 + m2

2)
(C.5)

= δμν − D KμKν

K2

4(D − 1)K2

{
(K2 − m2

1 + m2
2)A(m1) + (K2 + m2

1 − m2
2)A(m2)

− [
K4 + 2K2(m2

1 + m2
2) + (m2

1 − m2
2)

2]B(K;m1,m2)
}

+ KμKν

K2

[
A(m1) − m2

2 B(K;m1,m2)
]
. (C.6)

For D = 4 − 2ε and writing A = ∑∞
n=−1 A(n)εn etc., the divergent parts of these functions can 

be expressed as

A(−1)(m) = μ−2ε

(4π)2

(−m2) , (C.7)

B(−1)(K;m1,m2) = μ−2ε

(4π)2
, (C.8)

C(−1)(K;m1,m2) = μ−2ε

(4π)2

(
−1

2

)
, (C.9)

D(−1)
μν (K;m1,m2) = μ−2ε

(4π)2

(
−K2 + 3m2

1 + 3m2
2

12
δμν + KμKν

3

)
. (C.10)

The finite parts of A and B read

A(0)(m) = − m2

(4π)2

(
ln

μ̄2

m2
+ 1

)
, (C.11)

B(0)(K;m1,m2) = 1

(4π)2

[
ln

μ̄2

m1m2
+ 2 + m2

1 − m2
2

K2
ln

m1

m2
(C.12)

− 2
√

(m1 − m2)2 + K2
√

(m1 + m2)2 + K2

K2

× artanh

(√
(m1 − m2)2 + K2√
(m1 + m2)2 + K2

)]
.

Given that B(0) is a function of K2 only, we use an implicit notation in which K may denote 
either a vector or its modulus. The corresponding expressions after going to Minkowskian signa-
ture, i.e. K → −iK, are conventionally expressed in terms of a function F defined by

B(0)(−iK;m1,m2) ≡ 1

(4π)2

[
ln

μ̄2

m1m2
+ 1 − m2

1 + m2
2

m2
1 − m2

2

ln

(
m1

m2

)
+ F

(m1

K ,
m2

K
)]

.

(C.13)

The (real part of) F is given in eq. (C.16) below.

C.2. Gauge coupling renormalization

The first quantity needed is the initial value of the SUL(2) gauge coupling g2
2 at the scale 

μ̄ ∼ mZ . It can be expressed in terms of the Fermi constant. Including the contribution of the 
new scalar degrees of freedom through a function � (cf. eq. (C.15)) we get
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g2(μ̄) = g2
0

{
1 + g2

0

16π2

[(
4nG

3
− 7

)
ln

μ̄2

m2
W

+ �
(mH±

mW

,
mH

mW

)
+ �

(mH±
mW

,
mA

mW

)

− 33

4
F(1,1) + 1

12
(h4 − 4h2 + 12)ReF(1, h) − 1

2
(t4 + t2 − 2)ReF(t,0)

− 2 ln t − h2

24
+ t2

4
+ 20nG

9
− 257

72

]}
, (C.14)

where g2
0 ≡ 4

√
2GFm

2
W , GF = 1.166379 × 10−5 GeV−2 is the Fermi constant, h ≡ mh/mW , 

t ≡ mt/mW , the masses mW, mt, mh, mH , mA and mH± are the physical (vacuum) masses, and 
we have defined

�(r1, r2) ≡ 5

36
− r2

1 + r2
2

24
− ln(r1r2)

12
+ 2r2

1 r2
2 − r2

1 − r2
2

12(r2
1 − r2

2 )
ln

(
r1

r2

)

+ (r2
1 − r2

2 )2 − 2(r2
1 + r2

2 ) + 1

12
ReF(r1, r2) . (C.15)

Here the function F , defined in eq. (C.13), has the real part

ReF(r1, r2) = 1 +
(

r2
1 + r2

2

r2
1 − r2

2

+ r2
2 − r2

1

)
ln

(
r1

r2

)

− 2 Re

[√
1 − (r1 − r2)2

√
(r1 + r2)2 − 1 arctan

√
1 − (r1 − r2)2√
(r1 + r2)2 − 1

]
, (C.16)

with the special limits

F(1,1) = 2 − π√
3

, (C.17)

ReF(r,0) = 1 + (r2 − 1) ln

(
1 − 1

r2

)
, r ≥ 1 . (C.18)

C.3. Pole masses and scalar coupling renormalizations

The other couplings can be expressed in terms of pole masses. For this purpose we compute 
the full renormalized on-shell self-energies �(K; μ̄) of the neutral Higgs fields h; of the W
boson; of the top quark; and of the new scalars H, A and H±. For Standard Model particles the 
expressions read (here v0 is the tree-level vacuum expectation value which can within the 1-loop 
expressions be approximated as v2

0 ≡ μ2
1(μ̄)/λ1(μ̄) ≈ 4m2

W/g2
0):

�h(−imh; μ̄) = m2
h δZμ2

1

+ 12h2
t A(mt ) − 6λ1 A(mh) +

[
3(1 − D)g2

2

2
− 6λ1

]
A(mW )

− 2λ3 A(mH±) − (
λ3 + λ4 + λ5

)
A(mH ) − (

λ3 + λ4 − λ5
)
A(mA)

+ 3h2
t (4m2

t − m2
h)B(−imh;mt,mt ) − 9λ1m

2
h B(−imh;mh,mh)

+
{3g2

2

2

[
(1 − D)m2

W + m2
h

]
− 3λ1m

2
h

}
B(−imh;mW,mW)

− λ2
3v

2
0 B(−imh;mH± ,mH±) − 1(

λ3 + λ4 + λ5
)2

v2
0 B(−imh;mH ,mH )
2
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− 1

2

(
λ3 + λ4 − λ5

)2
v2

0 B(−imh;mA,mA) , (C.19)

�
(T )
W (−imW , μ̄) = m2

W

(
δZg2

2
− δZλ1 + δZμ2

1

)
+ g2

2

{(
6m2

t

m2
h

− 3

2

)
A(mt) − A(mh)

2
+

[
3(1 − D)m2

W

2m2
h

+ 2D − 4

]
A(mW )

+
[

1

2
− λ3v

2
0

2m2
h

]
A(mH±) +

[
1

4
− (λ3 + λ4 + λ5)v

2
0

4m2
h

]
A(mH )

+
[

1

4
− (λ3 + λ4 − λ5)v

2
0

4m2
h

]
A(mA)

+ 6m2
WB(−imW ;mW,mW) − m2

WB(−imW ;mW,mh)

+ 3(m2
t − m2

W)

2
B(−imW ;0,mt ) +

(3

2
− 2nG

)
m2

W B(−imW ;0,0)

+ (
7 − 4D

)
D(T )(−imW ;mW,mW) − D(T )(−imW ;mW,mh)

− D(T )(−imW ;mH± ,mH ) − D(T )(−imW ;mH± ,mA)

+ 6D(T )(−imW ;0,mt ) + (
8nG − 6

)
D(T )(−imW ;0,0)

}
, (C.20)

2
[

S(−imt ; μ̄) − 
V(−imt ; μ̄)

] = δZh2
t
− δZλ1 + δZμ2

1

+ 1

m2
h

{
12h2

t A(mt ) − 6λ1 A(mh) +
[

3(1 − D)g2
2

2
− 6λ1

]
A(mW)

− 2λ3 A(mH±) − (
λ3 + λ4 + λ5

)
A(mH ) − (

λ3 + λ4 − λ5
)
A(mA)

}

+ 8Dg2
3

3
B(−imt ;0,mt ) + h2

t

[
B(−imt ;mW,mt) − B(−imt ;mh,mt )

]

+ 8(D − 2)g2
3

3
C(−imt ;0,mt )

+ (D − 2)g2
2

4

[
2C(−imt ;mW,0) + C(−imt ;mW,mt)

]
+ h2

t

[
C(−imt ;mh,mt ) + C(−imt ;mW,mt) + C(−imt ;mW,0)

]
. (C.21)

For W only the transverse parts play a role, and D(T ) is defined by Dμν ≡ D(T )δμν +O(KμKν). 
In the case of the top quark the self-energy was expressed as �t = i/K
V + i/Kγ5
A + mt 
S; 
bracketing this with on-shell spinors eliminates the function 
A(K; μ̄).

For the on-shell self-energies of the new scalars we obtain (denoting n3 = n4 = −n5 ≡ 1)

�H (−imH ; μ̄) = μ2
2 δZμ2

2
+

∑
i=3,4,5

λiv
2
0

2

(
δZλi

+ δZμ2
1
− δZλ1

)

+ 12(λ3 + λ4 + λ5)m
2
t

m2
A(mt) − (λ3 + λ4 + λ5)A(mh)
h
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+
[

3(1 − D)(λ3 + λ4 + λ5)m
2
W

m2
h

+ 3(D − 2)g2
2

4
− λ4 − 2λ5

]
A(mW)

+
[

3λ2 − (λ3 + λ4 + λ5)
2v2

0

2m2
h

]
A(mH )

+
[
λ2 + g2

2

4
+ λ2

5v
2
0 − (λ3 + λ4)

2v2
0

2m2
h

]
A(mA)

+
[

2λ2 + g2
2

2
− λ3(λ3 + λ4 + λ5)v

2
0

m2
h

]
A(mH±)

− (λ3 + λ4 + λ5)
2v2

0B(−imH ;mh,mH )

−
[
λ2

5v
2
0 + (m2

W − 2m2
H − 2m2

A)g2
2

4

]
B(−imH ;mW,mA)

−
[
(λ4 + λ5)

2v2
0

2
+ (m2

W − 2m2
H − 2m2

H±)g2
2

2

]
B(−imH ;mW,mH±) , (C.22)

�A(−imA; μ̄) = μ2
2 δZμ2

2
+

∑
i=3,4,5

niλiv
2
0

2

(
δZλi

+ δZμ2
1
− δZλ1

)

+ 12(λ3 + λ4 − λ5)m
2
t

m2
h

A(mt ) − (λ3 + λ4 − λ5)A(mh)

+
[

3(1 − D)(λ3 + λ4 − λ5)m
2
W

m2
h

+ 3(D − 2)g2
2

4
− λ4 + 2λ5

]
A(mW)

+
[

3λ2 − (λ3 + λ4 − λ5)
2v2

0

2m2
h

]
A(mA)

+
[
λ2 + g2

2

4
+ λ2

5v
2
0 − (λ3 + λ4)

2v2
0

2m2
h

]
A(mH )

+
[

2λ2 + g2
2

2
− λ3(λ3 + λ4 − λ5)v

2
0

m2
h

]
A(mH±)

− (λ3 + λ4 − λ5)
2v2

0B(−imA;mh,mA)

−
[
λ2

5v
2
0 + (m2

W − 2m2
H − 2m2

A)g2
2

4

]
B(−imA;mW,mH )

−
[
(λ4 − λ5)

2v2
0

2
+ (m2

W − 2m2
A − 2m2

H±)g2
2

2

]
B(−imA;mW,mH±) , (C.23)

�H±(−imH±; μ̄) = μ2
2 δZμ2

2
+ λ3v

2
0

2

(
δZλ3 + δZμ2

1
− δZλ1

)
+ 12λ3m

2
t

m2
h

A(mt ) − λ3 A(mh)

+
[

3(1 − D)λ3m
2
W

m2
+ 3(D − 2)g2

2

4
+ λ4

]
A(mW)
h
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+
[
λ2 + g2

2

4
− λ3(λ3 + λ4 + λ5)v

2
0

2m2
h

]
A(mH )

+
[
λ2 + g2

2

4
− λ3(λ3 + λ4 − λ5)v

2
0

2m2
h

]
A(mA)

+
[

4λ2 + g2
2

4
− λ2

3v
2
0

m2
h

]
A(mH±) − λ2

3v
2
0B(−imH±;mh,mH±)

−
[
(λ4 + λ5)

2v2
0

4
+ (m2
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−
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]
B(−imH±;mW,mH±) . (C.24)

The on-shell self-energies correct tree-level masses, which can be expressed in terms of MS
parameters. For instance, the physical Higgs mass squared has the form m2

h = −2μ2
1(μ̄) +

Re�h(−imh; μ̄). Here we defined the pole mass mh through the projection of the complex 
pole to the real axis. The pole mass equation can be inverted to give

μ2
1(μ̄)

μ̄ ≈ mZ= −m2
h

2

[
1 − Re�h(−imh; μ̄)

m2
h

]
. (C.25)

Similarly, the other parameters read (always implicitly assuming μ̄ ≈ mZ)

λ1(μ̄) = g2
0m2

h

8m2
W

[
1 + δg2

2(μ̄)

g2
0

+ Re�
(T )
W (−imW ; μ̄)

m2
W

− Re�h(−imh; μ̄)

m2
h

]
, (C.26)

h2
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0m2
t

2m2
W

[
1 + δg2

2(μ̄)
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0

+ Re�
(T )
W (−imW ; μ̄)

m2
W

− 2(
S − 
V)(−imt ; μ̄)

]
, (C.27)
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, (C.28)

λ3(μ̄) = g2
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where δg2
2(μ̄) ≡ g2

2(μ̄) − g2
0 is from eq. (C.14). Following conventions in the literature, λ2(mZ)

and λH (mZ) ≡ λ3(mZ) + λ4(mZ) + λ5(mZ) are used directly as input parameters.
For approximate estimates, including only the large effects from λ2

3, (λ3 + λ4 ± λ5)
2 and h4

t , 
eqs. (C.25) and (C.26) can be simplified into
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+ (λ3 + λ4 + λ5)
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+ (λ3 + λ4 + λ5)
2 ln

μ̄2

m2
H

+ (λ3 + λ4 − λ5)
2 ln

μ̄2

m2
A

]
.

Apart from directly approximating eqs. (C.25) and (C.26), these expressions can also be derived 
from the “naive” procedure of minimizing the effective potential V0 + V1, and tuning μ2

1(mZ)

and λ1(mZ) so that the location of the minimum is at v2
min � 4m2

W/g2
2 and the second derivative 

at the minimum is (V0 + V1)
′′(vmin) � m2

h. This naive procedure can easily be implemented 
numerically and then also applied to the 2-loop potential at zero temperature.

C.4. Practical procedure

A problem with the 1-loop expressions listed in appendix C.3 is that if the couplings λ3, λ4
and λ5 are first determined at tree level, and these values are subsequently inserted into the 
1-loop corrections, as given in eqs. (C.25)–(C.31), then the corrections are in many cases of 
order 100%; for instance, λ1(mZ) can be driven to a negative value. If corrections are of order 
100%, there is no reason to trust the results. The problem can be somewhat “regulated” by solving 
eqs. (C.25)–(C.31) “self-consistently”, i.e. by requiring that the couplings have the same values 
on both sides of the equations. In general, this reduces the magnitude of the largest coupling 
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λ3, whereby the corrections remain below 100%. A further “resummation” can be implemented 
by determining μ2

1(mZ) and λ1(mZ) à la Coleman–Weinberg, as outlined below eq. (C.33). An 
advantage of this procedure is that 2-loop corrections can be partially included into μ2

1(mZ) and 
λ1(mZ). The values listed in Table 3 have been obtained by determining μ2

1(mZ) and λ1(mZ)

from the effective potential and the other parameters from the 1-loop pole mass relations in 
sec. C.3. However, we have also tested the procedure where 1-loop pole mass relations are used 
for all the couplings. This changes the values of μ2

1(mZ) and λ1(mZ) given in Table 3 by up 
to ∼ 20% for BM2, and only a few % for BM1 and BM3, however our conclusions concerning 
thermal effects remain unchanged in all cases.

C.5. Counterterms and renormalization group equations

Finally, let us list the counterterms needed in our analysis. The notation for them was defined 
in sec. 4.2. We stress that the same counterterms appear both in the vacuum renormalization com-
putations of the current section and in the thermal 2-loop effective potential given in Appendix B. 
The results agree with ref. [14] for the counterterms that can be found there. The complete list 
reads

δZμ2
1
= 1

(4π)2ε

[
3h2

t − 9g2
2

4
+ 6λ1 + μ2

2

μ2
1

(
2λ3 + λ4
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, (C.34)
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(4π) ε
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δZv = 1
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t + 5g2
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, (C.45)

δZχ = 1

(4π)2ε

[
3g2

2

2
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, (C.46)

δZA = δZξ = g2
2

(4π)2ε

[
3 − 4nG

3

]
. (C.47)

The counterterm δZχ , appearing in eq. (B.3), only contributes to thermal effects which are for-
mally of higher order than the accuracy of the computation.

As usual, the counterterms fix the renormalization group equations as

μ̄
dλi

dμ̄
= 2λi ε δZλi

+O(λ3
i ) , (C.48)

and similarly for the other couplings.
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