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We consider the sign problem for classical spin models at complex β = 1/g20 on L×L lattices. We
show that the tensor renormalization group method allows reliable calculations for larger Imβ than
the reweighting Monte Carlo method. For the Ising model with complex β we compare our results
with the exact Onsager-Kaufman solution at finite volume. The Fisher zeros can be determined
precisely with the TRG method. We check the convergence of the TRG method for the O(2) model
on L × L lattices when the number of states Ds increases. We show that the finite size scaling
of the calculated Fisher zeros agrees very well with the Kosterlitz-Thouless transition assumption
and predict the locations for larger volume. The location of these zeros agree with Monte Carlo
reweighting calculation for small volume. The application of the method for the O(2) model with a
chemical potential is briefly discussed.
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I. INTRODUCTION

Sign problems appear generically in models for
fermions with a chemical potential. Despite the impor-
tance of calculations at finite density in many situations,
this has remained a very challenging problem for Monte
Carlo (MC) practitioners in particle physics and con-
densed matter physics [1]. Sign problems also occur in
models with complex couplings or temperature. At fi-
nite volume, lattice models with compact field variables
usually have a partition function which is analytical in
the entire complex coupling plane. Studying the ana-
lytical continuation of these models can be used to un-
derstand the convergence of various types of expansions
[2] and to distinguish different types of phase transitions
[3, 4]. Complex renormalization group flows can also be
defined and the zeros of the partition function in the com-
plex coupling plane, called Fisher zeros, determine their
global structure [5–7].

Calculations with a complex coupling can be per-
formed by reweighting MC configurations generated
without sign problem using a real coupling. A simple
example is the calculation of the partition function of
a spin or gauge model with a complex inverse coupling
β = Reβ + iImβ. It can be expressed as [8]:

Z(Reβ + iImβ)/Z(Reβ) =< e−iImβE >Reβ . (1)

However, the fluctuations of this quantity become of the
same size as the average when Imβ is too large. For a
Gaussian distribution of energies (actions), this occurs
when Imβ of the order of V −1/2 [9].

In this article, we argue that the Tensor Renormaliza-
tion Group (TRG) method for classical models [10–19]
provides a solution to the sign problem preventing direct
MC simulations at complex β. This method can be ap-
plied to most models [16, 18] studied by lattice gauge the-
orists. In the following, we use the TRG method based on

the higher-order singular value decomposition (HOTRG)
[15] to calculate the complex partition functions of the
two-dimensional (2D) classical Ising and O(2) (also called
classical XY) models with complex β. The reason why
the HOTRG method is relatively insensitive to complex
values of β is explained in the next section (Sec. II).

The rest of this paper is organized as follow. In Sec.
III, we consider the exactly solvable case of the 2D Ising
model on a square lattice. A highly accurate numeri-
cal solution from HOTRG calculations at real tempera-
ture has already be obtained in Ref [15]. We extend the
HOTRG calculation to the partition function at complex
β for finite volumes and determine the zeros of the com-
plex partition functions. By increasing the number of
states Ds used in the HOTRG procedure, the agreement
with the exact Onsager-Kaufman solution [20] improves
and the error is much smaller than the MC reweighting
method. However, for a chosen accuracy, Ds must be
increased as one approaches a Fisher zero. Next, in Sec.
IV, we apply the same method to search for the zeros of
partition functions for the 2D O(2) model at finite vol-
ume and analyze the lowest zeros for different volumes by
using finite size scaling. This yields the analytic behav-
ior of the zeros at the large volume limit. Finally, results
are summarized and ongoing practical applications with
a chemical potential are discussed in Sec. V.

II. HOTRG

The partition function of a spin or gauge model with lo-
cal interactions can be represented as the trace of a prod-
uct of local tensors. For the 2D classical Ising and O(2)
models on a square lattice, starting from the initial local
tensor T (0) [15, 18, 19], 2N HOTRG steps are applied in
the two directions alternatingly to get a coarse-grained
tensor corresponding to a system with volume 2N × 2N .
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At the nth step, firstly, a contracted tensor, M (n), is
defined [15] by connecting two local tensors T (n−1):

M
(n)
xx′yy′ =

∑
i

T
(n−1)
x1x′

1yi
T

(n−1)
x2x′

2iy
′ , (2)

where x = x1 ⊗ x2 and x′ = x′1 ⊗ x′2. Secondly, the
new local tensor, T (n), is formed by applying an unitary
transformation U (n) followed by a truncation to the two
sides of M (n) with product states x and x′,

T
(n)
xx′yy′ =

∑
ij

U
(n)
ix M

(n)
ijyy′U

∗(n)
jx′ . (3)

If U is a real matrix, the parity symmetry is satisfied as

Txx′yy′ = Tx′xyy′ . (4)

For each step, the unitary matrix U is determined by
taking the singular value decomposition of a specific ma-
trix denoted as Q. By reserving the number of states to
Ds, we mean keeping the eigenvectors corresponding to
the first Ds largest singular values of Q. The T tensor
is projected into Ds new states in each direction without
losing much information. In Ref [15], for real β, Q was
chosen as

Q ≡M ′M ′† = UΛU†, (5)

where the matrix M ′x,x′yy′ is converted from the tensor

Mxx′yy′ by regrouping its indices x′yy′ into a single one.
For complex β, however, the parity symmetry Eq. (4)

is broken if U has complex entries. To keep the symmetry,
we need to use orthogonal transformations. The first
candidate of Q matrix is the positive-definite symmetric
matrix:

Re(M ′M ′
†
) = ReM ′ReM ′

T
+ ImM ′ImM ′

T
,

as it has the same trace as M ′M ′
†
. However, the Q

matrix is not necessarily positive-definite as the singular
values are |λ| for a symmetric matrix and |iλ| for an an-
tisymmetric matrix, where λ are the eigenvalues. Then,
the Q matrix can be taken as these three special cases:

Re(M ′M ′
T

) = ReM ′ReM ′
T − ImM ′ImM ′

T
,

Im(M ′M ′
†
) = ImM ′ReM ′

T − ReM ′ImM ′
T
,

Im(M ′M ′
T

) = ReM ′ImM ′
T

+ ImM ′ReM ′
T
.

At a fixed Ds, the distribution of the normalized singu-
lar values λi/λ1 at different β (e.g. Fig. 6), which is
associated with the error of calculation, are very similar
to each other for these four cases except that for real β,
the last two constructions are not present. The numer-
ical results of all these four constructions are compara-
ble with each other and better than the MC reweighting
calculation. From the comparison between the results
with the exact solution of the 2D Ising case, the errors

from Q = Re(M ′M ′
T

) are smoother than the other three
cases. For this reason, the calculations below were done

with Q = ReM ′M ′
T

. We have checked in several cases
that other choices lead to similar results.

III. THE ISING MODEL WITH COMPLEX β

We first consider the 2D Ising model on L × L lattice
with even L,

βH = −β
∑
<ij>

Si · Sj . (6)

The exact solution for the partition function of this model
at finite volume and periodic boundary conditions was
written by Kaufman in 1949 [20]. When β is complex,
the choices of signs for the square roots are discussed in
the Appendix. For even L, the Hamiltonian is always a
multiple of four and

Z(β) = Z(β + inπ/2). (7)

In the infinite volume limit, the partition function zeros
lie on two circles in the complex tanhβ plane given by
±1+

√
2 exp(iθ) (0 ≤ θ ≤ 2π) [21], mapping to two curves

(we call them “Fisher curves”) each with periodicity π in
the imaginary direction of the complex β plane. The
first quadrant part of the zeros with 0 ≤ Imβ ≤ π/2 are
shown in Fig. 1. The reason why the finite volume zeros
are not exactly on the Fisher curves is explained at the
end of the Appendix. The zeros in the other quadrants
are just the mirror images along x-axis and y-axis given
that Z(−β) = Z(β) and Z(β∗) = Z(β)∗.
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FIG. 1. Fisher curves and the zeros at finite volume for a
L = 8 system. Complex β in region 1, 2, and 3 are displayed.

In this section, we use the HOTRG method to calculate
the partition function Z(β) and the free energy for the
finite volume model. As the partition function is huge

(∼ eaL2

), a normalized version as in Eq. (1) needs to be
used. For large Imβ, however, Eq. (1) may give results
too small to analyze and a different normalizing factor
Z(β0) is chosen, in which β0 can be complex as long as
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Z(β0) is not zero. To analyze the accuracy of the TRG
results, we calculate the relative error of the real part of
free energy in logarithmic scale, namely, minus significant
digits (-S.D.) compared to the exact solution,

S.D. = − log10

∣∣∣∣fHOTRG − fexact
fexact

∣∣∣∣ . (8)

By looking at the comparison of the results from the
HOTRG calculation with the exact solution for different
β, we find that the accuracy of the HOTRG calculation
is related to the distance from the β to zeros of parti-
tion function. The closer to any zero, the larger Ds is
needed to get a more reliable result. Taking a 64 × 64
lattice system for example, we consider βs on short line
segments in three different regions (Fig. 1). Region 1:
Reβ = 0.437643, Imβ ∈ [0.012, 0.014], in which the ap-
proximated lowest zero 0.437643 + i0.01312 is included.
Region 2: Reβ = 0.437643, Imβ ∈ [0.784, 0.786], in which
the point 0.437643+ iπ/4 with the largest distance to ze-
ros on the line Reβ = 0.437643 is included. The HOTRG
calculation for different periodical factor n in Eq. (7) also
confirms the periodicity of the partition function. There-
fore only the result from β in the first period are needed.
Region 3: Reβ = 0.6 and the same imaginary part range
as Region 2. We also compare the HOTRG results with
those from MC reweighting (69 β in [0.2, 0.625], 500000
configurations for each β) and find that the TRG results
are better than MC in all three regions.

As examples for the case where β is far from any zero
(region 2 and 3), Fig. 2 and 3 shows the real part of
the normalized partition function Z(β)/Z(β0), in which
β0 = 0.437643 + i0.784 for region 2 and β0 = 0.6 + i0.784
for region 3. Comparing the -S.D. in Fig. 2 and 3, it
is clear that the βs in region 3, farther from zeros, have
smaller error. In one region, the approximate minimum
of the error curve is at Imβ = π/4, which has the largest
distance to any zero.

For region 1, where β is in the vicinity of a Fisher zero,
larger Ds is needed to obtain results with a small error.
Figure 4 shows Re[Z(β)/Z(β0)] (β0 = 0.437643 + i0.012)
for βs in region 1. By increasing Ds, the HOTRG results
get closer to the exact solution. With current configu-
rations, the MC reweighting results are worse than the
HOTRG results with Ds = 10 near the lowest zero.

To understand the error of the HOTRG calculation
near the lowest zero, we plot the relative error of the real
part of free energy in Fig. 5 for different Ds. At fixed
Ds, the closer to the zero, the larger the error, and with
fluctuation due to the fact that it is near the singularity
point of the free energy at Fisher zeros. Besides the rel-
ative error of the free energy, the distributions of all D2

s

normalized singular values of the Q matrix are different
for βs in the three regions at fixed Ds. In Fig. 6, The
peak of the histogram decreases (move to left) as the β
changes from region 1 to region 3. This shows that the
truncated D2

s − Ds singular values are smaller when β
are farther away from the Fisher zeros.

The direct calculation of the partition function with
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FIG. 2. Left: The real part of the normalized partition func-
tion for region 2, result from the HOTRG with Ds = 30,
MC, and the exact solution. Right: relative error of the real
part of free energy from HOTRG calculation, minimum at
Imβ = π/4.
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FIG. 3. Left: The real part of the normalized partition
function for region 3, result from HOTRG with Ds = 30,
MC, and the exact solution. Right: relative error of the real
part of free energy from HOTRG calculation, minimum of the
error curve at Imβ = π/4 approximately.

complex β provides a way for one to search for the zeros
of the partition function. To locate the zeros, we scan the
complex β plane to find two sets of curves where the real
and imaginary parts of the partition function are zeros.
By using small sweep span, we can construct the contours
corresponding to zero value for the real and imaginary
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FIG. 4. The real part of the normalized partition function
for β near the Fisher zero 0.437643 + i0.01312 (the big filled
circle on the real axis): result from the HOTRG withDs = 10,
20, and 40 (Ds = 30 result is not shown as it is close to the
Ds = 40 case), MC, and exact solution.
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FIG. 5. The relative error of the real part of free energy for
HOTRG calculation with Ds = 10, 20, 30, and 40. Vertical
line corresponds to the lowest zero.

parts. The intersection between the real and imaginary
contours are the complex partition function zeros. In
Fig. 7, the zeros for a 8 × 8 system from the HOTRG
with Ds = 40 is shown, from which one can see that the
HOTRG calculation reproduces the exact solution, while
the MC calculation has larger errors at large imaginary
β. To estimate the MC results, the region of confidence
∆β is calculated to locate the largest reliable Imβ where
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FIG. 6. The distributions of normalized singular values λ/λ1

for β0 in region 1, 2, and 3, with Ds = 40. There are 1600
singular values for each case.

the fluctuation has the same size of the average [22].

|∆β|2 < ln(Nconf./τ)/σ2, (9)

where Nconf. is the number of configurations, τ is the
integrated correlation time, and σ is the standard de-
viation of the total action and scales like V 1/2. ∆β is
inversely proportional to the linear size of the system
Imβmax ∼ L−1 for 2D Ising model as ν = 1.

IV. THE O(2) MODEL WITH COMPLEX β

In this section, we will apply the HOTRG method to
the 2D O(2) model (the XY model) with complex β on
L× L lattice with even L,

βH = −β
∑
<ij>

cos(θi − θj). (10)

Following the search method introduced in the previ-
ous section, we can also locate the zeros of the 2D O(2)
model in finite volume. In Fig. 8, the lowest zeros (listed
in Table I, II) for different volumes from the HOTRG
with different Ds are shown. For each L, as Ds increases
up to 50, the zeros converge to a point in the complex β
plane with an error of order 0.01 for both the real and
imaginary parts.

By using small sweep span in the complex β plane,
we locate the zeros with more digits for the cases of
Ds = 40 and 50, results are shown in Table II (except
for L = 128, D = 40, where the fluctuations are larger).
Figure 9 shows the comparison of the values from the
HOTRG with Ds = 40 and 50 and zeros calculated from
MC reweighting (from 41 β in the region [0.7, 1.0]). At
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FIG. 7. Zeros of Real (�) and Imaginary (�) part of the
partition function of Ising model at the volume 8 × 8 from
the HOTRG calculation with Ds = 40 are on the exact solu-
tion lines. Gray dots: MC reweighting solution. Thick Black
curve: the region of confidence for the MC reweighting result,
above this line, the MC error is large.
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FIG. 8. Fishers zeros of XY model with length L = 4, 8, 16,
32, 64, and 128 (from up-left to down-right) at different Ds.
For L = 128, only Ds = 40 and 50 are shown.

small volume (L = 4, 8, and 16), two results agree with
each other within one percent. However at L = 32, when
the number of MC configurations for each β was increased
from 106 to 1.3 × 107, the MC results converged slower
than the HOTRG calculations from Ds = 40 to 50.

We performed finite size scaling for the lowest zeros
calculated from the HOTRG with Ds = 50 (Table II)
to estimate the behavior of the lowest zeros for larger
L. For one step of the RG transformation with scaling

L Ds = 16 Ds = 20 Ds = 30

4 0.6501 + i0.3774 0.6545 + i0.3896 0.6585 + i0.3919

8 0.7988 + i0.2277 0.7985 + i0.2332 0.7989 + i0.2409

16 0.8745 + i0.1483 0.8807 + i0.1522 0.8841 + i0.1547

32 0.9239 + i0.1106 0.9304 + i0.1024 0.9370 + i0.1025

64 0.9600 + i0.08728 0.9636 + i0.08565 0.9731 + i0.07235

TABLE I. The lowest zeros from HOTRG calculation with
Ds = 16, 20, and 30 for different volumes.

L Ds = 40 Ds = 50

4 0.658866 + i0.3909946 0.6590215 + i0.3907913

8 0.801055 + i0.2419952 0.8006218 + i0.2405708

16 0.885983 + i0.1542734 0.8848648 + i0.1538418

32 0.940816 + i0.09848932 0.9402603 + i0.10032925

64 0.979298 + i0.0680147 0.9787804 + i0.06812091

128 1.003 + i0.05492(noise) 1.0054329 + i0.0488771

TABLE II. The lowest zeros from the HOTRG calculation
with Ds = 40 and 50 for different volumes (except for Ds =
40, L = 128).

factor b̃ at large L (L→ L/b̃), the correlation lengh scales

like ξ → ξ/b̃. By assuming that the singular part of the
partition function is a function f(ξ/L), then at the zeros,

Z(βz) = f(z0) = 0, (11)

the values of zeros for different volumes map to the same
z0 at large L.

From the scaling behavior of the correlation length for
a Kosterlitz-Thouless (K-T) transition [23, 24],

ξ = A exp(b/
√
t), (12)

where t = βc − Reβ − iImβ for Reβ < βc and βc is the
K-T transition coupling. By taking the imaginary part
as a perturbation from the real part and from the leading
order equation for real and imaginary t, one can obtain
the relation between Reβz and Imβz as

Imβz =
2a

b
(βc − Reβz)

3/2, (13)

where a = Im(ln(z0/A)).
According to the high accurate results for critical βc

from Monte Carlo [25, 26] and High Temperature expan-
sion [27, 28], we fix the critical coupling βc = 1.1199 and
do a one-parameter fit for the zeros βc from the HOTRG
calculation with Ds = 50. The best fitting parameter
value is a/b = 0.63942 ± 0.00919. From Fig. 9, the
current zeros are very close to the model. It is obvious
that the zeros pinch the real axis convexly as L increases
for the K-T transition, while in the case of the 2D Ising
model which has a second-order phase transition the ze-
ros pinch the real axis concavely.
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FIG. 9. Zeros of XY model with linear size L = 4, 8, 16,
32, 64, and 128 (from up-left to down-right) calculated from
HOTRG with Ds = 40, and 50 and zeros with L = 4, 8, 16,
and 32 from MC. The curve is a model for trajectory of the
lowest zeros.

We can also do more-parameter fits for the scaling re-
lation of the real part of t separately to obtain the critical
coupling β, up to the second digits of which is consistent
with the values obtained in these refs [25–28]. However,
to get more accurate critical coupling, zeros at larger vol-
ume with more Ds are needed for the HOTRG calcula-
tion. The computational demands for time and memory
of such calculations seem to require more than a laptop.

V. CONCLUSIONS

In conclusions, we have shown that the partition func-
tion of spin models (2D Ising model and 2D O(2) model)
at complex coupling β can be calculated accurately by
the HOTRG method even at large Imβ where the MC
reweighting method fails. Reliable zeros of the partition
function of these spin models can also be obtained by
the HOTRG calculation. By the finite size scaling for
the lowest zeros of 2D O(2) models at different volumes,
we have shown that the zeros will pinch the real axis con-
vexly in the infinite volume limit for the K-T transition.

In summary, the success of the HOTRG method to
solve the complex partition function and obtain the zeros
of the partition functions shows that this new method
seems insensitive to the problem associated with complex
value. This allows us to apply the TRG method to study
another sign problem, the Z(N) and O(2) models with a
complex chemical potential iµ. Take the 2D O(2) model

βH = −β
∑
<ij>

cos(θi − θj − iµ) (14)

as an example, the local tensor can be formulated by the

modified Bessel function of the first kind (In ≡ In(β))
and exp(nµ):

Txx′yy′ =
√
Ixexµ

√
Iyeyµ

√
Ix′ex′µ

√
Iy′ey

′µδx+y,x′+y′ ,

(15)
which have no complex terms at all. We plan to compare
the results from TRG calculation with those obtained
with other method such as dual formulations [29] and
world-line methods [30, 31] in the future.
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Appendix: Kaufman’s Exact Solution

The partition function Z(L, β) of a finite L×L square
lattice with L even and periodic boundary conditions is

Z(L, β)) =
1

2
(2 sinh(2β))

L2

2

4∑
i=1

Zi(β), (A.1)

with

Z1 =

L−1∏
r=0

2 cosh

(
1

2
Lγ2r+1

)
, (A.2)

Z2 =

L−1∏
r=0

2 sinh

(
1

2
Lγ2r+1

)
, (A.3)

Z3 =

L−1∏
r=0

2 cosh

(
1

2
Lγ2r

)
, (A.4)

Z4 =

L−1∏
r=0

2 sinh

(
1

2
Lγ2r

)
, (A.5)

http://arxiv.org/abs/de-sc/0010114
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where

cosh γl = cl = cosh(2β) coth(2β)− cos

(
πl

L

)
, (A.6)

so that

γ0 = 2β + log(tanh(β)), (A.7)

γl = log

(√
c2l − 1 + cl

)
, l 6= 0. (A.8)

These expressions contain square roots and logarithms
that can lead to cuts and discontinuities if not handled
properly. We know that at finite volume, the partition
function is an analytical function in the entire complex
β plane. More precisely, it is a sum of exponentials with
integer weights that count the number of ways we can
have a given energy. For instance, for L = 4, the partition
function reads:

2e−32β + 32e−24β + 64e−20β + 424e−16β + 1728e−12β +
6688e−8β +13568e−4β +13568e4β +6688e8β +1728e12β +
424e16β + 64e20β + 32e24β + 2e32β + 20524.

As we assumed L even, the use of square roots and

logs can be circumvented by expressing the factors in
Eq. (A.5) in terms of the Chebychev polynomials:

cosh((L/2)γr) = TL/2(cosh(γr)), (A.9)

sinh((L/2)γr) = UL/2−1(cosh(γr)) sinh(γr).(A.10)

Using Eq. (A.6) and using the pre factor to cancel poles
at β = 0, we see that the first and third terms of the par-
tition function are now polynomials of entire functions.
The factors sinh(γr) have a sign ambiguity however they
come in pairs except for sinh(γ0) and sinh(γL). A careful
reading of footnotes in Ref. [20] yields

sinh(γ0) = cosh(2β)− coth(2β), (A.11)

sinh(γL) = cosh(2β) + coth(2β). (A.12)

Combining these results, the partition function is clearly
an entire function. We have checked that this procedure
reproduces the exact results for the partition function
and the zeros for different L. For example, from the
location of zeros of a 8× 8 system in Fig. 1, one can find
that the zeros of a finite volume system are still in the
vicinity of the zero curves from infinite volume limit. It
should be noted that locus of the zeros given by Fisher
[21], ±1 +

√
2 exp(iθ) (0 ≤ θ ≤ 2π) represent curves

where the zeros of the individual terms Z1, Z2, Z3, and
Z4. However at finite volume, the zeros of the four terms
are slightly different and the zeros of the sum of the four
terms are slightly away from the Fisher curves.
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