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Abstract

Inflation is a much discussed topic within the field of cosmology; it represents a time
in the history of the Universe where a very rapid, exponential expansion was taking
place. This expansion is needed in order for the currently used Big Bang model to
fit with what we observe today; however the nature of this inflation is still not well
understood. Among the theories of how inflation starts, evolves and ends, f(R) gravity
is the one we will focus on in this thesis. The most attractive trait of f(R) gravity is
that it can explain the accelerated expansion without the need of introducing exotic,
new particles and/or energies into the Universe, such as dark energy and dark matter.
During the research in this thesis of f(R) gravities we came across what seems to be
an as of yet unappreciated problem that arises when we perform a so-called conformal
transformation between the Jordan and Einstein frames. If we are not careful, the
conformal transformation can tangle our coordinates, so that we might produce errors
in codes that have not accounted for this entanglement. This understanding allowed
us to produce a paper titled “Gauge Issues in Extended Gravity and f(R) Cosmology”,
published in the Journal of Cosmology and Astroparticle Physics Issue 04, 2012. From
this spawned a new direction of the research, to modify an existing Boltzmann code in
order to fully safeguard against these problems. After reviewing the biggest Boltzmann
codes, the choice fell to either CLASS or CAMB, where we chose CAMB due to the
fact that Fortran is a much more familiar language than C, even though it could be
argued that CLASS is the more readily modifiable, while remaining stable, program.
The process of modifying CAMB is almost complete at this point; however, it is not yet
in a state suitable for presentation. The thesis also performs an analysis of the so-called
“non-Gaussianity” parameter fNL, CMB power spectrum and CMB bispectrum for a
specific f(R) model, in order to probe its viability, and to demonstrate the techniques
we will apply to more general models.
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Chapter 1

Introduction

In this thesis we will discuss f(R) models in cosmology and develop techniques to
analyze CMB non-Gaussianity induced by such models. The techniques will be able to
solve a wide range of modified gravity models, not limited to f(R) models. In this thesis
we will only utilize f(R) theories in our examples, this is however only as a test case.
We apply our developed techniques to modify an existing Boltzmann code, CAMB.

Here follows a short outline of the thesis; In Chapter 1 I have a short introduction to
my entire thesis, followed by all the preliminaries we need to know for further research
in Chapter 2. In Chapter 3 I give a general introduction to f(R) gravity theories, while
in Chapter 4 I discuss the statistics of an arbitrary f(R) gravity model. In Chapter 5 we
take a look at the gauge-issues that exist when cosmologists wish to transform between
the Einstein and Jordan frame, or more generally when anyone wishes to perform any
kind of conformal transformation. This chapter covers our paper “Gauge Issues in
Extended Gravity and f(R) cosmology” [1]. In Chapter 6 we start using what we learned
from the previous Chapters in order to modify CAMB for extended gravity theories. In
Chapter 7 we provide the results from Chapters 3-6, and we finish in Chapter 8 with
conclusions of the various results.

My thesis has undergone quite a few changes from when I first started out, and was
originally not supposed to be what is outlined above. The original goal would be to ana-
lyze a specific f(R) gravity theory in order to find what magnitude of non-Gaussianity
fNL it would provide. We have constraints on the value of fNL from observations, and
these constraints will be improved in the near future once data from the Planck satel-
lite is available. This non-linearity parameter fNL will allow us to rule out or reaffirm
various f(R) theories. All of this however, was covered in detail in a paper by Shinji
Tsujikawa and Antonio De Felice [2], which emerged shortly after we first approached
the topic, and what was to be my entire thesis has now been reduced to Chapter 3.

However, that paper did not stop me from wanting to work on f(R) gravity theor-
ies. They represent a very fascinating, and in my mind smart, way of describing the
inflationary epoch without having to introduce exotic particles and energies such as
dark matter and dark energy1. With some luck a summer project where we analyzed

1These dark quantities are called so because they represent something unknown that we cannot
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the Einstein and Jordan frame pushed us onwards to a new goal for this thesis, which
is what is outlined above.

Next I’ll supply some notes that will be important for the entire thesis.

1.1 Notations and Miscellaneous

This section contains a listing of the different notations we’ll be using throughout the
thesis, as well as other techniques that may not be obvious to the reader.

1.1.1 Conformal Time

We’ll use what is known as the conformal time η rather then the traditional cosmic
time t,2 defined as

η ≡
∫ t

0

dt′

a(t′)
. (1.1)

The conformal time represents the co-moving distance that light could have traveled
since a time t = t′ [3], η therefore represent the size of the Universe today, and things
separated by a distance greater than η are not causally connected. More on this in §2.6.

1.1.2 Einstein Summation Convention

Throughout this paper we will be using what is known as the Einstein summation
convention. It tells us to sum over all possible values of indices that appear both as
super- and subscripts,

gαβR
α =

3
∑

a=0

gaβR
a. (1.2)

Note that Latin letters represent the spatial part, and the sum shall only go from
a = 1, ..., 3, whereas Greek characters include the time part, and should sum from
a = 0, ..., 3. This notation makes the complicated math of General Relativity much
more manageable.

observe directly, yet. They are however needed to unify theory with the observed nature of the Universe,
unless we use extended gravity theories.

2We can easily convert equations in the literature given in cosmic time to conformal time with the
relation dt = adη.
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1.1.3 Derivatives

In general we also have the following derivative notations for a scalar A and tensor F :

dA

dη
= Ȧ,

∂A

∂x
= A,x,

∂2A

∂x2
= A,xx

∂iA =
∂A

∂xi
, ∇2A = ∂i∂

iA

� = ∇µ∇µ, ∇µFν = ∂µFν − ΓσµνFσ

∂(iFj) = ∂iFj + ∂jFi, ∂[iFj] = ∂iFj − ∂jFi,

where Γσµν is the Christoffel symbol – more on this in §2.4.3 – and xi is the i’th component
of the vector x = (η, x, y, z).

1.1.4 Other Conventions

We will be working in certain specific units throughout this thesis in order to simplify
the majority of the equations. We will be working in units where the speed of light c = 1,
with a quantity κ given by κ2 = 8πG where G is Newton’s gravitational constant, and
typically with no cosmological constant Λ = 0. We employ a metric signature (-+++)
and the Ricci tensor Rµν = Rααµν = Γαµν,α + ... – more on this Ricci tensor in §2.4.3.
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Chapter 2

Preliminaries

2.1 The Concept of Modern Cosmology

Cosmology is in general the study of everything. We attempt to understand how the
universe first began, how it evolves, what it looks like and what size it has, how old it
is, and of course, how it will all end. In the two next sections several terms will crop
up that will be further explained in the following sections.

The field of cosmology is built upon one underlying principle, the Copernican
principle, also known as the cosmological principle. It tells us that no places in the
Universe is special1, and that one point in space should be able to represent every other
point in the Universe. This is also the basis for the Big Bang cosmology.

A lot of this chapter has been inspired by Sean M. Carroll’s “Spacetime and Geo-
metry” [4], Øyvind Grøn’s “Einstein’s General Theory of Relativity” [5], Andrew Liddle’s
“Introduction to Modern Cosmology” [6], Scott Dodelson’s “Modern Cosmology” [3] and
lecture notes by local Professor Øystein Elgarøy [7], as well as various other minor
sources.

2.2 A Very Short History of Everything

The current Big Bang theory of cosmology assumes that the Universe started out from
one singularity where all the mass of the Universe was collected at a time t = 0. The
laws of physics as we know them today allow us to describe the Universe as far back
in time as the end of the Planck era. The Planck era was a time when we suspect the
Universe was filled with relativistic elementary particles such as quarks, leptons, gauge
bosons and possibly the Higgs boson2, to do any actual calculations in this era we would
need a new theory of quantum gravity. The Planck era lasted from the Big Bang until a
Planck time later, where from Quantum Physics and Heisenberg’s uncertainty principle

1In striking contrast to long held beliefs that the Earth was the center of Universe.
2CERN are confident that they will find the Higgs boson soon at the time of writing; it will remain

to be seen if they actually do.
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we can construct the Planck time as

tP l =
~

MP lc2
=

√

~G

c3
= 5.4 · 10−44 s, (2.1)

where MP l is the Planck mass3, ~ is the Planck constant and G is the Gravitational
constant. At the Planck time, we can find the radius of the observable Universe to be of
the Planck length lP l = ctP l = 1.6 · 10−35 m and with a temperature of TP l = 1.5 · 1032

K.
After the Planck era, we immediately enter the inflationary era, starting at t = 10−43

s after BB, and lasting until t = 10−33 s. During this very short period the Universe
went through a very rapid exponential expansion, increasing the size of the Universe
by a factor of 1043. In a matter of 10−33 seconds the entire observable Universe went
from being on a sub-nuclear scale to an astronomical scale! As well as expanding the
Universe at an exponential rate, inflation is a solution to other curious problems with
the Big Bang theory; we’ll return for a more detailed look at inflation in §2.7. As the
size of the Universe increased, the temperature decreased. Soon the temperature had
dropped sufficiently far enough to allow elementary particles in the Universe to start
forming larger nucleus, and eventually atoms.

Shortly after inflation ended, when the Universe was about one second old, what
we call Big Bang Nucleosynthesis started. This is the process where the first protons
and neutrons met and formed nucleons; however due to the high temperature of the
Universe and the abundance of photons, the electrons still remained free. Whenever an
electron attempted to join with a photon and neutron to form a stable atom, it would
be kicked straight out by a passing photon. Therefore the Universe remained in a state
where it was filled with an ionized gas, until the temperature dropped far enough to
initialize decoupling4.

Decoupling occurred about 300 000 years after the Big Bang, when the temperature
of the Universe had dropped down to about 2700 K,5 allowing electrons to bind with
protons and neutrons without instantly being excited again. After this had been going
on for a little while, almost all the electrons in the Universe had settled down into the
ground state of the atoms, and for the first time, photons could travel freely through
space. This event turned the Universe from an opaque gas, to being completely trans-
parent. The photons we detect today have been traveling for a long time, and have
reduced their temperature from 3000 K to about 2.7 K due to the expansion of the
Universe, which is equivalent to their wavelengths having been redshifted so that they
now are only observed in the microwave region of the electromagnetic spectrum. This is

3For the majority of this thesis we will be working with the reduced Planck mass mPl =
(8π)−1/2MPl.

4As decoupling is a general term that can be used for several epochs in the Universe and in general,
the term “Recombination” is often used for this event. However, as this is the first time protons,
neutrons and electrons combined the first atoms, the “Re”-part is not a proper term to use, and will
therefore not be used in this thesis.

5This is an average temperature, meaning that there are countless photons still around with a much
higher temperature. This is the reason why decoupling didn’t take place the moment the temperature
of the Universe dropped down below the binding energy of electrons.
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Figure 2.1: Sketch of the evolution of the Universe, courtesy of Scientific American.

the origin of the Cosmic Microwave Background (CMB) radiation, a snapshot of what
the Universe looked like 300 000 years ago.

After this event, the Universe didn’t undergo any major changes for quite some
time. It continued to expand, cool down, and the gas cloud of newly formed atoms were
allowed to interact with each other, clustering together thanks to gravity, and creating
even stronger gravitationally bound gas clouds. Eventually some of these gas clouds be-
came so dense that the gravity of the gas itself caused it to collapse inwards, increasing
the density and temperature of the gas cloud. When the pressure and density were suffi-
ciently high, new nuclear reactions started, and the very first stars of the Universe were
formed. These stars started sending out new, fresh photons, with energy high enough to
ionize the rest of the gas in the Universe. This event, called re-ionization, returned the
gasses of the Universe closer to their previous state, and is generally considered to be a
problem for observational astronomers when they are observing the moment of decoup-
ling. However, the features reionization has on the CMB can help break degeneracies
in the observed parameters that we would otherwise be left with.

From here on in, more stars were formed, stars died after having formed the heavier
elements, and this seeded the Universe with the elements needed to form the first planets
and other massive objects. These supernovae also play a big part for observational
astronomers, especially when they are to gauge distances in the Universe. This concludes
our brief overview of the history of the Universe. How will it continue from here? That
is among the many questions modern cosmologists are attempting to answer.
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2.3 Modern Cosmology in a Nutshell

Let’s continue with an intuitive way of looking at the field of cosmology. Imagine the
universe as consisting of a complicated and complex spacetime surface, in order to
simulate this we have a simplified model of a flat and nice-looking spacetime, which is
suitable to explain most of our observations. But then, in order to meet the additional
requirements set by more extensive surveys such as the CMB, we add perturbations
to our flat spacetime, and we will have gotten a model that is closer to the real deal,
but still relatively nice and easy to use in simulations. This process is illustrated in
Figure 2.2.

Figure 2.2: The real spacetime of our universe is represented as a messy shape on the
right. We attempt to approximate the real universe by using a simple cosmological
model, and add perturbations to the smooth surface to get closer to the actual reality.

Unfortunately we don’t work with just one kind of metric (representation of our
spacetime), but rather have a huge multitude of possible candidates, and sometimes
we need to transform between these. How to perform these transformations and still
preserve the physics and numerical stability, depend on our chosen gauge, and is a
major part later in this thesis.

We’ll now take a series of detours to lay the foundation of what we need in order to
fully appreciate the field of cosmology. Note that we assume the reader to be familiar
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with Special Relativity.

2.4 General Relativity

General relativity (GR) is Einstein’s theory of space, time and gravitation [4], and in
short terms tells us that gravity is a manifestation of the curvature of spacetime itself,
unlike other fields defined on the spacetime (electromagnetic fields etc). It can be said
that GR is a particular example of classical field theory, so let us take a quick detour
by looking at classical fields defined on a flat spacetime.

2.4.1 Classical Field Theory

When Newton’s laws break down, i.e. when we move on to more complex systems where
Newton’s second law becomes too unwieldy, we can turn to Hamilton’s Principle, which
is formulated in terms of an action integral,

S =

∫ t2

t1

L(qi(t), q̇i(t)) dt, (2.2)

where qi is a generalized coordinate and L is the Lagrangian of the system and is defined
as L = T − V , where T is the kinetic energy, and V is the potential energy.

The principle states that the path qi(t) between the points at t1 and t2, which
describe the evolution of the system [8], is characterized by the action being stationary
under small variations in the path qi(t) → qi(t) + δqi(t), with δqi(t1) = δqi(t2) = 0.
This condition can be written as

δS =

∫ t2

t1

δL dt = 0. (2.3)

Note that this is also often referred to as the “principle of least action”.
This requires a variation of the Lagrangian itself, and gives rise to the so-called

Euler-Lagrange (EL) equations,

δS =

∫ t2

t1

[

∂L

∂qi
δqi −

d

dt

∂L

∂q̇i
δqi

]

dt = 0

⇒ ∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (2.4)

Field theory is very similar, the coordinate q(t) is replaced by a set of spacetime-
dependent fields Φi(xµ), and S is now a functional6 of these fields. The Lagrangian is
expressed as an integral over space of a Lagrangian density L (now a function of the
field Φi and their spacetime derivatives ∂µΦ

i),

L =

∫

d3x L(Φi, ∂µΦ
i) ⇒ S =

∫

d4x L (2.5)

6A functional is a function of an infinite number of variables.
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Similarly to earlier, we can find new Euler-Lagrange equations keeping the same
form as earlier,

∂L
∂Φi

− ∂µ

(

∂L
∂(∂µΦi)

)

= 0. (2.6)

For deeper discussion of this I refer the reader to [4] as a great source.

2.4.2 The Metric and Line Element

The metric is a symmetric tensor that plays an important role in all of GR and cos-
mology. The metric, gµν , has to be a symmetric tensor that is non-degenerate (the
determinant g = |gµν | 6= 0), so that the inverse metric gµν is defined as,

gµνgνσ = δµσ , (2.7)

where the symmetry of gµν implies symmetry in gµν . We can use this to raise and lower
indices, just as in Special Relativity [4, 5].

The metric gµν has numerous special abilities worth noting. In the words of Carroll
[4], it supplies a notion of “past” and “future”, it allows the computation of path length
and proper time, it determines the “shortest distance” between two points and therefore
the motion of “test particles”, it replaces the the Newtonian gravitational field Φ, and
it defines the speed of light.

Next we define the line element,

ds2 = gµνdx
µdxν , (2.8)

where dxµ is an infinitesimal displacement in the direction of xµ. The line element is
used to present what kind of universe we are looking at, and is supplied instead of the
metric itself throughout the literature.

2.4.3 The Tools of GR

In order to perform calculations within GR, there are several tools we need to know
how to use. First up is the Christoffel connection Γ, where the Christoffel symbols are
defined by

Γµαβ =
gµν

2
[gαν,β + gνβ,α − gαβ,ν ] . (2.9)

This is one of the biggest building blocks of GR, and will be used every time we do
calculations in GR.

Next up, using the Christoffel symbols, we define the Ricci tensor Rµν as

Rµν = Γαµν,α − Γαµα,ν + ΓααβΓ
β
µν − ΓαβνΓ

β
µα. (2.10)

We can then continue by taking the trace of equation (2.10) to find the Ricci scalar,

R = Rµµ = gµνRµν , (2.11)
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which is the final piece we need to construct the Einstein tensor Gµν ,

Gµν = Rµν −
1

2
Rgµν . (2.12)

The Einstein tensor is the left hand side of Einstein’s equation,

Gµν = κ2Tµν , (2.13)

where Tµν is the stress-energy tensor and κ2 = 8πG = m−2
P l .

2.4.4 The Stress-Energy Tensor

The stress-energy tensor is a tensor used to express the matter content of the Universe, if
we assume the Universe to be composed of various fluids, both effective fluids (photons,
neutrinos) and actual fluids (baryons, cold dark matter). For a general fluid the stress-
energy tensor is given by

Tµν = (ρ+ p)uµuν + pgµν + 2q(µuν) + πµν , (2.14)

where ρ and p are the energy and momentum density of the fluid, q is the heat flow and
πµν is the anisotropic stress7, and uµ is the four-velocity of the fluid defined as

uµ =
dxµ√
−ds2

, (2.15)

which has the property uµuµ = −1, with the heat-flow vector qµ and anisotropic stress
tensor πµν satisfying uµqµ = uµπµν = gµνπµν = 0. We will return to further discussion
of the stress-energy tensor once we have more of the formalism pinned down.

2.4.5 Lagrangian Formalism of GR

This is the point where §2.4.1 comes into play. GR can, as mentioned, be seen as a
particular example of a classical field, and we now show that we can get to equation
(2.13) from a field-theoretical viewpoint. We start out with an action consisting of the
Einstein-Hilbert action and the action for matter and energy [5] of the form

S = SEH + SM =
1

2κ2

∫

(R− 2Λ)
√−g d4x+

∫

LM
√−g d4x, (2.16)

where this R is the Ricci scalar, Λ is the cosmological constant and LM is the Lagrangian
density for matter and energy. We’re going to use the principle of least action to get to
the Einstein equations. First, vary equation (2.16) with respect to the inverse metric,
with δgµν = −gµρgνσδgρσ ,

δS = δSEH + δSM = 0. (2.17)

7We typically neglect the heat flow and the anisotropic stress, reintroducing them in Chapter 6.
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We will find these terms separately, first for the Einstein-Hilbert part δSEH and then
for the matter part δSM . We then get

δSEH =
1

2κ2

∫

[√−gδR + (R− 2Λ)δ
√−g

]

d4x. (2.18)

We continue by finding δR, where we use the definition of the Ricci scalar, equation
(2.11), so that

δR = Rµνδg
µν + gµνδRµν , (2.19)

where the first term is already proportional to δgµν and is therefore done, while the
second term will disappear when integrated thanks to Stokes’ Theorem or Gauss’ in-
tegral theorem [5],

∫

d4xgµν
√−gδRµν = 0.

We then look at the term δ
√−g. To get anywhere we must use some general

properties for any square matrix M with non-vanishing determinant det(M),

ln det(M) = Tr(lnM) ⇒ 1

det(M)
δdet(M) = Tr(M−1δM).

We let M = gµν and det(M) = g so that

δ
√−g = − 1

2
√
g
δg = −1

2

√−ggµνδgµν . (2.20)

This then gives us,

δSEH =
1

2κ2

∫ √−gd4x

[

Rµν −
1

2
gµν(R− 2Λ)

]

δgµν . (2.21)

Similarly we find

δSM =

∫

d4x
[

Lδ√−g +
√−gδL

]

=

∫

d4x
√−g

[

δL
δgµν

− 1

2
gµνL

]

δgµν

=

∫

d4x
√−g

[

−1

2
Tµν

]

δgµν , (2.22)

where we defined the stress-energy tensor as Tµν = −2
[

δL
δgµν − 1

2gµνL
]

. We then use

the principle of least action to get

δS = δSEH + δSM = 0 ⇒ δSEH = −δSM ,
so that

1

2κ2

(

Rµν −
1

2
gµν(R − 2Λ)

)

=
1

2
Tµν

⇒ Rµν −
1

2
gµνR+ gµνΛ = κ2Tµν . (2.23)

We see that equation (2.23) is equal to equation (2.13) when we remove the cosmo-
logical constant. For the majority of this thesis we will be working with Λ = 0.
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2.5 Modifying General Relativity

Now that we know how standard gravity theory works, we’ll take a look at how we
can modify it, which we want to do in order to explain observed effects that are not
explained by standard GR. In its simplest form, Einstein’s equation is,

Gµν = κ2Tµν (2.24)

and ,as is obvious, modifications have to be made either to the right hand side or the
left hand side. Changing the right hand side,

Gµν = κ2
(

Tµν + TDEµν

)

, (2.25)

is the equivalent of adding some unknown matter to our theory (mostly dark energy
and dark matter, as used above), which will correct the results the theory give us to
coincide with the observed results. Alternatively, we can modify the left hand side,

Gµν +GMOD
µν = κ2Tµν , (2.26)

which is the same as reevaluating our understanding of the fabric of space-time, without
adding mysterious unknown particle-species or energies to the Universe. This latter
modification is the one we will be focusing on in this thesis.

2.5.1 Modified Gravity

When modifying gravity, the Einstein-Hilbert Lagrangian density LEH = R is typically
replaced by a much more general function including terms of higher order in derivatives
of the metric (R2, RµνR

µν , RαβµνR
αβµν . . .) and couplings to new dynamical degrees

of freedom. This kind of extended gravity has seen an increase in applications to
cosmology; see [9] and its references for an overview and further details on these models
and their applications to cosmology.

Lately the literature has focused on using modified gravity to model dark energy
without the need to introduce exotic particles. One of the most employed models in this
context is f(R) gravity (see [10] for a deeper review than this thesis will give), where
the Einstein-Hilbert Lagrangian density is replaced with an arbitrary function of the
Ricci scalar, L = f(R). This representation of an extended gravity model is known as
the “Jordan frame”.

With this formulation the action can be transformed to a variety of different forms.
One of the most frequent of these transformations shows us that f(R) gravity can be
considered a class of Brans-Dicke theories; see §3.1.1. We can also transform into the
so-called “Einstein frame”, which can be viewed as simply an alternative reference frame
where the action is manipulated to isolate a Ricci scalar of a the metric. The field
equations are otherwise those of standard general relativity.

As the main focus of this thesis is on f(R) models and their properties, we’ll return
to f(R) in Chapter 3.
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2.5.2 Transformation Between Frames

We just mentioned two different frames, the Jordan and Einstein frames, and that we
can transform between them. But why would we want to do that, how, and why is
there so much controversy around it?

In the Jordan frame the action is varied directly with respect to the metric, and the
field equations are immediately fourth order. In the Einstein frame, as in standard GR,
the theory is second order, a significant simplification. The transformation, which is
conformal so that the causal structure of spacetime is unaffected by the transformation,
is

gµν → g̃µν = Ω2gµν ⇒ g̃µν = Ω−2gµν , g̃ = Ω8g, (2.27)

where Ω is the conformal transformation factor [10] and a tilde represent quantities in
the Einstein frame. With lnΩ = ω, the Christoffel symbols, covariant derivatives of a
scalar and a covector, the Ricci tensor, Ricci scalar, stress-energy tensor, stress-energy
conservation transform [11, 12, 13, 9] as,

Γ̃λµν = Γλµν +
(

2δλ(µ∇ν)ω − gµν∇λω
)

, ∇̃µφ = ∇µφ (2.28)

∇̃µvν = ∇µvν −
(

2δλ(µ∇ν)ω − gµν∇λω
)

vλ, T̃ (M)
µν = Ω−2T (M)

µν , (2.29)

ρ̃µν = Rµν − 2∇µ∇νω − gµν∇α∇αω + 2∇µω∇νω − 2gµν∇αω∇αω (2.30)

ρ̃ = Ω−2 (R− 6∇µ∇µω − 6∇µω∇µω) , (2.31)

with the matter continuity in the Einstein frame being

∇̃µT̃
µν
(M) = −T̃(M)∇̃νω. (2.32)

Aspects of the transformation have been controversial for some time (see for example
[13, 14, 15, 9]; I present further references in §3.3). The discussion has centred upon the
nature of the equivalence of quantities in the two frames, and authors can be separated
[13, 9] into two camps: those who feel the equivalence is “physical” and observables
can be calculated in either frame, and those who feel the equivalence is mathematical
in nature and that observables should be calculated in a chosen “physical frame”. We
briefly discuss this issue in §3.3.

However, our work on this controversy has revealed an as yet unappreciated issue.
Perturbed systems in relativity exhibit the gauge issue, the issue of choosing the best
way to map between the fictitious background spacetime and the physical perturbed
spacetime. In cosmology, gauge freedoms allow one to eliminate four of the ten degrees
of freedom in the metric perturbation (two scalar and two vector), which specifies the
“slicing and threading” we have chosen for our foliation.8

It turns out that the transformation between the Einstein and the Jordan frames
tangles this choice of slicing and threading. We consider the impact of this and how one

8By slicing and threading the foliation we talk about the way we choose the coordinates of the
metric. More on this later.
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can resolve the resulting gauge ambiguities, by illustrating with a simple f(R) model in
a vacuum FLRW spacetime, but it should be emphasized that this issue will in principle
occur in any perturbed spacetime and a wide range of extended theories of gravity, in
Chapter 5.

2.6 Modern Cosmology

With the mathematical groundwork laid down before us, we can start taking a look at
the field of modern cosmology.

2.6.1 The Friedmann-Lemaître-Robertson-Walker Metric

The FLRW9 metric is the most used metric in the modern literature. It arises as
an exact solution of Einstein’s field equations (2.13) for a homogeneous and isotropic
expanding/contracting universe,

ds2 = a(η)2
(

−dη2 +
dr

1 − kr2
+ r2dθ2 + r2 sin θdφ2

)

, (2.33)

where θ, φ and r are polar coordinates in the radial form, while k is the curvature
parameter. The curvature parameter is usually chosen to be either

• k = 1, representing a closed universe without boundaries that might collapse the
Universe down to a Big Crunch.

• k = −1, representing an open, ever-expanding universe.

• k = 0, representing a flat universe.

Throughout this thesis we will be working in a flat universe, and the equations therefore
simplify significantly.

2.6.2 Redshift as a Measure of Time

From the FLRW metric (2.33) we can easily derive a relation [7] between the scale factor
and wavelength such that

λ0

λe
=
a(η0)

a(ηe)
,

where λ0 and λe is the wavelength observed today and at an emitted time ηe respectively.
We can therefore measure how much the observed light has been stretched during its

9Since the dynamics of the FLRW model were proposed by Friedmann and Lemaître, the latter
two names are often omitted by cosmologists outside of the USA. However, cosmologists in USA often
only refer to the latter two names, a “Robertson-Walker” model. The full four-name title is the most
democratic, and is therefore the one I use in this thesis.
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travel to us to find the size of the scale factor, and hence the size of the Universe, at
time of emission compared to today. From this one defines the redshift z as

1 + z =
a0

ae
. (2.34)

As is obvious, light emitted today have a redshift of z = 0, while in the very early
universe it would be z ≈ ∞.

2.6.3 The Friedmann Equations

The Friedmann equations are some of the most used equations in all of cosmology,
as they tell us how the scale factor a evolves with time, and can be used to simulate
different universe models. To get the Friedmann equations, we start with the flat
Friedmann-Robertson-Walker (FLRW) metric in Cartesian coordinates,

ds2 = a2(η)(−dη2 + δijdx
idx). (2.35)

We then use the mathematical groundwork of GR we showcased in §2.4.3 to find the
Christoffel symbols,

Γ0
00 = H,

Γ0
ij = Hδij , (2.36)

Γi0j = Γ0
ij ,

where we have introduced the conformal Hubble parameter as H = ȧ
a . We then find

the Ricci tensor and finally the Ricci scalar itself,

R00 = −3

(

ä

a
−H2

)

Rij =

(

ä

a
+ H2

)

δij















⇒ R =
6

a2

ä

a
. (2.37)

We implement these components into the Einstein equation (2.23), and first look at
the time-time component to get the first Friedmann equation,

H2 =
κ2

3
ρa2, (2.38)

where the right hand side come from analyzing the stress-energy tensor for this metric,

T00 = (ρ+ p)u0u0 + pg00 = (ρ+ p)a2 − pa2 = ρa2. (2.39)

Likewise, looking at the spatial-component give us the second Friedmann equation10,

ä

a
=
κ2

6
(ρ− 3p)a2. (2.40)

10Sometimes erroneously referred to as the Raychaudhuri equation.
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Combining these two equations, we get an expression for the evolution of the density,

ρ̇ = −3H(ρ+ p). (2.41)

At this point we should bring up the equation of state, which is a simple relation between
the pressure p and the density ρ, given as,

p = wρ, (2.42)

where the equation of state parameter w is a free parameter that is dependant on the
gas we discuss. The speed of sound is given as11,

c2s =
∂p

∂ρ
= w +

∂w

∂ρ
ρ. (2.43)

2.6.4 Different Universe Models

Selecting different values of w is the most common way for cosmologists to describe
different kinds of universes, or simply different epochs of our universe. From equation
(2.41) and equation (2.42) we can find an expression for how the energy density evolves
with the scale factor of the Universe. We start by rewriting equation (2.41),

ρ̇ = −3H(1 + w)ρ, (2.44)

which can be further rewritten as a differential equation

dρ

ρ
= −3(1 + w)

da

a
. (2.45)

Integrating this from a scale factor a until the scale factor today a0 we get,

ρ = ρ0

(a0

a

)3(1+w)
, (2.46)

where ρ0 is the present day value of the energy density. Similarly, we can find an
expression for the scale factor of the universe as a function of conformal time η. In
order to do this we introduce the density parameter Ω, which is defined as the ratio
between the density of a fluid and the critical density ρc,

ρc =
3H2

0

κ2
⇒ Ω0 =

ρ0

ρc0
=
κ2ρ

3H2
0

. (2.47)

For a flat universe, Ω0 = 1, and ρ0 = ρc. With this, we can insert equation (2.46)
into our first Friedmann equation (2.38) (while tweaking a bit to emphasize the critical
density) to find

(

ȧ

a

)2

= a2H2
0

κ2

3H2
0

ρ0

(a0

a

)3(1+w)
= a2H2

0

(a0

a

)3(1+w)
,

11This expression is not entirely valid; in general we have from thermodynamics and statistical physics
that δp = ∂p

∂ρ
|Sδρ + ∂p

∂S
|ρδS. However we assume that the fluid is barotropic and irrotational so that

we can assume ∂ρ
∂S

= 0.
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which we turn into a differential equation integrated from a distant time η to the present
time of η0,

a
3(1+w)/2
0

∫ a

a0

a′
3w
2
− 1

2 da′ = H0

∫ η

η0

dη′.

This is easily solved to give us

2

3(1 + w)a0

[

(

a

a0

)(3w+1)/2

− 1

]

= H0(η − η0), (2.48)

which is a closed solution. However we can improve it by choosing the time where the
scale factor vanished to be at η = 0. Imposing a = 0 at η = 0 we find

2

3(1 + w)a0
= H0η0,

which when inserted into equation (2.48) gives us

H0η0

(

a

a0

)(3w+1)/2

= H0η ⇒ a(η) = a0

(

η

η0

)
2

3w+1

. (2.49)

From this we can also find how the Hubble parameter scales,

H =
2

(3w + 1)η
. (2.50)

Dust filled universes

A dust filled universe is a universe filled with non-relativistic matter, such as most of the
visible matter of our universe (i.e. the matter in galaxies). As mentioned, cosmologists
use the equation of state parameter w to differentiate between universe models, so what
would w be for a dust-filled universe? From thermodynamics we know that the pressure
for a gas of N particles with mass m, temperature T in a low density volume V is

p =
NkBT

V
,

where kB is the Boltzmann’s constant. Introducing the mass density of such a gas
as ρ = mN/V , and keeping in mind that the mean square velocity of an ideal gas is
m〈v2〉 = 3kBT , we can rewrite the pressure as,

p =
〈v2〉
3
ρ⇒ w =

〈v2〉
3
, (2.51)

giving us the equation of state parameter for a dust filled universe. However as we
imposed non-relativistic matter, we know that v ≪ 1 and it is thus justified to ap-
proximate w ≈ 0 for a dust-filled universe. This also tells us that such an universe is
pressure-less.
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By now inserting w = 0 into equation (2.49) we find that for a dust filled universe
the scale factor evolves as

a(η) = a0

(

η

η0

)2

, (2.52)

while from equation (2.50) we find that the Hubble parameter evolves as

H =
2

η
. (2.53)

This universe model is called a Einstein-de Sitter model, and was a favourite among
cosmologists for a long time [7].

Radiation filled universes

A radiation filled universe is, on the other hand, a universe filled with relativistic,
massless particles, such as photons and neutrinos12. Finding the equation of state
parameter is much easier in this case, as we already know that for a gas of photons, the
pressure is

p =
1

3
ρ, (2.54)

and we immediately see that w = 1
3 for a radiation dominated universe. This model

is very good at representing the Universe at earlier times, when the temperature was
sufficiently high that it was dominated by radiation.

By now inserting w = 1/3 into equation (2.49) and equation (2.50) we find that for
a radiation universe the scale factor and Hubble parameter are

a(η) = a0

(

η

η0

)

and H =
1

η
. (2.55)

Universe with a cosmological constant

When Einstein first applied his theory of GR to the Universe as a whole, he soon
discovered that his solution gave a collapsing Universe. As such a thing was unthinkable
to the physicists at the time, he decided to modify his equations so that the result
would be a static, homogeneous and isotropic universe, by adding a constant, known
as the cosmological constant. If we keep the cosmological constant in our Einstein field
equation (2.13) to re-derive the first Friedmann equation (2.38) we get

H2 =
κ2

3
ρa2 +

Λ

3
a2. (2.56)

12Neutrinos have been shown to actually have mass, however we can still treat them as massless
particles simply because their mass is so very small that the approximation is generally valid.
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If we now wish to view the cosmological density as a contribution to the energy density
of the Universe, we can insert ρΛ into the first Friedmann equation (2.38) and quickly
find that

ρΛ =
Λ

κ2
. (2.57)

By also finding the second Friedmann equation with a cosmological constant,

ä

a
=
κ2

6
a2ρ+

2

3
Λa2, (2.58)

and comparing this to equation (2.40) with ρΛ and pΛ inserted we see that

κ2

6
(ρ+ ρΛ − 3pΛ)a2 =

κ2

6
a2ρ+

2

3
Λa2,

which gives us

pΛ = − Λ

κ2
= −ρΛ, (2.59)

revealing to us that a universe with a cosmological constant can be described by an
equation of state parameter w = −1. For a positive cosmological constant this tells us
that we have a negative pressure, which can be interpreted as repulsive gravity! This
kind of universe is called a de Sitter universe, and is characterized by the fact that it
has an exponential expansion. De Sitter universes will be of much use as we get to
inflation.

In order to find the evolution of the scale factor and Hubble rate in a conformal
time de Sitter universe, we first return to cosmic time, as the derivation otherwise gets
highly convoluted. The scale factor evolves in coordinate time de Sitter space as [7]

a(t) = a0e
H0(t−t0), (2.60)

with

H0 =

√

Λ

3
. (2.61)

Inserting this scale factor into equation (1.1) we get

η =

∫ t

0
e−H0tdt = − 1

H0

(

e−H0t − 1
)

(2.62)

⇒ eH0t = (1 −H0η)
−1 . (2.63)

This gives us

a(η) = a0 (1 −H0η)
−1 (2.64)

and

H =
H0

1 −H0η
. (2.65)
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Mixed universes

As will come as no surprise, our Universe cannot be explained with just one of the
above three models; we have to mix them all together. The general consensus today
is that it started out in a radiation dominated state, then phased over to be matter
(dust) dominated, and is today at the crossing between being matter and “dark energy”
dominated. Therefore it is of interest to calculate exactly when this transition from
radiation to matter domination transpired. By using equation (2.46) we can see how
radiation and matter density scale with the scale factor:

ρr = ρr0

(a0

a

)4
= pc0Ωr0

(a0

a

)4
,

ρm = ρm0

(a0

a

)3
= pc0Ωm0

(a0

a

)3
.

As goes without saying, to find the moment of equality, we set ρr = ρm and define the
scale factor at which this was true to be a = aeq to find

aeq = a0
Ωr0

Ωm0
. (2.66)

With today’s observed values this corresponds to a redshift of z = 3570.

The current favoured universe

We’re ending this section with a brief mention of what is the preferred model according
to astronomers today, and that is the ΛCDM model, which essentially is a universe
dominated by dark energy represented by a positive cosmological constant, with dust
mostly in the form of cold dark matter (CDM). This model is sometimes referred to as
the concordance model. For more on this model I refer the reader to [7, 5] or any other
modern cosmology textbook.

2.7 Inflation

Having so far had a brief overview of the history of the Universe, looked at the math-
ematical background and now seen how the different Universe models are built up in
modern cosmology, it is time to delve deeper into the topic of inflation. Inflation was
briefly mentioned earlier in §2.2; however we did not discuss how the idea of inflation
was first introduced. It turns out that standard Big Bang cosmology is riddled with
problems, and inflation might just be the way to solve them.

2.7.1 Problems with the Big Bang Model

Of the various problems in the Big Bang model, we’ll only look at the three biggest
problems; for anything else I refer the reader to [6, 7].
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Flatness problem

We have throughout this thesis been working in a flat k = 0 universe, simply since
this seems to be the way the Universe is today; however one of the problems of the
Big Bang model can be shown by keeping the k in our equations: the curvature of the
Universe increase with time [6, 7]. In fact, it can be shown that the deviation from
flatness evolves as13,

Ω(t) − 1 ∝ t2/3,

telling us that if we today have Ω − 1 = 0.02, then at the Planck time tP l it would
have to be 10−60 times smaller than today. Such an extreme adjustment can not be
explained within the old Big Bang model, and something new is needed to fix this.

Horizon problem

This problem arise from the fact that the Universe has a finite age, and has thus only had
a finite time in which to send photons, which can only have travelled a finite distance.
One of the most important aspects of the CMB, which we discuss further in §2.8.1, is
that light measured from all directions in the sky register at the same temperature of
2.7 K. If parts of the Universe have the same temperature, it stands to reason that they
have at one time been interacting, in order to reach thermal equilibrium. However,
light that we observe from one end of the Universe has been travelling towards us since
decoupling, as has also the light we observe from the other end of the Universe. There
has therefore not been enough time for the regions the photons originate from to have
interacted and established thermal equilibrium, and they should not be at the same
temperature. Again, we need something new to fix this.

Monopole problem

This problem only comes up with attempts to combine the Big Bang model with modern
particle physics, most notably particles needed for the Grand Unified Theories to be
valid [16], such as the monopole. Such monopoles are supposed to be extremely massive -
so massive, in fact, that they would come to dominate the Universe and end the radiation
dominated era of the Universe much earlier than we know it ended. As particle physics
has evolved, even more problematic particles have been introduced, with the same
problems as the monopoles, such as gravitinos and so on.

13We’ll return to cosmic time as all the literature is given in cosmic time, and this is not an important
enough equation for us to take the time to re-derive it in conformal time.
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2.7.2 Cue Inflation

In 1981 Alan Guth proposed inflation14 as a way to solve all of these problems, and more
not discussed here. The core of inflation is that it is defined as a period of the Universe
when the scale factor was accelerating, so let us introduce the so-called deceleration
parameter15 in conformal time,

q = − Ḣ
H2

= 1 − aä

ȧ2
. (2.67)

In order to produce an accelerating universe, q has to be negative, which is only achieved
if

aä

ȧ2
> 1 ⇒ ä

a
> H2;

inserting our expressions for
ä

a
and H2 gives

κ2

6
(ρ− 3p)a2 >

κ2

3
ρa2,

resulting in

p < −ρ
3
. (2.68)

So in order to have an accelerating universe, we need a negative pressure!

If we remember back to the previous section, we’ve already encountered negative
pressure in the de Sitter universe. This tells us that the inflation era operates just like
a de Sitter universe would if we set w = −1, and as we did when we discussed the
de Sitter universe earlier, we return to cosmic time for easier calculations. With the
expression for a de Sitter scale factor (2.60), we see that

Ω(t) − 1 ∝ 1

a2H2
= e−2H0t

is now a decreasing function of time. This means, as long as the Universe is expanding
at an exponential rate, any deviations from flat space will be killed off by the expansion!
To clarify with the words of Elgarøy [7], “if a region of the universe was not spatially
flat to begin with, the enormous expansion rate would blow it up and make its radius
of curvature infinitesimally small”. As easily as that the flatness problem is solved.

14Although Alexei Starobinsky had already developed the first realistic inflation model in 1979, he
failed to relate its relevance to modern cosmological problems, such as those just discussed. As well as
this, the political climate of the world during the Cold War ensured that most cosmologists outside of
the USSR were unaware of Starobinsky’s work until many years later. On top of all of this Starobinsky’s
model said little about how the inflation process could start.

15The name is a relic from the time when scientists believed the Universe to be decelerating, not
suspecting it could be a negative quantity. The traditional cosmic time variant is q = a′′a/a′2, where
a prime denotes derivative with respect to cosmic time.



24 Preliminaries

The horizon problem is also easily fixed by the fact that a small region of the
Universe that was small enough to form thermal equilibrium, expands by inflation to a
size larger than our observable universe. So photons we observe from opposite sides of
the Universe today have actually been causally connected in the distant past, and no
problem remains. The monopole/relic problem however, is explained simply through
the fact that these massive particles have been diluted by the extreme expansion. They
are still around, but with the expansion we can easily explain why we do not observe
them. But how much did the Universe actually expand?

From [7, 17] it is shown that for inflation starting at time ti and ending at tf ,

a(tf )

a(ti)
= eN , (2.69)

where N is the number of “e-foldings”, i.e. the number of times the Universe has
expanded by a factor e, given by

N = Hi(tf − ti). (2.70)

It is generally assumed that inflation lasted for N ∼ 60 e-foldings, more than sufficient
enough to solve all the problems we’ve discussed. In this thesis we will typically take
N = 55.

2.7.3 Driving Force of Inflation

Having now seen why we need inflation, and what it is, we need to figure out how
inflation starts, maintains for ∼ 60 e-foldings, and ends in a timely manner. However
these aspects of inflation is still not well understood, the most common idea is that
inflation is driven by one or more scalar fields.

By analogy with vector fields such as the electromagnetic fields, which we assume
the reader to be familiar with, a scalar field is a way to associate a real number with
a point in space at a given time, such as the temperature of the Earth’s atmosphere.16

The most important thing we need to know about a scalar field is that it has a kinetic
and potential energy, which in turn tell us that it has an energy density and a pressure.
Let us now focus on a homogeneous scalar field φ, homogeneous meaning it only depends
on time, where the energy density and pressure in an FLRW universe are given b,

ρφ =
1

2a2
φ̇2 + V (φ) (2.71)

and

pφ =
1

2a2
φ̇2 − V (φ), (2.72)

16Note however, that unlike the temperature the scalar field is a physical quantity.
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where V (φ) is the potential energy of the field. We can also note that imposing that
the field varies slowly in time, so that

φ̇2 ≪ 2a2V (φ), (2.73)

will give us an equation of state
pφ = −ρφ,

exactly as a cosmological constant would. This final aspect is what gives us the idea
of using scalar fields to drive inflation. From quantum field theory [16] we have the
Klein-Gordon equation

�φ− V,φ = 0, (2.74)

which when using the FLRW metric give the evolution of the scalar field as

φ̈+ 2Hφ̇+ a2V,φ = 0. (2.75)

Upon closer inspection, we recognize this equation as that of a ball rolling down a
hill, or more generally, as the equation of motion for a particle moving along the x-axis
in a potential well V (x). With this analogy, φ is the coordinate of the particle and 2Hφ̇
is the frictional force supplied by the expansion of the Universe. Similarly, we would
expect to find a terminal “velocity” of the field as well, the point at which φ̈ = 0:

φ̇ = − a2

2HV,φ. (2.76)

If we now insert this “velocity” into our constraint for the scalar field to behave like a
cosmological constant equation (2.73), in order to get the constraint in terms of more
familiar quantities, we get

a4V 2
,φ

4H2
≪ 2a2V ⇒ a2V 2

,φ ≪ 8H2V. (2.77)

From equation (2.73) we know that in this scenario the potential is dominating,
which from the first Friedmann equation (2.38) tell us that

H2 =
κ2

3
a2V.

We insert this into our condition so that

V 2
,φ ≪ 8κ2

3
V 2, (2.78)

or

3

8κ2

(

V,φ
V

)2

≪ 1. (2.79)
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This prompts us to define a slow-roll parameter so that

ǫ ≡ 3

8κ2

(

V,φ
V

)2

, (2.80)

making the above condition ǫ≪ 1 if we want inflation to act as a cosmological constant.

However we also want inflation to end at some point. The condition for this leads
to another slow-roll parameter. We find this slow-roll parameter using the constraint
on φ̈,

φ̈≪ a2V,φ, (2.81)

which is imposed on us by equation (2.73) and equation (2.75). Varying equation (2.76)
with respect to time, we then find an expression for φ̈,

φ̈ = −
(

a2V,φ +
a2

2HV,φφφ̇

)

=
a4

4H2
V,φφV,φ − a2V,φ,

which inserted into equation (2.81) gives

a2

4H2
V,φφV,φ ≪ 2V,φ. (2.82)

We now insert our expression for the Hubble parameter and we find our new slow-roll
parameter,

3

4κ2

V,φφ
V

≪ 1 ⇒ η =
3

4κ2

V,φφ
V

. (2.83)

This second condition becomes |η| ≪ 1. We also note that using the Friedmann equa-
tions together with these slow-roll approximations, we find that the first slow-roll para-
meter can also be written

ǫ = − Ḣ
H2

.

To recapitulate; in order to have an accelerating universe we need ǫ < 1, and we consider
the end of inflation to be the moment ǫ = 1.

At the end of inflation, the scalar field will start oscillating about the minimum of
the potential, and due to the friction term in equation (2.75) the scalar field will lose
energy to the environment, damping the oscillations. This energy stored in the scalar
field will therefore go into creating the particles of the Universe we recognize today.
We call this process reheating. After reheating, the Universe evolves as a radiation
dominated universe just as the Big Bang model says. One final, major point of inflation
is that it sets up the initial perturbations, which will evolve into the first structures in
the Universe, but in order to look at this, we need to know some perturbation theory.
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2.7.4 Perturbation Theory

As mentioned, the standard Big Bang model utilizes the homogeneous and isotropic
FLRW metric, and explains the evolution of matter using standard general relativity.
But, as we know, an homogeneous model is not sufficient enough to explain the com-
plex distribution of matter and energy we observe, everything from stars to galaxies to
clusters to superclusters of galaxies, over a huge variation of scales. We need a model
to describe an inhomogeneous and anisotropic universe, therefore we will use a perturb-
ative approach starting with the FLRW model that works as a background solution, as
demonstrated in Figure 2.2.

Choosing a set of coordinates in the inhomogeneous and anisotropic universe, which
we as just mentioned will model with a FLRW background plus perturbations, require us
to map spacetime points between the homogeneous background model and the inhomo-
geneous and anisotropic universe [18]. The freedom we get from doing this mapping is
called the gauge freedom, or gauge issue, leading to apparently different descriptions
of the same physical solution simply due to the choice of coordinates. This can be a
powerful tool for us, as it allows us to work with variables best suited to our problem,
but at the same time it leads to ambiguities in our choice of coordinates. This issue is
expanded upon in Chapter 5.

In general we’ll keep all perturbations to linear order, as progress gets much more
difficult due to the non-linearity of the Einstein equations. Any tensor quantity with
both spatial and time dependencies A(η, xi) can be split into a time-only dependent
homogeneous background term and a time- and spatial dependent inhomogeneous per-
turbations as

A(η, xi) = A(η) + δA(η, xi). (2.84)

We immediately employ this on the metric tensor,

gµν = g(0)
µν + hµν , (2.85)

where we use (0) to denote background quantity, and let hµν = δgµν be the perturbation
of the metric. It can then be split up into scalar, vector and tensor modes as,

hµνdx
µdxν = a(η)2

(

−2Φdη2 + 2Bidηdx
i + 2Cijdx

idxj
)

, (2.86)

where δg00 = −2a2Φ is a scalar quantity and Φ is known as the lapse, δg0i = a2Bi
is a vector quantity and Bi is known as the shift, and for a scalar is interpreted as a
partial derivative, and δgij = 2a2Cij is a tensor of rank 2; more on this in Appendix A.
The nature of these components is technically what we mean when we choose between
gauges - some of these components disappear for certain gauges, and some not. But
before we take a look at gauges, let’s see why we need perturbation theory.

Initial perturbations

One of the other problems with the traditional Big Bang model was that it called for a
homogeneous universe, and if the Universe was completely homogeneous to begin with
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it would stay so forever. It turns out that from Heisenberg’s uncertainty principle that
inflation will start and end at different times for different regions of space, which will
ultimately lead to primordial fluctuations during inflation.

We look at perturbations of the density as ρ = ρ+ δρ. Let us see how we can relate
these to the scalar field of inflation. Consider a volume containing two elements with a
total energy E. During inflation one of these elements is stretched by a factor a, while
the other is stretched by a+ δa. Finally, let δa = ȧδη. This leads to a difference in the
energy density after inflation of

δρ =
E

a3
− E

(a+ δa)3
=
E

a3

(

1 − (1 + Hδη)−3
)

≈ ρ (1 − (1 − 3Hδη)) = 3Hρδη, (2.87)

where we used a Taylor approximation, so that

δρ

ρ
= 3Hδη. (2.88)

If we now perturb the scalar field so that φ = φ+ δφ we see that we can tweak this
by using δφ = φ̇δη showing us that

δρ

ρ
= 3Hδφ

φ̇
, (2.89)

and we see that small fluctuations in the scalar field will lead directly to perturbations
in the density! This tells us that the scalar field driving inflation, that contain small
fluctuations, will lead to density perturbations, which again will lead to matte being
unevenly distributed in the Universe. This will lead to matter clustering, and eventually
forming the first structures of the Universe.

2.7.5 Gravitational Waves

In the same manner that we have waves in electromagnetic fields, so should it be for the
gravitational field according to general relativity. This is a unique prediction of GR, and
has as of yet not been directly observed. However we can still find constraints on them
to help future observational astronomers in detecting them. It turns out that the scalar
field and its fluctuations during inflation is one potential source for these gravitational
waves, and inflation can give us the expected amplitude of these gravitational waves.
Or rather, inflation give us the ratio between the tensor and scalar amplitudes r [7].
We will return to this briefly in Chapter 7.

2.7.6 Gauges

With those short detours out of the way, let us return to discussing what components
of the perturbed metric we shall keep.
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Synchronous gauge

For most of the remainder of the thesis we will frequently be working in the synchron-
ous gauge. We choose to work in this gauge mostly as it provides an unambiguous
time coordinate, the lapse and shift components are both zero, it resembles a normal
Minkowski spacetime with spatial dependencies added on, and most importantly, it is
numerically stable. This is why most of the existing Boltzmann codes are written in
this gauge. I present more on this in Chapter 6. However, synchronous gauge is also
riddled with potential problems, which we discuss in depth soon.

The synchronous gauge is defined as,

ds2 = a2(−dη2 + (δij + hij)dx
idxj), (2.90)

where hij = 2∂i∂jE − 2Ψδij , where Ψ is a curvature term. With this gauge we get the
following Christoffel symbols,

Γ0
00 = H,

Γ0
ij = H(δij + hij) +

1

2
ḣij, (2.91)

Γij0 = Hδij +
1

2
ḣij ,

Γijk =
1

2
(∂kh

i
j + ∂jh

i
k − ∂ihjk),

giving us a Ricci scalar of the form

R =
1

a2

(

6
ä

a
+ ḧ+ 3Hḣ−∇2h+ ∂i∂

ihij

)

, (2.92)

where h = hii = δijhij.

We also have ways to transform from any other gauge into the synchronous gauge
by performing transformations. These transformations are found in [18]; however they
also contain an unfixed constant C(xi), as well as a general integral. In order to remove
this ambiguity [19, 18, 20] we fix the synchronous gauge to cold dark matter. Since
matter continuity implies that ∂(avc)/∂η = 0, where vc is the velocity of CDM, in
synchronous gauge [21], fixing the gauge to CDM at an initial time will fix it for all
times. I present the fixed transformations, where we label synchronous gauge variables
with the subscript syn:

δsyn = δ − 3H(1 + w)vc, (2.93)

Ψsyn = Ψ −Hvc, (2.94)

vsyn = v − vc, (2.95)

Ėsyn = vc, (2.96)

δψsyn = δψ + ψ̇vc. (2.97)
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Conformal Newtonian Gauge

Conformal Newtonian gauge is a safer gauge than the synchronous gauge, as we will see
later, and it keeps aspects such as the gravitational potential from Newtonian physics
in the line-element to make it much more intuitive. It is defined as

ds2 = a2(−(1 + 2Φ)dη2 + (1 − 2Ψ)δijdx
idxj), (2.98)

where Φ is related to the gravitational potential from Newtonian physics. With this
gauge we get the Christoffel symbols to first order,

Γ0
00 = Φ̇ + H,

Γ0
0i = ∂iΦ,

Γ0
ij = −Ψ̇δij + H(1 − 2(Ψ + Φ))δij ,

Γi00 = ∂iΦ, (2.99)

Γij0 = (H− Ψ̇)δij ,

Γijk = ∂iΨδjk − ∂kΨδ
i
j − ∂kΨδ

i
j,

giving us a Ricci scalar of the form

R =
6

a2

(

(1 − 2Φ)
ä

a
−HΦ̇ − 3HΨ̇ − Ψ̈

)

. (2.100)

Similarly to how we can transform any gauge into the synchronous gauge, we can
transform any gauge to conformal Newtonian gauge. We label conformal Newtonian
gauge variables with the subscript N :

ΦN = Φ + H(B − Ė) +
∂

∂η
(B − Ė), (2.101)

ΨN = Ψ −H(B − Ė), (2.102)

δN = δ − 3H(1 + w)(B − Ė), (2.103)

vN = v + Ė, (2.104)

δψN = δψ + δψ̇(B − Ė). (2.105)

Other Gauges

The above gauges are as already stated the most important ones for our purposes;
however we still need to introduce at least two more. We will use these gauges in
Chapter 5 and 6.

Spatially flat gauge: The spatially flat gauge is also called the uniform curvature
gauge, and is a gauge where we have no scalar curvature perturbations at all, Ψ = E = 0.
For more on the spatially flat gauge, I refer the reader once again to [18].



2.7 Inflation 31

Uniform field gauge: The uniform field gauge is a gauge where the scalar field
is homogeneous, meaning no scalar field perturbations, δψ = E = 0. For more on the
uniform field gauge, I refer the reader to [22].

Uniform density gauge: The density curvature gauge is a gauge that is com-
pletely homogeneous, with δρ = 0 and either E = 0 or B = 0 as one are free to choose
whichever is best suited for the situation at hand. For more on the uniform density
gauge, I refer the reader to [18].

2.7.7 The Stress-Energy Tensor Revisited

Now that we have gauges defined, we can continue studying the stress energy tensor
(2.14). By assuming the fluid we look at to be isotropic and barotropic so that q =
πµν = 0, we find the components of the stress-energy tensor in the synchronous gauge,

T 0
0 = −ρ, T i0 = −(ρ+ p)vi, T ij = pδij, (2.106)

where we chose to work in mixed form because this removes the hij terms. The stress-
energy tensor obeys the conservation law,

∇µT
µ
ν = Cν , (2.107)

where Cν is the collision term, representing occurrences such as momentum transfer
between baryons and photons through Thomson scattering. Let us work out the con-
servation law to first order, remembering the conventions displayed in §1.1.3:

∇µT
µ
ν = ∂0T

0
ν + Γ0

00T
0
ν + Γi0iT

0
ν + Γ0

s0T
s
ν + ΓisiT

s
ν (2.108)

+ ∂iT
i
ν − Γ0

0νT
0
0 − Γ0

iνT
i
0 − Γs0νT

0
s − ΓsiνT

i
s .

This gives us

∇µT
µ
0 = ∂0T

0
0 + ∂iT

i
0 +

(

3H +
1

2
ḣ

)

T 0
0 +

1

2
(∂ih

i
s + ∂sh− ∂ihis)T

s
0 −

(

Hδsi +
1

2
ḣsi

)

T is

(2.109)

and

∇µT
µ
j = ∂0T

0
j + ∂iT

i
j +

(

4H +
1

2
ḣ

)

T 0
j −
[

(δij + hij)H +
1

2
ḣij

]

T i0 −
(

Hδsj +
1

2
ḣsj

)

T 0
s .

(2.110)

Remember that equation (2.106) is general for any perfect fluid that is isotropic and
barotropic, and that most of the components in the Universe can be viewed as a fluid
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with a specific equation of state17. We can therefore find the equation of motion for
any fluid by inserting equation (2.106) into equation (2.109) and equation (2.110),

∇µT
µ
0 = −ρ̇− ∂i((ρ+ p)vi) − (ρ+ p)

(

3H +
1

2
ḣ

)

, (2.111)

∇µT
µ
j =

∂

∂η
((ρ+ p)vi) − (ρ+ p)

(

3H +
1

2
ḣ

)

. (2.112)

Let us also perturb the system in the manner

ρ→ ρ+ ρδ, p→ p+ δp, δp = c2sρδ, (2.113)

where we introduced a new way of perturbing the density, by using the dimensionless
perturbation δ = δρ

ρ . We’ll also need to perturb the right hand side of the conservation
law, so we set Cν → Cµ + δCµ. Equation (2.111) then gives us

ρ̇+ 3Hρ(1 + w) = −C0 (2.114)

for the background, and

δ̇ + (1 + w)

[

∂iv
i +

1

2
ḣ

]

+ 3H(c2s − w)δ = δC0 (2.115)

for the perturbations. Likewise from equation (2.112) we get

∂jp = 0 (2.116)

and

v̇j +
c2s

1 + w
∂jδ +

[

ẇ

1 + w
+ H(1 − 3w)

]

vj = δCj . (2.117)

2.8 Observations

As mentioned a couple of times throughout the thesis so far, it is possible to directly
measure certain parameters, while others can be deduced from other observations. From
the redshift of distant galaxies, we can estimate the present day value of the Hubble
parameter, which today is thought to be H0 = 100h km(sMpc)−1 where h = 0.7.
The density parameters of baryons, cold dark matter and dark energy are found from
analyzing the WMAP 7-year data [24], estimated to be about Ωb0 = 0.04, Ωm0 = 0.23
and ΩΛ0 = 0.73.

17From the photon to the scalar field, everything can be viewed as a fluid [23]. However let us remark
that photons can only be considered a fluid before “tight-coupling” breaks down, while neutrinos tech-
nically can never be considered a fluid, but the literature makes arguments that the error is negligible
for neutrinos today.
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2.8.1 The Power Spectrum

We’ve talked about the CMB being an observation of the photons released from decoup-
ling, while in fact what we observe are temperature fluctuations. These temperature
fluctuations are observed on a spherical surface, and can therefore be written as a sum
of spherical harmonic functions,

δT

T
(θ, φ) =

∞
∑

l=0

l
∑

m=−l
almYlm(θ, φ), (2.118)

where Ylm are the spherical harmonics, alm are the spherical harmonic coefficients, l
is the angular scale tied with the wavenumber k ∼ l−1 so that a higher l represents a
smaller scale, and θ and φ are of course the polar coordinates over which we measure
the CMB. We now introduce the angular power spectrum Cl as the expectation value
of the spherical harmonic coefficients,

Cl ≡ 〈|alm|2〉 = 〈alma∗lm〉 =
1

2l + 1

l
∑

m=−1

|alm|2. (2.119)

From this it is obvious that we need an expression for alm, so we simply invert the above
equation so that

alm =

∫

Ω

∆T

T
(θ, φ)Y ∗

lm(θ, φ)dΩ. (2.120)

Fourier space

In order to simplify the equations, we choose to work in Fourier space, where the
derivatives take on a much simpler form. For a quantity A(η,x) the Fourier transform
look like

A(η,x) =
1

(2π)3

∫

d3kA(η,k)e−ik·x, (2.121)

A(η,k) =

∫

d3xA(η,x)eik·x. (2.122)

This might look convoluted, but it boils down to letting d
dx → −ik · x, simplifying

everything immensely. From now on all quantities are in Fourier space unless otherwise
stated.

For a general quantity ξ(k̂) that quantify the statistics of a perturbation, be it tem-
perature, density, curvature or whatever perturbations, the primordial power spectrum
is defined through the two-point correlation function,

〈ξ(k̂)ξ∗(k̂)〉 =
2π2

k3
P (k) δ(k − k

′)(2π)3. (2.123)
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From equation (2.120) the CMB angular power spectrum can also be defined, when
for instance viewing a curvature perturbation ξ(k) = R(k), as

Cl =
1

8π

∫

k
PR(k) |∆T l(k, η0)|2

dk

k
, (2.124)

where the ∆T l is a so-called photon brightness function; similar forms hold for polariz-
ation.

2.8.2 Bispectrum

The bispectrum is conceptually the same as the power spectrum, in three-dimensions
instead of one, and can also be found by using the spherical harmonic coefficients,

Bl1l2l3 ≡ 〈al1mal2mal2m〉
(

l1 l2 l3
m1 m2 m3

)

, (2.125)

where
(

l1 l2 l3
m1 m2 m3

)

(2.126)

is the Wigner 3-J symbol. The primordial bispectrum18 B is found by using the three-
point correlation function given as,

〈R(k1)R(k2)R(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)B(k1, k2, k3). (2.127)

The CMB angular bispectrum is given [25, 26] by

Bl1l2l3 =

(

2

π

)3
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(

l1 l2 l3
0 0 0

)

(2.128)

×
∫

(k1k2k3)
2Jl1l2l3B(k1, k2, k3)∆l1(k1)∆l2(k2)∆l3(k3)dk1dk2dk3,

where

Jl1l2l3 = Jl1l2l3(k1, k2, k3) =

∫

jl1(k1x)jl2(k2x)jl3(k3x)x
2dx. (2.129)

It is common [26] to work instead with the reduced bispectrum,

B̂l1l2l3 =

(

2

π

)3 ∫

(k1k2k3)
2Jl1l2l3B(k1, k2, k3)∆l1(k1)∆l2(k2)∆l3(k3)dk1dk2dk3.

(2.130)

18Primordial is used to denote anything that was set up at the end of inflation. Primordial bispectrum
is thus the bispectrum as it looked at the end of inflation.
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The same forms hold for the temperature and polarization correlations. This leaves
us with the problem of a triple-integral across a wildly-oscillating function, and the
convoluted term Jl1l2l3 which can be further studied at [27].

However luckily for us, an alternative approach to calculate the integral across Bessel
functions is provided by Mehrem, Lindergant and Macfarlane in [28]. In this approach
they find a way to evaluate integrals of the form

I(l1l2...ln; k1k2...kn) =

∫ ∞

0
x2dx

n
∏

i=1

jli(kix), (2.131)

which we see is exactly the same as our definition of the Bessel function Jl1l2l3 in
equation (2.129). By closely following their paper [28] we introduce a quantity

∆ =
k2
1 + k2

2 + k2
3

2k1k2
, (2.132)

that lies between ±1, and can be interpreted as the cosine of the angle between k̂1 and
k̂2 in the triangle formed by k1, k2 and k3, see Figure 2.3 With

Θ(∆) = ϑ(1 − ∆)ϑ(1 + ∆), (2.133)

where

ϑ(y) = 0 for y < 0,

ϑ(y) =
1

2
for y = 0,

ϑ(y) = 1 for y > 0.

k

k k

1

2
3

φ

Figure 2.3: The triangle configuration formed by k1, k2 and k3. This triangle formation
ensures statistical isotropy.

With this and some relations to Legender polynomials Pl [28] they rewrite the in-
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tegral (2.131) to obtain

Jl1l2l3(k1, k2, k3) =
πΘ(∆)

4k1k2k3
il1+l2−l3

√

2l3 + 1

(

k1

k3

)l3 (l1 l2 l3
0 0 0

)−1

·
l3
∑

L=0

(

2l3
2L

)1/2(k2

k1

)L
∑

l

(2l + 1)

(

l1 l3 − L l

0 0 0

)

(2.134)

·
(

l2 L l

0 0 0

){

l1 l2 l3
L l3 − L l

}

Pl(∆),

where the new term is a Wigner 6-J symbol. It is worth noting that l1 + l2 + l3 is
always an even number, so that the integral will always stay real. With this approach
we can evaluate our bispectrum without having to deal with the integrals themselves,
and rather calculate the Wigner symbols using routines from the GNU Scientific Library
[29]. Also note that we have a an infinite sum in equation (2.134), however we know
that for the Wigner 3-J symbol of the form (2.126), with m1 = m2 = m3 = 0, that
|l1 − l2| ≤ l3 ≤ |l1 + l2|, and is otherwise zero. From this we can find an upper limit to
our sum as either lmax = |l1 + l3 − L| or lmax = |l2 + L|, whichever is smallest.



Chapter 3

Introduction to f (R) Gravity

f(R) gravity is one of many variations of Einstein’s gravity model, which we focus on
since some f(R) models can explain the accelerated expansion of the Universe without
introducing new exotic particles as the source of dark matter and dark energy, as well
as providing a robust toy model for pushing the limit of our existing theories. For
even more details on f(R) theory than what we provide here, see [10, 30, 31] and their
references. Aspects of this chapter are found in our paper [1].

3.1 Jordan Frame

As mentioned, in f(R) theory the Einstein-Hilbert Lagrangian density is replaced with
a general function of the Ricci scalar, so the action takes the form,

S =
1

2κ2

∫

d4x
√−gf(R) +

∫

d4xLM (gµν ,ΨM ) (3.1)

where ΨM denotes the matter fields. The field equations follow by varying this action
with respect to the metric as we did in §2.4.5,

FRµν −
1

2
fgµν −∇µ∇νF + gµν∇α∇αF = κ2T (M)

µν , T (M)
µν = − 2√−g

δLM
δgµν

. (3.2)

Here F = ∂f/∂R. If we assume that there are no particles/fields interacting, the
collision term Cµ = 0, and the conservation law equation (2.107) for the matter stress-
energy tensor is

∇µT (M)
µν = 0. (3.3)

This form of the theory is known as the “Jordan Frame”, and in this frame the flat
FLRW metric is exactly as provided earlier

ds2 = a2(η)
(

−dη2 + δijdx
idxj

)

. (3.4)
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3.1.1 Equivalence with Brans-Dicke Theory

By introducing a new auxiliary field ξ it can be shown [10, 32] that f(R) theory can
be cast as Brans-Dicke theory with ωBD = 0 so long as ∂2f/∂R2 6= 0. We see this by
adding the new field ξ to the action (3.1),

S =
1

2κ2

∫

d4x
√−g [f(ξ) + f,ξ(ξ)(R − ξ)] +

∫

d4xLM (gµν ,ΨM ) , (3.5)

and then varying this with respect to the new field ξ to get

f,ξξ(R− ξ) = 0.

If we impose that f,ξξ 6= 0, we see that we must have R = ξ, so that the action
returns to the form of equation (3.1). If we now introduce yet another field,

φ ≡ f,ξ, (3.6)

then we can rewrite equation (3.5) to the form

S =

∫

d4x
√−g

[

1

2κ2
φR− U(φ)

]

+

∫

d4xLM (gµν ,ΨM ) , (3.7)

where we have set

U(φ) =
ξφ− f(ξ)

2κ2
. (3.8)

Why we rewrote the action like this is immediately clear when we compare it to the
action in Brans-Dicke theory with a potential U(φ) [10, 33],

S =

∫

d4x
√−g

[

1

2κ2
φR− ωBD

2φ
(∇φ)2 − U(φ)

]

+

∫

d4xLM (gµν ,ΨM ) , (3.9)

which we see is equal to equation (3.7) if we set ωBD = 0. With the Brans-Dicke repres-
entation f(R) theory has also been described and studied as an example of “extended
quintessence” (e.g. [34] and its references).

3.1.2 Jordan Frame in Synchronous Gauge

With the Einstein field equations (3.2) for f(R) gravity in the Jordan Frame safe in hand,
let us see what they look like in the synchronous gauge. Remembering synchronous
gauge,

ds2 = a2(η)
(

−dη2 + (δij + hij) dx
idxj

)

, (3.10)

where it is worth noting that the inverse of gij is a2gij = δij − hij , we get,

3H2 − 3
ä

a
+
a2

2

f

F
+ 3H Ḟ

F
=
κ2a2ρ

F
, (3.11)

ä

a
+ H2 − a2

2

f

F
− F̈

F
−H Ḟ

F
=
κ2a2p

F
, (3.12)
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for the background and

1

2
ḣḞ − F

2

(

ḧ+ Hḣ
)

−∇2F + hij∂i∂jF +
1

2

(

2∂ihsi − ∂sh
)

∂sF = a2κ2δρ, (3.13)
[

F

(

ä

a
+ H2

)

− 1

2
a2f − F̈ + ∇2F −HḞ

]

hij +
1

2
Fḧij + ḣij

(

HF +
1

2
Ḟ

)

+ ḣ

(

1

2
HFδij −

1

2
Ḟ δij

)

− 1

2

(

∇2hij + ∂i∂jh− ∂a∂ih
a
j − ∂j∂

ahia
)

F − δijh
kl∂l∂kF

+
1

2

(

∂jh
s
i + ∂ih

s
j − ∂shij + δij

(

∂sh− 2∂lhsl

))

∂sF = κ2a2hijp, (3.14)

for the perturbations.

3.2 Einstein Frame

We utilize the transformation rules set down in §2.5.2, and by writing f = RF + (f −
RF ) = RF − U , the action (3.1) can then be rewritten as

S =

∫

√

−g̃
[

F

2κ2Ω2

(

ρ̃+ 6∇̃µ∇̃µω − 6∇̃µω∇̃µω
)

− U

Ω4

]

d4x (3.15)

+

∫

LM
(

Ω−2g̃µν ,ΨM

)

d4x.

The Einstein frame is then defined by isolating a Ricci scalar in the action to serve as
the Einstein-Hilbert Lagrangian density; this can be found by choosing

Ω2 = F (3.16)

which requires the condition F > 0 to be always satisfied. Casting the rest of the action
into the form of a scalar field minimally-coupled to gravity,

κ2φ̃ = − 1

2Q
lnF, Q = − 1√

6
, (3.17)

produces1

S =

∫

√

−g̃
(

1

2κ2
R̃− 1

2
∇̃µφ̃∇̃µφ̃− Ṽ (φ̃)

)

d4x+ SM

(

e2Qκφ̃g̃µν ,ΨM

)

, (3.18)

where Ṽ (φ̃) =
U

2κ2F
.

This action describes general relativity in the presence of a scalar field minimally-
coupled to gravity but non-minimally coupled to matter – an example of a “coupled

1The term ∇µ∇µω disappears due to Gauss’ theorem.
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quintessence” (e.g. [34, 35, 36, 37, 38, 39]) model2. The stress-energy tensor and
potential of the scalar field are

T̃ (φ)
µν = ∇̃µφ̃∇̃ν φ̃−

1

2
g̃µν∇̃σφ̃∇̃σφ̃− Ṽ (φ̃)g̃µν , (3.19)

Ṽ (φ̃) =
RF − f

2κ2F 2
. (3.20)

By varying the action (3.18) with respect to the field φ we find a new version of the
Klein Gordon equation, giving us a new equation of motion for the field, as

�̃φ̃− ∂Ṽ

∂φ̃
= − 1√−g̃

∂LM
∂φ̃

= −κQT̃ (M). (3.21)

For further details see for example [10]. The flat FLRW metric in the Einstein frame is

ds̃2 = ã2(η)
(

−dη2 + δijdx
idxj

)

(3.22)

where the coordinates are the same in the Einstein frame as in the Jordan frame – this
is only possible because we are employing conformal instead of coordinate time!

3.2.1 Einstein Frame in Synchronous Gauge

In order to find the Einstein field equations in the Einstein frame, we can utilize all
the transformations listed above in §2.5.2 on equations (3.13) - (3.14). However as the
Einstein frame is a representation of standard general relativity, all we need to do is
choose f and F to represent GR, which is; f = R̃, F = 1, Ḟ = F̈ = 0 so that we get

3H̃2 − 3
¨̃a

ã
+

1

2
ã2R̃ = κ2ã2ρ̃, (3.23)

¨̃a

ã
+ H̃2 − 1

2
ã2R̃ = κ2ã2p̃,

for the background, where if we insert the Ricci scalar we found earlier R̃ =
6

ã2

¨̃a

ã
, we

would recover the Friedmann equations from standard GR, and

ḧ+ Hḣ = −2κ2a2δρ, (3.24)
[(

ä

a
+ H2

)

− 1

2
a2R̃

]

hij +
1

2
ḧij + Hḣij −

1

2

(

∇2hij + ∂i∂jh− ∂a∂ih
a
j − ∂j∂

ahia
)

+
1

2
Hḣδij − δijh

kl∂l∂k = κ2a2hijp, (3.25)

for the perturbations.

2However, it should be noted that more recent coupled quintessence models such as that in [38]
tend to couple the scalar field only to one species of matter, and do not easily, if at all, admit a Jordan
frame representation.
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3.3 The Equivalence Between the Frames

The meaning of this “equivalence” has a tangled history in the literature, the usage of
which can be generally separated into two camps (see for example [13], who identify a
number of works to that date with one camp or the other, and [15] which sets out clear
definitions of “equivalence”): it can be taken to imply that the physics in both frames is
identical, or it can be taken to imply that a system set up in the Jordan frame can be
solved in the Einstein frame as long as it is transformed back to the Jordan frame for
interpretation. The former case relies on us clearly stating what “physical equivalence”
means; in [14] (and, similarly [40]) the authors take the reasonable definition that the
observables should remain the same. The latter case requires us to define the concept
of the “physical frame”, the one in which observations should be taken. This would be
the frame in which it is natural to define our theory; if we are motivated, as in f(R)
gravity, by a modification of the Einstein-Hilbert action then the Jordan frame would
be the physical frame. If instead we were motivated, as in coupled quintessence, by
exotic couplings between a scalar field and matter, then the Einstein frame would be
the physical frame.

Particularly clear discussions of this issue is found in [13, 9] and for some time it
seems generally agreed that the “equivalence” is at least mathematical in nature, but
since it occasionally reappears in the literature (see for instance [40, 41, 42, 43, 44, 45,
46, 14, 15] for some examples since 2004) we briefly re-address the question here.

“Physical equivalence” between the frames implies that the general behaviour of
solutions in the two frames would coincide. While the causal structure is naturally
preserved by the conformal transformation, it is straightforward to find models with
very different behaviours. For example, in polynomial gravity with f(R) = αRn one
can find [47] a dust-dominated cosmology with

a ∝ η−2n/(2n−3), ã ∝ η(n−3)/(2n−3) (3.26)

in the Jordan and Einstein frames respectively. The deceleration parameter (2.67), is
then

q =
1

2

(

3 − 2n

n

)

, q̃ =
2n− 3

n− 3
. (3.27)

The Universe in the Jordan frame is then accelerating if n > 3/2, but is accelerating
in the Einstein frame if n ∈ (3/2, 3). Choosing n = 4 gives q = −5/8 and q̃ = 5. In
the first case the Universe is accelerating, while in the second it is decelerating. In this
strict respect, the frames are clearly not physically equivalent. This example is similar
to that in [46]; extreme forms are presented in [42, 43] where the authors find a phantom
behaviour3 in one frame but a non-phantom frame in the other, and in [45] where a
model based on a non-minimally coupled scalar field exhibits a bouncing behaviour in
the Jordan frame but not in the Einstein frame.

3A phantom behaviour is simply a universe model with w < −1, violating all the established rules
of GR.
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In the previous section the two frames are shown to be mathematically equivalent
at the level of the action. It is quick to confirm that the field equations in the two
frames are also equivalent to one another, in that a solution in the Jordan frame maps
directly onto a solution in the Einstein frame and vice-versa. Let’s look at the Einstein
equations in the Einstein frame,

R̃µν −
1

2
g̃µνR̃ = κ2

(

T̃ (M)
µν + T̃ (φ)

µν

)

, (3.28)

and apply the transformations (2.28) and the form of the scalar field stress-energy tensor
(3.20) to this:

Rαβ −
1

2
gαβR− 2∇α∇βω + 2gαβ∇µ∇µω − 4∇αω∇βω + 4gαβ∇µω∇µω (3.29)

= κ2Ω−2Tαβ + κ2Ṽ (φ̃)Ω2gαβ .

Using now that F = Ω2 > 0 and 2Ω4κ2Ṽ = Ω2R − f(R) produces the field equations
in the Jordan frame (3.2). Since the transformation is invertible, the reverse naturally
follows. It is then trivial to show that any solution of the field equations in the Jordan
frame induces a solution in the Einstein frame, and vice-versa: the two frames are
equivalent, even if only one frame is “physical” in the sense defined above. See for
example [11, 12, 13, 14] for other discussions and interpretations. For our purposes it
suffices to take that the equivalence is mathematical and that observations should be
made in the Jordan frame. This satisfies the interpretations of both camps.

While it is common to employ a general parametrization [48, 49, 50, 51] in the Jordan
frame, working in the Einstein frame (e.g. [52, 53]) provides a flexible alternative.
Exploiting the Einstein frame allows us to consider any modified gravity model which
possesses an Einstein frame and for which background solutions in the Jordan frame
might be extremely difficult to find, either analytically or numerically. It allows us to
import our intuition and understanding from standard gravity – at least while we remain
in the Einstein frame – and, perhaps more importantly, it allows us to directly leverage
well-tested codes developed for general relativity and which contain a wealth of physics
and arbitrary collections of fluids that would be extremely lengthy to implement in the
Jordan frame, and it provides the added guarantee that we need evolve only second order
rather than fourth order differential equations – a significant calculational simplification.

3.4 Various f(R) Models

In this section, we’ll take a look at some selected f(R) models, and shortly discuss how
viable they are. By viable, we will here mean that they allow for a radiation dominated
universe in the past and a matter domination at later time. Tight constraints on f(R)
models that give a viable matter-dominated phase are presented in [54] by Amendola
and Tsujikawa, though these constraints only apply around the matter domination
era. However at a classical level we are always free, for instance, to add a term αR2

or −µ4/R so long as α and µ are chosen such that the corrections do not break the
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conditions. To our knowledge, a comparable study constraining the transition from
radiation domination to matter domination has not been performed in general.

3.4.1 f(R) = R + αR2

This theory of f(R), f(R) = R + αR2, was the first model of inflation introduced by
Starobinsky in 1979 [55], and is still the most realistic f(R) theory. It is generally
introduced as any power of R as f(R) = R + αRn; however as shown by Hwang
and Noh in [56], n ≈ 2 is the only viable option after they introduced the model
f(R) = R + αR2+ǫ and found ǫ ≪ 1 when employing results from COBE. The αR2

term leads to an accelerated expansion of the Universe, while the presence of the linear
term R ensures that inflation will end gracefully [10]. It has been shown that this model
is consistent with the temperature anisotropies observed by the CMB, and is actually
a viable f(R) theory and an alternative to scalar field inflation. For realistic values it
is worth noting that this theory is equivalent to the concordance model with a m2

P lφ
potential [56].

3.4.2 f(R) = R −

µ4

R

This model, f(R) = R−µ4/R, was introduced by Carroll et. al. [57] and is an unstable
solution [58]. It is plagued by matter instabilities, and fails to satisfy local gravity
constraints, see [10] and references. Also, due to a strong coupling between dark energy
and dark matter in this model it does not have a standard matter-dominated epoch.
However, if µ is tuned to be small enough, it can be employed phenomenologically to
model dark energy.

3.4.3 Other Models

If we combine the two above models, and add in a cosmological constant, we get f(R) =
−µ4/R− 2Λ +R+αR2. This combination will drive an initial inflationary period, and
then a late-time accelerating expansion, just as we would want. It however does not
satisfy the Amendola and Tsujikawa bounds [54], so it is not a viable model for modified
gravity. It can also be viewed as the leading order terms in the Laurent series [59] of a
more general model. This model was proposed by Nojiri and Odintsov [60].

Alternatively we can do a leap and define, as presented by Appleby and Battye [61],

f(R) =
1

2
R+

1

2b
log[cosh(bR) − tanh(c) sinh(bR)], (3.30)

where b and c are free parameters. This model satisfies the tight constraints on f(R)
models, and represents perhaps our most interesting model. However little work has
been done on this model so far, so we don’t have much more to say at this point and
leave its study to future work. Appleby and Battye together with Starobinsky further
expanded upon this model in [62].
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Of all the models we’ve looked at, only the last is genuinely a “viable” modification
to gravity in that it possesses a satisfactory matter-dominated era that transitions to
an accelerating epoch. However, all of these models can be tweaked to be useful for our
later purpose in Chapter 6.

3.5 The Palatini Approach

The Palatini approach is an alternative way of studying f(R) gravity and is popular
in cosmology (e.g. [63, 9, 64] and their references) and often employed in studies of
cosmological perturbations (e.g. [65, 66, 31]). The approach differs from the metric
approach we employ above, in that the Christoffel symbols are considered independent
of the metric when we vary the action. This difference give rise to a different set of field
equations. It is of note that the Palatini approach is equivalent with the Brans-Dicke
theory with ωBD = −3/2. For more on the Palatini approach, see [10] and its references.

3.6 Honorable Mentions: Alternative Theories

3.6.1 The Chameleon Model

The Chameleon model was first introduced by Khoury and Weltman [67], and is a
modified gravity theory where the scalar field has a mass that depends on the local
matter density. This allows the Chameleon field to have a large mass in regions of
high density, such as the solar system, while at the same time being very small at
interstaller regions. These characteristics allow the chameleon model to affect regions
at larger scales, while also leaving the local regions invariant to GR. I refer the reader
to the master thesis of Hans Winther [68] for a great review. Also note that some f(R)
models can act as a Chameleon model.

3.6.2 Coupled Quintessence

Coupled quintessence has been mentioned several times in this thesis so far, and it
is simply the way to describe a scalar field that is coupled to matter, unlike normal
quintessence which is just a scalar field minimally coupled to matter, as we have used
it above in our discussion of inflation. It however has the advantage that the field
equations are only second order. For more on coupled quintessence, I refer the reader
to [35].

3.6.3 Galileon

The Galileon model is in short a generalization of the DGP model. The DGP model
[69] assumes that Minkowski space doesn’t consist of 3+1 dimensions, but rather 4+1
dimensions. It uses an action consisting of the standard Einstein-Hilbert action in
4 dimensions, as it was portrayed in §2.16, and another action that is equivalent to
the Einstein-Hilbert action in five dimensions. It assumes that the 4 dimensional part
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dominates on local scales, while the five dimensional part is dominates at large scales.
As mentioned, the Galileon model is a generalization of this, for more on the Galileon
model itself I refer the reader to [70].

3.6.4 Symmetron

The symmetron model hinges on a symmetry mechanism that is dependent on the
local density. In regions with high matter density, the field in the symmetron model
tends towards zero and its coupling to matter vanishes. In regions with low density,
the symmetry is broken and the symmetron field couple to matter with gravitational
strength. For mere on the symmetron model, I refer the reader to [71].



46 Introduction to f(R) Gravity



Chapter 4

The Statistics of an f (R) Model

This chapter will for the most follow the paper by Tsujikawa and De Felice [2]; however
it has been reformulated to fit our needs.

4.1 The Action and Background Equations

Any f(R) model can be cast as an action on the form

S =

∫

d4x
√−g

[

m2
P l

2
φR− U

]

, (4.1)

as showed in §3.1.1. By varying equation (4.1) with respect to the metric gµν and the
scalar field φ, as described in §2.4.5, we find the field equation and continuity equation
respectively,

φRµν −
φ

2
Rgµν −∇µ∇µφ+ gµν�φ+

U

m2
P l

gµν = 0, (4.2)

3m2
P l�φ+ 2U − U,φ = 0. (4.3)

Note that we are in this section working in a vacuum filled, pressureless universe so that
Tµν = 0.

Taking the 00 term and ij term of equation (4.2) we find the first two background
equations,

E1 = 3m2
P l

(

Hφ̇+ H2φ
)

− a2U = 0, (4.4)

E2 = m2
P l

(

H2φ+ 2
ä

a
φ+ 2Hφ̇+ φ̈

)

− a2U = 0. (4.5)

By then either expanding out equation (4.3) using relations described in §2.4.5, or simply
by combining equation (4.4) and equation (4.5) with the Bianchi identity,

φ̇E3 = −3H(E1 − E2) + aĖ1,
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we find a third background equation

E3 = 3m2
P l

(

H2 +
ä

a

)

− U,φ = 0. (4.6)

By subtracting equation (4.4) from equation (4.5) we can find our first slow-roll
parameter

ǫ ≡ − Ḣ
H2

=
φ̈

2H2φ
− φ̇

2Hφ. (4.7)

4.2 Expanding the Action to Second Order

Our goal in this chapter will be to set up what we need to eventually compute the
bispectrum, for a selected f(R) model chosen in Chapter 7, the 3-point correlation
function as talked about in §2.8.2. However in order to do so we need to expand our
action to third order.1 On the way there, we will of course first need to expand the action
to second order. We work with curvature perturbation R. To expand the action we
could have performed a split, like the ADM split [72]; however we have instead worked
out a complete second order Ricci scalar from a completely general metric in Appendix
A. In our case we choose to work in uniform field gauge, so that the components listed
in the appendix reduce to,

Φ → Φ,

Bi → ∂iΨ,

Cij → −Rδij .

All of this will give us the new second order action,

S2 =

∫

d4xm2
P la

[

2φ

a
Ṙ∇2Ψ − 3φṘ2 − 2Hφ+ φ̇

a
Φ∇2Ψ − 2φΦ∇2R

+3(Hφ+ φ̇)ΦṘ − 3H(Hφ+ φ̇)Φ2 + φ∂iR∂iR
]

. (4.8)

We vary this action with respect to δΦ and find,

∇2Ψ = −6aH Hφ+ φ̇

2Hφ+ φ̇
Φ + 3aṘ − 2aφ

2Hφ+ φ̇
∇2R, (4.9)

and then we vary with respect to δΨ and find,

Φ =
2φ

2Hφ+ φ̇
Ṙ. (4.10)

1We wish to calculate the bispectrum using second order perturbations, and an action always has
to be evaluated one order above the desired perturbations.



4.3 A Detour into Fourier Space 49

Inserting equation (4.10) into equation (4.8), we will find a term −2φṘ∇2R which we
can integrate by parts so that,

S2 =

∫

d4x
3m2

P lφφ̇

(2Hφ+ φ̇)2

[

aṘ2 − c2sa∂iR∂iR
]

, (4.11)

where c2s is the speed of sound as earlier; we’ll be working with c2s = 1 during this
chapter,2 so this is the last time we’ll see it. We can also rewrite equation (4.9) by
introducing a dummy field χ,

Ψ =
2aΦ

2Hφ+ φ̇
R + χ, (4.12)

∇2χ = a
3φ̇2

(2Hφ+ φ̇)2
Ṙ. (4.13)

For the sake of keeping the expressions cleaner, let’s define

Q ≡ 3m2
P lφφ̇

2

(2Hφ+ φ̇)2
. (4.14)

The last thing we need for now, is to see how our field perturbations R evolve.
We can find the equation of motion by using the Euler-Lagrange equations (2.6) with

respect to R and using the constraint
∂L
∂R = 0. We remember from the definition of

the action S =
∫

d4xL that the Lagrangian is hidden within equation (4.11),

L2 = Q
[

aṘ2 − a∂iR∂iR
]

⇒ d

dη

(

aQṘ
)

− aQ∇2R = 0. (4.15)

4.3 A Detour into Fourier Space

Continuing working in real space is going to be too inconvenient; we therefore perform
transformation, so that

R(η,x) =
1

(2π)3

∫

d3kR(η,k)eik·x, (4.16)

R(η,k) = u(η,k)a(k) + u∗(η,−k)a†(−k), (4.17)

where we are using the annihilation and creation operators, obeying the commutators
[

a(k1), a
†(k2)

]

= (2π)3δ(3)(k1 − k2), [a(k1), a(k2] = [a†(k1), a†(k2] = 0. (4.18)

Remember that switching to Fourier space boils down to letting d
dx → −ik · x, so

that in our case ∇2R → k2R. Looking at just one of the u-modes in equation (4.17)
and inserting it into equation (4.15), we see that u evolves as

ü+
˙(aQ)

aQ
Ṙ − k2R = 0, (4.19)

2The speed of sound cs = 1 for all f(R) and scalar field models.
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which we can solve to give us

u(η,k) =
iHe−kη

2k3/2√Q
(1 + ikη) . (4.20)

At this point, we’ll calculate the power spectrum, which we can find by the 2-point
correlation function for the curvature perturbation,

〈0|R(0,k)R(0,k′)|0〉 =
2π2

k3 PR(k)(2π)3δ(3)(k + k′) (4.21)

⇒ PR =
H2

8π2a2Q
=

H2(2Hφ+ φ̇)2

24m2
P lπ

2a2φφ̇2
. (4.22)

The spectral index is also of interest, which is defined by

ns − 1 =
d lnPR
d ln k

, (4.23)

this is easier calculated when we realize that R will go constant when we approach the
horizon, at k < H, so that we only evaluate the power spectrum at k = H. H vary
slowly and that allow us to see that d ln k ≈ d ln a3. This give us

nR − 1 =
a

PR

dPR
da

= 2
Ḣ
H2

− φ̇

Hφ̇
− ǫ̇s

Hǫs
, (4.24)

where ǫs =
φ̇

2Hφ − Ḣ
H2

.

4.4 The Third Order Action

Similarly to how we got the second order action, equation (4.8), we could go forth to
get a third order action. On the way there we would utilize equation (4.10) to eliminate
all the Φ terms, introduce yet another dummy field, χ = m2

P l
φ
a2χ so that ∇2χ = QṘ,

and use equation (4.9) to fully eliminate Ψ. Doing this would take quite a while, so
we’ll let Tsujikawa and De Felice do all the hacking and slashing for us in [2], so that
the third order action goes as,

S3 =

∫

d4x
3m2

P laφφ̇

(2Hφ+ φ̇)4

{

(8Hφ2φ̈+ 4φφ̇φ̈+ 3φ̇3 − 12Hφφ̇2)R(∂R)2

− a2φφ̇(8Hφ2φ̈+ 4φφ̇φ̈− 3φ̇3 − 12Hφφ̇2)RṘ2

− a3φ̇2

2m2
P l

(16H2φ2 + 16Hφφ̇+ φ̇2)Ṙ(∂iR)(∂iχ)

+
a2φ̇(2Hφ+ φ̇)2

4m4
P lφ

2
∇2R(∂χ)2

}

. (4.25)

3d ln k = d lnH =
1

H

dH

dη
dη, using H = H0(1−H0η)

−1 as this is a de Sitter universe during inflation,

we get d ln k = Hdη = d ln a.
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4.5 Three-point Correlation Function and Bispectrum

Now let’s set S3 = −
∫

dt Hint, and compute the three-point correlation function by

〈R(k1)R(k2)R(k3)〉 = −i
∫ 0

−∞
dηa〈0|[R(0,k1)R(0,k2)R(0,k3),Hint(η)]|0〉, (4.26)

keeping in mind that the R’s inHint are given in realspace and need to use the relation in
equation (4.16) to get to Fourier space. We remember that the we find the bispectrum
from 〈R(k1)R(k2)R(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)BR(k1 + k2 + k3), where we get
(2π)3δ(3)(k1 + k2 + k3) from the annihilation operators, leaving us with,

BR(k1, k2, k3) =
(2π)4

(k1k2k3)3
AR(k1, k2, k3) [PR(k1)PR(k2) + 2perms] , (4.27)

where perms mean permutations and in this case would be 2perms = PR(k1)PR(k3) +
PR(k2)PR(k3). AR(k1, k2, k3) is given, when using K = (k1 + k2 + k3), as

AR =
3φ̇2

(2Hφ+ φ̇)2





1

K

3
∑

i>j

k2
i k

2
j −

1

2K2

3
∑

i6=j
k2
i k

3
j (4.28)

− 12Hφφ̇2 − 8Hφ2φ̈− 4φφ̇φ̈− 3φ̇3

24φ̇3

3
∑

i=1

k3
i

− 16H2φ2 + 16Hφφ̇ + φ̇2

8(2Hφ+ φ̇)2





1

2

3
∑

i=1

k3
i −

1

4

3
∑

i6=j
kik

2
j −

1

K2

3
∑
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k2
i k

3
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+
3φ̇2

16(2Hφ + φ̇)2
1

K2





3
∑

i=1

k5
i +

1

2

3
∑

i6=j
kik

4
j −

3

2

3
∑

i6=j
k2
i k

3
j − k1k2k3

3
∑

i>j

kikj







 .

4.5.1 The Non-Gaussianity Parameter

The magnitude of the non-Gaussianity, parametrized by the non-linearity parameter
fNL, is given as [73]

fNL =
5

6

(k1k2k3)
3

k3
1 + k3

2 + k3
3

BR
4π4P2

R
=

10

3

AR
k3
1 + k3

2 + k3
3

, (4.29)

where P2
R is a shorthand way of writing PR(k1)PR(k2) + 2perms. In order to calculate

this number, an obvious question arises; what values do we choose for our various
variables? Let us start by rewriting equation (4.28) with the help of the slow-roll
parameters. First we rewrite equation (4.7) to the form,

2ǫ1 = −ǫ2 + ǫ2ǫ3, (4.30)
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where

ǫ1 = − Ḣ
H2

, ǫ2 =
φ̇

Hφ, ǫ3 =
φ̈

Hφ̇
=

φ̈

ǫ2H2φ
. (4.31)

With this we get,

AR = D1





1

K

3
∑

i>j

k2
i k

2
j −

1

2K2

3
∑

i6=j
k2
i k

3
j



−D2

3
∑
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k3
i

−D3
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2
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∑
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k3
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1

4
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kik

2
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k2
i k

3
j



 (4.32)

+
D4

K2





3
∑

i=1

k5
i +

1

2

3
∑

i6=j
kik

4
j −

3

2

3
∑

i6=j
k2
i k

3
j − k1k2k3

3
∑

i>j

kikj



 ,

where the coefficients are

D1 =
3ǫ22

(2 + ǫ2)2
, (4.33)

D2 =
12ǫ2 − 8ǫ3 − 4ǫ2ǫ3 − 3ǫ22

8(2 + ǫ2)2
, (4.34)

D3 =
3ǫ22(16 + 16ǫ2 + ǫ22)

8(2 + ǫ2)4
, (4.35)

D4 =
9ǫ42

16(2 + ǫ2)4
. (4.36)

We will later see that we can relate the slow roll parameters ǫ1, ǫ2 and ǫ3 to the number
of e-foldings N .

4.5.2 The k-configurations

One of the problems that arise at this point is the case of what values of k1, k2 and
k3 we should evaluate the different quantities at. In the literature cosmologists often
simplify it down to the fact that the three ks should form a triangle,4 and especially
three forms of triangles dominate,

• Equilateral configuration: Where we set k1 = k2 = k3.

• Squeezed configuration: Where we set k1 = k2, and k3 = 0.

• Colinear configuration: Where we set k1 = k2, and k3 = 2k1.

4Letting the k’s form a triangle can be interpreted as statistical isotropy.
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One of our biggest questions is which of these configurations, if any, is the dominant
one. The literature for f(R) theories has a tendency to assume the equilateral one, so
we will see if this is justified. The only thing left to do in order to calculate AR, fNL
and BR is to assign values to the various slow-roll parameters; however in order to do
so we need to specify a model first. We will pick a model and return to this discussion
in Chapter 7.
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Chapter 5

Gauge Issues between the Einstein

and Jordan Frames

As described in §2.5.2, there is a practice of transforming from the frame one are working
in, to another one where the equations are simpler or more numerically stable. However,
it turns out that this holds a hidden danger, which, especially in numerical situations,
can contaminate the results, if we don’t make sure that we are working within a restric-
ted set of gauges. The entirety of this chapter and its results has resulted in a paper
published in Journal of Cosmology and Astroparticle Physics [1].

5.1 Transformations for a Perturbed Model

Considering the nature of the transformation for a perturbed model reveals an issue
which to the best of our knowledge is as yet unappreciated by the literature. As men-
tioned, perturbed systems in relativity exhibit the gauge issue, choosing how to map
fictitious background spacetime and the physical perturbed spacetime. In this chapter
we consider the impact of this problem, and how one can resolve the resulting gauge
ambiguities. We illustrate with a simple f(R) model in a vacuum FLRW spacetime,
but it should be emphasized that this issue will in principle occur in any perturbed
spacetime and a wide range of extended theories of gravity.

While many authors working on perturbed spacetimes in modified gravity choose to
employ “gauge-invariant” variables (for example, [74, 75]) or work in the Jordan frame
(such as [76, 77, 78, 79, 80, 81, 82]), the analysis of gauge problems is necessary for
three reasons. Firstly, there are authors who fix a gauge (such as [83, 53, 84, 85]),
which is equally as valid. Secondly, gauge-invariant variables are themselves based
on variables in a particular gauge [18]. The frequently-employed Bardeen potentials
[86] are, for example, gauge-invariant generalizations of the potentials in conformal
Newtonian gauge. If there is an issue with the choice of the “natural” gauge of a gauge-
invariant perturbation, the perturbation itself cannot necessarily be trusted.

Numerical studies targeting the CMB and the matter power spectrum (such as [53,
48, 49, 50]) often employ modifications to Boltzmann codes such as CAMB [87], cmbeasy
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[88], CLASS [89] or CosmoLib [90]. If there is an issue with the frame transformation
and synchronous gauge, then the initial conditions for modifications of CAMB could
be suspect, as could the final results even after being transformed back into the Jordan
frame. Worse, if there is an issue the error is compounded: each transformation between
frames will induce errors. Given that the use of CAMB (or similar codes) is of interest
to us, the study of transformations of systems in synchronous gauge is forced upon us,
despite its known shortcomings [18, 91].

The alternative formulation of f(R) gravity employs the Palatini approach, where
the metric and the connections are treated as independent objects. The nature of the
transformation between the frames implies that the issues we highlight in this chapter
are also relevant in the Palatini approach. Since the field equations in the Palatini
approach are second order the usefulness of the transformation is somewhat lessened, but
if a system is more easily evaluated in the Einstein frame then the potential ambiguities
should still be considered.

The gauge problem is discussed and illustrated in §5.2. We finish the chapter with
a summarization in §5.3 and a discussion of the implications in §5.4.

5.2 Perturbations and Gauge Issues in f(R) Cosmology

5.2.1 Transforming Perturbations between Frames: Gauge Ambigu-

ities

Remembering how transformations worked on the background level (2.28), let’s look
at how they transform perturbations. Applied to a linearly perturbed metric (2.85)
and writing F and δF for the background and the perturbed quantity respectively, the
conformal transformation between the frames is

g̃µν = g̃(0)
µν + h̃µν = (F + δF )

(

g(0)
µν + hµν

)

. (5.1)

Assuming a flat FLRW background for illustration, all components of the metric imply

ã =
√
Fa⇒ H̃ = H +

1

2

Ḟ

F
. (5.2)

The metric perturbation transforms as

h̃µν = Fhµν + g(0)
µν δF. (5.3)

The perturbation can as we remember be expanded into scalar, vector and tensor
modes [18] by

hµνdx
µdxν = (5.4)

a2(η)
(

−2Φdη2 + (∂iB − Si) dηdx
i −
(

2Ψδij − 2∂i∂jE − 2∂(iFj) − h
(T )
ij

)

dxidxj
)

,
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with ∂iSi = ∂iFj = ∂ih
(T )
ij = δijh

(T )
ij = 0. Applying the transformation leads ultimately

to

Φ̃ = Φ +
1

2

δF

F
, Ψ̃ = Ψ − 1

2

δF

F
, (5.5)

with all other metric quantities invariant. The transformation then induces both a
lapse Φ and a curvature Ψ regardless of the gauge chosen for hµν . If for instance we
employ uniform curvature gauge in the Jordan frame (Ψ = E = 0), giving us two scalar
degrees of freedom Φ and B, then upon transformation into the Einstein frame we
apparently have three scalar degrees of freedom, Φ, B and Ψ. Obviously these are not
genuine degrees of freedom, being linear combinations of the two Jordan frame degrees
of freedom. However, if the field equations are taken at face value, one should treat
them as three. Erroneously employing the uniform curvature gauge field equations in
the Einstein frame would in principle induce a gauge mode that would contaminate the
results in the Einstein frame. Likewise, if we employed synchronous gauge in the Jordan
frame, with Φ = B = 0 and the degrees of freedom Ψ and E, upon transformation into
the Einstein frame we would have three apparent degrees of freedom: Ψ, E and the
redundant lapse Φ. Clearly if care is not taken the gauge is being tangled in the
transformation between Jordan and Einstein frames – only gauges possessing both a
lapse and a curvature, such as conformal Newtonian gauge, are unaffected.

We will now work out how all the various quantities transform. Let uµuνT
(M)
µν =

ρM (1 + δM ) and uµ(M) = (1/a)(1 − Φ, ∂iv(M)), and expand the scalar field ψ̃ = κφ̃ as

ψ̃ → ψ̃ + δψ̃. Then using the transformation of the stress energy tensor,

T̃µν =
Tµν
F
, (5.6)

which we expand to include perturbations with F → F + δF ,

T̃µν =
Tµν

F + δF
=
Tµν
F

(

1 − δF

F

)

. (5.7)

We can then quickly show, when using the perturbed stress-energy tensor in conformal
Newtonian gauge,

T00 = a2(ρ+ δρ+ 2Φρ), T0i = −a2(ρ+ p)vi Tij = a2δij(p+ δp − 2Ψp), (5.8)

that

T̃00 =
a2 (ρ+ δρ+ 2Φρ)

F

(

1 − δF

F

)

= ã2
(

ρ̃+ δ̃ρ+ 2Φ̃ρ̃
)

(5.9)

⇒ ρ̃+ δ̃ρ+ 2Φ̃ρ̃ =
1

F 2

(

ρ+ δρ+ 2Φρ− δF

F
ρ

)

. (5.10)

When used alongside equation (5.5) demand that

ρ̃ =
ρ

F 2
, δ̃ρ =

δρ

F 2
− 2

ρδF

F 3
, (5.11)
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and remembering the dimensionless density variable δ = δρ
ρ we get,

δ̃ = δ − 2
δF

F
. (5.12)

With equation (5.11) and the Stefan-Boltzmann relation,

ρ ∼ T 4,

we can see how the temperature transforms as well:

(5.13)

Likewise,

T̃0i =
a2(ρ+ p)vi

F
=
ã2(ρ+ p)vi

F 2
= ã2(ρ̃+ p̃)ṽi (5.14)

⇒ ṽi = vi and p̃ =
p

F 2
. (5.15)

Using the equation of state p = wρ we get,

p̃ =
p

F 2
= w

ρ

F 2
= wρ̃ = w̃ρ̃⇒ w̃ = w. (5.16)

Lastly,

T̃ij =
a2δij (p+ δp − 2Ψp)

F

(

1 − δF

F

)

= ã2
(

p̃+ δ̃p − 2Ψ̃p̃
)

(5.17)

⇒ p̃+ δ̃p − 2Ψ̃p̃ =
1

F 2

(

p+ δp− 2Ψp− δF

F
p

)

, (5.18)

which recovers what we previously have for the pressure, as well as giving us,

δ̃p =
δp

F 2
− 2

pδF

F 3
. (5.19)

Finally we want to see how the speed of sound transforms, we utilize the relation
δp = c2sδρ so that,

δ̃p = c2s
δρ

F 2
− 2w

ρδF

F 3
= c2s

(

δ̃ρ+ 2
ρδF

F 3

)

− 2w
ρδF

F 3
(5.20)

= c2s δ̃ρ+ 2(c2s − w)ρ̃
δF

F
. (5.21)

For the cases where c2s = w1 we see that the speed of sound is invariant, as were the
equation of state and velocity under transformations.

1Which include all the cases we will look at in this thesis.
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Finally, the scalar field is defined as

ψ̃ = − 1

2Q
lnF = − 1

2Q
ln (F + δF ) ⇒ ψ̃ = − 1

2Q
lnF, δψ̃ = − 1

2Q

δF

F
. (5.22)

Summarizing, we have

ã =
√
Fa, a = ã exp(Qψ̃),

H̃ = H +
Ḟ

2F
, H = H̃ +Q

˙̃
ψ,

ρ̃ =
ρ

F 2
, ρ = ρ̃ exp(−4Qψ̃),

p̃ =
p

F 2
, p = p̃ exp(−4Qψ̃),

T̃ =
T

F 2
, T = T̃ exp(−4Qψ̃),

ψ̃ = − 1

2Q
lnF, F = exp(−2Qψ̃),

Φ̃ = Φ +
δF

2F
, Φ = Φ̃ +Qδψ̃,

Ψ̃ = Ψ − δF

2F
, Ψ = Ψ̃ −Qδψ̃,

δ̃ = δ − 2F

F
, δ = δ̃ − 4Qδψ̃,

δ̃p =
δp

F 2
− 2

pδF

F 3
, δp =

(

δ̃p− 2Qp̃δψ̃
)

exp(−4Qψ̃),

ṽ = v, v = ṽ,

δψ̃ = − 1

2Q

δF

F
, δF = −2Qδψ̃ exp(−2Qψ̃).

(5.23)

As we see, the density perturbation also changes, implying that if we chose uniform
density gauge in the Jordan frame we would no longer be in uniform density gauge
following the conformal transformation.

Note that this issue only affects scalar perturbations and not vectors or tensors. It
is also important to note that this is not unique to cosmological models; any system
which is separated into a background metric plus perturbations will be at risk.

The cause of this is that the group associated with the conformal transformation is
more tightly constrained than that of GR. The gauges that lie within this group are
those with Φ 6= 0, Ψ 6= 0 and δρ 6= 0; synchronous, uniform curvature and uniform
density gauges do not belong to this group, while conformal Newtonian and forms of
co-moving gauges do. Practically, there are three straightforward approaches to dealing
with the problem:

• One could choose to work directly with the additional redundant degree(s) of
freedom in the Einstein frame, keeping those terms in the field equations.
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• One could “refix” the gauge after a transformation. Transforming between the
frames in the uniform curvature gauge induces a lapse; applying a gauge trans-
formation into conformal Newtonian gauge or back into uniform curvature gauge
will reabsorb these, explicitly leaving a system with two degrees of freedom.

• More physically, one could work in a gauge lying within the restricted group. The
most obvious example is conformal Newtonian gauge, while other options would
include a subset of the co-moving gauges with non-vanishing lapse and curvature.

It must be emphasized here that this is only an issue when the conformal transform-
ation is applied – while in either frame, one may choose to work with any gauge, as
normal. For instance, one should be able to transform in conformal Newtonian gauge
into the Einstein frame, and then convert to uniform curvature gauge to undertake a
calculation, before transforming back to conformal Newtonian gauge and transferring
the result into the Jordan frame. As a result studies in Jordan frame that employ a
gauge outside of the restricted class (such as [82]) remain entirely valid.

While employing a system with apparent redundant degrees of freedom might seem
a bit odd, it can be easily justified. By the equivalence of the field equations (3.29) any
solution valid in the Jordan frame is equally valid in the Einstein frame. A corollary
is that, as long as one employs the correct Einstein equations in the Einstein frame,
a Jordan frame solution will always be valid. However, these correct Einstein equa-
tions are not necessarily those that would be expected, and must additionally include
the additional terms induced by the transformation. For example, the gauge-unfixed
Hamiltonian constraint [18] is

3H̃
(

˙̃Ψ + H̃Φ̃
)

−∇2
(

Ψ̃ + H̃
(

˙̃E − B̃
))

= −1

2
κ2ã2δρ̃. (5.24)

If we employ uniform curvature gauge in the Jordan frame with Ψ = E = 0 then we
would in the Einstein frame naïvely expect to employ

3H̃2Φ̃ + H̃∇2B̃ = −1

2
κ2ã2δρ̃. (5.25)

However, while we still have Ẽ = 0, here actually Ψ̃ 6= 0. The correct version of the
Hamiltonian constraint is then

3H̃
(

˙̃Ψ + H̃Φ̃
)

− ∂i∂i

(

Ψ̃ − H̃B̃
)

= −1

2
κ2ã2δρ̃. (5.26)

The validity of this system is guaranteed by equation (3.29).
This might be unpalatable on practical grounds: a great advantage of working in

the Einstein frame is to leverage existing codes which are written in a set gauge, and
evolving the extra degree of freedom will involve additional coding and testing. Codes
will also generally be more stable with two variables to evolve rather than three. One
does, however, remain free to apply a gauge transformation into a more standard gauge.
It is this which we refer to as “refixing”. The validity of the redundant system in the Ein-
stein frame equally guarantees the validity of the refixed system. Since equation (3.29)
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guarantees the validity of the redundant system, the “refixed” system is equally valid
given a well-defined gauge transformation. As such gauges such as uniform curvature
and uniform density gauges can be seen as being clean when transforming between the
Jordan and Einstein frames – and indeed are, so long as either the redundant system is
evolved, or is reabsorbed following a gauge transformation. Failure to take one of these
two steps will result in errors.

At this point it should be emphasized that CMB codes are commonly written in
synchronous gauge [92, 93, 87, 89], as we will see later in Chapter 6. The transformation
into synchronous gauge contains an arbitrary function of space [18]. We also note that
one must work in conformal time instad of cosmic time in order to remove the ambiguity
we discussed in §2.90, as in conformal time locking synchronous gauge to the velocity of
cold dark matter will remove the ambiguity, this additional step must be taken if one
is intending to use such a code in the Einstein frame. If one takes the Jordan frame
to be the physical frame (in which the Hubble rate, matter densities, magnitude of
perturbations are set), then the initial conditions must be set up in the Jordan frame
and then transferred into the Einstein frame. To employ these in a Boltzmann code a
further transformation into synchronous gauge is required regardless of the gauge chosen

in the Jordan frame, and must be treated with the appropriate care.2

The final option is to work in a gauge lying in the restricted group. This group
requires the existence of a lapse, a spatial curvature and matter perturbations. In the
Jordan frame we have four metric and two matter scalar degree of freedoms, Φ, B, Ψ,
E, δρ and v, of which we can remove two with gauge transformations. Of these, Φ, Ψ
and δρ are non-zero in a gauge belonging to the restricted group. In vacuo, this limits
us to conformal Newtonian gauge alone, while for systems with matter sources we have
greater freedom and can also select co-moving gauges with v = 0 and either E 6= 0 or
B 6= 0.

In the remainder of this chapter we illustrate this issue with a simple example system.

5.2.2 Is Flatness Preserved?

As a curiosity, we check to verify that flatness is preserved when we transform from one
frame to another. This is technically imposed by the very nature of the transformations,
but reaffirming this is easy, and worth doing just to be safe. Keeping equation (2.47),
equation (3.11) (which is defined on a flat spacetime) and equation (2.71) in mind, we
restate some quantities,

Ω̃m =
ã2κ2ρ̃m

3H̃
, κ2ρ̃φ =

1

2ã2
˙̃
ψ2 + κ2Ṽ ⇒ Ω̃φ =

1

3H̃

(

1

2
˙̃Ψ2 + ã2κ2Ṽ

)

˙̃
ψ = − 1

2Q

Ḟ

F
, κ2Ṽ =

RF − f

2F 2
, R =

6

a2

ä

a

2An interesting point that can be made here is that the conformal transformation does not preserve
adiabaticity of initial conditions – that is, even if one sets adiabatic initial conditions in the Jordan
frame, the introduction of an effective scalar field in the Einstein frame will induce a level of isocurvature,
which should be taken into account. We show this in Chapter 6.
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and remember all the transformations listed in the summarized equation set (5.23), we
can set up,

3H̃2
(

Ω̃m + Ω̃φ

)

=
a2κ2ρm
F

+
3

4

(

Ḟ

F

)2

+ a2RF − f

F

= 3H2 − 3
ä

a
+
a2

2

f

F
+ 3H Ḟ

F
+

3

4

(

Ḟ

F

)2

+ 3
ä

a
− a2
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f

F

= 3



H2 + H Ḟ

F
+

1

4

(

Ḟ

F

)2




= 3

(

H +
1

2

Ḟ

F

)2

= 3H̃2.

As we see, Ω̃m + Ω̃φ = 1 is implied by this calculation. Now we continue on to the
example system.

5.2.3 Gauge Issues in Vacuum Polynomial Gravity

In this section we focus on polynomial gravity, with

f(R) = αRn ⇒ F = αnRn−1. (5.27)

The background cosmology of this theory has been considered in detail in [47]. These
authors found the exact background solution both in vacuum and in the presence of
matter fields,

a ∝ t(1−n)(2n−1)/(n−2). (5.28)

The exponent diverges when n→ 2, suggesting that it is a particularly interesting case.
The situation is clearer in the Einstein frame. The scalar field potential (3.20)

becomes

κ2Ṽ (φ̃) =
1

2α1/(n−1)

n− 1

nn/(n−1)
exp

(

2
n− 2

n− 1
Qκφ̃

)

, (5.29)

which is constant for n = 2. For particular initial data or at late times we would then
expect (dφ̃/dt)2 ≪ Ṽ (φ̃), and the spacetime in the Einstein frame will become de Sitter.

For a field with
˙̃
ψ = 0, equation (5.2) implies that the scale factor retains its character –

an exponential expansion in the Einstein frame will map onto an exponential expansion
in the Jordan frame. When n = 2, the solution in the Jordan frame is therefore de
Sitter. This has been noted before in [94], where n = 2 is shown to correspond to
weff = −1, and in [47] where it is stated that α ∝ (n − 2) = 0 corresponds to de Sitter
space.

We take n = 2 and for simplicity we work on superhorizon scales in vacuum; this
simplifies the treatment of the perturbations considerably.
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Background

Inserting the test model equation (5.27) into the Einstein field equations in the Jordan
frame equation (3.11) give us

3

(

ȧ

a

)2

+
a2

4
R− 3

ä

a
+ 3

ȧ

a

Ṙ

R
= 0,

ä

a
+

(

ȧ

a

)2

− R̈

R
− ȧ

a

Ṙ

R
− a2

4
R = 0. (5.30)

The solution (5.28) is in coordinate time. A solution for this system in conformal time
is

a(η) = (1 +H0(η0 − η))−1 ⇒ F = 24αH2
0 , (5.31)

where H = aH0 and we have normalized such that a(η0) = 1. Remember, we opt to
write the scalar field in units of κ, ψ̃ = κφ̃, the Friedmann and continuity equations in
the Einstein frame are as we remember,

3

( ˙̃a

ã

)2

= ã2κ2ρ̃φ, ˙̃ρφ + 3H̃ (ρ̃φ + p̃φ) = 0, (5.32)

where

ρ̃φ =
1

2ã2κ2
˙̃ψ2 + Ṽ (φ̃), p̃φ = ρ̃φ − 2Ṽ (φ̃), κ2Ṽ (φ̃) =

1

8α
. (5.33)

The solution (5.31) transformed into the Einstein frame is

ã =

√
24αH0

1 +H0(η0 − η)
, ψ̃ = − 1

2Q
ln
(

24αH2
0

)

, w̃φ = −1. (5.34)

The effective scalar field in the Einstein frame is frozen on a constant potential; as in
the Jordan frame, this is de Sitter space.

This solution corresponds to the case where ψ ≡ const., which reduces the effective
scalar field energy and pressure to constants. The system in the Einstein frame admits
a more general case, corresponding to a field which is initially rolling in the potential
before slowing through Hubble friction. By inserting equation (5.33) into equation
(5.32) we find a continuity equation for the scalar field, which can be written as

∂

∂ã

(

ã6κ2ρ̃φ
)

=
3ã5

4α
, (5.35)

which can be solved to yield

κ2ρ̃φ =
A

ã6
+

1

8α
. (5.36)

If the initial conditions are tuned such that A = 0, or when ã≫ 1, then ψ ≡ const and
this solution is the de Sitter limit found above. There is also a “dynamic limit” where
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the density decays rapidly with time, κ2ρ̃φ = A/ã6, with ã = (2
√

A/3(η0 − η))1/2,
which holds when ã≪ (8αA)1/6. An implicit general solution for a is

η =
4

9

(

16α2

A

)1/6 √
3π2

(Γ(2/3))3 −
√

24α

ã
2F1

(

1

6
,
1

2
;
7

6
;−8Aα

ã6

)

, (5.37)

where 2F1(a; b;x) is a regular hypergeometric function. In the limit a → ∞ this tends
to de Sitter space3. For our purposes it is thankfully sufficient to work in the de Sitter
limit.

Linear Perturbations in the Restricted Group

In this section we find solutions for the perturbed vacuum spacetime in conformal
Newtonian gauge and demonstrate that the system is trivially valid in the Einstein
frame in both the conformal Newtonian and the uniform curvature gauges. Conformal
Newtonian gauge lies in the restricted class of gauges, while uniform curvature gauge
does not. The restricted gauge group consists of the usual gauge group in relativity
with the additional conditions Φ 6= 0 and Ψ 6= 0. The uniform density and uniform field
gauges are other examples of gauges satisfying these conditions. On large scales where
spatial derivatives can be neglected the vacuum perturbation equations [53], where we

write δF =
∂F

∂R
δR, are

F (Φ − Ψ) +
∂F

∂R
δR = 0,

6HF
(

Ψ̇ + HΦ
)

+ 3
∂F

∂R
ḢδR − 3H ∂

∂η

(

∂F

∂R

)

δR − 3H∂F

∂R
δṘ + 3Ḟ

(

2HΦ + Ψ̇
)

= 0,

(5.38)

where it is understood that F and R are background quantities. Inserting our model
with F = 2αR and using

δR = − 6

a2

(

2
ä

a
Φ + HΦ̇ + 3HΨ̇ + Ψ̈

)

, (5.39)

one can find that

Ψ = Ψ1 +
Ψ2

a
+

Ψ3

a3
, Φ =

Ψ2

a
− Ψ3

a3
− Ψ1, (5.40)

is a general solution. Therefore

δF

F
= 2

(

Ψ1 +
Ψ3

a3

)

. (5.41)

3Note that this solution is not normalized such that a(η0) = 1.
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This solution is transformed to the Einstein frame using the transformations defined
in (5.23), giving Φ̃ = Ψ̃ and

Φ̃ =
Ψ2

a
=

√
24αH0Ψ2

ã
, δψ = − 1

Q

(

Ψ1 +
(24α)3/2H3

0Ψ3

ã3

)

. (5.42)

Then ψ̇ = 0 at a background level, implying 8ακ2ρ̃φ = 1 and δρ̃φ = δp̃φ = 0. The
Newtonian potentials are equal, as should be expected since in the Einstein frame,
unlike the Jordan frame, the anisotropic stress vanishes. The Klein-Gordon equation,
Hamiltonian constraint and shear evolution equations [18] in this frame are,

H̃
(

˙̃Φ + H̃Φ̃
)

= 0, (5.43)

Φ̃ = Ψ̃, (5.44)

δ
¨̃
ψ + 2H̃δ ˙̃

ψ = 0, (5.45)

which are clearly satisfied. This illustrates the expected equivalence between the frames:
a system perturbed in conformal Newtonian gauge can be evolved in either the Jordan
or the Einstein frames, to yield a consistent result in the Jordan frame. The same holds
for any gauge that lies within the restricted group.

A scalar quantity transforms under a gauge transformation ξµ = (α, ∂iβ) as δAF =
δA+Ȧα [18], and so is gauge-invariant at linear order if it is constant on the background.

As a result, the field perturbation is gauge-invariant because
˙̃
ψ = 0, and will therefore

always satisfy its equation of motion. The transformation from conformal Newtonian
into uniform curvature gauge, defined by choosing ΨF = EF = 0 [18], is

Φ̃F = Φ̃ + Ψ̃ +
∂

∂η

(

Ψ̃

H̃

)

, B̃F = − Ψ̃

H̃
, (5.46)

where a subscript F denotes uniform curvature gauge. Uniform curvature gauge was
used in, for example, [95]. The lapse and shift in uniform curvature gauge are then

Φ̃F = 0, B̃F = −24αH2
0

ã2
Ψ2. (5.47)

The Hamiltonian constraint and shear evolution become

3H̃2Φ̃F = 0, ˙̃BF + 2H̃B̃F = 0, (5.48)

which are clearly satisfied.

Refixing a Gauge

Consider the system in the uniform curvature gauge in the Jordan frame. Transforming
the Jordan frame solutions (5.40) into uniform curvature gauge gives

ΦF = −Ψ1 − 4
Ψ3

a3
, BF = − 1

aH0

(

Ψ1 +
Ψ2

a
+

Ψ3

a3

)

. (5.49)
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Since the background Ricci scalar is constant, the perturbed Ricci scalar is gauge-
invariant and δF/F is given by equation (5.41). Transforming into the Einstein frame
gives

Φ̃F,2 = −3(24α)3/2H3
0

Ψ3

ã3
, Ψ̃F,2 = −Ψ1 − (24α)3/2H3

0

Ψ3

ã3
,

B̃F,2 = −
√

24α

ã

(

Ψ1 +
√

24αH0
Ψ2

ã
+ (24α)3/2H3

0

Ψ3

ã3

)

,

(5.50)

which evidently differ from (5.47). In particular, since the lapse is non-vanishing the
Hamiltonian constraint is satisfied only if Ψ1 = 0, while the stress evolution equation is
only valid if Ψ1 = Ψ3 = 0 – neither of which are acceptable.

Consider a model in units where α = H0 = 1, and set the initial conditions Ψ = 1,
Ψ̇ = 0, Ψ̈ = 1/2 in the Jordan frame at a = 1. Then we find

Ψ1 =
7

6
, Ψ2 = −1

4
, Ψ3 =

1

12
. (5.51)

Transferring into the Einstein frame, we find that a = 1 corresponds to ã =
√

24. On
this time-slice equation (5.50) implies that B̃F,2(ã =

√
24) = −1. Equations (5.48) then

implies that

B̃F,2 = −24

ã2
(5.52)

is the “solution” in the Einstein frame. However, equation (5.47) shows that

B̃F = −24

ã2
Ψ2 =

6

ã2
. (5.53)

The difference is of the same order of magnitude as the perturbation itself. Worse,
if we performed the transformation on a different time-slice we would obtain different
results. Even worse, transferring the lapse gives Φ̃F,2(ã =

√
24) = −1/4 on the initial

hypersurface but equations (5.48) enforce Φ̃F = 0 at all other times.
This illustrates the main result of this chapter and our paper [1]: if you naïvely

transfer a system in an unsafe gauge between the Jordan and Einstein frames, you
will inevitably introduce errors of the same order of magnitude as the perturbations
themselves.

In the previous section we argued two approaches to dealing with this: refixing the
gauge, and employing a redundant set of field equations. Consider first refixing the
gauge to uniform curvature gauge by reabsorbing the spatial curvature with the general
transformations

Φ̃RF,F = Φ̃F,2 + Ψ̃F,2 +
∂

∂η

(

Ψ̃F,2

H̃

)

= 0, B̃RF,F = B̃F,2 −
Ψ̃F,2

H̃
= −24αH0Ψ2

ã2

(5.54)
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in agreement with (5.47). Likewise, refixing to conformal Newtonian gauge,

Φ̃RF,N = Φ̃F,2 + ˙̃BF,2 + H̃B̃F,2 =
√

24αH0
Ψ2

ã
, Ψ̃RF,N = Ψ̃F,2 − H̃B̃F,2 = Φ̃RF,N

(5.55)

in agreement with (5.42). These illustrate the validity of refixing the gauge to reabsorb
the unexpected degree of freedom.

We can also consider the unfixed system in the Einstein frame. We have three scalar
degrees of freedom: Φ̃F, Ψ̃F and B̃F. Retaining these three variables, the vacuum field
equations on large scales [18] are

3H̃
(

˙̃ΨF,2 + H̃Φ̃F,2

)

= 0, (5.56)

˙̃BF,2 + 2H̃B̃F,2 + Φ̃F,2 − Ψ̃F,2 = 0, (5.57)

¨̃ΨF,2 + 2H̃ ˙̃ΨF,2 + H̃ ˙̃ΦF,2 +
(

2 ˙̃H + H̃2
)

Φ̃F,2 = 0. (5.58)

These field equations are also clearly satisfied by equations (5.50).

5.3 Summarizing

In this chapter we have discussed a technical subtlety of the conformal transformation
between the Jordan and Einstein frames that to the best of our knowledge has not been
highlighted before: naïvely transferring a perturbed system between the frames tangles
your choice of gauge. It should be emphasized that this effect is calculational, not phys-
ical, and that if sufficient care has been taken no previous results are changed by this.
It is also extremely important to note that this issue is not restricted to f(R) gravity
or to the study of cosmological perturbations, and that it potentially arises whenever
a perturbed system is conformally transformed regardless of the background metric or
the model of gravity. f(R) theory and vacuum cosmology provide a useful, straight-
forward illustration of this. While we have concretely demonstrated the issue only for
this vacuum f(R) system, in principle it arises generically, although demonstrating this
explicitly is beyond the scope of this thesis.

The properties of the conformal transformation restrict us to a particular set of
gauges which we refer to as the “restricted group”: gauges that possess a lapse, a spatial
curvature, and a density perturbation. This restriction only applies when the trans-
formation is performed. At all other times one is free to work in any convenient gauge.
However, we additionally argued that there are alternatives to working in the restricted
group – one can instead choose to “refix” the gauge, or to evolve the system using the
redundant Einstein field equations.

We have illustrated our arguments with a simple vacuum system, showing that there
are no ambiguities introduced by equations (5.23), so long as one takes care to refix the
gauge, to work with a redundant set of field equations, or to ensure one works in a gauge
that lies in the restricted group. If this is not done and the results of a transformation
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from a gauge outside the restricted group are interpreted as if they themselves lie in
that gauge, the system will be inaccurately specified.

5.4 Implications

Perhaps the most important situation where this issue will arise is in the treatment of
initial conditions. For instance, Boltzmann codes are frequently [92, 93, 87, 89] written
in synchronous gauge, which lies outside of the restricted group. Interpreting the Jordan
frame as the physical frame, the initial conditions must be set in the Jordan frame. It
seems natural to set them in the synchronous gauge and transfer these initial conditions
to the Einstein frame. However, regardless of the gauge chosen, the transformation
induces a lapse function which must be reabsorbed if the results of the calculation are
to make any sense. This itself introduces an additional problem: the transformation
to synchronous gauge is not fully specified, and introduces an arbitrary function of
the curvature which must itself be removed with care. The alternative is to include
the redundant degrees of freedom in the Boltzmann codes, which requires additional
effort. A careless study without attention to these issues would either leave the system
with the spurious lapse, or risk introducing a gauge mode. Some Boltzmann codes
[92, 88, 89] include modules written in conformal Newtonian gauge, which lies within
the restricted group, and studies of extended gravity that employ these codes remain
consistent. However the study of synchronous gauge is forced upon us by CAMB, which
given the widespread use of Fortran in cosmology, its large codebase and the extensive
testing it has undergone, is the dominant Boltzmann code. Similar arguments apply to
the initial conditions employed in n-body simulations of modified gravity performed in
the Einstein frame.

The other time at which the gauge ambiguity becomes important is at the end of
a calculation. Taking the Jordan frame to be physical, the results of a simulation in
the Einstein frame must be transformed back. Given that calculations are frequently
performed in synchronous gauge then one must either transform into a safer gauge
before performing the conformal transformation, or deal with the redundant system in
the Jordan frame. Otherwise one runs a serious risk of contamination. At this stage it
seems easier to refix the gauge in the Jordan frame to a fully-specified gauge (such as
conformal Newtonian or uniform curvature), or to leave the system unspecified. So long
as one does so consistently, observables will not be affected, since gauge transformations
cannot change an observation.

It is interesting to note that the lensing potential Φ + Ψ is uncontaminated by the
transformation. As such, if one wishes to calculate the weak lensing signal on a constant-
time hypersurface, this can be achieved transforming from the Jordan frame into the
Einstein frame in any gauge and not worrying about refixing the system [52]. For a
static (or quasi-static) system, this will be a good approximation. However, carelessly
evolving the system without care will in principle introduce errors, so that the frame
invariance does not imply such a straightforward estimate of the integrated Sachs-Wolfe
effect [3].



Chapter 6

Modifying CAMB

In the previous chapter we showed how the transformation between Jordan and Einstein
frames can induse errors if we’re not working within a restricted set of gauges, of which
conformal Newtonian gauge is the preferred choice. Boltzmann codes are much used
in the field of cosmology to study the CMB, and existing Boltzmann codes are extens-
ively developed and contain a wealth of physics which we can leverage with minimal
modification. With this in mind we wish to modify a full-featured Boltzmann code in
the Einstein frame, which could be used with minimal modifications to study arbitrary
modified gravities that admit an Einstein frame representation. Steps towards this have
been done before [96, 97, 53], but none of these are tailored to safeguard the problems
above. Sections of this chapter are based on an ongoing research project.

6.1 Why CAMB?

The original intent was to produce my own selfcontained Boltzmann code, however as
progress was made it soon became clear that this task would be too big to finish within
the timeframe of this thesis. Therefore the choice was easy, we would rather modify an
existing code, notably CAMB. We have decided to modify CAMB not only to safeguard
against the issues found in Chapter 5, but also to generalize it to allow any modified
gravity that has an Einstein frame representation. But why did we choose CAMB? Let
us take a look at our choices.

1. COSMICS: The grandfather of Boltzmann codes, it was written in Fortran 77 by
Bertschinger [92] and works in both the conformal Newtonian and the synchronous
gauges. COSMICS has long been dead, superceded by CMBFast which is orders
of magnitude quicker. No-one would do research on COSMICS without a lot of
modification to add improvements already in modern codes.

2. CMBFast: The father of Boltzmann codes, CMBFast is a line-of-sight CMB integ-
rator that uses the synchronous gauge side of COSMICS as its core. Programmed
in Fortran 77 by Seljak and Zaldariagga [93], CMBFast has also long been dead,
superceded by CAMB which has superior data-exchange facilities, support for
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palatalization, bug fixes etc. CMBFast could be used, but the decoupling physics
in particular are very out of date and it is generally much less stable than its
successors.

3. cmbeasy: The younger brother of CAMB, cmbeasy is a C++ port of CMBFast
originally by Doran [88] and then maintained by Robbers. It hasn’t been updated
for a few years, although we believe it is still in private development. Despite
its inheritance from CMBFast, cmbeasy now employs a gauge-invariant formalism
based on the Bardeen potentials [86] and is therefore effectively in conformal New-
tonian gauge, and has an independent core to CAMB. Little used, partly because
it is programmed in C++. cmbeasy interfaces tightly with its own parameter
estimation code, AnalyzeThis! [98].

4. CAMB: The king of Boltzmann codes, CAMB started as a Fortran 90 port of
CMBFast. Re-derived and rewritten in the gauge-invariant and covariant ap-
proach to cosmology, but locked to zero-CDM-acceleration frame, which is equi-
valent to synchronous gauge, for all practical purposes we can treat CAMB as
being another synchronous gauge code. CAMB is used by the vast majority of
papers on linear cosmology. Plenty of modifications already exist: MGCAMB
[48], IsItGR? [51] and others [99, 100]. It also interfaces nicely with CosmoMC
[101] which is used by the vast majority of parameter estimation studies.

5. CLASS: While CAMB in particular is extensively tested, it is not very user-
friendly, particularly to modify. To this end Lesgourgues programmed CLASS in
C [89]. Unlike CAMB, CLASS integrates the background independently from the
perturbations, whereas CAMB integrates it whenever it integrates a perturbed
variable, which is wasteful. CLASS is too new to know what acceptance it will
have, but such is likely to be limited by the fact it is coded in C. CLASS was
initially released in synchronous gauge, which remains better tested, although a
conformal Newtonian gauge module was released soon after.

6. COSMOLib: Programmed with many of the same aims as CLASS, predominantly
in Fortran 90 but with some calls to routines written in C. COSMOLib is far too
new to know what impact it will have, and boasts tight integration with its own
MCMC routines for parameter estimation. The greatest benefit of CosmoLib
is that it was programmed from the start in conformal Newtonian gauge and
its conformal Newtonian module has been tested more extensively than that of
CLASS. Being written in F90 is also a bonus, as it is more familiar to academics
than C or C++.

Since COSMICS and CMBFast have long been dead, and the development of cmbeasy
is on hold, the realistic choices are between CAMB, CLASS and CosmoLib. We choose
to work with CAMB mainly because it is the dominant code and contains the greatest
wealth of physics. While CosmoLib also looks extremely interesting – being programmed
from scratch in the familiar Fortran 90 and in conformal Newtonian gauge could prove
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extremely useful – it contains much less physics than CAMB. CLASS is a tightly-
programmed code which is extremely pleasant to use; however, our familiarity with C
is not developed enough to modify it reliably.

6.2 Structure of CAMB

Here follows a brief overview of CAMB’s structure.

• Start by inputting the density parameters Ωx0, Hubble constant H0, equation of
state w0 etc, the CMB temperature TCMB and various other variables.

• Integrate the perturbed quantities Φ, Ψ, δx, vx etc. For each of these CAMB
integrates the background.

• Calls the Recfast module calculating the decoupling physics, while also recovering
the background quantities from CAMB.

• Construction of the various sources, represented by the source function sl(k, η).

• Once perturbations are finished evolving, construct the angular power spectrum
Cl, brightness function ∆T l and matter power spectrum |δm|2.

• Output Cl and |δm|2 to file.

6.3 Modifications

Although our motivation comes from modified gravities, there is a second useful con-
sequence of our modification of CAMB: the background dependence has been stripped
from the code, in the manner of very recent codes such as CLASS and CosmoLib,
vastly improving the functionality. The code we are developing contains modules al-
lowing standard ΛCDM, wCDM with constant or varying w and arbitrary speeds of
sound, single-field quintessence models, coupled quintessence models, and simple mod-
els of extended gravity. It is straightforward to add in further models, and changes to
the background propagate automatically through the code.

Note that we assume that FLRW is a solution to our theory, that the matter fluids
are perfect, and that a conformal transformation can be made into an Einstein frame.
The form of theory is otherwise unspecified, although it is an implicit assumption that
the Einstein frame will possess only one scalar field, which is related to our Jordan frame
possessing only one additional degree of freedom (F (R), or φ in an f(R) or scalar-tensor
model). The details of the model in the Jordan and Einstein frames are added as single
functions in a module visible to the rest of the code.

The outline of our code goes as this: We introduce the initial conditions in the
conformal Newtonian gauge, so that we can immediately transfer to the Einstein frame
without worrying about any new degrees of freedom. Once in the Einstein frame, we
refix the initial conditions to synchronous gauge, for so to continue the evolution using
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synchronous gauge evolution equations (2.114)-(2.117), just as vanilla CAMB. At the
very end of this evolution, we would perform a new transformation into conformal
Newtonian Gauge, before swapping back to the Jordan frame. However this last step
might be redundant if all we want is the CMB powerspectrum, which can be directly
constructed in the Einstein frame. We will show that when we transform between the
frames we will introduce isocurvature1 in the Einstein frame.

If f(R) ≈ R when we start the code, then we can use modifications of the standard
Ma and Bertschinger initial conditions [21]; otherwise we need to re-derive them. These
standard initial conditions will require a long-lasting radiation epoch. First and foremost
we find conditions from M&B that hold, and derive them with first order modifications.

The Einstein frame physics from radiation domination all the way through to the
current epoch remains unchanged in form from GR and the code will need minimal
modifications. When we get to the point of computing the CMB and the matter power
spectrum, we will store the brightness functions to disc, so they can be used with higher
order statistics2.

We choose to take the Jordan frame as physical, since doing so guarantees that our
interpretation of our results is sensible. If the frames are physically equivalent then we
have exploited the Einstein frame to solve the system, and wasted a few milliseconds
transforming back into the Jordan frame. If the frames are not equivalent, then we’ve
avoided presenting gibberish. This satisfies both camps.

6.4 Multi-fluid

So far in the thesis we’ve only looked at single-fluid models, and need to restate a
few quantities, now for multi-fluids. In a multi-fluid model, with arbitrary couplings
between the fluids, the conservation of the stress-energy tensor take the form, in the
Jordan frame, as

∇µTµν = ∇µ
∑

T (A)
µν = 0, ∇µT (A)

µν = C(A)
ν . (6.1)

Transformations into the Einstein frame can be applied to each fluid separately, giving

∇̃µT̃ (A)
µν = C̃(A)

ν + κQT̃ (A)∇̃ν φ̃. (6.2)

The total stress-energy tensor in the Einstein frame, including that for the effective
scalar field, is naturally still conserved. We take the matter sector of the Universe
to comprise of baryons, cold dark matter (CDM), photons and neutrinos, obeying the
Jordan frame conservation laws

∇µT (c)
µν = 0, ∇µT (ν)

µν = 0, ∇µT (b)
µν = Cb→γ

ν , ∇µT (γ)
µν = −Cb→γ

ν . (6.3)

1Isocurvature in the context of cosmology is the same as entropy perturbations for the fluid we
analyze.

2This is fine unless we want to do parameter estimation.



6.5 Perturbed FLRW Metric, Jordan and Einstein Frames 73

In the Einstein frame, these then become

∇µT̃ (c)
µν = −κQρc∇ν φ̃, ∇µT̃ (ν)

µν = 0, (6.4)

∇µT̃ (b)
µν = C̃b→γ

ν − κQρb∇ν φ̃, ∇µT̃ (γ)
µν = C̃γ→b

ν , (6.5)

where we have used that, for relativistic species, T = 3p − ρ ≡ 0 while for dustlike
matter T = −ρ. Inserting these into the synchronous gauge evolution equations (2.114)-
(2.117), we should recover the equations already present in CAMB, adjusted for the

awful notation in there. Of note, CAMB’s h′ = ḣ
6 , and 6h′ = 2kz, so that in our case

the z in CAMB is z =
ḣ

2k
.

6.5 Perturbed FLRW Metric, Jordan and Einstein Frames

6.5.1 Variables in the Jordan and Einstein Frames

To exploit CAMB’s existing codes, the system will be solved in the Einstein frame in
synchronous gauge. However, it will be necessary to consider the system in the Jordan
frame in order to set the initial conditions. Since the initial conditions will be transferred
to the Einstein frame, it is then most convenient to express the system in the Jordan
frame in conformal Newtonian gauge. In this section, an S denotes synchronous gauge
and an N conformal Newtonian; quantities in the Jordan frame are implicitly taken to
be in conformal Newtonian gauge.

Remember the full stress-energy tensor of matter in the Jordan frame as

Tµν = (ρ+ p)uµuν + pgµν + 2q(µuν) + πµν . (6.6)

The four-velocity and heat flow linearise to

uµ =
1

a
(1 − Φ, vi), qµ =

1

a
(0, qi), (6.7)

and the anisotropic stress and 3-velocity vi are linear perturbations. Since we are only
considering scalar perturbations these can be written as

vi = ∂iv and πij = a2 (ρ+ p)
(

∂i∂j − (1/3)δij∂
l∂l

)

πS . (6.8)

Similar definitions apply to the Einstein frame in conformal Newtonian gauge.

The functions of the Ricci scalar in the Jordan frame can be expanded as

f → f + δf = f + FδR, F → F + δF = F + F,RδR, (6.9)

with F,R = dF/dR. Transforming the stress-energy tensor (6.6) gives

ṽNi = vi, q̃Ni = qi, π̃Ni = πi, (6.10)
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while all other relations from equation set (5.23) still hold. The potential linearises to

Ṽ → Ṽ + δṼN = Ṽ + Ṽ,ψ̃δψ̃N , (6.11)

where we have written the scalar field as ψ̃ = κφ̃ and Ṽ,ψ̃ = dV/dψ̃.
The Einstein frame quantities derived above are in conformal Newtonian gauge.

However, in the Einstein frame we will evolve the equations of motion in synchronous
gauge, which requires a change of gauge after the conformal transformation. The line
element in synchronous gauge (2.90) can be written as

ds̃2 = ã2(η)
(

−dη2 +
((

1 − 2Ψ̃S

)

δij + 2∂i∂jẼS

)

dxidxj
)

. (6.12)

The transformations from conformal Newtonian gauge to synchronous gauge are given
in §2.7.6, while the anisotropic stress is also gauge-invariant.

Our variables differ slightly from those employed by Ma and Bertschinger (with
subscript MB), as well as Bean and Pogosian [21, 53], in the manner

k2v = −θMB, (6.13)

2k2πS = 3σMB, (6.14)

Ψ = ηMB, (6.15)

2k2E = −(hMB + 6ηMB). (6.16)

Our πS is related to Π in [18] by Π = (ρ+ p)πS . Photons and neutrinos are not perfect
fluids, although while photons are tightly-coupled to baryons they can be described
as such. Instead, these fluids are described by distributions functions; with the mo-
mentum dependence integrated out these are “brightness functions”. We consider the
transformation of the brightness function in §6.5.3.

6.5.2 Equations of Motion

An index i runs across all matter, r runs across radiative matter and m across dustlike
matter. The effective scalar field in the Einstein frame will always be written explicitly
and never included in such a sum. Henceforth, unless otherwise noted, quantities in the
Einstein frame are in synchronous gauge, while those in the Jordan frame are in con-
formal Newtonian gauge. In the Jordan frame the background Einstein field equations
are

3

(

ȧ

a

)2

+
a2

2

f

F
− 3

ä

a
+ 3

ȧ

a

Ḟ

F
=
a2κ2

F

∑

i

ρi, (6.17)

ä

a
+

(

ȧ

a

)2

− F̈

F
− ȧ

a

Ḟ

F
− a2

2

f

F
=
a2κ2

F

∑

i

pi. (6.18)

Matter follows as always

ρ̇+ 3H(1 +w)ρ = 0. (6.19)
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The Friedmann equations in the Einstein frame are simply

3

( ˙̃a

ã

)2

= ã2κ2

(

∑

i

ρ̃i + ρ̃φ

)

, 2
¨̃a

ã
−
( ˙̃a

ã

)2

= −ã2κ2

(

∑

i

p̃i + p̃φ

)

, (6.20)

where

κ2ρ̃φ =
1

2ã2
˙̃
ψ2 + κ2Ṽ (ψ̃), κ2p̃φ =

1

2ã2
˙̃
ψ2 − κ2Ṽ (ψ̃). (6.21)

The Klein-Gordon equation for the scalar field becomes

¨̃ψ + 2H̃ ˙̃ψ + ã2κ2Ṽφ̃ = −ã2κ2Q
∑

i

(ρ̃i − 3p̃i) = −ã2κ2Q
∑

m

ρ̃m, (6.22)

and matter continuity is

˙̃ρm + 3H̃ρ̃m = Qρ̃m
˙̃
ψ, ˙̃ρr + 4H̃ρ̃r = 0. (6.23)

Remember that the functions of the Ricci scalar in the Jordan frame can be expanded
as

f → f + FδR, F (R) = F + F,RδR. (6.24)

The perturbed Einstein equations in the Jordan frame can then be written in Fourier
space [53] as

δ̇b − k2vb − 3Ψ̇ = δCb→γ
0 , δ̇γ −

4

3
k2vγ − 4Ψ̇ = −δCb→γ

0 , (6.25)

v̇b + Hv + Φ = δCb→γ
i , v̇γ +

1

4
δγ + Φ − 2

3
k2πSγ = −δCb→γ

i (6.26)

6H
(

Ψ̇ + HΦ
)

+ 2k2Ψ + 3
F,R
F

ḢδR − k2F,R
F
δR

− 3
H
F

∂

∂η
(F,RδR) + Ḟ

(

6HΦ + 3Φ̇
)

= −a2κ2
∑

i

ρiδi, (6.27)

F (Φ − Ψ) + F,RδR = −4

3
a2κ2 (ργπSγ + ρνπSν) , (6.28)

where matter continuity is unchanged from general relativity. To find the CDM and
neutrino equations, take the baryon and photon equations with δCµ = 0. The perturbed
Ricci scalar is the perturbation part of equation (2.100),

δR = − 2

a2

(

6
ä

a
Φ + 3HΦ̇ − k2Φ + 9HΨ̇ + 3Ψ̈ + 2k2Ψ

)

. (6.29)

The perturbation equations in the Einstein frame are those of general relativity in
the presence of a quintessence field coupled to dustlike matter. In the Einstein frame,
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in synchronous gauge, the perturbed Einstein equations then become [53],

3H̃ ˙̃Ψ + k2
(

Ψ̃ + H̃ ˙̃E
)

= − ã
2κ2

2

∑

i

ρ̃iδ̃i −
1

2

(

˙̃
ψ

˙
δψ̃ + κ2Vψδψ

)

, (6.30)

˙̃Ψ = − ã
2κ2

2
ρ̃ṽ +

1

2
˙̃ψδψ, (6.31)

¨̃Ψ + 2H̃ ˙̃Ψ =
ã2κ2

2

(

c̃ 2
s ρ̃δ̃ −

8

3
k2ρ̃π̃

)

+
1

2

(

˙̃ψ ˙δψ̃ − κ2Vψδψ̃
)

, (6.32)

¨̃E + 2H̃ ˙̃E + Ψ̃ = (1 + w)ã2κ2ρ̃π̃, (6.33)

while matter continuity for a fluid with arbitrary scatterings is

˙̃δ + 3H̃
(

c̃ 2
s − w

)

δ̃ − (1 + w)
(

k2(ṽ + ˙̃E) + 3 ˙̃Ψ
)

= C̃0 −Q(1 − 3w)
(

˙̃ψδ̃ + ˙δψ̃
)

, (6.34)

˙̃v +
(

1 − 3c̃ 2
s

)

H̃ṽ +

(

δ̃p

ρ̃+ p̃
− 2

3
k2πS

)

= C̃i. (6.35)

Inserting the various fluids, these translate to

˙̃δb − k2
(

ṽb + ˙̃E
)

− 3 ˙̃Ψ = δC̃b→γ
0 −Q

(

˙̃ψδb + ˙δψ̃
)

, (6.36)

˙̃
δγ −

4

3
k2
(

ṽγ + ˙̃E
)

− 4 ˙̃Ψ = −δC̃b→γ
0 , (6.37)

˙̃vb + H̃vb = δC̃b→γ
i , ˙̃vγ +

1

4
δ̃γ −

2

3
k2πγ = −δC̃b→γ

i , (6.38)

where neutrino and CDM equations of motion again are found by taking δC̃µ = 0 in the
photon and baryon expressions. The scalar field itself obeys the perturbed Klein-Gordon
equation

¨
δψ̃ + 2H̃ ˙

δψ̃ +
(

k2 + ã2κ2V,ψψ
)

δψ̃ =
(

3 ˙̃Ψ + k2 ˙̃E
)

ψ̇ − ã2κ2Q
(

ρ̃bδ̃b + ρ̃cδ̃c

)

. (6.39)

We therefore have to add the potential and couplings to the scalar field to the code.

6.5.3 Observables: The CMB Angular Power Spectrum

The angular power spectrum of the temperature auto-correlation is given in the Jordan
frame by,

Cl =
1

8π

∫

P(k) |∆T l(k, η0)|2
dk

k
, (6.40)

where the photon transfer functions ∆T l(k, η0) are the moments of the photon brightness
function at the present epoch separated across the Legendre polynomials and P(k) the
primordial power spectrum. It is these transfer functions that a Boltzmann code is
designed to calculate. We therefore need to know how the brightness function transforms
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between the Einstein and the Jordan frames. Fortunately, this is quick to find. Note
first that [102]

∆T0 = δγ , ∆T1 = −4

3
kvγ , ∆T2 =

3

k2
πS. (6.41)

Then we immediately have

∆̃T0 = ∆T0 − 2
δF

F
, ∆̃T1 = ∆T1, ∆̃T2 = ∆T3. (6.42)

When separated across the Legendre polynomials the Boltzmann equation becomes
an infinite hierarchy of equations, with each moment coupling to the ones above and
below. Neglecting for simplicity the couplings, for l ≥ 2 in conformal Newtonian gauge
the Boltzmann hierarchy is [21]

∆̇T l =
k

2l + 1
(l∆T l−1 − (l + 1)∆T l+1) , (6.43)

and takes the same form in both frames. We immediately conclude that

∆̃T l = ∆T l, l ≥ 2, (6.44)

with the proof by induction. The same arguments apply for the case with couplings,
and for the polarization hierarchies. To find the CMB angular power spectrum, then,
we can simply evaluate it in the Einstein frame at the end of a calculation; so long
as we calculate it at the correct Einstein frame scale factor, the observables do not
change. Similar arguments apply to the higher order moments of the CMB such as the
angular bispectrum. Note that the transfer functions are solved by an integral of the
form ∆T l ∝

∫

ST (k, η)jl(k(η−η0))dη, whose time-dependence might lead one to assume
that we cannot simply solve in the Einstein frame in the method we propose. However,
this time dependence is entirely carried on the scale factor, whose behaviour in the two
frames is well understood, and on the conformal time, which is invariant between the
frames.

6.6 Initial Conditions

As we will consider the Jordan frame to be the “physical” one, we will first find the
initial conditions here.

6.6.1 Background Initial Conditions in the Jordan Frame

We set the initial conditions at a0 = 1 in the Jordan frame, and wish to set all quantities
by the background terms {Ωb0,Ωc0, TCMB,H0, q0}. The subscript 0 denote present day
values. We start out with reminding you of the definition of the density parameter in
the Jordan frame,

Ωi0 =
κ2ρi0
3F0H2

0

, (6.45)
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where F0 is the initial condition of F, given as F (R0). This gives us

κ2ρi0 = 3F0H2
0Ωi0 (6.46)

for each type of fluid. Since we assume a flat background the effective energy density
of the modified gravity terms is then,

ΩF0 = 1 − Ωb0 − Ωc0, (6.47)

the photon energy density is ργ0 = (π2/30)gγ⋆T
4
CMB and the neutrino energy density is

ρν0 = (7/8)Nν(4/11)
4/3T 4

CMB, which give us [103]

Ωγ0 ≈
(

2.48 × 10−5
)

h−2F−1
0 , Ων0 ≈ 1.68Ωγ0. (6.48)

Contrary to standard practice we specify the current behaviour of the modifications
with the deceleration parameter q0 rather than an effective equation of state. From the

definition of the deceleration parameter we can find initial conditions for the term
ä

a
,

q = − Ḣ
H2

= 1 − ä

aH2

⇒ ä

a

∣

∣

∣

∣

∣

0

= (1 − q0)H2
0 . (6.49)

With this initial condition, we can set up the initial condition of the Ricci scalar

R =
6

a2

ä

a

⇒ R0 =
6

a2
0

(1 − q0)H2
0 . (6.50)

Now we are only left with the initial conditions for
Ḟ

F
, which we can get by using all of

the above initial conditions alongside equation (3.11),

3H0
Ḟ

F

∣

∣

∣

∣

∣

0

=
a2

0κ
2ρm0

F0
+ 3

ä

a

∣

∣

∣

∣

∣

0

− a2
0

2

f0

F0
− 3H2

0

⇒ Ḟ

F

∣

∣

∣

∣

∣

0

= H0 (Ωm0 − q0) −
1

6H0

f0

F0
. (6.51)

From these initial conditions we can extract the parameters we require, ã0, H̃0, ρ̃i0, ψ̃0

and
˙̃
ψ0 in the Einstein frame.
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6.6.2 Background Initial Conditions in the Einstein Frame

We find the initial conditions in the Einstein frame by immediately performing the
transformation from equation set (5.23),

ã0 =
√

F0a0 ⇒ ã0 =
√
F0 , (6.52)

H̃0 = H0 +
1

2

Ḟ

F

∣

∣

∣

∣

∣

0

⇒ H̃0 = H0 +
1

2
H0 (Ωm0 − q0) −

1

12H0

f0

F0
, (6.53)

κ2ρ̃m0 =
κ2ρm0

F 2
0

⇒ κ2ρ̃m0 =
3H2

0Ωm0

F0
. (6.54)

Note that we are ending our integration with ã > 0 in contrast to the usual ã = 1, a
point we had to be aware of in order to make sure our modifications are robust enough
to handle this change. Finally we need the initial condition for the scalar field and the
potential. We again redefine ψ̃ = κφ̃ and the initial conditions follow seamlessly,

ψ̃0 = − 1

2Q
lnF0, (6.55)

˙̃
ψ0 =

1

2Q

(

1

6H0

f0

F0
−H0 (Ωm0 − q0)

)

, (6.56)

κ2Ṽ0 =
6H2

0 (1 − q0)F0 − f0

2F 2
0

. (6.57)

The energy density and equation of state of the scalar field are then given by,

κ2ρ̃φ0 =
1

2ã2
0

˙̃
ψ0 + κ2Ṽ0 and w̃φ0 =

˙̃ψ2
0 − 2ã2

0κ
2Ṽ0

˙̃
ψ2

0 + 2ã2
0κ

2Ṽ0

. (6.58)

Equations (6.55) and (6.58) give us the constraints at the current epoch. However the
evolution equation for the scalar field will generically possess a growing and a decaying
mode [3]. If we simply integrate the conditions above backwards, then, we will typically
encounter the decaying mode, which will drive us far from the matter- and radiation-
dominated backgrounds we want for a valid cosmology. In the language of dynamical
systems theory [104, 105, 106], we want to ensure that we follow a trajectory from near
a fixed point associated with radiation, past a fixed point associated with matter, and
towards a fixed point associated with vacuum domination.

We therefore need to set initial conditions at some early scale factor ã ∼ 10−8, and

in principle this requires fixing {Ωb,Ωc,Ωγ ,Ων , ψ̃,
˙̃ψ} at the early time, and hunting

through this parameter space for a combination which results in a viable cosmology.
In standard quintessence, the matter and radiation densities have a trivial dependence

on scale factor, which along with setting ˙̃ψi = 0,3 reduces the number of parameters in

3We know that ψ̃ is going to be small, and can therefore deduce that its derivative will be vanishingly
small as well. This is also what is done in the quintessence module in vanilla CAMB [87].
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the space to one, ψ̃, which is quickly explored. The situation in coupled quintessence
scenarios (including extended gravities in the Einstein frame) is more complicated, since
the matter densities do not evolve trivially with scale factor. However, following [34]
we can solve equation (6.19) to formally give

ρ̃m(ã) = ρ̃m0

(

ã0

ã

)3(1+w)

exp
(

Q(ψ̃(ã) − ψ̃0)
)

. (6.59)

This allows us to again reduce the parameter space at ã ≈ 10−8 to the single variable
ψ̃. At each stage, when ψ̃ has been propagated to the current epoch, ρ̃φ0 and w̃φ0

can be calculated and compared with the desired parameters, making them essentially
boundary conditions rather than initial conditions.

6.6.3 Initial Conditions for Linear Perturbations

The initial conditions for the cosmological perturbations are set on superhorizon scales
in the very early universe. We will not focus much attention on the initial conditions,
as they in general are extremely model-dependent, and one of the greatest efforts in
employing a Boltzmann code in the Einstein frame will be in finding suitable initial
conditions for the perturbations. Since we aim towards using f(R) models as a simple
test case, we will not concern ourselves in this section with finding specific initial condi-
tions for specific models and instead consider the generic effects that one should expect
to occur.

Without requiring us to yet choose a model let us assume that the standard GR
initial conditions in [21] hold. These are:

Φ =
20C

15 + 4Rν
, Ψ =

(

1 +
2Rν
5

)

Φ, δγ = δν =
4

3
δb =

4

3
δc = −2Φ, (6.60)

vγ = vν = vb = vc = −1

2
Φη, πν =

1

12
Φη2, (6.61)

where Rν = ρν/ρr is a constant, Rν ≈ 0.25. Using that4 δR ≈ −2ΦR then gives the
Einstein frame initial conditions:

Φ̃ = Φ

(

1 −R
F,R
F

)

, Ψ̃ = Φ

(

1 +
2

5
Rν +R

F,R
F

)

,

δ̃γ = δ̃ν = −2Φ

(

1 − 2R
F,R
F

)

, δ̃b = δ̃c = −2Φ

(

3

4
− 2R

F,R
F

)

,

ṽi = vi, π̃ν = πν , δψ = R
F,R
F

Φ.

(6.62)

We can then immediately see that the system in the Einstein frame has in principle a
large amount of isocurvature, which arises from the effective isocurvature in the Jordan

4This approximation comes from taking equation (6.29) and treating Φ and Ψ as constants and
dropping all terms proportional to k.
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frame between the matter perturbations and the geometry. As the CMB is frame-
independent, we therefore would expect the CMB angular power spectrum generated
in arbitrary models of extended gravity to resemble qualitatively CMB angular power
spectra from models with significant isocurvature, such as coupled multi-field inflation
[107, 108]. However, the initial conditions here are perhaps more surprising than those in
such models; in those cases one retains relatively straightforward relationships between
the gravitational potentials and the matter perturbations. Here, not only are the rela-
tionships between the potentials violated, but so also are all the relationships with the
density contrasts.

It is also worth noting that the errors induced by the transformations when not
working within the restricted set of gauges or properly dealing with the extra degrees of
freedom, will be at the order of the deviation from standard GR. In this specific model
the deviations are low, and would not cause much of a problem, but principally we do
not know how big these deviations are for other extended gravity theories. However,
however small the errors might be at the initial conditions, we do not know how much
they will compound as the equations are evolved, and care should always be taken.

6.7 Constraints on f(R) Gravity Theories

By choosing to work with the initial conditions that work for GR we restrict our choices
of what f(R) theories will be allowed for us to put into our modified code at this point.
In this section we will briefly look at certain criteria that f(R) gravity theories need to
fulfill.

6.7.1 Demanding a Radiation Dominated Past

We take “radiation domination” to imply ρr ≫ ρm – in the case of GR, this additionally
implies that a ∝ η. At early times there will be a period that is almost indistinguishable
from standard GR. In these cases, at very early times we can write f(R) ≈ R + g(R)
where g(R) ≪ R, and the initial conditions to be as in GR [21, 19] (potentially with
small corrections).

Note that in principle it is not necessary that we possess a radiation dominated era;
we can insert any modified gravity we wish into the code and examine its evolution.
However, any model which does not possess a radiation-dominated era at early times –
whether or not it then passes into a matter dominated era – will require much additional
study to set the initial conditions for the perturbations. For convenience, we restrict
ourselves to models which indeed pass extremely close to a radiation dominated era, in
which case the perturbations will behave as their GR counterparts would.

Assuming radiation domination and that a ∝ η1+ǫ (with ǫ not necessarily small or
positive), the Friedmann equations give

G̈− 2(1 + ǫ)

η
Ġ− 2(2 + ǫ)(1 + ǫ)

η2
(1 +G) = − 4

3η2(1+ǫ)

κ2ρrI
a2
I

=
C

η2(1+ǫ)
, (6.63)
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where G(R) = g,R(R). Surprisingly, this has the general solution of

G(η) =
4 − Cη−2ǫ − 6ǫ2

6ǫ2 − 4
+Aη(3+2ǫ−

√
25+36ǫ+12ǫ2)/2 +Bη(3+2ǫ+

√
25+36ǫ+12ǫ2)/2. (6.64)

This is a general condition for the behaviour of f(R) if one wishes a power-law radiation
era. Restricting to ǫ ≪ 1 gives us a radiation domination with a similar scaling to
standard GR, for which the modified gravity must satisfy

F (η) ≈ 1

4
C (1 − 2ǫ ln η) +

A

η

(

1 − 4

5
ǫ ln η

)

+Bη4

(

1 +
14

5
ǫ ln η

)

. (6.65)

We set ǫ = 0 in equation (6.64) and get a condition to satisfy pure radiation domination

G(η) =
C − 4

4
+Aη−1 +Bη4. (6.66)

We leave normalizing this constraint for future work.

6.7.2 Constraints from the Initial Conditions

We can get more constraints from the initial conditions worked out above, by inserting
them into the various Einstein equations. First off, we insert the initial conditions into

F (Φ − Ψ) + F,RδR = −4a2κ2

3
ρνπν ,

and get

R
F,R
F

=
Ων0F0H2

0η
2

6F
− Rν

5
. (6.67)

Likewise we can find a constraint by inputting the initial conditions into the other
field equation; however it will result in higher order derivatives of a, so we will not
consider it at the time being. Should and f(R) model satisfy these constraints we can
use the Ma and Bertschinger conditions.

6.8 Numerical Methods

We have for the most part only been using the numerical methods found in the original
CAMB, with a few exceptions. For one part of the code we’ve turned to Numerical
Recipes, and modified their routine Miser. Miser is a Monte Carlo algorithm by Press
and Farrar [109] that is based on recursive stratified sampling [110]. See the mentioned
citations for an in depth overview of Miser and Monte Carlo in general. For our purpose
it is enough to state that Monte Carlo is a well tested and very flexible integration
method that utilizes random numbers. It analyzes integrals on a grid, by choosing a
random point at which to evaluate the integrand.
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6.9 Structure of Our Code

As well as the modifications mentioned above, we have made several structural changes
and additions to CAMB.

• Added an f(R) module that give user specified f(R), F (R), F,R(R), V (φ̃), V,φ̃(φ̃),

V,φ̃φ̃(φ̃) and initial conditions.

• A background module evaluating the Einstein frame background assuming the
inputs are given in the Jordan frame.

• We have modified the code throughout to propagate this background, note that
these modifications are everywhere.

• Added perturbation support for coupled scalar fields.

• And finally output Cl, ∆T l, ∆Bl and ∆El to file, output of the matter density
contrast δm is to be added later.

6.10 Summarizing

In this chapter we have shown the concept of how we wish the modified code to function:

1. Set up initial conditions in Jordan frame in conformal Newtonian gauge.

2. Transform to Einstein frame.

3. Refix to synchronous gauge.

4. Evolve the evolution equations from a distant past to what is equivalent to today
in the Jordan frame.

5. Finally transforming back to conformal Newtonian gauge and the Jordan frame
for constructing the observables.

We’ve also supplied all the evolution equations that the code need, and touched
upon the various constraints imposed on our f(R) theory by choosing to work with Ma
and Bertschinger’s initial conditions. However in its final form we wish the code to be
able to handle any extended gravity theory that has an Einstein frame representation,
not only f(R) theories. This will however entail theoretical effort before the code can
be employed.

Once the code is finished we wish to employ all the various f(R) theories discussed
in §3.4; however for the time being we’ll be working in the simple, and arguably best,
f(R) theory, the Starobinsky model. The reason for this choice is that it is simple, so
that we in fact can continue with analyzing the non-Gaussianity parameter fNL without
the code being in a complete tested form. We can do this as when using this model and
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the statistics derived in Chapter 4, our code simplifies down to vanilla CAMB and we
can go ahead with the analysis.

At the time of writing the code is nearing completion, and work will continue im-
mediately after this thesis is finished and defended. The code should be finished in the
near future, and a paper should follow soon after.



Chapter 7

Results in f (R) inflation

In this chapter we will provide the results we can produce from the previous chapters.
First and foremost, we return to Chapter 4, to analyze the behaviour of the non-
Gaussianity parameter fNL for a specific model.

7.1 The Return of f(R) = R + αR2

We return to Starobinsky’s inflation model with α = (6M2)−1, where M is given by the
Planck mass mP l. This model has been extensively researched, most notably for our
purposes by Hwang and Noh [56] and Tsujikawa and De Felice [2]. Let us first note that
this model is almost indistinguishable from the ΛCDM model with an m2

P lφ
2 potential.

We continue by noting that our slow-roll parameters from Chapter 4 differ from theirs
in the manner

ǫ1 = −ǫHN1 = ǫTF1 , ǫ2 = 2ǫHN3 = 2ǫTF3 , ǫ3 = ǫHN4 = ǫTF4 . (7.1)

As shown in Tsujikawa and De Felice’s general overview of f(R) models, and originally
derived by Hwang and Noh, these slow-roll parameters give the spectral index of the
primordial power spectrum, and the tensor/scalar ratio (as derived by Hwang and Noh),

nS − 1 ≈ −4ǫ1, r ≈ 48ǫ21. (7.2)

Here, ǫ3 ≈ −ǫ1 and ǫ2 ≈ −2ǫ1 has been used, justified in [56]. It is also shown that
these slow roll parameters can be related to the number of e-foldings (2.70) as

ǫ1 ≈ 1

2N
, ǫ2 ≈ − 1

N
, ǫ3 ≈ − 1

2N
, (7.3)

implying

nS ≈ 1 − 2

N
= 1 − 3.6 × 10−2

(

55

N

)

, r ≈ 12

N2
, (7.4)
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where the odd approximation of 2 ≈ 3.6× 10−2 · 55 has been used since we can assume
N ≈ 55, which would give us

nS ≈ 0.964, r ≈ 4 × 10−3.

This spectral index has a value square in the middle of the region allowed by WMAP-7
[24], while the tensor/scalar ratio would indicate a very low background of gravitational
waves. It can further be shown that for this model [56],

α ≈ 1.5 × 1012m2
P l. (7.5)

With this value of α, inflation has long since ended and a suitable period of reheat-
ing has occurred1, so that we don’t even need our extensive modifications to CAMB.
Instead, we merely need to insert the amplitude of the primordial perturbations and
the spectral index to recover a CMB angular power spectrum extremely close to the
standard ΛCDM model. More interestingly, we will recover a B-mode angular power
spectrum significantly lower than is frequently assumed; r . 0.1 is still allowed by the
data [24], and it is typical to push r as high as is allowed.

At this point we will need to start looking at the various k-configurations introduced
in §4.5.2; however in order to simplify the choice of configurations we can use the
parametrization

k2 = βk1, (7.6)

k2
3 = k2

1

(

1 + β2 + 2β cosφ
)

.

In this parametrization2;

• Equilateral configuration corresponds to β = 1 and φ =
2π

3
.

• Squeezed configuration corresponds to β = 1 and φ = π.

• Colinear configuration corresponds to β = 1 and φ = 0.

With this parametrization we have reduced the 3-dimensional fNL(k1, k2, k3) to
a 2-dimensional surface fNL(β, φ). Specializing these to the colinear, equilateral and
squeezed configurations gives,

fCol
NL =

23

48
D1 −

10

3
D2 +

1

24
D3 +

1

12
D4,

fEq
NL =

20

27
D1 −

10

3
D2 +

20

27
D3 −

20

27
D4, (7.7)

fSq
NL =

5

12
D1 −

10

3
D2;

1It was shown in Hwang and Noh [56], that this arises automatically. As well as in [111] for a
modification of this model.

2It is also important to note that β → ∞ corresponds to a rotation of the squeezed configuration,
implying k1 → 0.



7.1 The Return of f(R) = R+ αR2 87

for an arbitrary configuration fArb
NL , see Appendix B. We find an approximation to the

non-linearity parameter by using the fact that the slow-roll parameters are small, and
that ǫ2 = 2ǫ3, and drop everything down to leading order. This leaves us with

fNL,approx = −10

3
D2, (7.8)

as an approximation to the non-linearity parameter. Whether or not this is a good
approximation we will see shortly. In order to see if equilateral is dominating or not,
we use that ǫ3 = ǫ2/2, ǫ2 = −1/N and equation set (7.7) so that

fEq
NL

fCol
NL

=
10
(

10N2 − 22N + 5 + 16N3
)

(2N − 1)2(40N + 43)
,

fEq
NL

fSq
NL

=
1

4

10N2 − 22N + 5 + 16N3

(N + 1)(2N − 1)2
, (7.9)

and a corresponding form for the ratio of the equilateral line to an arbitrary line. In
the limit N → ∞, then, we see

fEq
NL

fCol
NL

=
fEq
NL

fSq
NL

= 1. (7.10)

Even for N = 1, which would be a very puny inflationary era, we see that

fEq
NL

fCol
NL

=
90

83
,

fEq
NL

fSq
NL

=
9

8
, (7.11)

and the fNL parameters for different configurations are of the same order-of-magnitude.
This suggests that the fNL parameter is approximately a constant. Inserting this into
equation set (7.7) we get

fCol
NL ≈ 15.73 × 10−3, (7.12)

fEq
NL ≈ 15.89 × 10−3, (7.13)

fSq
NL ≈ 15.71 × 10−3, (7.14)

and from equation (7.8),

fNL,approx ≈ 15.61 × 10−3. (7.15)

We note that all of these values are within the current bounds for the non-linearity
parameter set up by WMAP 7, e.g. fEq

NL ∈ (−214, 266) and fSq
NL ∈ (−10, 74) [24]; we

expect much tighter constraints from Planck once the data is released to the public.

7.1.1 Results for the Power Spectrum

As we found above, this model has a spectral index nS ≈ 0.964 and we can therefore
find the power spectrum of this mode simply by using CAMB to calculate the Cl for
this nS . In Figure 7.1 we show the power spectrum for this model, as well as the
Harrison-Zel’dovich angular power spectrum.
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Figure 7.1: The power spectrum for nS = 1 and nS = 0.964, where the latter represents
the power spectrum of this model, for arbitrary units.

7.1.2 Results for the Non-Gaussianity Parameter

We’ll here analyze which of the configurations are the dominant one. In general the
literature seem to imply the equilateral configuration to be the dominant one. As we
see from the equations above this does seem to be the case; however it only dominates
by approximately 1%. In Figure 7.2 we show the surface fNL(β, φ) for N = 55. Also
plotted in green is the approximate fNL,approx, forming the flat surface beneath. Figure
7.3 shows the fractional error between these, which is defined as

Err =
|fNL,approx − fNL|

fNL
. (7.16)

We can see that the equilateral line (at {β, φ} = {1, 2π/3}) is dominant and the
squeezed line (at {β, φ} = {1, π}) gives the weakest contribution; however, the max-
imum error in assuming the approximate form is Err . 1.6%. As β → ∞ we can see
the fNL parameter in Figure 7.2 decaying towards the squeezed value; this is also very
apparent in Figure 7.3. These results do not suggest that we can simply employ fEq

NL in
the calculation of the CMB angular bispectrum, since unless there is a mechanism that
preferentially selects the equilateral configuration it is not dominant enough, even for
low N , that the rest of the parameter space can be neglected.

As we increase the number of e-foldings for inflation we would expect the exact form
of the fNL parameter to go to the approximate form. In Figure 7.3 we show the fractional
error Err for N = 55 and N = 750. The lower surface, N = 750, is noticeably flatter as
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Figure 7.2: fNL (upper curve) and fNL,approx for N = 55.

well as having lower fractional errors in general. Pushing to an extremely high N gives
effectively vanishing fractional error across the entire plane. This is also illustrated in
Figure 7.4, which shows the ratios fEq

NL/f
Col
NL , fEq

NL/f
Sq
NL and fEq

NL/fNL(β = 9, φ = 8π/10).
In each case the fractional error decays cleanly with increasing N , and the equilateral
line remains the largest.

Alternatively, we can go back to the original definition of fNL (4.29), before we in-
troduced the parametrization, and evaluate a three-dimensional plot of how fNL evolves
for all various k-configurations (naturally restricted to a triangular wedge). In Figure
7.5 and Figure 7.6 we show the fNL from two different perspectives, the front and the
rear.

7.1.3 Results for the Bispectrum

It turns out that it is possible to calculate an analytical approximation of the reduced
angular bispectrum B̂l1l2l3 (2.130), but only for low l ≤ 20. This area is named the
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Figure 7.3: Fractional error in fNL,approx for N = 55 (upper) and N = 750 (lower).

Sachs-Wolfe plateau in the literature, and our analytical approximation when having
chosen nS = 1 is

B̂l1l2l3 ≈ −4π5/2

90
fNL

1

l1(l1 + 1)

1

l2(l2 + 1)
+ 2perms; (7.17)

see Appendix C for the derivation. We choose to look at the equilateral and colinear
configurations, l1 = l2 = l3 = l and l1 = l2 = l3/2 = l respectively, in Figure 7.7, where
we have also plotted the power spectrum for this model in comparison.

We also present the full solution to this approximation in in Figure 7.8 and Figure
7.9, front and rear perspective respectively, for l < 20.

Figure 7.8 and Figure 7.9 shows us the discrete nature of the bispectrum, and we see
a clear diminishing of the bispectrum as l increases. Note again that the bispectrum is
only defined for l-configurations that form a triangle, and for even ls. Figure 7.7 clearly



7.1 The Return of f(R) = R+ αR2 91

Figure 7.4: Ratios between fEq
NL and fCol

NL , fSq
NL and an arbitrary line with β = 9, φ =

8π/10 for varying number of e-foldings N .

shows us that there is an extended Sachs-Wolfe plateau, as for this particular model the
fNL is relatively constant. It also demonstrates that the current code is able to do the
analysis which is needed for the other extended gravity models we wish to examine at
a later time.

Note however that there are two reasons for only analyzing the bispectrum for lower
ls at the time being. The first is due to an implementation error that has not yet been
identified in the current state of the code. The other problem is more substantial, and
has been encountered by many who have been working on the bispectrum, notably by
Fergusson and Shellard in [112]. As they have pointed out, and I have experienced, the
brightness functions start oscillating as k grows, and eventually hit a limit where the
value drastically drops, at k ∼ 0.1, to continue oscillating until k ∼ 1 where it completely
vanishes. This is a problem because it lower the allowed dynamical range we can use in
our calculations, and gives us an outright wrong behaviour at high ks. Fergusson and
Shellard decided to strip out the source function from the brightness function integral,
in order to construct the brightness function manually using the precomputed source
function. Depending on stability we might decide to go the same route.

The next step would also be analyze the matter power spectrum 〈|δM |2〉 and matter
bispectrum 〈δMδM δM 〉, which has so far been neglected.

Finally once we have all of the above running perfectly, we will apply them to the
other f(R) theories expanded upon in §3.4. A potentially interesting f(R) model would
be a variation of the first alternative theory discussed in §3.4.3, which is already ruled
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out from the Amendola and Tsjuikawa bounds [54], of the form

f(R) = − µ4

R− r
− 2Λ +R− r + α(R − r)2.

This represents a Laurent series that is no longer expanding about the point R = 0, but
has rather been shifted with a factor r. It seems possible this slight modification might
push the theory towards something more viable.

It is worth emphasising that we have used f(R) = R+αR2 because it is the simplest
test case, the techniques employed applies to general f(R) theories, to Brans-Dicke
theories, and to more general modified gravities. While we don’t expect observable
bispectra from f(R) the formalism developed will be able to take more general models
which may well do. Finally, all the underpinnings are all here, pending testing of the
code.

The only thing that now remains is to stabilize the code and complete the im-
plementations of all mentioned f(R) theories, and other interesting extended gravity
theories as they are brought to our attention.
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Figure 7.5: The non-linearity parameter fNL for k1, k2 and k3 running from 0 to 25,
color scheme is the value of the fNL.

Figure 7.6: Same as the above picture, seen from the opposite side. 3D representation
courtesy of supervisor Iain Brown.
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Figure 7.7: The analytical approximation of the reduced angular bispectrum at the
Sachs-Wolfe plateau, for arbitrary units. Dotted is the Cl for the same model for
comparison, it has been scaled down in order to compare its shape to the bispectrum.
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Figure 7.8: The reduced angular bispectrum B̂l1l2l3 .

Figure 7.9: Same as the above picture, seen from the opposite side. 3D presentation
courtesy of supervisor Iain Brown.
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Chapter 8

Conclusions

This thesis has utilized f(R) theories of gravity, most notably the f(R) = R + αR2

Starobinsky model but applicable to other f(R) models, to demonstrate how one can
exploit the Einstein frame to simplify calculations, how this transformation into the
Einstein frame carries certain risks and how to calculate the statistics and dynamics of
f(R) theories. We have also modified the existing Boltzmann code CAMB so that it
can be used for a wide range of modified gravity theories, and to safeguard against the
errors one can induce from the conformal transformation.

We have worked out the general techniques needed for calculating the non-linearity
parameter fNL, CMB power spectrum etc. for a wide range of modified gravity models
in our modifications to CAMB. The code is practically finished, but is however still
untested. Several alternative theories of gravity have been discussed in this thesis that
we will apply the code to. However so far we have only utilized the Starobinsky model,
as it is the simplest test case and an extensively studied model.

From Chapter 5 and our paper [1] we have shown that any extended gravity theory
that can be transformed into an Einstein frame will induce errors during the transform-
ation if we do not take care of the redundant degrees of freedom that appear. This is
only not an issue when we are working within a restricted set of gauges where Φ 6= 0,
Ψ 6= 0 and δρ 6= 0. As well as producing new degrees of freedom, it was shown that
the transformation does not preserve adiabaticity, and has the chance of introducing
isocurvature in the Einstein frame. We have shown that the errors induced in this way
are likely to have the same magnitude as the order of the deviation from standard GR.
In our chosen model the deviations are low, and can be considered negligible, when we
transform the initial conditions. In principle however, we do not know how big these
deviations are for other extended gravity theories and however small the errors might be
at the initial conditions, we do not know how much they will compound as the equations
are evolved. Care should always be taken.

For our chosen model we have analyzed the non-linearity parameter fNL in order
to see if it will have an observable value, and to probe whether a specific configuration
of the wavenumbers k will dominate over the others. Of the possible configurations
we have focused on the equilateral fEq

NL, squeezed fSq
NL and colinear fCol

NL configurations.
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From the results in §7.1.2 we have shown in detail that the equilateral configuration is
the dominant configuration, just as the literature has a tendency to imply. However
we do note that it does only dominate by barely 1%. This tells us that we cannot
just assume an equilateral configuration when calculating quantities such as the non-
linearity parameter, CMB angular power spectrum, the bispectrum and so forth, since
unless there is a mechanism that automatically selects the equilateral configuration it
is not dominant enough, even for a low number of e-foldings N , that the rest of the
parameter space can be neglected. In fact, most of the other configurations tend towards
the squeezed limit.

Also in §7.1.2 we noted that the value of the non-linearity parameter is approximately
constant for all configurations and also quite small: fNL ≈ 0.015. This is small enough
that it probably can never be measured; the current constraints on the fNL as mentioned
in §7.1 are fEq

NL ∈ (−214, 266) and fSq
NL ∈ (−10, 74), and even though Planck should

tighten this considerably, it seems unlikely that the level of accuracy will ever reach
this level of precision. This results in this particular f(R) model not being verifiable
through the use of non-Gaussianity probes. Even if the non-linearity parameter is found
to be, for example, fNL ∈ (5, 15) with a 68% confidence level then fNL ≈ 0 is still within
two−σ.1

We’ve also shown that the bispectrum is proportional to the non-linearity para-
meter, in Appendix C, and used alongside the small value of fNL we can arrive at the
conclusion that the CMB bispectrum is unobservable. From this we can assume that
the trispectrum is also unobservable2 for this model.

This covers the major results of this thesis, and unlike many projects and master
theses, I have a clear goal for future work: to continue the modification of CAMB,
sorting out any remaining implementation errors and technicalities, and then applying
the other f(R) theories discussed in this thesis, and other interesting extended gravity
theories as they are brought to our attention, to the code. Keep an eye out for the code
and a documentation in the near future.

1One-σ is equivalent to a 68% confidence level, two-σ a 95% confidence level and three-σ represents
a 99.7% confidence level.

2Although the statement isn’t correct in principle, we justify it by the fact that we cannot today
detect a bispectrum on the CMB, and therefore the possibility of the trispectrum is even fainter.
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Appendix A

General Statistics for any Metric

Working from a general metric, we can find the Ricci scalar for any of the other metrics
used in this thesis to second order,

ds2 = a(η)2
(

−(1 + 2Φ)dη2 + 2Bidηdx
i + (δij + 2Cij)dx

idxj
)

, (A.1)

where for scalar, vector and tensor components,

Bi = ∂iB + Si, ∂iSi = 0, Cij = −Ψδij + ∂i∂jE + ∂(iFj) +
1

2
h

(T )
ij . (A.2)

See Table A.1 for how to transform this to the various gauges we’ve employed earlier.
With this line element the components of the metric take the form

g00 = −a2(1 + 2Φ), −a2g00 = 1 − 2Φ + 4Φ2 −BiBi,

g0i = a2Bi, a2g0i = Bi − 2ΦBi − 2BjC
ij,

gij = a2 (δij + 2Cij) , a2gij = δij − 2Cij + 4CikCjk −BiBj.

(A.3)

Utilizing the definition of the Christoffel symbols equation (2.9), in combination
with the above metric components, we find

Γ0
00 = H + (1 − 2Φ)Φ̇ − (1 + 3H)BiBi +Bi∂iΦ, (A.4)

Γ0
0i = (1 − 2Φ)∂iΦ + H

(

(1 − 2Φ)Bi − 2BiC
l
l

)

+

(

1

2
+ H

)

BjCij , (A.5)

Γ0
ij = −(1 − 2Φ)∂jBi + H((1 − 2Φ)(δij + 2Cij) + 4Φ2δij −BiBj) (A.6)

+ (1 − 2Φ)Ċij +Bk∂jCik +Bk∂iCjk −Bk∂kCij,

Γk00 = Bk + ∂kΦ − 2CklBl − 2Ckl∂lΦ −BkΦ̇ + H(2BlC
lk −Bk), (A.7)

Γk0i = −Bk∂iΦ + Ċki − 2CklĊli + H(δki +BkBi), (A.8)

Γkij = ∂jC
k
i + ∂iC

k
j − ∂kCij − 2Ckl(∂jCil + ∂iClj − ∂lCij) (A.9)

+Bk∂jBi −BkĊij −H((1 − 2Φ)Bkδij −BjC
k
i +BkCij).



102 General Statistics for any Metric

We then proceed to use these together with equation (2.10) to find the Ricci tensor
components. First the time-part,

R00 = ∂aB
a −∇2Φ − 2∂aC

alBl − 2Cal∂aBl − 2Cal∂a∂lΦ − 2∂aC
al∂lΦ

− ∂aB
aΦ̇ + H(2∂aBjC

ja + 2Bj∂aC
ja − ∂aB

a) + Ḃa∂aΦ − C̈

+ 2CalC̈al + 2ĊalĊal − Ḣ(3 +BaBa) −HḂaBa −HBaḂa + Φ̇Ċ

+ 3H(1 − 2Φ)Φ̇ + H
(

2Ba∂aΦ + Ċ − 2CalĊal − 9HBaBa − 5BaBa

)

(A.10)

+Bb∂aC
a
b +Bb∂bC −Bb∂aCab + ∂bΦ∂aC

a
b + ∂bΦ∂bC − ∂bΦ∂aCab

− ∂aΦB
a − ∂aΦ∂aΦ −H∂aΦBa − Ċab Ċ

b
a + 2H(2Ba∂aΦ + 2CalĊal),

then the mixed part,

R0i =
1

2
ḂjCij +

1

2
BjĊij + Ḣ

(

(1 − 2Φ)Bi +BjCij − 2BiC
l
l

)

+ H((1 − 2Φ)Ḃi + ḂjCij +BjĊij − Φ̇Bi − 2ḂiC − 2BiĊ) + ∂aĊ
a
i

− ∂aB
a∂iΦ −Ba∂a∂iΦ − 2∂aC

alĊil − 2Cal∂aĊil + H∂aBaBi + 2HBa∂aBi

+ 2H(∂iB
lBl +Bl∂iBl) + ∂iB

lBl +Bl∂iBl − ∂iB
l∂lΦ

−Bl∂i∂lΦ + ∂iB
a∂aΦ +Ba∂i∂aΦ − ∂iĊ + 2∂iC

alĊal + 2Cal∂iĊal (A.11)

− ∂iΦ(Ċ + 4H) + 3H
[

H(Bi +BjCij − 2ΦBi − 2BiC) − 2Φ∂iΦ +
1

2
BjCij

]

+ HBiĊ + Ċbi (∂aC
a
b + ∂bC − ∂aCab) − Ċba(∂iC

a
b + ∂bC

a
i − ∂aCib)

−H
[

Ba∂iBa + 2HBiC
]

−H(Bi − 2C liBl − 2C li∂lΦ −HBi))

+Bb(∂iBb − 2HCbi − Ċbi) + 2HΦBi,

and finally the spatial part,

Rij = −(1 − 2Φ)∂jḂi − 3Φ̇∂jBi +
ä

a
((1 − 2Φ)(δij + 2Cij) + 4Φ2δij −BjBi)

+ H((1 − 2Φ)2Ċij − (1 − 4Φ)2Φ̇δij − 4Φ̇Cij − 4ΦĊij − ḂjBi −BjḂi)

+ (1 − 2Φ)C̈ij − 2Φ̇Ċij + Ḃk∂iCjk +Bk∂iĊjk − Ḃk∂kCij −Bk∂kĊij

+ ∂a∂iC
a
j −∇2Cij − 2∂aC

al(∂iClj − ∂lCij) − 2Cal
(

∂a∂iClj − ∂a∂lCij

)

+ ∂aB
a∂jBi − ∂aB

aĊij −Ba∂aĊij −H
(

(1 − 2Φ)∂aB
aδij − 2∂aΦB

aδij

− 2∂aBjC
a
i − 2Bj∂aC

a
i + ∂aB

aCij

)

− (1 − 2Φ)∂j∂iΦ + ∂jΦ∂iΦ

+ 2H(∂jBiC −Bi∂jC) +
1

2

(

∂jB
lCil +Bl∂jCil

)

− ∂j∂iC + ∂j∂
aCia

+ 2∂jC
al(∂iCal − ∂lCai) + 2Cal(∂j∂iCal − ∂j∂lCai) − ∂jB

a∂aBi (A.12)
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+ ∂jB
aĊai +Ba∂jĊai − 2H(∂jBaC

a
i +Ba∂jC

a
i )

+ H((1 − 2Φ)Φ̇δij + 2Φ̇Cij) + Φ̇Ċij + H
(

(1 − 2Φ)Ċij +Bk∂jCik

+Bk∂iCjk −Bk∂kCij

)

− Ċ∂jBi + H(δij + 2Cij)Ċ + CĊij

+ 2HBa∂aCij + ∂bΦ(∂jC
b
i + ∂iC

b
j − ∂bCij −HBbδij)

− Ċaj

(

(1 + 2H)Cai − ∂iBa

)

− (1 − 2Φ)HĊij + 2HC liĊlj

−H
[

− (1 − 2Φ)∂jBi −H((1 − 2Φ)(δij + 2Cij)

+ 4Φ2δij) + (1 − 2Φ)Ċij +Bk∂jCik +Bk∂iCjk

]

− Ċai

(

(1 + 2H)Caj − ∂jBa

)

− (1 − 2Φ)HĊij + 2HC ljĊil − 5H2BiBj

+ ∂bC
(

∂jC
b
i + ∂iC

b
j − ∂bCij −HBbδij

)

+ ∂aC
a
b

(

∂jC
b
i + ∂iC

b
j − ∂bCij −HBbδij

)

− ∂aCab

(

∂jC
b
i + ∂iC

b
j − ∂bCij −HBbδij

)

− ∂bC
a
j

(

∂aC
b
i + ∂iC

b
a − ∂bCai)

− ∂jC
a
b

(

∂aC
b
i + ∂iC

b
a − ∂bCai) + ∂aCjb

(

∂aC
b
i + ∂iC

b
a − ∂bCai

)

.

Having all the terms, all we need to do is use equation (2.11) to find the general
Ricci scalar for any metric,

R = gµνRµν = g00R00 + 2g0iR0i + gijRij. (A.13)

Due to the nature of our metric components A.3, we see that it would be to our ad-
vantage to calculate a2R rather than just R,

a2R = (1 − 2Φ)
[

2C̈ + 3Ḣ
]

+ 2ΦĊ + 6HĊ

+ 2∂aC
alBl + 2Cal∂aBl + 2Cal∂a∂lΦ + 2∂aC

al∂lΦ + ∂aB
aΦ̇

− 4H(∂aBjC
ja +Bj∂aC

ja) − Ḃa∂aΦ − 2CalC̈al

− 2ĊalĊal + HḂaBa + HBaḂa − Φ̇Ċ + 12ḢΦ2

−H
(

2Ba∂aΦ − 2CalĊal − 5BaBa

)

−Bb∂aC
a
b −Bb∂bC

+ 2Bi
[

HḂi + ∂aĊ
a
i − ∂iĊ − 4H∂iΦ −HBi

]

+ 5H2BaB
a

− (1 − 2Φ)∂bḂ
b − 3Φ̇∂bB

b + 3
ä

a

(

(1 − 2Φ) + 4Φ2
)

+
ä

a
(2C +BbB

b)

+ H(−3Φ̇ + 18ΦΦ̇ − 4Φ̇C − 8ΦĊ − 2ḂbB)

− Φ̇Ċ + Ḃk∂bC
b
k +Bk∂bĊ

b
k − Ḃk∂kC −Bk∂kĊ

+ 2∂a∂
bCab − 2∇2C − 2∂aC

al(∂bC
b
l − ∂lC) − 2Cal

(

∂a∂bC
b
l − ∂a∂lC

)
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+ ∂aB
a∂bB

b − ∂aB
aĊ −Ba∂aĊ −H

(

(1 − 2Φ)∂aB
a (A.14)

− 2∂aBbC
ab − 2Bb∂aC

ab − ∂aB
aC
)

+ ∂bΦ∂
bΦ

−HBb∂bC +
1

2

(

∂bB
lCbl +Bl∂bC

b
l

)

+
ä

a
(4CikCik −BiBi)

+ 2∂bC
al(∂bCal − ∂lC

b
a) + 2Cal(∇Cal − ∂b∂lC

b
a) − ∂bB

a∂aB
b

+ ∂bB
aĊba +Ba∂bĊ

b
a + CĊ + ∂aΦ(2∂bC

ab − ∂aC + 3HBa)

− 2Ċab
(

(1 + 2H)Cab − ∂bBa

)

+ 4HΦĊ + 4HC lbĊbl

−H
[

−H((1 − 2Φ)(3 + 2C) + 12Φ2)
]

− ∂bC
a
l ∂

bC la + ∂aCbl ∂bC
l
a

+ ∂aC
(

2∂bC
ab − ∂aC − 3HBa

)

+ ∂aC
a
l

(

2∂bC
bl − ∂lC − 3HBl

)

− ∂aCal

(

2∂bC
bl − ∂lC − 3HBl

)

− ∂lC
ab
(

∂aC
l
b + ∂bC

l
a − ∂lCab)

− 2Cij
[

− ∂jḂi +
ä

a
(1 − 2Φ)δij + 2

ä

a
Cij + 3HĊij − 2Φ̇δij + C̈ij

+ ∂a∂iC
a
j −∇2Cij − ∂j∂iΦ − ∂j∂iC + ∂j∂

aCia + H2(1 − 2Φ)δij

+ H∂jBi − 2HĊij −HCij
]

.

Here follow a table that tell us how to reduce the above quantities to the various
gauges we have used

Table A.1: Gauge transformations

Gauges Vanishing components

Synchronous ΦS = BS = 0, Cij,S = 1
2hij

Conformal Newtonian BN = 0, E = 0, Cij,N = Ψδij

Spatially Flat E = 0, Ψ = 0

Uniform Field E = 0

Uniform Density E = 0 or B = 0

Note that for the latter three we also need to perform changes to the matter content
of the Universe, as detailed in §2.7.6.



Appendix B

Arbitrary fNL

We worked out the expression for the non-linearity parameter fNL for an arbitrary
configuration, using the angle parametrization of the k-configurations; however due to
its convoluted form we present it here instead of in §7.1. We use the expression for the
fNL (4.29), equation (4.28) and a quick rewrite of the configuration (7.6) of the form

k2 = βk1, k3 = γk1, (B.1)

where γ =
√

1 + β2 + 2β cosφ. We then get

fNL =
10

3

(

D1f
D1
NL +D2f

D2
NL +D3f

D3
NL +D4f

D4
NL

)

, (B.2)

with

fD1
NL =

2βγ(βγ + β + γ) + β3 + γ3 + β2(1 + γ3) + γ2(1 + β3)

2(1 + β3 + γ3)(1 + β + γ)2
, fD2

NL = −1, (B.3)

fD3
NL =

γ2 + β2 + γ3 + β3 + γ2β3 + β2γ3

(1 + β3 + γ3)(1 + β + γ)2
+
β + γ + γ2 + β2 + βγ2 + γβ2

4(1 + β3 + γ3)
− 1

2
, (B.4)

fD4
NL =

2(1 + β5 + γ5 − βγ(β + γ + βγ)) + β4 + γ4 + β(1 + γ4) + γ(1 + β4)

2(1 + β3 + γ3)(1 + β + γ)2

− 3(β3 + γ3 + β2(1 + γ3) + γ2(1 + β3))

2(1 + β3 + γ3)(1 + β + γ)2
. (B.5)
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Appendix C

Analytical Approximation of the

Reduced Angular Bispectrum

We find an analytical approximation to the reduced angular bispectrum (2.130) by using
the expression for the non-linearity parameter fNL (4.29), following the same procedure
as Fergusson and Shellard in [112]. We start by inverting equation (4.29) to isolate the
primordial bispectrum B,

B(k1, k2, k3) =
3

10
(2π)4fNL(k1, k2, k3)

[P(k1)P(k2)

k3
1k

3
2

+ 2perms

]

. (C.1)

Then choose to work with the constant approximation of fNL ≈ fNL,approx (7.8) and
insert the above into the expression for the reduced angular bispectrum (2.130) so that,

B̂l1l2l3 =

(

2

π

)3 3

10
(2π)4fNL

∫∫∫∫

x2(k1k2k3)
2jl1(k1, x)jl2(k2, x)jl3(k3, x) (C.2)

×
[P(k1)P(k2)

k3
1k

3
2

+ 2perms

]

∆l1(k1)∆l2(k2)∆l3(k3)dk1dk2dk3dx.

We sort these integrals by dependencies,

B̂l1l2l3 = 27π
3

10
fNL

∫

x
x2

∫

k1

P(k1)jl1(k1x)∆l1(k1)
dk1

k1

∫

k2

P(k2)jl2(k2x)∆l2(k2)
dk2

k2

×
∫

k3

k2
3 jl3(k3x)∆l3(k3) dk3 dx+ 2perms

= A

∫

x
x2Il1(x, η0)Il2(x, η0)Cl3(x, η0) dx+ 2perms, (C.3)

where

A = 27π
3

10
fNL,
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Il(x, η0) =

∫

P(k)jl(kx)∆l(k)
dk

k
, (C.4)

Cl3(x, η0) =

∫

k3

k2
3 jl3(k3x)∆l3(k3) dk3. (C.5)

On small scales, l ≤ 20, we can approximate the transfer functions ∆l to spherical
Bessel functions on the form

∆l(k, η0) = −1

3
jl(k(η0 − ηdec)) = −1

3
jl(ky),

which we use to rewrite equation (C.5) to

Cl3(x, η0) = Cl3(x, y) = −1

3

∫

k3

k2
3 jl3(k3x)jl3(k3y) dk3. (C.6)

Let’s note that equation (C.4) is very similar to equation (2.124), so we can say that
Il(x, η0) ≈ Cl. Now proceed to a handbook of mathematical functions [113] and we find
that

δ(x− y) =
xy

π2

∫ ∞

0
k2jl(kx)jl(ky) dk, (C.7)

which is only valid for positive x and y. With this we now get Cl3 on the form,

Cl3(x, y) = −1

3

π2

xy
δ(x− y), (C.8)

so that we can get rid of all the x-dependencies and the integral over x in equation
(C.3), in the manner of,

B̂l1l2l3 = A

∫

x
x2Il1(x, η0)Il2(x, η0)

(

−1

3

π2

xy

)

δ(x − y) dx+ 2perms

= −Aπ
2

3
Il1(y, η0)Il2(y, η0) + 2perms. (C.9)

Then we see that B̂l1l2l3 ∼ Cl1Cl2 + 2perms, if now l(l + 1)Cl ∼constant then we can
expect l2(l + 1)2B̂l1l2l3 ∼const for l1 = l2 = l3. In order to solve the two last integrals,
remember equation (4.23) which we can invert to find an expression for the P(k),

ns − 1 =
d lnP
d ln k

=
kdP
Pdk ⇒ P(k) = kns−1, (C.10)

allowing us to rewrite equation (C.4) to

Il(y, η0) =

∫

kns−2jl(ky)∆l(k) dk = −1

3

∫

kns−2jl(ky)jl(ky) dk. (C.11)
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This is another standard integral, with the solution [113]

Il(y, η0) = −1

3

√
π

4
y1−nS

Γ

(

3 − ns
2

)

Γ

(

2l + ns − 1

2

)

Γ

(

4 − ns
2

)

Γ

(

2l + 5 − ns
2

) . (C.12)

We now insert this into equation (C.9) to get

B̂l1l2l3 = −Aπ
3

2433
y2(1−nS)

Γ

(

3 − ns
2

)

Γ

(

4 − ns
2

)f(l1, l2) + 2perms (C.13)

= −2π4

90
fNLy

2(1−nS)

Γ

(

3 − ns
2

)

Γ

(

4 − ns
2

)f(l1, l2) + 2perms (C.14)

where

f(l1, l2) =

Γ

(

2l1 + ns − 1

2

)

Γ

(

2l1 + 5 − ns
2

)

Γ

(

2l2 + ns − 1

2

)

Γ

(

2l2 + 5 − ns
2

) . (C.15)

By assuming nS = 1 we get

f(l1, l2) ≈
1

2l1(l1 + 1)

1

2l2(l2 + 1)
, (C.16)

and then

B̂l1l2l3 ≈ −4π5/2

90
fNL

1

l1(l1 + 1)

1

l2(l2 + 1)
+ 2perms. (C.17)
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