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Abstract 

DMILL technology integrates mixed analog-digital 
very rad-hard (>10 Mrad and >1014 neutron/cm') 
vertical bipolar, 0.8µ.m CMOS and 1.2 µm PJFET 
transistors on SOI substrate. In this paper, after 
recalling the DMILL program goal, we summarize the 
main milestones from the R&D to the industrial 
implementation, the main technological choices, and 
the main results obtained after stabilization of the final 
process-flow at MHS. 

I. Goal of the DMILL program 

The goal of the DMILL program is to provide the High 
Energy Physics (HEP) community, space industry, 
nuclear industry, and other applications, with an 
industrial very rad-hard mixed analog-digital 
microelectronics technology. 

II. Main milestones from the R&D to the industry 

The DMILL microelectronics technology was 
developed by the CEA (French Atomic Energy 
Agency) with the collaboration of IN2P3 (French 
Nuclear Physics and Particle Physics Institute) between 
1990 and 1995 [1-10]. DMILL was presented to the 
CERN DRDC (Detector R&D Committee, the former 
LHC Electronics Board) in 1992, and was accepted by 
this Committee with two requests: 1/ open an access to 
DMILL for the HEP community as soon as possible, 
and 2/ transfer DMILL to the industry. Between 1993 
and 1996, the CEA processed 7 DMILL « multi-project 
wafers » (MPW) batches open to all the laboratories 
participating in the LHC program, so that they could 
thus start the development of numerous circuits 
dedicated to ATLAS and CMS. In mid 1995, the 
DMILL process was stabilized at LETI (the CEA R&D 
laboratory, in Grenoble, France). In September 1995, 
the CEA and MHS signed a contract for the industrial 

transfer and fabrication of DMILL in the 6" silicon 
foundry of MHS at Nantes. MHS, which is part of the 
TEMIC group, was initially held by Lagardere (France) 
and Daimler-Benz (Germany), and was purchased at 
the beginning of 1998 in totality by the US 
semiconductor manufacturer ATMEL. TEMIC/MHS is 
now the main center of expertise for ATMEL defence 
and space technologies. In spring 1997, DMILL was 
stabilized at 95% at the Nantes production plant [11- 
15] and MHS decided to open this technology to HEP 
laboratories so that they could continue and complete 
the development of their circuits before mass 
production. The last 5% of corrections were made 
during the period spring 97 - spring 98, leading to the 
final process-flow. 
In spring 1998, MHS processed several batches using 
the final process-flow. Series of thorough 
characterizations made in summer 1998 by the CEA 
and MHS on these batches give fully satisfactory 
results. The compilation of the extensive measurements 
made on these batches together with those made on all 
the previous batches (43 DMILL batches were 
processed by MHS between spring 96 and summer 98) 
shows that all the parameters of DMILL technology 
stabilized at MHS now completely fulfil the 
specifications based on LHC requirements and 
previously obtained at LETI. These excellent results 
enabled the CEA to announce the official final 
acceptance of the industrial transfer of DMILL to MHS 
during the LEB 98 Workshop. 

ill. Recall of the technological choices 

DMILL uses an SOI substrate which significantly 
reduces the sensitivity of the circuits to transient 
irradiation effects such as parasitic currents or memory 
cell upsets [17-19) induced by the passage of single 
ionizing particles. 
The DMILL CMOS transistors are separated by a 
dielectric trench and by the buried oxide ; this dielectric 
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insulation definitively eliminates any possibility of 
latch-up (triggering of a parasitic thyristor structure 
constitued by the juxtaposition of two complementary 
MOS transistors ; this phenomenon, initiated in 
standard technologies by the passage of single ionizing 
particles, results in circuit malfunctions and, in some 
cases, in their definitive destruction). 
The 0.8-µm CMOS and the vertical bipolar transistor 
of DMILL provide the advantages of present BiCMOS 
technologies. The PJFET transistor is used for a 
number of low-noise or low-temperature applications. 
The CMOS structure was designed to obtain very high 
hardness to total ionizing dose (> 10 Mrad) and a low 
noise level. This type of transistor, which uses majority 
carriers, is naturally hardened to neutrons. 
The bipolar transistor uses a vertical structure which 
provides both high neutron hardness (> 1E14 n/cm2) 
and high speed operation. Its structure was also 
carefully optimized to obtain high hardness to ionizing 
radiation(> 10 Mrad). 
The PJFET transistor, which uses majority carriers and 
whose intrinsic operation does not involve oxides, has 
low sensitivity to ionizing radiations and to neutrons. 
Its structure was optimized to obtain an extremely high 
hardness to these radiation types (>> 10 Mrad and > 
1E14 n/cm2). 
For analog applications, DMILL integrates two 
capacitor and two resistor families, both radiation 
hardened. 
DMILL also integrates rad-hard anti-ESD devices, 
specifically designed for protection of either analog or 
digital circuits. 
The interconnections can be made with two metal 
layers whose minimum dimensions are those of a 0.6- 
µm technology, and with a low resistivity polysilicon 
layer. 
The design rules for the components and their 
interconnections were optimized to obtain a high 
integration density, which is comparable to that of 
present 0.8-µm non rad-hard pure-CMOS technologies. 

IV. Final acceptance of the industrial transfer 

By mid 1997, the industrial transfer was completed and 
the process-flow was stabilized at 95%. The last 
corrections made between mid-97 and mid-98 to obtain 
the final process-flow are : 
• Adjustment of the value of the high value resistor 

« RSRHV »; 
• Addition of a new rad-hard high value resistor 

« Rext » (improved radiation hardness); 
• Corrections to the bipolar transistor (improvement 

of the radiation hardness and of Yearly) ; 
• Elimination of yield problems (which were due to 

polysilicon residues) ; 
• Improvement of the final DMILL Design Kit. 

The final acceptance of the industrial transfer is the last 
step foreseen in the contract signed by the CEA and 
MHS in 1995. This final acceptance is based on the 
results of extensive measurements made of several 
batches manufactured with the final process-flow, and 
on all the measurements made of all the previous MHS 
batches. The criterion used to analyse these results is 
the technical specification file, based on the complete 
set of measurements made on DMILL technology 
stabilized at LETI. The measurements and checking 
required to decide the final acceptance of the transfer 
are distributed in the 11 following steps : 

1. Statistical Process Control (SPC); 
2. Electrical parameters; 
3. Radiation hardness; 
4. Transistors and OTAs noise (pre-rad and post-rad); 
5. Characterization and yield of demonstrator circuit; 
6. Characterization of anti-ESD devices ; 
7. Electromigration tests ; 
8. Hot carriers ageing tests ; 
9. Oxide breakdown tests ; 
10. Approval of the final process-flow ; 
11. Approval of the final design kit. 

In the following, all these measurements or checking 
steps are briefly described and the main results are 
summarized : 

1. Statistical Process control. 
SPC enables the verification and control of the critical 
technological parameters which govern the electrical, 
noise and radiation hardness characteristics. More than 
120 parameters are measured during and after 
processing for each batch. All the SPC parameters 
obtained for batches made using the final process-flow 
are fully within the specifications. 

2. Electrical parameters. 
More than 90 electrical parameters are measured on 
several sites on each wafer, in each batch. All the 
parameters obtained for batches made using the final 
process-flow comply with the specifications. Figures 1 
and 2 give an illustration of the stability of these 
parameters for successive batches, after initial 
adjustments made on the first batches. 

USL = 1.0V @ 0 & 10 Mrad 1.0-------------------- 
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Fig. I : NMOS Vt(V) versus batch number. 
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Fig. 1 : NMOS Vt(V) versus batch number. 

By mid 1997, the industrial transfer was completed and 
the process-flow was stabilized at 95%. The last 
corrections made between mid-97 and mid-98 to obtain 
the final process-flow are : 

Adjustment of the value of the high value resistor 
<< RSRHV » , 
Addition of a new rad-hard high value resistor 
<< Rex, » (improved radiation hardness), 
Corrections to the bipolar transistor (improvement 
of the radiation hardness and of Vearly) ; 
Elimination of yield problems (which were due to 
polysilicon residues) ; 
Improvement of the final DMILL Design Kit. . 
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Fig.2: PMOS IVtl (V) versus batch number. 

LSL and USL are respectively the Lower Specified 
Limit and the Upper Specified Limit. 

3. Radiation hardness. 
The most sensitive static parameters of each active and 
passive device are measured before and after irradiation 
(10 Mrad, 1E14 n/cm2) ; values of the most significant 
of these for several batches are shown in figures 3 to 8 
(arbitrary batch numbers are used in the X-axis). 

1200 Vt mV 

For the bipolar transistor, to ensure that the final gain 
after 10 Mrad + 1E14 n/cm2 is sufficiently high, the 
specific minimum gain after 10 Mrad and before 
neutron irradiation is LSL@ lOMrad = 70 (le = 10 µA). 
The left side of figure 6 corresponds to non optimized 
bipolars : the initial post-rad and pre-rad gains were 
below the specified values, respectively LSL@0rad and 
LSL@ lOMrad. After several experiments, the 
difference between LETI and MHS equipment 
responsible for these insufficient gains was ascertained 
and the subsequent corrections gave the required pre­ 
rad and post-rad gain, as shown in the right side of 
Fig.6 (final process-flow). 
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The new high value resistor R.:xt , which was made 
available to users in Summer 1998, was also measured 
before and after 10 Mrad. This resistor has a high 
radiation hardness: ~xt/R.,x1 = +6.5% after 10 Mrad. 

It is not possible to describe all the results obtained in 
radiation hardness tests in this paper. To summarize, 
here again all the values of the radiation hardness 
parameters measured on batches made using the final 
process-flow are within the specification limits. 
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It is not possible to describe all the results obtained in 
radiation hardness tests in this paper. To summarize, 
here again all the values of the radiation hardness 
parameters measured on batches made using the final 
process-flow are within the specification limits. 
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4-a. Individual transistors noise. 
Input noise spectral density is measured before and 
after irradiation on each type of transistor for various 
sizes and various biasing conditions [14]. Figures 9 to 
16 show the pre-rad and post-rad noise spectral density 
(nV/Hz112) versus Frequency (Hz) measured on the 4 
types of DMILL transistors. The dotted lines 
correspond to the worst cases obtained with the 
stabilized DMILL-LETI process. The noise spectral 
density measured on batches made with the stabilized 
DMILL-MHS process-flow is consistent with that 
measured on batches issued from the stabilized 
DMILL-LETI process. 
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4-b. Operational Transimpedance Amplifiers noise. 
ENC is measured on several OT As designed with 
various input transistors (NMOS, PMOS, NPN and 
PJFET). Results obtained for batches from the final 
DMILL-MHS process-flow are fully consistent with 
those obtained for DMILL-LETI batches and with 
individual transistors noise measurements. 
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4-a. Individual transistors noise. 
Input noise spectral density is measured before and 
after irradiation on each type of transistor for various 
sizes and various biasing conditions [14]. Figures 9 to 
16 show the pre-rad and post-rad noise spectral density 
(nellI-Izm) versus Frequency (Hz) measured on the 4 
types of DMILL transistors. The dotted lines 
correspond to the worst cases obtained with the 
stabilized DMILL-LETI process. The noise spectral 
density measured on batches made with the stabilized 
DMILL-MHS process-flow is consistent with that 
measured on batches issued from the stabilized 
DMILL-LETI process. 
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ENC is measured on several OTAs designed 
various input transistors (NMOS, PMOS, NPN 
PJFET). Results obtained for batches from the 
DMILL-MHS process-flow are fully consistent 
those obtained for DMILL-LETI batches and 
individual transistors noise measurements . 
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5. Characterization and yield of demonstrator circuits. 
The goal of this step is to validate the technology by 
electrical characterization and yield measurement on a 
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circuit as representative as possible of mixed analog­ 
digital circuits developed for LHC applications. The 
demonstrator circuit DEMDSM (49,000 transistors, 28 
mm2) [14] used for this validation is constructed 
around a high dynamic range switched capacitor analog 
memory HPSALM initially developed for ATLAS 
calorimetry. Some extra-logic has been added to make 
it self-testable. Table I shows that the main 
characteristics of this circuit, manufactured using the 
final DMILL-MHS process-flow, are very similar to 
those obtained for the reference circuit made in 1995 
using the DMILL-LETI stabilized process-flow. The 
typical yield obtained with this circuit manufactured 
with the final DMILL-MHS process-flow is about 60%. 

Technology DMil..L-LETI DMil..L-MHS DMil..L-MHS 
Total dose 0 rad 0 rad 10 Mrad 
Max. Freq. 65MHz 60MHz 55MHz 
Consumption 460mW 420mW 310mW 
@40MHz 
Droop rate 20 mV/s 40 mV/s 260 mV/s 

Table I. 

6. Anti-ESD (ElectroStatic Discharges) devices. 
Three families of rad-hard anti-ESD devices are 
available in DMILL : one for digital input, one for 
digital output, and one for analog input. Measurements 
based on the Human Body Model (HBM) show that 
these devices efficiently protect input or output pads up 
to4000V. 

7. Electromigration tests. 
The goal of these tests is to assess the reliability of 
metal interconnections stressed by high current density. 
Their results are in conformity with MHS standards. 

8. Hot carriers ageing tests. 
The goal of these tests is to measure accelerated ageing 
of CMOS devices. Their results are in conformity with 
MHS standards. 

9. Oxide breakdown tests. 
The goal of these tests is to assess the reliability of 
CMOS gate oxide under a high electrical field. Their 
results are in conformity with MHS standards. 

10. Approval of the final process-flow. 
The DMILL-MHS process-flow is an exact copy of the 
initial DMILL-LETI process-flow, except for a few 
adaptations made to take into account certain specific 
features of the equipment used by MHS. These 
adaptations were studied by MHS in collaboration with 
the LETI in order to preserve the structure and 
properties of all the DMILL components. After an in­ 
depth analysis of the final DMILL-MHS process-flow, 
the LETI found it to be in conformity with the initial 
DMILL-LETI process-flow and has approved it. 

11. Approval of the final design kit 
A new revision of the DMILL design kit (DDK) was 
completed by the CEA and MHS in summer 1998. It 
includes the following improvements : 

• Rexi simulation parameters ; 
• Extraction tools for Rexi ; 
• Simulation parameters of the new NPN ; 
• Extraction of buried oxide (BOX) capacitances ; 
• Simulation of parasitic BOX capacitive couplings ; 
• Guidelines for reducing the effects of these 

capacitive couplings; 
• Device matching parameters. 

Table 2 gives an excerpt of the matching parameters 
which illustrates the very good matching of the new 
Rext· NPN and CMOS also exhibits good matching 
parameters. The values of sigma for the CMOS 
transistors are refered to transistors designed with a 
gate width W = I µm and a gate length L = I µm, and 

-1/2 
scale as (WL) 

Device Dose Parameter unit sigma 
Rext 0 rad resistance % 0.24 
Rext 10 Mrad resistance % 0.22 
NPN 0 rad gain % 4.0 
l.2xl0 
NPN 0rad Vbe mV 0.21 
l.2xl0 
NMOS 0rad Vt mV*urn 14.3 
PMOS 0 rad Vt mV*um 23.3 

Table 2. 

This new DDK is available immediately at MHS and 
will be available on CD-ROM via IMEC in November. 

V. Qualification and Quality Assurance 

An initial qualification of DMILL technology was 
made by MHS in October 1997 [16]. To take into 
account the corrections made in the process from mid- 
1997 to mid-1998, an additional qualification was 
carried out by MHS in june 1998. DMILL is today a 
fully qualified MHS process. 

The quality assurance performed by MHS for DMILL 
includes three procedures [14]: 

1. The standard quality assurance procedures applied 
to each DMILL batch. These procedures are mainly 
based on the Statistical Process Control (SPC) tools, on 
the Process Traceability tools, and on the Control of 
Process Changes rules. These tools and rules are 
common to all MHS technologies. 
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circuit as representative as possible of mixed analog- 
digital circuits developed for LHC applications. The 
demonstrator circuit DEMDSM (49,000 transistors, 28 
mm2) [14] used for this validation is constructed 
around a high dynamic range switched capacitor analog 
memory HPSALM initially developed for ATLAS 
calorimetry. Some extra-logic has been added to make 
it self-testable. Table I shows that the main 
characteristics of this circuit, manufactured using the 
final DMILL-MHS process-flow, are very similar to 
those obtained for the reference circuit made in 1995 
using the DMILL-LETI stabilized process-flow. The 
typical yield obtained with this circuit manufactured 
with the final DMILL-MHS process-flow is about 60%. 

11. Approval of the final design let 
A new revision of the DMILL design kit (DDK) was 
completed by the CEA and MHS in summer 1998. It 
includes the following improvements : 

. 

• . . . . . 

Run simulation parameters , 
Extraction tools for Run , 
Simulation parameters of the new NPN , 
Extraction of buried oxide (BOX) capacitances ; 
Simulation of parasitic BOX capacitive couplings ; 
Guidelines for reducing the effects of these 
capacitive couplings, 
Device matching parameters. 
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Table 2 gives an excerpt of the matching parameters 
which illustrates the very good matching of the new 
Run. NPN and CMOS also exhibits good matching 
parameters. The values of sigma for the CMOS 
transistors are refered to transistors designed with a 
gate width W = 1 pm and a gate length L = 1 pm, and 
scale as (WL)-u2 

TéB1@T 
I 

I 

I 
I 

6. Anti-ESD (ElectroStatic Dischares) devices. 
Three families of rad 
available in DMILL : 
digital output, and one f 
based on the Human 
these devices efficiently 
to 4000V. 

I 

:law 
_nuns -wnlnhis 

I 
I 
I 
L 

1 
7. Electromigration tests . 
The goal of these tests is to assess the reliability of 
metal interconnections stressed by high current density. 
Their results are in conformity with MHS standards. 

Table 2. 

This new DDK is available immediately at MHS and 
will be available on CD-ROM via IMEC in November. 8. Hot carriers ageing tests. 

The goal of these tests is to measure accelerated ageing 
of CMOS devices. Their results are in conformity with 
MHS standards. 

V. Qualification and Qualitv Assurance 

9. Oxide bred<down tests. 
The goal of these tests is to assess the reliability of 
CMOS gate oxide under a high electrical field. Their 
results are in conformity with MHS standards. 

An initial qualification of DMILL technology was 
made by MHS in October 1997 [16]. To take into 
account the corrections made in the process from mid- 
1997 to mid-1998, an additional qualification was 
carried out by MHS in june 1998. DMILL is today a 
fully qualified MHS process. 

The quality assurance performed by MHS for DMILL 
includes three procedures [14] : 

i 

10. Approval of the final process-flow. 
The DMILL-MHS process-flow is an exact copy of the 
initial DMILL-LETI process-flow, except for a few 
adaptations made to take into account certain specific 
features of the equipment used by MHS. These 
adaptations were studied by MHS in collaboration with 
the LETI in order to preserve the structure and 
properties of all the DMILL components. After an in- 
depth analysis of the final DMILL-MHS process-flow, 
the LETI found it to be in conformity with the initial 
DMILL-LETI process-flow and has approved it. 
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1. The standard quality assurance procedures applied 
to each DMILL batch. These procedures are mainly 
based on the Statistical Process Control (SPC) tools, on 
the Process Traceability tools, and on the Control of 
Process Changes rules. These tools and rules are 
common to all MHS technologies. 
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2. The radiation hardness monitoring was specifically 
studied [13, 14) and developed by the CEA for DMILL, 
and transfered to MHS. This monitoring consists in 
ionizing irradiation and measurements made of test 
structures up to 10 Mrads using a 10-ke V RX 
ARACOR irradiation machine, and in neutron 
radiation-hardness tests made on test structures through 
electrical measurements. These tests made on each· 
batch enable MHS to guarantee that each delivered 
wafer has a radiation hardness of 10 Mrad and 1E14 
n/cm2. 

3. The noise monitoring was also specifically studied 
and developed by the CEA for DMILL and transfered 
to MHS. This monitoring consists in noise spectral 
measurements made before irradiation and after 10 
Mrads on elementary test structures for various sizes 
and various biasing conditions [14). These 
measurements made on three batches per year enable 
MHS to maintain the noise characteristics within the 
specified limits. 

VI. Summary 

The DMILL rad-hard mixed analog-digital technology 
was developed between 1990 and 1995 by CEA with 
the collaboration of IN2P3, and transfered to 
TEMIC/MHS from 1996 to mid-1998. After 
stabilization of the process, series of thorough 
measurements made by the CEA and MHS show that 
all the parameters of DMILL stabilized at MHS 
completely fulfil the specifications. The compilation of 
these results together with those obtained for all the 
previous DMILL-MHS batches have enabled the CEA 
to certify officially the final acceptance of the 
industrial transfer and stabilization of DMILL at MHS. 

DMILL is now a qualified process, manufactured and 
commercialized by MHS with a quality assurance, 
including radiation hardness and noise monitoring, 
which completely fulfils LHC requirements. 

Numerous circuit developed since 1993 for the LHC by 
several laboratories with DMILL-LETI and then 
DMILL-MHS, give very satisfactory results which 
demonstrate the good adaptation of this technology to 
LHC applications [20-45). Various circuits are also 
under development for the space, nuclear civilian 
industry, and other applications. 
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