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This paper tries to investigate the effect of Generalized Uncertainty Principle (GUP) on one of the physical 
concepts. In this study which is based on our previous work Moayedi et al. (2013) [25], the radiating 
systems in the framework of GUP is investigated. We obtain the modified electric dipole fields and the 
total power radiated in the presence of a minimal length scale. Also, the magnetic dipole and electric 
quadrupole fields in the framework of GUP is found. We show that in the limit h̄

√
2β → 0, all of the 

modified electric dipole fields and modified quadrupole fields become the usual forms of them. We also, 
estimate the upper bound on the deformation parameter β .

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

On the most difficult duties in theoretical physics is unifica-
tion between general theory of relativity and quantum mechanics 
due to quantum gravity theories that are ultraviolet divergent and 
therefor non-renormalizable [1,2]. Various studies such as string 
theory, loop quantum gravity and quantum geometry have been 
made to emphasize that introducing a fundamental length scale of 
the order of Planck length is essential [3–5]. The minimal length 
appears due to a modification of the Heisenberg uncertainty prin-
ciple. Today, the modified uncertainty principle is known as gener-
alized uncertainty principle (GUP) [6–8]. By considering an exten-
sion of Heisenberg uncertainty relation, we will obtain the gener-
alized uncertainty as follows:

�X�P ≥ h̄

2

[
1 + a1(

Lp

h̄
)2(�P )2

]
, (1)

where Lp is the Planck length and a1, is a positive numerical 
constant [9,10]. This generalized relation implies a minimum un-
certainty of (�X)min = √

a1Lp . It seems that the GUP can have an 
effect on modifying fundamental physical concepts and analyzing 
the effects of gravity on the basic physical quantities. During re-
cent years, many papers have been devoted to the gravity and 
quantum field theory in the framework of GUP [11–24]. In our pre-
vious work [25], we investigated formulation of a magnetostatic 

E-mail address: b_khosropour@kazerunsfu.ac.ir.
https://doi.org/10.1016/j.physletb.2018.08.033
0370-2693/© 2018 The Author. Published by Elsevier B.V. This is an open access article 
SCOAP3.
field with an external current density in the presence of a mini-
mal length scale. In this work, we study radiating systems in the 
presence of a minimal length. Kempf and his collaborators showed 
that finite resolution of length can be found from the general-
ized Heisenberg algebra [26–28]. The Kempf algebra leading to the 
existence of a minimal length in a D-dimensional space is charac-
terized by following deformed commutation relations[

Xi, P j
]

= ih̄[(1 + βP2)δi j + β ′ P i P j], (2)

[
Xi, X j

]
= ih̄

(2β − β ′) + (2β + β ′)βP2

1 + βP2
(P i X j − P j Xi),

[
P i, P j

]
= 0,

where β and β ′ are two positive deformation parameters. In 
Eq. (2), Xi and P i are position and momentum operators in the 
GUP framework. This paper is organized as follows: In Sec. 2, we 
study the electric dipole fields and radiation in the framework of 
GUP whereas the position operators commute to the first-order 
in β . Also, in an example, we obtained the modified total power ra-
diated of an electric dipole radiator. In Sec. 3, the magnetic dipole 
and electric quadrupole fields in the presence of a minimal length 
are investigated. Our conclusions are presented in Sec. 4. We use 
SI units throughout this paper.

2. Electric dipole fields and radiation in the framework of GUP

In the present section, we discuss the emission of radiation by 
localized systems of oscillating charge and current densities in the 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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framework of GUP. So that we must introduce the representation of 
modified position and momentum operators which satisfy Kempf 
algebra. Stetsko and Tkachuk introduced the approximate repre-
sentation fulfilling the Kempf algebra in the first order over the 
deformation parameters β and β ′ [29]

Xi = xi + 2β − β ′

4
(p2xi + xip2), (3)

P i = pi(1 + β ′

2
p2),

where the operators xi and pi satisfy the canonical commutation 
relation and p2 = ∑D

i=1 pi pi . It is interesting to note that in the 
special case of β ′ = 2β , the position operators commute in linear 
approximation over the deformation parameter β , i.e. [Xi, X j] = 0. 
The following representations, which satisfy Kempf algebra in the 
special case of β ′ = 2β , was introduced by Brau [30]

Xi = xi, (4)

P i = pi(1 + βp2).

2.1. A brief review of fields and radiation of a localized oscillating source

We can make a Fourier analysis of the time dependence for a 
system of charges and currents varying in time. Thus, if we con-
sider the potentials, fields and radiation from a localized system of 
charges and currents, we won’t lose generality [31]. As we know, 
the vector potential A(x, t) in the Lorenz gauge is [31]

A(x, t) = μ0

4π

∫
d3x′

∫
dt′ J(x′, t′)

|x − x′|δ(t
′ + |x − x′|

c
− t). (5)

By considering the sinusoidal time dependence of current density 
( J (x, t) = J (x) exp(−iωt)), the vector potential becomes

A(x) = μ0

4π

∫
d3x′J(x′)exp(ik|x − x′|)

|x − x′| , (6)

where k = ω
c is the wave number and a sinusoidal time depen-

dence is understood. The magnetic field is given by

H = 1

μ0
∇ × A, (7)

while, outside the source, the electric field is

E = i Z0

k
∇ × H, (8)

where Z0 =
√

μ0
ε0

is the impedance of free space. We can assume 
three spatial area of interest. If the source dimensions are from 
order d, and if d � λ = 2πc

ω , we have

The-near-zone: d � r � λ

The-intermediate-zone: d � r ∼ λ

The-far-zone: d � r � λ

In the case (kr 
 1), the exponential in Eq. (6) oscillators rapidly 
and determines the behavior of the vector potential. So, using the 
following approximate feels suitable

|x − x′| � r − nx′, (9)

where n is a unit vector in the direction of x. If we insert Eq. (9)
into Eq. (6), we will obtain the vector potential in the following 
form
lim
kr→∞

A(x) = μ0

4π

exp ikr

r

∫
J(x′)exp (−ikn.x′)d3x′. (10)

If the source dimensions are small compared to a wavelength, it is 
appropriate to expand the integral in Eq. (10) in powers of k [31]:

lim
kr→∞

A(x) = μ0

4π

exp (ikr)

r

∑
n

(−ik)n

n!
∫

J (x′)(n.x′)nd3x′. (11)

2.2. The modified radiation of electric dipole fields in the framework of 
GUP

By keeping the first term of Eq. (11), the vector potential can 
be found as follows:

A(x) = μ0

4π

exp (r)

r

∫
J(x′)d3x′. (12)

If we use integration by parts and continuity equation we will ob-
tain the integral in the following form∫

J(x′)d3x′ = −
∫

x′(∇′ · J)d3x′ = −iω

∫
x′ρ(x′)d3x′. (13)

Hence the vector potential is

A(x) = − iμ0ω

4π



exp (ikr)

r
, (14)

where 
 is the electric dipole moment. From Eqs. (7) and (8), the 
electric dipole fields are

H = ck2

4π
(n × 
)

exp (ikr)

r
(1 − 1

ikr
), (15)

E = 1

4πε0
{k2(n × 
) × n

exp (ikr)

r

+ [3n(n · 
) − 
]( 1

r3
− ik

r2
)exp ikr}.

Now, for obtaining the fields in the framework of GUP, we need 
to find the vector potential in the presence of a minimal length 
scale. So according to our previous work [25], in Eq. (52), the 
modified vector potential was achieved in the following form (see 
appendix A)

A(x) = μ0

4π

∫
1 − exp (

−|x−x′|
a )

|x − x′| J(x′)d3x′, (16)

where a := h̄
√

2β is Podolsky’s characteristic length. If we consider 
Eq. (5) and the sinusoidal time dependence of current density, the 
vector potential in the framework of GUP becomes

AML(x) = μ0

4π

∫
J(x′)

(1 − exp −|x−x′|)
a )

|x − x′| exp (ik|x − x′|)d3x′. (17)

By using the approximation of Eq. (9), the modified vector poten-
tial can be written as

AML(x) = μ0

4π

exp (ikr)

r
{
∫

J(x′)exp (−ikn · x′)d3x′ (18)

− exp (− r

a
)

∫
J(x′)exp (n · x′)(1

a
− ik)d3x′}.

If we expand the integral in the above equation, we have

AML(x) = μ0

4π

exp (ikr)

r
{�n

(−ik)n

n!
∫

J(x′)(n · x′)nd3x′ (19)

− exp (− r

a
)
∑ (−ik)n

n!
∫

J(x′)[n · x′( 1

−ika
+1)]nd3x′}.
n
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For finding the electric dipole fields in the presence of a minimal 
length, we only keep the first term of Eq. (19). Hence, we obtain

AML(x) = μ0

4π

exp (ikr)

r
[
∫

J(x′)d3x′ − exp (− r

a
)

∫
J(x′)d3x′].

(20)

Using Eq. (13), the modified vector potential can be found as fol-
lows:

AML(x) = − iμ0ω

4π



exp (ikr)

r
(1 − exp(− r

a
)). (21)

The term iμ0ω
4π 


exp (ikr)
r exp(− r

a ) in Eq. (21) can be considered as 
a minimal length effect. On the other hand, based on Eq. (4), the 
deformed position and derivative operators are

xi −→ Xi = xi, (22)

∇ → D := (1 − a2

2
∇2)∇. (23)

Therefore the modified magnetic field is given by

HML = 1

μ0
D × AML = 1

μ0
[(1 − a2

2
∇2)∇] × AML (24)

= 1

μ0

∂

∂r
(n × AML)

− a2

2μ0
(

∂2

∂r2
+ 2

r

∂

∂r
+ L2

h̄2r2
)

∂

∂r
(n × AML).

If we substitute Eq. (21) into Eq. (24), we obtain the following 
magnetic field in the framework of GUP

HML = − ck2

4π
(n × 
){exp (ikr)

r
(1 − 1

ikr
) − α + η (25)

+ γ + λ + λ′ − a2

2r3h̄
l(l + 1)[exp (ikr)(1 − 1

ikr
) + rαh̄]},

where we have

α = exp [(ika − 1) r
a ]

r
[ (ika − 1)

a
+ (1 − k2a2)], (26)

η = a2

2
(

ik3 exp (ikr)

r
)[1 − 3

ikr
− 6

k2r2
+ 6

ik3r3
],

γ = a2

2
(ik − 1

a
)3(

exp [(ika − 1) r
a ]

r
)

× [1 − 3

r(ik − 1
a )

+ 6

r2(ik − 1
a )2

− 6

r3(ik − 1
a )3

],

λ = (ika − 1)2

a2r3
exp [(ika − 1)

r

a
][r2 − ra2(ik − 1) + 2]

λ′ = ik exp (ikr)

r3
[ik(r2 − r) − r + 2].

Also, the modified electric field is

EML = i Z0

k
D × HML = i Z0

k
(1 − a2

2
∇2)∇ × HML (27)

= i Z0

k
[ ∂

∂r
(n × HML) − (

a2

2
∇2)

∂

∂r
(n × HML)].

If Eq. (25) is inserted into Eq. (27), the electric field in the frame-
work of GUP can be found as follows:
EML = 1

4πε0
{k2(n × 
) × n

exp (ikr)

r
(28)

+ exp (ikr)[3n(n · 
) − 
]( 1

r3
− ik

r2
)}

− k2(n × 
) × n

4πε0
{−ikα′ + ikη′ + 2γ

a2
+ 2η

a2

− a2l(l + 1)exp (ikr)

2r4h̄
[(ikr − 3) − (ik − 4

r
) + 2rα

h̄
]}

− k2(n × 
) × n

4πε0
[−ik(

a2

2
)(ε) − ik

a2

2
(ε′)],

where

α′ = exp [(ika − 1) r
a ]

r
[ (ika − 1)2

a2
− (ika − 1)

ra
− (1 − k2a2)

r

+ (ika − 1)(1 − k2a2)

a
],

η′ = (
a2

2
)[exp (ikr)(−k4

r4
+ 4

k3

r2
+ 12

k2

r3
+ 1

r4
(18ik − 6

ik
) − 24

r5 )],

ε = a2

2
exp (ikr)[−ik3

r
+ 4

k2

r2
+ 12

ik

r3
− 24

r4
+ 24

ikr5 ],

ε′ = exp [(ika−1) r
a ]

r
[(ik − 1

a
)3 − 3

(ik − 1
a )2

r
+ 6

(ik − 1
a )

r3
− 6

r4
].

It should be noted that we neglect terms of β2 and higher in the 
above equation. In the radiation zone the modified fields take on 
the limiting forms

HML = ck2

4π
(n × 
)

exp (ikr)

r
+ i

ck4

4π
(

a2

2
)(n × 
)

exp (ikr)

r
, (29)

EML = 1

4πε0
{k2(n × 
) × n

exp (ikr)

r

− (
a2

2
)k4(n × 
) × n

exp (ikr)

r
}.

In the near zone, the modified fields approach

HML = iω

4π
(n × 
)

1

r2
+ 3iω

2π
(

a2

2
)(

n × 


r4
), (30)

EML = 1

4πε0
{[3n(n · 
) − 
] 1

r3

+ [3n(n · 
) − 
](a2

2
)(30ik − 24)

1

r5 }.

It should be emphasized that in the limit a = h̄
√

2β −→ 0, the 
modified fields in Eqs. (29) and (30) become the usual fields.

The time-averaged power radiated per unit solid angle by the 
oscillating dipole moment 
 is

dP Rad

d�
= 1

2
Re[r2n · E × H∗]. (31)

If we insert the usual form of fields E and H from Eq. (29), in 
Eq. (31) we will find

dP Rad

d�
= c2 Z0

32π2
k4|(n × 
) × n|2. (32)

By considering the components of 
 all have the same phase, the 
angular distribution and the total power radiated will be achieved 
as
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dP Rad

d�
= c2 Z0

32π2
k4|
|2 sin2(θ), (33)

P Rad = c2 Z0k4

12π
|
|2. (34)

On the other hand, power radiated per unit solid angle by the 
dipole moment 
 in the presence of a minimal length scale can 
be obtained as follows

(
dP Rad

d�
)ML = 1

2
Re[r2n · EML × H∗

ML]. (35)

If we substitute Eq. (29) into Eq. (35), we have

(
dP Rad

d�
)ML = c2k4 Z0

32π2
|n × 
) × n|2 (36)

− c2k6 Z0

32π2
(

a2

2
)|n × 
) × n|2.

The term − c2k6 Z0
32π2 ( a2

2 )|n × 
) × n|2 in Eq. (36) shows the effect of 
GUP corrections. By assuming the components of 
 all have the 
same phase, the modified total power radiated will be found as 
follows:

(P Rad)ML = c2 Z0

12π
k4|
|2(1 − k2(

a2

2
)). (37)

In the limit a := h̄
√

2β → 0, the modified total power radiated 
smoothly becomes the usual form in Eq. (34).

2.3. Example

Let us investigate a simple example of an electric dipole radi-
ator in the framework of GUP. Assuming the antenna is oriented 
along the z axis, extending from z = ( d

2 ) to z = −( d
2 ) with a thin 

gap at the center. The current is the same direction in each half of 
the antenna and the function of current is

I(z)exp (−iωt) = I0(1 − 2|z|
2

)exp(−iωt). (38)

From the continuity equation the following linear-charge density 
ρ ′ and then the dipole moment are found


 =
d
2∫

− d
2

zρ ′(z)dz =
d
2∫

− d
2

z(
2i I0

ωd
)dz = i I0d

2ω
. (39)

Now, according to Eq. (36) the angular distribution of radiated 
power in the frame work of GUP and also the modified total power 
radiated are obtained as follows:

(P Rad)ML = Z0 I2
0(kd)2

128π2
sin2(θ)[1 − k2(

a2

2
)], (40)

(P Rad)ML = Z0 I2
0(kd)2

48π2
[1 − k2(

a2

2
)]. (41)

It must be noted that, in the limit a → 0, Eqs. (40) and (41) be-
comes the usual form of the angular distribution of radiated power 
and the total radiated respectively.

3. Magnetic dipole and electric quadrupole field in the 
framework of GUP

The purpose of this section is obtaining the magnetic dipole 
and electric quadrupole fields in the presence of a minimal length. 
If we consider the next term of Eq. (19), the modified vector po-
tential leads to
AML(x) = [μ0

4π

exp (ikr)

r
(

1

r
− ik)

∫
J(x′)(n · x′)d3x′] (42)

× [1 − exp (− r

a
)].

We can write the modified vector potential in Eq. (42), in two 
parts: one gives a transverse magnetic induction and the other 
gives a transverse electric field. Hence, the integral of Eq. (42), can 
be written as the sum of part symmetric in J and x′ and a part 
that is antisymmetric. Therefore

(n · x′)J = 1

2
[(n · x′)J + (n · J)x′] + 1

2
(x′ × J) × n. (43)

The second, antisymmetric part is recognizable as the magnetiza-
tion due to the current J:

M = 1

2
(x × J). (44)

We will show how symmetric term are related to the electric 
quadrupole moment density. If we consider only the magnetiza-
tion term, the modified vector potential will be found as follows:

A(x) = ikμ0

4π
(1 − exp (− r

a
))[(n × m)

exp (ikr)

r
(1 − 1

ikr
)], (45)

where m is the magnetic dipole moment

m =
∫

Md3x = 1

2

∫
(x × J)d3x. (46)

We can easily determine the fields if we find the relationship be-
tween the modified vector potential in Eq. (45) and the modified 
magnetic field in Eq. (25) for an electric dipole. This means that 
the modified magnetic field for the present magnetic dipole source 
will be equal to 1

Z0
times. The modified electric field for the elec-

tric dipole, by substituting 
 → m
c , will change to the following 

form

HML = 1

4π
{k2(n × m) × n

exp (ikr)

r
(47)

+ [3n(n · m) − m]( 1

r3
− ik

r2
)exp (ikr)

− ikα′ + ikη′ − ik(
a2

2
)ε − ik(

a2

2
)ε′}.

Also, the modified electric field for a magnetic dipole source is the 
negative of Z0 of times the modified magnetic field for an electric 
dipole. So, we find

EML = − Z0

4π
k2(n × m)[exp (ikr)

r
(1 − 1

ikr
) − α + η + γ ]. (48)

If we use an integration by parts and some simplification the mod-
ified integral of symmetric term in Eq. (42) can be written as

1

2
[1 − exp (− r

a
)]

∫
[(n · x′)J + (n · J)x′]d3x′] (49)

= − iω

2
[1 − exp (− r

a
)]

∫
x′(n · x′)ρ(x′)d3x′

By inserting Eq. (49) into Eq. (42) we will find the following mod-
ified vector potential

AML(x) = −μ0ck2

8π

exp (ikr)

r
(1 − 1

ikr
)[1 − exp (− r

a
)] (50)

×
∫

x′(n · x′)ρ(x′)d3x′.

The modified fields in the radiation zone are defined as below [31]
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HML = ikn × ×AML

μ0
, (51)

EML = ikZ0(n × AML) × n

μ0
.

Therefore from Eqs. (50) and (51), the magnetic field in the frame-
work of GUP is

HML = − ick3

8π

exp (ikr)

r
[1 − exp (− r

a
)] (52)

×
∫

(n × x′)(n · x′)ρ(x′)d3x′.

Beside on the definition of the quadrupole moment tensor, the in-
tegral in Eq. (52) can be written as follows

n ×
∫

x′(n · x′)ρ(x′)d3x′ = 1

3
n × Q(n), (53)

where the vector Q(n) is defined as having components

Q α = �β Q αβnβ . (54)

With these definitions the magnetic induction and time-average 
power radiated per unit solid angle in the framework of GUP can 
be obtained as follows

HML = − ick3

24π

exp (ikr)

r
[1 − exp (− r

a
)](n × Q(n)), (55)

(
dP Rad

d�
)ML = c2 Z0

1152π2
k6(1 − exp (− r

a
))|n × Q(n) × n|2.

The final result for the modified total power radiated by a 
quadrupole source is obtained as follows:

(P )ML = c2 Z0k6

1440π
(1 − exp (− r

a
))�α,β |Q αβ |2. (56)

It should be mentioned that for a −→ 0, the modified Eqs. (55)
and (56) changes to their usual forms. According to the example 
part, if we consider the first term is the usual total power radi-
ated in Eq. (41) and the second term is the modified total power 
radiated then we can obtain the following relative modification of 
total power radiated

(�P Rad)

(P Rad)0
= k2(

a2

2
) = k2 (h̄

√
2β)2

2
. (57)

Using the experimental precision of the total power radiated, we 
can estimate the upper bound on deformation parameter β . By 
considering the experimental values of parameters in Eq. (41), 
for example at frequency f = 10 MHz (λ = 300 m), the current 
I0 = 1 A, the impedance of free space Z0 = 377 � and d = 0.03 m, 
the total power radiated will be found as P Rad = 10−7. So, accord-
ing to Eq. (57), we have

10−7 � 10−70β. (58)

Based on Eq. (58), the following upper bound can be found for the 
deformation parameter β:

β < 1063. (59)

This bound is far weaker than that found by electroweak measure-
ments but it is near to the Lamb shift [32].
4. Conclusions

Many theoretical physicists believe that the introduction of such 
a minimal length scale leads to a divergenceless quantum field the-
ory [33]. We know that the existence of a minimal length scale 
leads to a generalization of Heisenberg uncertainty principle. Based 
on the our previous work [25], we had investigated radiating sys-
tems in the framework of GUP. The electric dipole fields in the 
presence of a minimal length was obtained. The modified total 
power radiated, independent of the relative phases of the com-
ponents of electric dipole had been found. Also, we had studied 
the special example in the framework of GUP. The magnetic dipole 
and electric quadrupole fields in the framework of GUP had been 
found. Based on the modified quadrupole fields, we had obtained 
the modified total power radiated by it. We had shown that in the 
limit h̄

√
2β → 0, the modified electric dipole fields and quadrupole 

fields became the usual forms of them. Using the experimental 
precision of the total power radiated we had estimated the upper 
bound on deformation parameter β . It is necessary to note that 
the upper bound on deformation parameter β in Eq. (57), was far 
weaker than that found by electroweak measurements but it was 
near to the Lamb shift.
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Appendix A

In this section we want to explain how to find the modified 
vector potential in Eq. (16). By assuming the Lagrangian density 
for a magnetostatic field with an external current density J(x) as 
follows [31]

L = − 1

4μ0
Fij(x)F ij(x) + J i(x)Ai(x), (60)

where Fij(x) is the electromagnetic field tensor and A(x) is the 
vector potential. Incase, at first we use the Euler–Lagrange equa-
tion for the components of the vector potential, we will find the 
following field equation

∂l F lk = μ0 J k(x), (61)

and then by using the definition of three dimensional magnetic 
induction vector B(x) (Fij = −εi jk Bk, F ij = ε i jk Bk) we have

∇ × B(x) = μ0J(x), (62)

∇ · B(x) = 0. (63)

Now, let us obtain the Lagrangian density for a magnetostatic field 
in the presence of a minimal length scale. Based on Eqs. (22) and 
(23), if we replace the ordinary position and derivative operators 
in the Lagrangian density of Eq. (60), we will obtain

L = − 1

4μ0
Fij(x)F ij(x) − 1

4μ0
a2∂n Fi j(x)∂n F i j(x) + J i(x)Ai(x).

(64)

It should be emphasized that in Eq. (64), the total derivative term 
and the terms of order β2 and higher are neglected. We can easily 
find the following field equation for the magnetostatic field in the 
deformed space, if we insert the Lagrangian density in Eq. (60) into 
modified Euler–Lagrange equation
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∂l F lk(x) + a2 ∇2∂l F lk(x) = μ0 J k(x). (65)

The vector form of Eq. (65) can be written as follows

(1 − a2∇2)∇ × B(x) = μ0J(x), (66)

∇ · B(x) = 0. (67)

According to Eq. (67), the magnetostatic field B(x) can be found as

B(x) = ∇ × A(x). (68)

If we substitute Eq. (68), into Eq. (66) and after simplifying, we 
have

(1 − a2∇2)[∇(∇ · A(x)) − ∇2A(x)] = μ0J(x). (69)

In the Coulomb gauge (∇ · A(x) = 0), Eq. (69) becomes as follows:

(1 − a2∇2)∇2A(x) = −μ0J(x). (70)

The solution of Eq. (70) in terms of the Green’s function, G(x, x′)
is given by

A(x) = A0(x) + μ0

4π

∫
G(x,x′)J(x′)d3x′, (71)

where A0(x) and G(x, x′) satisfy the equations

(1 − a2∇2)∇2A0(x) = 0, (72)

and

(1 − a2∇2
x )∇2

x G(x,x′) = −4πδ(x − x′). (73)

If we write G(x, x′) and δ(x − x′) in terms of Fourier integrals and 
insert them into Eq. (73), we will obtain the following particular 
solution of Eq. (70), which vanishes at infinity

A(x) = μ0

4π

∫
1 − exp (

−|x−x′|
a )

|x − x′| J(x′)d3x′. (74)
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