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Abstract. In this study, the single-particle level densities are calculated by using the isospin
dependent nuclear level density (NLD) formula. The calculations are performed using the
experimental data for 28Al achieved from 27Al(n, γ)28Al resonances. Considering the symmetry
energy and parity corrections, the NLDs at the excitation energy, E=20MeV are calculated and
the maximum possible isospin in the range from ground state up to this excitation energy is
estimated. The first correction led to reduced level densities and the later resulted in decreased
densities for some of the levels while increased densities for the others. It is observed that the
maximum level density occurs for T=1 and at low energies for which the experimental data are
available there is a good agreement between calculated and experimental data.

1. Introduction

Nuclear level density is one of the most interesting concepts of nuclear physics. Its application
spreads from fundamental research of nuclear structure, activation methods, shielding, and
reactor physics to astrophysics and cosmology. All fields, which intersect in some cases, need
a deeper understanding of the behaviour of the NLD at high excitation energy. Among these
fields, NLDs are important in theoretical estimate of various compound nuclear reactions. For
instance, neutron-capture reaction rates are approximately proportional to the corresponding
NLDs in the neutron resonance region [1].

It is often necessary to have an accurate estimate of the NLD of highly excited nuclei as
a function of the number of neutrons and protons, the excitation energy, angular momentum,
and other constants of the motion [2]. The initial work in the NLD was done by Bethe [3].
The so-called partition function method is by far the most widely used technique to calculate
level densities, particularly in view of its ability to provide simple analytical formulae. In its
simplest form, the NLD is evaluated for a gas of non-interacting fermions confined to the nuclear
volume and having equally spaced energy levels [4]. Such a model corresponds to the zero order
approximation of a Fermi gas model and leads to very simple analytical, though unreliable
expressions for NLD. The angular momentum and isospin of the nuclear are good quantum
numbers that can be studied. In nuclear reactions, the transition probabilities vary so rapidly
with angular momentum that only the levels having the appropriate angular momentum are
excited with reasonably large probabilities. Therefore, it is important to determine the density
of levels with given angular momentum. More generally, one can compute the density of the
levels for which any number of constants of motion takes given values. The isospin formalism
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is very convenient for representing a new constant of motion similar to an angular momentum.
The well-known spin-dependence distribution of NLD by using the central limit theorem of the
statistics is in the Gaussian form

ρ(E,M) =
1√
2πσ2

ρ(E) exp [−M2

2σ2
] (1)

where ρ(E), M and σ2 are the level density at excitation energy E, the z-component of the
total angular momentum J , and the spin cut-off factor, respectively. The spin cut-off factor
determines the level spin distribution. Since

ρ(E, J) = ρ(E,M = J)− ρ(E,M = J + 1) ∼= [− ∂

∂M
ρ(E,M)]M=J+1/2 (2)

Then

ρ(E, J) ∼= 1√
23πσ6

ρ(E)(2J + 1) exp [−(J + 1/2)2

2σ2
] (3)

In this paper, the level density of the 28Al is studied by using the spin and isospin dependence
formulae obtained from the partition function method [5] and the limitation of the isospin value
at excitation energy E=20MeV is presented.

2. Density states of a given angular momentum and isospin

The usual approach to the level density calculation takes the independent particle model as its
starting point. The nucleus may simply be described as a set of independent fermions located
in a potential well. The word ”independent” implies that any particle placed in the well is in
the state that is described with good quantum numbers, and the characteristics of this state are
independent of other occupied states. The importance of independent-particle approximation
is that one can write the partition function of the nucleus in a single form in terms of single
particle energies. For a system of Z protons and N neutrons in quantum states i

Ni =
∑
ν

ni(n, ν) ; ǫi =
∑
ν

ni(n, ν)ǫ(n,m, ν) +
∑
ν

ni(p, ν)ǫ(p,m, ν)

Zi =
∑
ν

ni(p, ν) ; Mi =
∑
ν

ni(n, ν)m(ν) +
∑
ν

ni(p, ν)m(ν) (4)

Where ni(n, ν) and ni(p, ν) are the neutron and proton occupation numbers for the one-particle
state ν in the quantum state i, respectively. These numbers can take either the value 1 or 0
because of the exclusion principle. Also m(ν) is the projected angular momentum quantum
number for symmetry axis, ǫ(n,m, ν) and ǫ(p,m, ν) are the energies of the single-particle states
of neutrons and protons, respectively. The partition function is in the form [6]

Z(αn, αp, β, γ) =
∑
i

exp [αnNi + αpZi − βǫi − γMi] (5)

=
∏
n,ν

(1 + exp [αn − βǫ(n,m, ν)− γm(ν)])

×
∏
p,ν

(1 + exp [αp − βǫ(p,m, ν)− γm(ν)])

The standard treatment of statistical mechanics includes other approximations which lose their
validity in the systems containing small number of particles. Here, we assume that the numbers of
the single-particle states are large and the states are sufficiently placed close together. Therefore,
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the individual nucleon states in the central potential can be replaced by continuous distribution.
Thus ǫi, the energies of single-particle states and also m(ν), single particle angular momentum
are replaced by the continuous distribution. Ultimately, lnZ simplifies in the form of

lnZ(αn, αp, β, γ) =

∫
∞

0

dǫ

∫
∞

−∞

dmgn(ǫ,m) ln (1 + exp [αn − βǫ(n,m)− γm]) (6)

+

∫
∞

0

dǫ

∫
∞

−∞

dmgp(ǫ,m) ln (1 + exp [αp − βǫ(p,m)− γm])

Two factors gn(ǫ,m) and gp(ǫ,m) respectively define single - particle level densities for neutrons
and protones. Considering that NLD is the inverse of Laplace transform of partition function,
then

ρ = (
1

2πi
)4

∫ i∞

−i∞
e−αnN−αpZ+βǫ−γMZ(αn, αp, β, γ)dαndαpdβdγ (7)

In calculating this integral, the saddle point conditions are used, which give rise to

N = (
∂ lnZ

∂αn
)0 ; ǫ = (−∂ lnZ

∂β
)0 ; Z = (

∂ lnZ

∂αp
)0 ; M = (−∂ lnZ

∂γ
)0 (8)

Where ( )0 indices refer that these formulae were evaluated in the saddle points. Finally, the
formula below for M -distribution is derived.

ρ(N,Z,E,M) =
1

12
√
2
g0(

g20
4gngp

)
1

2 〈m2〉− 1

2 (g0E − M2

2〈m2〉 )
−

3

2 exp{2[1
6
π2(g0E − M2

2〈m2〉) ]
1

2 } (9)

Where g0 = gn + gp. In a similar manner, the density of states as a function of Tz, the Z-
component of total isospin T , can be derived [5].

ρ(A,E,M, Tz) =
1

12
√
2
g〈m2〉− 1

2 (gE−2T 2
z −

M2

2〈m2〉)
−

3

2 exp{2[1
6
π2(gE − 2T 2

z − M2

2〈m2〉) ]
1

2 } (10)

where g is the total single particle level density. The density of states with given total isospin
T , excitation energy E, and Z-component of angular momentum M is then given by

ρ(A,E,M, T ) = ρ(A,E,M, Tz = T )− ρ(A,E,M, Tz = T + 1) ∼= (− ∂

∂Tz
ρ(A,E,M, Tz))Tz=T+

1

2

(11)
Similarly, the density of states with given total angular momentum J , excitation energy E and
total isospin T may be given by

ρ(A,E, J, T ) = ρ(A,E,M = J, T )−ρ(A,E,M = J+1, T ) ∼= (− ∂

∂M
ρ(A,E,M, T ))M=J+ 1

2

(12)

In deriving eqn. (10) it is assumed that

gE > 2T 2
z +

M2

2〈m2〉 (13)

However, it should be noted that the eqn. (13) imposes some limitations on the values of M and
Tz. By considering the eqns. (11, 12) these limitations would change the values of total isospin
T and total angular momentum J . Thus, the excitation energy of the system is obtained in the
form of

E =
π2

6β2
g +

M2

2g〈m2〉 +
2T 2

z

g
(14)
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Table 1. The number of levels and their distribution among various values of J .

J 0 1 2 3 4

Number of levels 13 21 18 10 3

Eqn. (14) represents the effect of isospin on excitation energy of the system. Since the states
with different total isospin have different excitation energies, this formula is not a complete one.
A perfect excitation energy formula, however, must be dependent on the total isospin. Jänecke
has used such a formula to demonstrate the dependence of the excitation energy on the total
isospin and also Z-component of isospin [7]. The results obtained by Jänecke were used in the
current study for a more precise estimation of the excitation energy.

3. Calculation

Hibdon has presented a distribution of angular momentum of 28Al states [8]. By examining
total neutron cross section from 1keV to 450keV for neutron capture reaction 27Al(n, γ)28Al.
The number of levels assigned to each value of the spin J is given in Table 1. The average value
of the excitation energy is 7.95MeV and the experimentally determined density of all levels
is ρ(28Al,E = 7.95MeV ) = 146MeV −1. The density of states, as a function of total angular
momentum J and total isospin T , is given by eqn. (12). For light and medium nuclei it is
reasonable to assume that gn ≈ gp and this equation would contain only three parameters g,
〈m2〉 and T . In this reaction, by considering the isospin conservation, the isospin of the states
could be assumed T = 1. By fitting the calculated density states by experimental data the
values of g = 2.71 and 〈m2〉 = 0.71 were obtained with an error less than values suggested
by Kanestrøm [5], who obtained g = 2.55 and 〈m2〉 = 0.65. In Figure 1 and Figure 2, the
calculated NLD fitted by experimental data are plotted. These Figures demonstrate the state
density of 28Al calculated in the present study and by Kanestrøm [5], respectively, both based
on the experimental values reported by Hibdon [8].

Figure 1. The state density of 28Al as
a function of total angular momentum
J . Experimental points shown by solid
circles are taken from Hibdon [8]. The
curve represents the plot of eq. (12) for
g = 2.71 and 〈m2〉 = 0.71.

Figure 2. The state density of 28Al as
a function of total angular momentum
J . Experimental points shown by solid
circles are taken from Hibdon [8]. The
curve represents the plot of eq. (12) for
the suggested values by Ref. [5], g = 2.55
and 〈m2〉 = 0.65.
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In this study, the NLD for the isospins T = 1, 2, 3 at excitation energy E = 20MeV are
calculated by using eqns. (10, 11, 12). The results are demonstrated in Figure 3. At this
excitation energy the NLD for isospin T ≥ 4 is not a real number and the condition (13) cannot
be satisfied which is supported by the energies of the 28Al states. The energy levels of 28Al
show that its ground state has isospin T = 1 and the lowest state with isospin T = 2 occurs at
excitation energy E = 5.989MeV [9]. By using the pairing and symmetry energies, the total
energies of excited nuclei for A ≤ 80 are presented [7]. The energy difference between the lowest
excited states with isospins T and T ′, ∆T,T ′ is obtained. For 28Al, ∆3,2 and ∆4,1 are about
15 and 40MeV , respectively. Therefore, it is expected that the lowest states with T = 3 and
T = 4 occur at excitation energies 20 and 40MeV , respectively. Therefore, the maximum T
at excitation energy E = 20MeV was found to be 3 which is also in good agreement with our
calculations.

Figure 3. The calculated level
density of 28Al as a function of
the isospin T and the angular
momentum J , at the excitation
energy E = 20MeV .

It is noteworthy that fitting the parameters g, 〈m2〉 and T , gave rise to the values of 2.71, 0.71
and 1 for these parameters, respectively. This indicates that excitation states of this resonance
may be at T = 1 which is in agreement with isospin conservation.

4. Results and discussion

This study attempts to outline some features of calculated average level densities. The theory
is applied to a light nucleus, 28Al. Here every attempt has been done to increase the accuracy
of the calculations. So it would lead to the increase of single-particle level density parameter
from 2.55 to 2.71 and 〈m2〉 from 0.65 to 0.71. The obtained excitation energy formula contains
the new term that represents the dependence of excitation energy on the z-component of the
isospin. Although the NLD formula obtained in this study suggests interesting properties, this
method does not lead to the most perfect formula for excitation energy of the system. The
presented method determines the maximum isospin that can be found in the desired excitation
energy. Furthermore, this method can estimate the isospin of excited energies by putting the
isospin as the third parameter to fit with the experimental results.
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