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In the present notes we will describe an attempt to gain some 

insight into the nature of the axiomatic positivity constraint in local 

quantum field theory. It has recently become clear that it is advan- 

tageous to look at quantum field theory in terms of its Euclidean Green 

functions, also called Schwinger functions. As Osterwalder and Schrader 

[2], and also Glaser [ 3~ have pointed out, spectrum condition and 

positivity of the Wightman functions (= vacuum expectation values of 

products of local fields) are equivalent, modulo other axioms, to a new 

type of positivity condition which must be satisfied by the Euclidean 

Green functions. We call this the OS-positivity. After some explanation 

of the preceding remarks in Sec. i we will restrict our attention to 

exactly conformal invariant quantum field theories. Such theories will 

hopefully describe the short distance behavior of more realistic theories, 

as was explained elsewhere LI]. In any case, they are interesting as a 

laboratory, because they can be analyzed to a remarkable extent by 

nonperturbative technique. The present note will further exemplify this, 

for it turns out that in conformal invariant theories the OS-positivity 

condition can be analyzed by group theoretical methods and that surpri- 

singly simple sufficient conditions can be found for its validity. We 

think that there is a good chance that these conditions are also 

necessary; it will be explained in Sec. 5 why that is so. 

The work reported here is still in progress at the time of this 

writing and is published here for the first time. It is the purpose of 

The present notes present the content of part of the lectures which 
the author presented at the Bonn summer school 1974. The rest of the 
material covered there can be found in Reference i. 
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these notes to get the readers interested in this new development at 

an early stage, and we will concentrate here on the main ideas. We 

are confident however that the analysis can be made rigorous and complete 

by working out all the technical details (such as growth properties of 

Q~- functions in Z , equivalence relations at integer points, etc.). 

i. Euclidean Green Functions 

Let us consider a local quantum field theory which satisfies the 

usual postulates ~4~ (Wightman axioms): locality, spectrum condition, 

positivity, Poincar~ invariance, uniqueness of the vacuum and tempered- 

hess (i.e. some distribution theoretic properties). 

For simplicity consider a theory of one hermitian scalar funda- 

mental field~(x). Thus we are given a Hilbert space'of physical states, 

a vacuum fl in ~( and a field~(x) which becomes an operator in ]}t 

after smearing with test functions. 

Poincar~ invariance means that there exists a representation of 

the Poinca~e group by unitary operators U(a,A) such that 

~(~,A~ ~ C ~ Q , A ~  -4= ~(Ax+~); ~(q,A)_G.=.~ 
with ~ a s A I standing for a Lorentz transformation by A followed by a 

translation by a. 

Locality says that the commutator [~ (x),~(y)] : 0 if 

(x-y) 2 ~ O. 

~ositivity is the statement that all nonzero state vectors 

have positive norm, so that (~,~) ~ 0 in general. This is true if~ 

is a Hilbert space. 

~pectrum condition requires that the spectrum of the Hamiltonian 

(: generator of time translations) is positive semidefinite. It follows 

that 

with V÷ the closed forward lightcone and U(x) = U(x,l). 

In addition there are distribution theoretic requirements as we 

said, we shall not go into them (see [14] ). 

Consider now state vectors obtained by applying the field to 
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the vacuum 

~ ( X  . . . .  X ~  ) =  d P C x , ) . . .  @ C x , )  _ ( ' ] _  ( i . I )  

they should belong to ~ after smearing with test functions. The 

Wightman functions are defined by 

~ J  ( x 4 . . . X ~ ] =" C - (~  , q~ ( ~, ) . . . ~P ( x~  j -[)- } = ( ~')- , ~r" ( x~ . . . X,~ ) ) ( l .2a)  

Because of hermiticity of the field~(x), one has the more general 

relation 

(~ 'C X, ' .  . . X "  ) , ~ C  X~ . . . X , ,  I ) = ~',,,,,,, (XL- . -× , ' ,  ~ , .  . . X ~, ) 
(l.2b) 

Moreover, by translation invariance. 

~ c  ~ . . .  x,,, J-- I X c x , , 1 4 c o ) t X c ~ - x , , ) 4 c o j .  .. ccc~,,-~,~_~) ¢~Co)._o..  

Consider now the Fourier transform ~ (P;ql"''qn-1) of this, considered 

as a function of Xl; x 2 -Xl,...x n -Xn_ I. Clearly, because of the spectrum 

condition as stated above, 

'~'Cp;q~. . .  q , , ,  ) = o unless p~ v~., q . ~  V+ c~=-~.. .  , , - - , )  ( 1 . 3 }  

The inverse Fourier transform gives back 

(1.4)  

We will now pause for a moment to recall the notion of vector 

valued holomorphic function. Let ~ a normed space so that for every 

nonzero element a&~ its norm lla[( >0 is defined and positive. For a 

Hilbert space ~ , ~ all = (a,a) A/z. A mapping f of a domain D C 

into ~ is called a vector valued holomorphic function on D if for 

every Zo, f(z) can be expanded in a power series around z 0 with a non- 

zero radius ~ of absolute convergence. That is f(z) = n~=O anzn with 

a n 6~ , )- U anll z n ~  whenever ~z-z 0 [< ~. 

Such functions share all the properties of complex holomorphic 

functions. In the standard text book in analysis, ref. ~i03 the theory 

of holomorphic functions is developed right away for functions with 

values in an arbitrary normed space; the notion generalizes readily 

to functions of several variables. 
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Consider now the generalization of expression (1.4) to complex 

arguments zl, viz 

ff'cT.. ) a ez eT: ,- 
i¢1 

Because of the support property (1.3) of 5 c 

A~ (zl...z n) is defined and holomorphic for arguments zj=xj+iyj 

with ~ & V+ and ~[j'÷4-"J,I 6 ~+ for all J'= I.-. a-~ 

(1.5) 

Points of special interest are the socalled Euclidean points, viz 

x. °j : 0 and yj : 0 (imaginary time and real space coordinates). 

Define the "Euclidean state vectors"~ E, 

i(,... ~,) ='tlbC~,~..,~,~) for "E =C,'X., ~.),,  ~--(,~!,X~'J 

defined and real analytic for X~ > X~.4 >... X~ > o (1.6) 

We are now ready to define the Euclidean Green functions G(~l...~n),Viz 

(1.7) 

in analogy with (1.2a). As defined here and throughout this paper, G 
n 

is always the full disconnected Green function, this must be kept in 

mind. To start with, it is defined for arguments as specified in (1.6). 

However, the restriction x~ > 0 is unnecessary because G n depends on 

its arguments only through their differences. Indeed the same is true 

for the Wightman function W n by translation invariance, and Gn is the 

analytic continuation of the Wightman function W becauseW E is the 
n 

analytic continuation of'~(Xl...Xn). 
Let us now introduce the Euclidean time reversal operator ~, which 

4 
reverses x , 

~ ( ~ , X  ~) = ( ~ ,  -x~') (1.8) 

"~? is really a complex conjugation of the complex variable z, because 

-(~c'X ~, ~ ) implies ~= (- ~x~, ~) = ("~X~, ~ ]" 
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Consider now the scalar product of two Euclidean state vectors. 

We find from Eq. (l.2b) by antianalytic continuation in the first m 

arguments and analytic continuation in the last n arguments that 

( I / ' ~ x ' . .  X,~l,'l~'E(},,...~',,,~ ) = C~,~,~ (~)x~,....~"x',,~', X",, ,)  (1.9) 

for arguments 

Suppose now that there is given a finite sequence (f) of test functions 

fo 6 ~ , fi(xl)...fN(xl...XN) with support in the domain of definition 

of~ E, i.e. 0 ~ x~<...<x~ or else fk(~l...x'-~k ) = O. Then 

is an element of the Hilbert space ~ of physical states and thus 

must have nonnegative norm (¢(f),~E(f))~ O. By (1.9) this norm is 

expressible in terms of the Euclidean Green functions. Thus 

where m 

and Gn(h) = ]d4nx h ( ~ . . . ~  n) G n ( ~ l . . . ~ n )  , i n t e g r a t i o n  being over 
Euclidean space. Inequality (E.2) is the OS-positivity condition, it 

is required to hold for finite sequences of test functions fk(Xl...Xk) 

that vanish unless 0 < x14~ ... <x~ . 

In the special case that only f2@ O, inequality (E.2) reads 

explicitly 

(1.11) 

So far our discussion has followed ref. 2. 

Glaser has pointed out [3J that locality and the edge of the 

wedge theorem can be used to further extend the domain of definition 

and analyticity of the state vectors ~(Zl...z n) and, therefore, 

~E(xl...x2): 
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Let ~ a permutation of l...n and consider the vector 

~(~,.-.~) = ~fZm~...~n) : analyt, cont. of ¢($~,)--' ~(X~)~- (i.12) 

This is holomorphic for ~W~ 6 ~, ~I~ ~i-~ { et/~ 

Locality tells us that on Minkowski space 

~(~...X~]~/I(~...X~) for all~ if all ~-xj)2~O (1.13) 

Thus, the boundary values of the holomorphic functions ~(Zl...z n) agree 

on a real neighborhood (they are known to be vector-valued distri- 

butions). The edge of the wedge theorem asserts that then the functions 

~ are in fact analytic continuations of one and the same holomorphic 

function ~ (Zl...Zn) , this function is thus defined on the union of the 

original domains of definition of the original ~P~ and is symmetric 

in its arguments there by (1.13). Specializing to Euclidean arguments 

this contains the union over Tr of the sets of arguments with 
4 < ~ 4 

0 < X~l ... ~n ' i.e. n-tuples of Euclidean arguments with non- 

coinciding positive times x~ 70, x4i # x 4.J (i # j). It can be shown ~5J 

that the restriction to noncoinciding times can be weakened to non- 

coinciding arguments. Summing up: 

~E(~l...-~n ) in ~ are defined and (real) state vectors 

analytic for Euclidean arguments ~i'''-Xn such that 

x. ~ x. for i ~ j and all x. > O. They are symmetric in 
1 J ~ 1 ~ -~ 

their arguments, viz. ~"'(~l'''&n ) : ~ ~(~l"''Xn) for 

all permutations 7Y . 

Using this and the fact that the Green functions depend only on 

differences of their arguments, we see that the Euclidean Green functions 

Gn(~l...%) are defined by Eq. (1.7) for arbitrary noncoinciding argu- 

ments x%.. "-~n" By symmetry of 5 u 
E, 

G~C~1...~n~)- Cm~<~...~J for all permutations 7F G 

Finally it is known that the Euclidean Green functions so defined are 

invariant under the Euclidean Poincar%-group, viz 

~ ( ~ , ~ . . .  , ~ , " ~  / = G ~ c ~ . . . ~ I  

f o r  a r b i t r a r y  4 - r o t a t i o n s  m~ S0(4 ) .  

Osterwalder and Schrader have shown [2~ that postulates (E.I), 
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(E.2) and (E.3) as stated above together with a standard cluster pro- 

perty and a rather involved distribution theoretic axiom are sufficient 

conditions to guarantee that the Euclidean Green functions G (n:O,1...) 
n 

determine a local quantum field theory satisfying the Wightman axioms. 

Lastly it may be worthwhile pointing out that positivity (E.2) 

will actually hold for more general finite sequences of Schwartz test 

functions than stated there; it suffices that they vanish with all 

their derivatives when ~. : ~. for some i ~ j, or some x~_~ 0. This 
i 3 l 

follows immediately from assertion (1.14). 

2. Conformal Invariance 

From now on we shall restrict our attention to quantum field 

theories whose Euclidean Green functions are exactly conformal invariant. 

The Euclidean conformal group is ~ ~ S0~(5,1), it is compounded from 

FC 

4-rotations ~-~ m ~, m ~ S0(4) 

translations x~t ~ = ~ + 
C 

dilations x-~ ~x, ~ ~ 0 

special conformal transformations ~--~Rt R -I 

where R~ : ~ c 
X 

We will assume that our theory is parity invariant, it follows 

then that the Euclidean Green functions are invariant under Euclidean 

time reversal ~ It is known that 0 R is an element of the identity 

component of the conformal group ~ , thus parity invariance plus 

conformal invariance implies R-invariance. 

Conversely R-invariance alone implies full conformal invariance in a 

Poincar$ invariant theory, because special conformal transformations, 

4-rot ations generate the whole group ~ . and tran~atiens 

Let d the dimension of the fundamental field in the theory (the 

dimension is a new quantum number) then the requirement of R-invariance 

for the Euclidean Green functions is 

One knows from Wilson's work ~6] that the dimension d can in general be 

noninteger and is dynamically determined. Positivity of the 2-point 

function requires however that d~l resp. d ~D-1 in a world with D 

space time dimensions. In order not to have to distinguish between 
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i several cases we will assume that in fact D-I~ d~ ~D. It is inte- 

resting to consider theories in an arbitrary even number D of space 

time dimensions, the considerations of Sec. i generalize immediately 

to this case. 

3. Conformal Partial Wave Expansion 

Given a conformal invariant Euclidean n-point Green function, 

graphically represented by a bubble with n legs, we can select two 

if its arguments and decompose it into terms corresponding to the 

exchange of definite conformal quantum numbers flowing between the 

selected pair of legs and the remaining ones. This is called the 

(Euclidean) conformal partial wave expansion [i]. 

Itsvi~ues are first of all these: The connected Green functions 

in a Lagrangian quantum field theory are known to satisfy dynamical 

equations which amount to a coupled set of infinitely many nonlinear 

integral equations. All these integral equations are '~olved" simulta- 

neously by the conformal partial wave expansion, i.e. they are converted 

from integral equations to algebraic constraints. These algebraic con- 

straints amount to demanding presence of certain simple poles in the 

partial waves qua analytic functions of the continuous conformal quantum 

number ("dimension") $ ~ with factorizing residues. 

All this has been derived and discussed in detail in earlier 

lectures by the author which are already published EI~ . We will there- 

fore only review here very briefly the formulae which we will need later 

on. 

The conformal quantum numbers (Casimir invariants of S0(5,1) 

resp. SO(D+1,1) D = ~ of space time dimensions) are ~ =~t~J, with 

an SO(4)-spin (resp. SO(D)-spin) and $ a complex number, the "dimension". 

We will only be interested here in completely symmetric traceless tensor 

representations of S0(4), they can be characterized by their rankS. 

Thus ~ will be a nonnegative integer from now on. 

There are several series of unitary representations of SO(D+1,1). 

If the space time dimension D is even, they are ~77 

identity representation (1-dimensional) 
1 

principal series: ~ arbitrary, ~ = 7 D + i~, - ~  G - ~  

supplementary series: includes in particular ~ =0, O~<D real 

~xceptional series: associated with certain "integer points" 

(integer $ ) 
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The exceptional series does never appear in the decomposition of the 

Euclidean Green functions for D > 2, and for D:2 it is equivalent to 

principal series representations [97 • 

More generally, there exist (Banach-space) representations of 

the Euclidean conformal group ~ for arbitrary~ =£{,5] , ~ complex. 

They contain the unitary ones as special cases (resp. irreducible parts 

thereof for the exceptional series) and are constructed as induced 

representations as follows Li,8~ . 

The representation space ~ [ (or a dense subspace thereof) con- 

sists of functions ~ (x) on Euclidean space {~ ~, ~ = (~1...~) 

being tensor indices, viz ~i = 1...4 resp. D. The little group H of 

= 0 consists of Euclidean 4-rotations m E M, dilations a6 A and 

special conformal transformations n 6 N, viz H : MAN. The transformation 

law of functions ~ ~ under AE~ is 

(T(A)~]~(~)= [~(~]a~ (A-'~I (sum over~ ) (3.1) 

Herein the little group element h ~ H depends on ~ and f and is given by 

-7 

~× A ~x' ~'--- A-'~ j J 

t x t h e  t r a n s l a t i o n  t a k i n g  0 t o  ~.  The i n d u c i n g  r e p r e s e n t a t i o n  D ~ i s  

g i v e n  by 

9Y ~I~(,~Q~)= la (  ~ ~ 
D~ 0 ( ~ )  

if a is a dilation by ]al D ~ is the completely symmetric~-th rank 

(m) are therefore tensor representation of M ~ S0(4), note that all D~ 

real. This representation can be extended to a representation of the 

group 0(4) which is obtained by adjoining to M the reflection by 8 , 

so that also D~(@) is defined. Representations % =~,~3 and -~ :~,D-~ 

are equivalent except at integer points. In addition there are further 

"partial equivalences" at integer points which are very important but 

cannot be discussed here (see refs. 9 and 16). 

Since we will be interested in discussing positivity, we will 

need to consider the full disconnected Green functions as we did through- 

out Sec. 1. In terms of the connected Green functions 

etc. 

(3.2) 
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We will for simplicity consider a theory of one hermitian scalar 

field ~ , e.g. a ~3-theory. ~The considerations can be extended to 

~4-theory with only small changes by introducing also the field ~ 2(x) 

right from the start, i.e. a theory of two hermitian scalar fields 

having different dimensions.~ The 2-point function is specified up to 

normalization by the dimension d of the field ~ ; we will fix its nor- 

malization by ~i~ 

G c~.~,. )-c.2:vSi~ fca ~ C ~1~- ~, 12)-a/r, ( i  ~ - a )  

We will now write down the conformal partial wave expansion for the 

full disconnected 4-point Green function 

= a t  + t a .  

(3.3) 

Id. stands for a contribution belonging to~ = identity representation: 

it is given explicitly by the very first term on the right hand side 

(r.h.s) of Eq. (3.2), viz. Id. = G2(XlX 2) G2(x3x4). 

The integration ~ d~ runs over a certain subset of the unitary 

representations of ~ , we will come back to this below. All the dyna- 

mical information on the disconnected Greenfunction is in the partial 

wave amplitudes l+g(X). It is written in this way to agree with the 

notation of ref.[iJ. All the rest are kinematical factors determined 

by group theory. 

Explicitly, the Clebsch Gordan kernels 

(3.4) 
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w i t h  XC] = ~ -  ~j , 

and for D : 2h 

X<~= ~ - 

Z X ~  

-~, I . . . . .  i T - ~ + a * f < ~ + f e J r ' C d - } g + l e ) l T f < ~ + i  z . . . . .  )z t ~4 /Wry) :(2~7 l~(24-d-~zc.e+~)P(lt_d+~zd+z#.) E'(&-~d zg) t 

Because of the equivalence of representations ~ and -~ ~ the partial 

waves can, and will be required to satisfy a symmetry relation 

9cYJ =~(-y) (3.5) 

Our choice of overall factors is such that [$i] the Clebsch Gordan 

kernels for representations ~ and -~ are related by 

with intertwining kernel 

with 

%t~¢~J=-g~#~ + 2 ~ z # / ~  ~ 

k IPa+t)l"(2l~-J-.sl ( 3 . 7 )  

l-' ( l i -ZI F(Z:  - S,<b,t ) 

Since (3.5) is true for all ~ , hence also for - ~, it follows that 

~ is the inverse of ~ in the convolution sense. The graphical 

notation used e. g. in (3.3) takes all this into account if we picture 

~-~ as a bubble with a short wiggly line. Inserting expression 

(3.6) for FX into the rhs. of the second equality (3.3), a more 

symmetrical expression results, which involves however two x-integrations. 

We will not now write expansions for the higher n-point functions, 

connected or otherwise, they were given in ref. i. The expansion for the 

connected 4-point Green function is obtained from (3.3) by substituting 
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g(X) for l+g(X) and omitting the contribution from the identity re- 

presentation. 

The dynamical integral equation [12] for Green functions 

mentioned before imply EI~ for g(~) that it should have a simple pole 

in $ for ~ = 0 at ~ :dj shortly: a pole at ~ : ~ 0~d] . Its re- 

sidue must be positive and fixes the square of the coupling constant. 

As a result, the integration over representations in (3.3) can be de- 

formed to path integrals which run as follows: 

, j  
L.D 

k_i/ 
d 

® 

I,, C~ 

- " - -  C~_ , £:2,9".. .  

Fig. 1 paths of $ -integration 

The Plancherel measure c(~) is a polynomial. Note that the pole 

of g(~) at ~ = ~ 0 = L O~d~ is accompanied by a brother at - ~ 0 

by symmetry (3.5). 

One finds in addition that g(X) should also have a pole at 

= [ 2jD] ~ this is required by the existence of a stress energy tensor. 

Throughout this paper we will restrict our attention to theories 

in which the partial waves g(~) are meromorphic function of ~ for all~ 

with only simple poles. There is a good physical reasonj for this assump- 

tion is necessary to have validity of operator product expansions with 

only a discrete number of (composite) fields appearing in them. This 

has also been discussed ref. i. Further light on this analyticity 

assumption will be shed by our later considerations of positivity, 

where we will need the hypothesis that g(~) are holomorphic in a cut 

-plane. 
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4. ~ Semi~roup and I,ts Contractive Repres~nt%tions 

We will now introduce a maximal noncommutative semigroup S 

contained in the Euclidean conformal group~ . It is defined to consist 

of those conformal transformations A in4~ ~ which leave invariant the 

halfspace with positive Euclidean time x resp. x D" 

implies 0 < (/%~) <~ (4.1) 

and similarly for D space time dimensions. Henceforth such generali- 

zation will be left to the reader• In the 6-dimensional language, S 

consists of pseudo-orthogonal transformations of positive lightlike 

6-vectors ~ which leave invariant the halfspace { 4 > O. 

Evidently S contains a subgroup U ~ SO (4.1) which consists 
e 

of those pseudo-rotations which leave invariant ~ 4. It also contains 

the 1-parameter semigroup of pseudorotations b( ~ ~ O) in the 4-6 

direction. This is seen as follows: Introduce hyperbolic coordinates, 

viz 

r .e  ( u . a ~ s ) ,  ~ r s , ' ~  ; r c o s [ ~ - -  (4.2) 
# 

Evidently ~ 4 ~ 0 if and only if ~ O. Thus the halfspace ~ 4 > 0 is 

left invariant by the pseudorotations b Z with ~ 0 which translate 

the hyperpolic coordinate $ to ~ +T . The generator H of this l-para- 

meter semigroup will be of special interest, it is defined by 

/5-f = e (4.3) 

The interior S ° of S is also a semigroup and so is S ~ : S°uU. 

It follows from the work of Toller and collaborators [13] that 

• S ~ We observe that if ~ is in S resp then so is ~ ~ ~ A-~ ~ 

Consider now any of the (possibly nonunitary) induced representations 

of the Euclidean conformal group ~ which were described in the last 

section, with representation space ~ ~ consisting of functions ~(×] 

We restrict this representation to a representation of the semigroup 

9. 
One notes then that there exists a subspace ~# of ~ % which 
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consists of those functions which vanish in a halfspace 

{X+ (x) = o ,'{ o (4.5) 

It is evidently invariant under the action of the semigroup S. 

It was discovered by Toller et al. that there also exists an 

invariant complement (or almost~). That is another invariant subspace 

_~ such that the direct sum ~ +O ~_ 
£ox 

is dense 

in the (Banach) space ~X 

This decomposition corresponds to a split of functions 

(~(X] 6 ~0[ as follows 

]dx: X 

Note that the intertwining operator ~ is involved, thus the possi- 

bility of the split must be related to the equivalence of representa- 

tions ~ and - ~ of ~ . We will only sketch an argument for the 

possibility of the split: Suppose that ~- is already known, then 

obviously it is trivial to find also ~. Now ~- is determined entirely 

by the values of ~ (x) for x 4 ~ O and can be determined by solving 
4 

the integral equation obtained from (4.6) by setting x L O so that 

the first term on the rhs. is absent. This integral equation can be 

solved by partial wave expansion over the group U ~ SO(4.1). This 

follows from the fact that U acts transitively on the halfplane x 4 > O. 

Restrictions on the functions ~ that can be split come from the re- 

quirement that the U-partial waves of ~- are well behaved at infinity 

qua functions of the continuous Casimir-invariant, this restricts the 

behaviour of ~ for x 4~ 0 (in particular ~ must be real analytic 

there). 

We will next introduce a bilinear form on the representation 

space ~:~ of S'by 

(4.7)  

We ask ourselves for which X the bilinear form (4.7) defines a positive 

semi-definite scalar product. For suitable choice of phase in D((O) 

the answer is given by the following 
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Lemma: If ~ = [~I~] with either ~ = O, $> ~D-I or ~O, 

~> D-2+~,then (~, ~)~ ~ 0, and ~ T(~)II ~ i for all 

E S ~ in the operator norm induced by the scalar 

product (,)~ . 

Moreover, one checks by a straightforward computation that for real 

( y , T ( A ) ~ )  = ( T ( ~ I T , ~ )  for AES, ~=OA-'O (4.8) 

It follows from this that the subspace of zero-norm vectors of ~ 

is invariant under S ~ 

Thus, for ~ such as are specified in the lemma, we may complete 

the representation space ~X to a Hilbert space ~ after di- 

viding out the invariant subspace of zero norm vectors, and we are 

supplied by a contractive representation of S~acting in this Hilbert 

space ~ , and satisfying a pseudo-hermiticity condition (4.8) which 

implies in particular that U is represented unitarily and b T is re- 

presented by selfadjoint contraction operators so that H ~ 0, selfad- 

joint. The last assertion holds because O H O =-H and O u O = u for u EU. 

The operator H is called the conformal Hamiltonian for reasons explained 

elsewhere E5] • 

We will not prove the lemma but make it understandable by 

mentioning the following theorem which was stated and proven by L~scher 

and the author in Appendix C of ref. [5] • 

Theorem: Let T a continuous representation of S~ by contraction 

operators in a Hilbert space, satisfying the condition (4.8 , 

viz T(A) : T(A) ~ . Then T can be analytically continued to 

a unitary representation of the universal (~-sheeted) covering 

group ~ of the Minkowskian conformal group SO(4,2)/Z 2 

resp. SO(D,2)/Z 2. 

Continuity is satisfied ifll T(A)-III~> 0 when A--7 i through values in 

S~ It can be shown to be satisfied for the representations considered 

so far. Taking lemma and theorem together we see that we end up with a 

class of unitary representations of ~. They ought to be equivalent 

analytic representations of ~* studied by R~hl to the known 
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5. Positivity of ,t, he 4-Point Function 

Let us start by rewriting the conformal partial wave expansion 

(3.3) of the 4-point function. We consider the Clebsch Gordan kernel 

~-~3~4 ~ ~) as a function of ~ and split in the manner of 

Eq. (4.6), viz. 

~X 
f o r  X~, K4 "7 0 w i t h  ~o~ ( . . 1 ~ )  : 0 i f  X't~. 0 • 

The notation takes into account the symmetry property (3.6) of /~ 

under ~--~-~ . Because of ~-invariance of Z~ ~ and r ~ it follows 

that also 

t~ ~ Q; X 
(5.ib) 

The split (5.1a) may be performed in the manner sketched in Sec. 4. 

The Q~ u n f o r t u n a t e l y  t u r n  ou t  no t  t o  be good f u n c t i o n s  o f  ~ , even  

though their U-partial waves are well defined, ~X(~F4 ~ ~) being a 

smooth f u n c t i o n  o f  ~ f o r  x4~:: O, x34 ,  x44 ) O. In  t h e  p r e s e n t  n o t e  we 

will for simplicity ignore this complication, and proceed heuristically. 

We will use a graphical notation 

z ' t  X J ,  ):j/ ~ 0 -~, o< r esp .  

= Qo=<eogo <lm- ) 

<t .Z xf < o 

(5.2) 

A related problem is that the Hilbert spaces~ ~" + of Sec.4 do not 
anymore consist of equivalence classes of functions after completion 
in the norm, because Cauchy sequences need not converge in any 
function space topology. Both problems can be overcome by working 
with U-partial waves throughout. 
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Let us now consider the full disconnected Euclidean Green 

function G4(~Q2~3~ 4) ~ 4 4 - 4 ~or x i , x 2 < U; x 3 , x44~ O. After inserting 
~X 

the split (5.1a) for one of the / -kernels in the expansion (3.3), 

one has two terms. They can however be grouped together again by a 

change of ~ -integration variable, using the symmetry property 

g(~) = g(- ~). Next one can use the identity 

for 

(5.3) 

-K 
This follows from the split (5.1b) and the support properties of Q 

As a result we get the new expansion 

+ 2 

x~ x. 

-X 4 

Given a function f2(~,~ 2)_ satisfying support properties stated after 

(E.2) of Sec. i, let us define 

f 

~ C~} : same with ~2 in place of f2" 

Of course these functions depend on X ( ~ ~ ~+~ if d~ -~ 

good f u n c t i o n ) .  

were a 



83 

We may now inspect the expression ( 1 . 1 1 )  which ought to be 

positive. Comparing with the definition (4.7) of the bilinear form 

(,)~ and recalling that G 4 is symmetric in its arguments we find 

6;~ Co/# × A ) : 2 ~ a ~: t'-I c/.)l-i +<y~:)] c F-_F,', ce JX ~-ta. (5.4a) 

where I~(~) A/C~J/V(-~ ~C~ ~)'{ - " (5.4b) 

and Id. stands for a contribution from the identity representation 

which is automatically positive by itself. The normalization factors 

N(.) where given in Eq. (3.4) and f. 

We will now try to deform the path of the ~ -integration in 

such a way that the assertion of the lemma becomes applicable. 

Let us assume that the partial waves g(~) satisfy growth con- 

ditions for I~(-->~ such that the path of the$-integration can be 

closed to the right in Fig. 1. We also assume temporarily that there 

are no poles of the integrand in (5.4a) inside this closed path which 

come from the factors ~ (~)(~,~] • . Lastly, we observe that 

~ ~/{~I~/C-~)~ -~ f~ _ ~ and ~ are real for real ~ , and so 

is therefore ~ IVC~}~(-~'~ ~'~ by its definition; it follows 

that ~i = ~ for real ~ . Suppose that g(~) has a pole at 

: ~ a : [~ a' ~a] ' (i.e. a pole in $ at ~ a for~:~a ). We define ~ 

Fes~ Eg+~(~.)-] ---cC~(aJ ~CX~,) r'es r-q+~jEea ,eVa*'] 
Y~ 6=gQ 

(5.5) 

Note that the definition depends on the dimension d of the fundamental 

field through M(~). 

By Cauchy's theorem we have then 

G,~(gf *,×{,)=2 El ~'es.F_-~+~txl-]c~,qo)y + Io.1' (5.6) 

In the second paper of ref. 1 a factor M(X) is missing in the state- 
ment of positivity constraints. 
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d 

Q ;o 

o e d p~th 

Q t>o 

- × 

Fig. 2 Deformation of paths of S-integrations. 

with summation running over the pole of g(~) at ~o = [ O,d] plus all 
i 

poles with ~ b [ D except the pole at - ~o" We see that the expression 

is manifestly positive if all the residues of the aforementioned poles 

are positive and these poles are positioned at real $2 7 D-2+~ a if 

~ O, for then the hypotheses of the lemma in Sec. 4 are met. a 

We have so far disregarded possible singularities of the factors 

M(~)( ~l ~ )~ . Preliminary computations indicate that one must 

anticipate poles of two types: i) the poles of N(~)N(-~) at 

: 2d+]+2n, n = O, i,... ii) poles at certain integer points 

( ~ integer). In order that such poles do not ruin positivity, partial 

waves g(~) must satisfy additional kinematical constraints. Todorov 

and collaborators have recently shown [9] that in addition to (3.5) 

g(~) must in any case satisfy further equalities relating its values 

at partially equivalent integer points, viz 

It is hoped that these constraints will lead to cancellation of the 

contributions from integer point poles. Concerning poles i) it seems 

attractive, though not really necessary, to demand that they are 

cancelled by zeroes of i + g(X), so that expression (5.6) is valid 

without extra terms. 

Summing up, positivity of the 4-point function will hold, if the 

partial waves g(X) fulfill conditions of the following type as a 

function of ~= [~,J~; ~O,Z... 

i. g(X) is a meromorphic function of ~ for each ~ , with poles 



85 

1 1 
only at real 4 satisfying [6 - ~ D/>I~ D-2+~lif ~ O. 

The residues of the pole at ~o = ~O,d] and of all poles 
l 

with ~ > ~ D apart from - ~o must be positive. 

i D) so 2.g(~) satisfies growth conditions as ~I->~(Re J~ 

that the path of integration in (5.4a) can be closed to the 

right. 

3. g(~) must satisfy certain kinematical constraints related 

to the existence of kinematical poles of M(~)(.,.)Z , 

cp. text. 

One can also look at the result in another way. The above conditions 

are imposed in order that the sum in (5.6) converges and consists of 

a sum of positive terms. That is 

~t 
with <~ 0 and 

for ~ =O and ~-Z÷~ otherwise. 

We assume here and in the following that l+g(~) = 0 at the poles of 

N ( ~ ) N ( - Y ) .  

B e c a u s e  o f  t h e  C a u c h y - S c h w a r t z  i n e q u a l i t y ,  a n  e x p a n s i o n  o f  

t h i s  t y p e  m u s t  t h e n  a l s o  b e  c o n v e r g e n t  i f  we s m e a r  w i t h  a r b i t r a r y  

test function ~f× ]~ instead of ~#f~ fz , and thus in the 

distribution theoretic sense 

The second equality follows from (5.3). We have thus arrived at an 

expansion of the type suggested in ref. ~15~ and Eq. (9.3) of ref.[~ 

except that it has not been shown that the Q~ used here are the same 

(in some sense) as those used in ref.[~. 

The results of Osterwalder and Schrader imply that the expansion 
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(5.7) remains valid, i.e. convergent when we analytically continue in 

the external arguments ~1...~4 toMinkowski space through values 

x14< x24< 0<x34~ x44 (x 4 = imaginary part of time) and we will in 

this way obtain an expansion of the Wightman function W(XlX2X3X 4) 

We expect, in view of the theorem cited in Sec. 4, that if amounts to 

a partial wave expansion on the simply connected covering ~ ~ of the 

Minkowskian conformal group SOe(4,2)/Z 2. 

#a,t. q~oce 
Xn>o 

(5.8) 

--~ • O 

~;= [~,~) --(~i -,K{ +~[ ), g,<[L'<O <g3<Z 9 infinitesimal 

Note that there is still an integration over half of Euclidean space 

involved as the formula stands now. 

If the above interpretation is correct, one may even be able to 

show that the conditions for positivity of the 4-point function 

mentioned above are not only sufficient but also necessary ones. Ab- 

sence of cuts in g(~) needs a separate argument though, cp. Sec. 3, 

and also the precise form of the kinematical constraints is open to 

further study. 

6. Generalization to Arbitrary n-point Functions 

So far we have only investigated a special consequence of the 

positivity condition which involves the 4-point function alone. We 

now want to come to the general case. 

Since we are presently interested in sufficient conditions for 

positivity, we will proceed by Ansatz. 

Considering an m+n - point Green function, we try a decompo- 

sition into terms which correspond to exchange of definite conformal 

quantum numbers as follows 
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X~ XA 4 41 

/ ,  -)C, r " i~ A x -I ' ,  r , 

( 6 . 1 )  

We have introduced here a new notation: the ~ -integration is now 

supposed to include also a contribution from the identity representation 

(We leave it to the reader to work out the necessary convections for 

such ~ ), and a fat wiggly propagator 

x ~ x' = ~ )  D ~ C x , ~ ' )  

r a re  some s o r t  o f  i n t e r n a l  quantum n u m b e r s .  The G- ~ , r  a re  c o n f o r m a l  

invariant, their transformation law as functions of the first argument 

is specified by - k and given by Eq. (3.1), similarly for the other 

arguments (~ =0,6 =d there). 

Our Ansatz consists in demanding that an expansion of the form 

(6.1) is valid with an integrand that factorizes. That is, for 

arbitrary number of arguments x~...Xn' , the factor G-~ 'r(~l~l...~ m) 

is always the same, and similarly for the second factor. 

In case no summation over internal quantum numbers is necessary, 

we put 

A .4 

== /~  (~', xz. I 
2 2 

( 6 . 2 )  

so that 

For m:2, partial wave expansions of the form (6.1) were already con- 

sidered in ref. 1, and we know from the discussion given there that 
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the partial waves for arbitrary n = 2,3,... should share the poles of 

g(~). For these poles are in correspondence with the local fields 

(including composite ones) in the theory, and their positions indicate 

tensor character and dimension of such fields. 

For this reason we have pulled out a factor l+g(~) resp gr(~) in 

Eq. (6.1), it is supposed to contain all the "dynamical" poles of the 

integrand, while the factors G- K ,r will be assumed to be holomorphic 

(apart from the possibility of certain kinematical singularities. They 

need a separate discussion much as in the case of the 4-point function). 

Let there be given a finite sequence of test functions fo' 

fl(~l)~...fN(~l...~v) with support properties as stated after (E.2) 

in Sec. 2. We define 

(6.3) 

and 

~ r ( ~ )  ~ same with ~k in place of fk" 

Of course they depend on ~ . With this notation, 

" = "ko~( x ] , ~ c z ,  Z'J 

assuming O -invariance of G -y'r, i.e. parity invariance of the theory. 

We will now split the functions ~, ~l in the manner described 

in Eq. (4.6), viz. 

t r l r  

 'oj"c j cxJ, Ox x (6.5) 

and similarly for . Because of equivalence of representations ~/ 

and -X of the Euclidean conformal group, partial waves G ~'r will 

(or can be required to) share a symmetry property analog to (3.6). As 

a consequence the same is true for ~/~, ~l and so~ +'r at ~ is the same 

as ~ -,r at -~ . 

Inserting the split (6.5) into (6.4) and simplifying the result 

with the help of symmetry and support properties as in Sec. 5, we end 

up with 
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~,Z V 

where ~ ~ ~' ÷ and ~'r~ ~'~ 

This equation is identical in appearance to Eq. (5.4a) of Sec. 5. 

The further analysis then proceeds as in the case of the 4-point 

function. This results in some extra conditions in addition to those 

already satisfied by Ansatz or assumption stated above. They are of 

the same types as were stated in Sec. 5, i.e. the poles of gr(~) should 

be in permissible parts of the realS-axis and have positive residues 
1 if $ > ~ D, ~ ~ -~o • In addition there are growth conditions and 

kinematical constraints. However, in contrast to the ~ ~, the partial 

waves GX ,r are not in general completely determined by kinematics. 

the growth conditions will be conditions not only on gr(X) but Thus, 

they also involve the partial waves G- X ,r. Also the kinematical 

constraints relating G- X at partially equivalent integer points will 

look more complicated; we will not give the explicit expressions here 

they are however implicit in ref. 9. A detailed study of the growth 

conditions has not yet been carried out at the time of this writing. 

Also the connection between the expansion (5.7) resp. (5.8) and operator 

product expansion [17~ deserves further study. 
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