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An ’t Hooft anomaly is the obstruction for gauging symmetries, and it constrains possible low-
energy behaviors of quantum field theories by excluding trivial infrared theories. The global
inconsistency condition has recently been proposed as a milder condition but is expected to
play almost the same role by comparing high symmetry points in the theory space. In order to
clarify the consequences of this new condition, we discuss several quantum-mechanical models
with topological angles and explicitly compute their energy spectra. It turns out that the global
inconsistency can be saturated not only by the ground-state degeneracy at either of the high
symmetry points but also by the level crossing (phase transition) separating those high symmetry
points.
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1. Introduction

Quantum field theory (QFT) provides a powerful tool unifying the relativity and quantum mechanics
in high-energy physics as well as the long-range description of many-body physics. The universality
of QFT sometimes exhibits common aspects in seemingly quite different systems and allows us to
treat them in an analogous fashion [1]. The perturbative aspects of QFTs are very well understood,
and it gives an approximate result successfully when QFTs are weakly coupled. Many examples of
our interest are, however, described by strongly coupled QFTs, and they are very difficult to deal
with in general. The solution of strongly coupled QFT is generically unknown unless it is in a special
situation, such as in low dimensions, with strong–weak dualities, with certain supersymmetries, etc.
It is therefore of great importance to give a rigorous statement on QFTs that applies even when QFTs
are strongly coupled.

A key clue is the global symmetry of QFT. One cornerstone of traditional many-body physics is
Landau’s characterization of phases [2,3]: different phases realize different symmetries. At generic
values of coupling constants, the free energy is an analytic function, but some singularities must
appear when a symmetry-breaking pattern changes. Another interesting consequence of sponta-
neous symmetry breaking is the existence of massless bosons called Nambu–Goldstone bosons
when a continuous symmetry is spontaneously broken [4,5]. As we have seen in these two famous
examples, we can give rigorous statements about strongly coupled field theories by assuming pat-
terns of spontaneous breaking of global symmetries. This is already surprising, but it requires other
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nonperturbative data to answer the question about whether the symmetry is spontaneously broken
or not.

In certain situations, we can obtain further nonperturbative data even when the system is strongly
coupled. Topology related to global symmetries can exclude the trivially gapped phase, which
is captured by an ’t Hooft anomaly [6–10]. It would be helpful in the following to discriminate
closely related notions called “anomalies”. The anomaly was originally discovered as a patholog-
ical feature of QFT, where the symmetry of a classical gauge theory is explicitly broken by its
quantization [11,12], or by the path-integral measure [13,14]. The famous example is the absence
of axial U (1) symmetry in massless quantum electrodynamics (QED) or in massless quantum chro-
modynamics (QCD) due to the Adler–Bell–Jackiw chiral anomaly. Meanwhile, there is another but
related notion called an ’t Hooft anomaly.

An ’t Hooft anomaly is defined as an obstruction to promoting the global symmetry to local gauge
symmetry [6,9]. We consider a QFT T with a global symmetry G, and let Z[A] be the partition
function of T under the background G-gauge field A. We say that G has an ’t Hooft anomaly if the
partition function Z follows the nontrivial transformation law1,

Z[A + dθ ] = Z[A] exp (iA[θ , A]) , (1)

under the G-gauge transformation A �→ A + dθ and A[θ , A] cannot be canceled by local counter
terms. In particular, when G = G1×G2, G1 and G2 are said to have a mixed ’t Hooft anomaly if G1 and
G2 themselves have no ’t Hooft anomaly but G1×G2 has an ’t Hooft anomaly. The classic and famous
example of an ’t Hooft anomaly is the flavor symmetry SU (Nf )L × SU (Nf )R × U (1)V of massless
QCD [6]. We should emphasize that, although the existence of an ’t Hooft anomaly itself does not
mean breaking of symmetries without coupling to background gauge fields, it imposes constraints
on low-energy dynamics of theories by combining with the anomaly-matching argument. Therefore,
’t Hooft anomalies give important nonperturbative data on QFTs.

’t Hooft anomaly matching states that the low-energy effective field theory of the QFT T must
also follow the same transformation law (1) under the background G-gauge field A and the G-gauge
transformation A �→ A + dθ . Original proof of this statement is given, when G is the continuous
chiral symmetry, by introducing the spectator chiral fermions canceling the ’t Hooft anomaly and by
making the G-gauge field A dynamical. Since the coupling of T to the G-gauge field A can be made
arbitrarily small, the low-energy effective theory of T is unaffected by the presence of A and should
produce the same phase A[θ , A] under the G-gauge transformation in order to cancel the G-gauge
anomaly from the spectator fermions [6] (see also Refs. [16,17] for reviews). Another proof is given
by the important observation that the phase functional A[θ , A] can be written as the boundary term
of the gauge transformation of a topological G-gauge theory in one higher dimension. This is proven
when G is the continuous chiral symmetry in an even dimension [18,19], and it is true in many
examples with discrete global symmetries [9,10,20]. When this is true, we can put the theory T on
the boundary manifold of the topological G-gauge theory, and then the low-energy effective theory
must be able to lie on the same boundary manifold. As a result, the anomaly inflow [21] derives the
anomaly matching. The latest developments on the understanding of topological materials have led
to discoveries of new ’t Hooft anomalies that include discrete symmetries [22–24] or higher-form

1 Other obstructions to gauging the symmetry exist as shown in Ref. [10] when the symmetry is discrete,
but we do not consider such subtle obstructions in this paper. The anomaly inflow for a ’t Hooft anomaly not
of Dijkgraaf–Witten type is discussed in Ref. [15].
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symmetries [25–27] in the context of high-energy and condensed-matter physics, and they derive
nontrivial consequences of low-energy effective theories [28–39].

The question that we would like to address in this paper is whether we can derive a nontrivial result
when the ’t Hooft anomaly is absent. In Ref. [31], a new condition, called the global inconsistency
of gauging symmetries, is proposed in order to claim a nontrivial consequence similar to the ’t Hooft
anomaly. They considered in that paper the 4D SU (n)Yang–Mills theory at θ = π , and the mixed ’t
Hooft anomaly is found for the center symmetry and CP symmetry when n is even. This derives the
spontaneous breaking of CP symmetry at θ = π under a certain assumption (see Refs. [40–53] for
early related discussions), and the same conclusion is also wanted for the case when n is odd. For that
purpose, they point out that the local counter terms for gauging the center symmetry at θ = 0 and
θ = π must be different in order to be compatible with CP symmetry at those points, and this global
inconsistency is claimed to lead to the same consequence of the ’t Hooft anomaly either at θ = 0 or
θ = π : If the phase of one side (say, θ = 0) is trivial, then the phase of the other side (θ = π ) must be
nontrivial. In Ref. [33], the authors of this paper suggested a new possibility that is compatible with
the global inconsistency: The global inconsistency can be satisfied by the phase transition separating
those CP-symmetric points when the vacua at those points are trivially gapped. The phase structure
of the SU (n)×SU (n) bifundamental gauge theory with finite topological angles is determined under
some assumptions with this proposal. In this situation, it would be nice to discuss various solvable
models with the global inconsistency to check what kinds of possibility can be realized.

The purpose of this paper is to elucidate the significance of the global inconsistency as well as
the mixed ’t Hooft anomaly in rather simple quantum-mechanical models. One of the models is
reminiscent of SU (n) Yang–Mills theory, which possesses mixed anomaly for even n and global
inconsistency for odd n [31]. The similarity was emphasized in Ref. [34] in terms of 2- and 3D
Abelian–Higgs models. The other is similar to SU (n) × SU (n) bifundamental gauge theory, and
they also share several properties in common in view of symmetries and anomalies. We analyze
these models in two ways: operator formalism and path-integral formalism. In the former method,
we look at the central extension of representations of symmetry groups. In the latter method, we see
inconsistency in the local counter term when promoting global symmetries to local gauge redundan-
cies. Although these two methods do not necessarily give the same information about anomalies, we
shall see their connection by explicit computation in our models. Since the energy spectrum and its
corresponding states are calculable, we can clarify the consequences of the global inconsistency and
mixed ’t Hooft anomaly explicitly.

This paper is organized as follows: In Sect. 2, we explain the general idea of the global inconsistency
in comparison with the ’t Hooft anomaly. In Sect. 3, we discuss a particle moving around a circle with
a periodic potential. We see how to detect mixed anomaly and global inconsistency in the system and
discuss the consequences for the energy spectrum. In Sect. 4, we add another variable to the model
discussed in Sect. 3 to mimic the SU (n)× SU (n) bifundamental gauge theory at finite θ angles. The
global inconsistency plays an even more important role in this model and we present the resultant
energy spectrum and its interpretations. We give conclusions in Sect. 5.

2. Global inconsistency of gauging symmetries

In this section, we define the global inconsistency condition, proposed in Ref. [31], in the general
context of QFT.

We consider a QFT T parametrized by continuous parameters �g = (g1, g2, . . .) such as mass
parameters, coupling constants, theta angles, and so on, which is described by a partition function
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Z�g . At generic values of �g, the QFT T (�g) has the global symmetry G, and we assume that G has no ’t
Hooft anomaly. By this assumption, we can couple the theory T (�g) to the background G-gauge field
without breaking the invariance under the G-gauge transformation. In this process, the topological
G-gauge theory on the same dimension is introduced, and the parameter space is extended by new
couplings �k of the topological G-gauge theory. Some of them might be continuous but the rest of
them will be quantized to ensure the G-gauge invariance, and we assume, for simplicity, that all
the new couplings �k are quantized to discrete values2. We denote the partition function under the
background G-gauge field A as Z�g,�k [A], and it satisfies

Z�g,�k [A + dθ ] = Z�g,�k [A] (2)

under the G-gauge transformation A �→ A + dθ . When making the G-gauge field A dynamical, we
call the obtained theory (T (�g)/G)�k , and the global symmetry disappears at a generic point of �g.

Although the symmetry of the theory T (�g) is G for generic �g, it may be enhanced to other groups
at special points. Let �g1 and �g2 be such special points, where the symmetry is enhanced to G × H
by the group H ; we shall call these points �g1 and �g2 high symmetry points. We restrict our attention
to the case where G × H has no ’t Hooft anomaly both at �g1 and �g2. In this setting, the global
inconsistency condition is defined as follows: There exists no �k such that Z�g,�k [A] is compatible with
the H -gauge invariance both at �g1 and �g2.

We shall take a closer look at the global inconsistency condition. Since there is no ’t Hooft anomaly
of G × H at �gi (i = 1, 2), there exists �ki such that

Z�gi ,�ki
[h · A] = Z�gi ,�ki

[A], (3)

where h · A is the transformation of the G-gauge field A by h ∈ H . The condition for the global
inconsistency states that �k1 �= �k2. When �k = �k1 is chosen, the symmetry H at �g2 is explicitly
broken as

Z�g2,�k1
[h · A] = Z�g2,�k1

[A] exp
(

iA�g2,�k1
[h, A]

)
(4)

for some phase functional A�g2,�k1
. Therefore, (T (�g1)/G)�k1

has the symmetry H , but (T (�g)/G)�k1
has

no symmetry including �g = �g2. A similar equation,

Z�g1,�k2
[h · A] = Z�g1,�k2

[A] exp
(

iA�g1,�k2
[h, A]

)
, (5)

is true at �g1 when �k = �k2 is chosen: (T (�g2)/G)�k2
has the symmetry H , but (T (�g)/G)�k2

has no

symmetry including �g = �g1. It should be noted that �k cannot be chosen individually at each point
because the two points are continuously connected in the parameter space and �k , being a discrete
parameter, does not change discontinuously on the path connecting the points3. This situation is
schematically shown in Fig. 1.

2 An example of the discrete parameter �k is the level of the Chern–Simons theory.
3 If �k contains continuous parameters, the corresponding condition is replaced as follows: The global incon-

sistency exists if there is no connected component of the �k space that respects full symmetries at both �g1

and �g2.
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+Topological    -gauge theory

Fig. 1. A schematic figure illustrating the global inconsistency in the space of coupling constants �g. In the
original theory T , symmetry G exists at generic couplings �g and it is enhanced by H at �g1 and �g2. To gauge
the symmetry G, T is coupled to the topological G-gauge theory with the discrete parameter �k . In (T /G)�k1

,
the symmetry is absent except at �g = �g1. In (T /G)�k2

, the symmetry is absent except at �g = �g2.

It should be emphasized that the inconsistent points have to be connected continuously in parameter
space. When there is global inconsistency between �g1 and �g2, we claim that

◦ the vacuum either of T (�g1) or of T (�g2) is nontrivial4, or
◦ �g1 and �g2 are separated by the phase transition.

When the first statement is realized, the global inconsistency condition shows the existence of the
nontrivial phase at one of the high symmetry points. Meanwhile, the second statement suggests
that the global inconsistency is automatically satisfied if there is a phase transition separating the
high symmetry points where the discrete parameter k may jump. This aspect makes the global
inconsistency a milder obstruction than the ’t Hooft anomaly and an important corollary is that
the existence of global inconsistency does not necessarily lead to nontrivial infrared theory at high
symmetry points.

We shall see how these arguments work explicitly by looking at several quantum-mechanical exam-
ples in the rest of this paper. In all the quantum-mechanical examples with the global inconsistency,
one of the above conclusions is realized. Moreover, we will find that both possibilities are realized
in certain quantum-mechanical models.

3. Quantum mechanics of a particle on S1

We consider the quantum mechanics on a circle S1 = R/2πZ with the topological θ term, describing
a particle with unit mass moving on a ring of unit radius. The θ term arises due to the flux threading

4 The vacuum is called nontrivial in this paper if the theory is either gapless, with spontaneous symmetry
breaking, or with topological order.
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the ring. The Euclidean classical action is

S[q] =
∫

dτ

[
1

2
q̇2 + V (nq)

]
− iθ

2π

∫
dq. (6)

The potential V (x) is an arbitrary 2π periodic smooth function, V (x + 2π) = V (x), and it can be
represented as a Fourier series:

V (x) =
∑
�≥1

λ� cos(�x + α�). (7)

Each q is the map q : S1
β → R/2πZ, where S1

β is a circle with the circumference β, q̇i = dqi/dτ ,
and n ≥ 2 is an integer. The set of parameters is �g = (θ , λ1, . . . ,α1, . . .), and we often denote only θ
instead of �g since the most important parameter in our discussion is θ . The parameter θ is identified
with θ + 2π because

∫
dq ∈ 2πZ. The partition function Zθ is defined by the path integral:

Zθ =
∫

Dq exp (−S[q]). (8)

In the operator formalism, the Hamiltonian of this system is given by

Ĥ (p̂, q̂) = 1

2

(
p̂ − θ

2π

)2

+ V (nq̂), (9)

where [q̂, p̂] = i and the Hilbert space H is a set of 2π -periodic L2-functions; the partition function
is Zθ = trH[exp(−βĤ )].

The goal of this section is to figure out the consequences of mixed ’t Hooft anomaly and global
inconsistency in this model. The aspect of the ’t Hooft anomaly for this model has already been
discussed in detail when n = 2 and α� = 0 in the appendix of Ref. [31], so this section partly
contains a review of known results. Still, we would like to start with this model since it is the
simplest case where the global inconsistency shows up when n is odd. We will indeed see that (non-
accidental) level crossings appearing in the energy spectrum can be explained in terms not only of
’t Hooft anomalies but also of global inconsistency.

3.1. Symmetries, central extension, and global inconsistency

The system (6) has Zn symmetry, generated by

U : q(τ ) �→ q(τ )+ 2π

n
. (10)

Since q(τ ) and q(τ )+2π are identified on the circle, Un = 1. Quantum mechanically, the symmetry
operator U can be realized as

U = exp
(

i
2π

n
p̂

)
, (11)

and it is easy to check that UĤU−1 = Ĥ for any θ . We take this convention for U in the following.
The symmetry of the system is Zn for generic θ , but there are additional symmetries at θ = 0,π .

These two points are the high symmetry points of Eq. (6), and we have the time-reversal symmetry
T:

T : q(τ ) �→ q(−τ), q̇(τ ) �→ −q̇(−τ). (12)
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At θ = 0, the action S is quadratic in q̇, and this symmetry exists trivially. At generic θ , the
topological term is linear in q̇ and the time-reversal symmetry is absent. At θ = π , if we perform
this transformation, the topological term changes as

− i

2

∫
dq �→ i

2

∫
dq = − i

2

∫
dq + i

∫
dq. (13)

Since
∫

dq ∈ 2πZ, the path-integral weight exp(−S) does not change under T. Therefore, the time
reversal is also the symmetry at θ = π .

Let us study the commutation relation of U and T [31]. Two important conditions, TĤT−1 = Ĥ
and TiT−1 = −i, can be satisfied by

Tq̂T−1 = q̂, Tp̂T−1 =
{

−p̂ (θ = 0),
−p̂ + 1 (θ = π).

(14)

If we choose the coordinate basis (i.e., q̂ = q and p̂ = −i∂q), we can realize T as T = K at θ = 0,
and T = exp(iq)K at θ = π , where K is the complex conjugation. Using expression (11) and the
above commutation relation for T, we find that

TUT−1 =
{

U, (θ = 0),
e−2π i/nU, (θ = π).

(15)

We have several remarks on the central extension of symmetry group based on the commutation
relations (15). At θ = 0, the Zn transformation and time-reversal (Z2) transformation commute as
we expected from the enhanced symmetry Zn ×Z2. However, at θ = π we have an additional phase
factor, which may or may not be absorbed by redefining the operator properly. The symmetry group
Zn × Z2 is said to be centrally extended when there is no proper redefinition to absorb the phase
factor, which is the central element. Let us redefine the operator by U′ ≡ e− 2π ik

n U for some integer
k . Substituting U′ back into the second commutation relation (15), we obtain

TU′T−1 = exp
(

2π i

n
(2k − 1)

)
U′. (16)

Hence the phase factor can be absorbed when the following condition is satisfied:

k = −k + 1 (mod n). (17)

Since there is no solution for k to be an integer when n ∈ 2Z, the symmetry group is centrally
extended. If we try to redefine the operator with a solution of Eq. (17), which is a half-integer for
even n, the redefined operator U′ satisfies U′n = −1, unlike Un = 1. This means that we get a
double cover of the original symmetry group Zn × Z2. We shall see in the next section that this is a
consequence of the mixed ’t Hooft anomaly between Zn and the time-reversal symmetry [31]. When
n ∈ 2Z + 1, we can redefine the operator U′ by choosing k = (n + 1)/2, which is an integer. Since
we succeeded in defining U′ with maintaining U′n = 1, there is no central extension for odd n. This
is not the end of the story. Although there is no central extension at θ = 0 and π separately for
odd integer n, we cannot avoid the central extension at θ = 0 and π simultaneously by choosing a
common operator U (or U′). This fact implies the global inconsistency.

Let us discuss how the above argument constrains the energy spectrum. First let us consider the
case when n ∈ 2Z. Let us ask whether there exists a simultaneous eigenstate of U and T at θ = π .
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We assume for contradiction that such a state exists and denote it by |ψ〉. By assumption, we can set

U|ψ〉 = e2π ik/n|ψ〉, T|ψ〉 = η|ψ〉. (18)

Here k ∈ Z, because Un = 1 on H. Using the commutation relation (15), we obtain

exp
(

2π i

n
k

)
= exp

(
2π i

n
(1 − k)

)
. (19)

This can be rewritten as Eq. (17). When n is even, this does not have any integer solutions: The
simultaneous eigenstate of U and T cannot exist at θ = π , and all the energy eigenvalues are twofold
degenerate.

Next, let us consider the case when n ∈ 2Z + 1. In this case, we shall find no ’t Hooft anomaly,
and thus the simultaneous eigenstate can exist at θ = π . Indeed, we obtain the same condition (19)
for the simultaneous eigenstates of U and T at θ = π , and the possible Zn charge is determined as
k = (n + 1)/2 modulo n when n is an odd integer. Even in this situation, the global inconsistency
between θ = 0 and π can derive a nontrivial result: No states can be singlet both at θ = 0 and θ = π .
Let |ψ0〉 be a simultaneous eigenstate of U and T at θ = 0, then a similar computation shows that

U|ψ0〉 = |ψ0〉. (20)

Let |ψπ 〉 be a simultaneous eigenstate of U and T at θ = π , then the above argument has shown that

U|ψπ 〉 = exp
(

2π i

n

n + 1

2

)
|ψπ 〉. (21)

Since |ψ0〉 and |ψπ 〉 have different Zn charges, those states cannot be continuously connected by
changing the parameter θ of the theory. In other words, the T-invariant states at θ = 0 break T at
θ = π , and vice versa.

To make the above arguments more convincing, let us compute the energy spectrum explicitly for
the potential

V (nq) = λ cos(nq). (22)

Figure 2 shows the energy spectra for the cases n = 4 and n = 3 that are computed numerically by
diagonalizing the Hamiltonian.

As we can see in Fig. 2a, no states can be singlet at θ = π when n = 4; this is expected because of
the nontrivial commutation relation between U and T. When n = 3, there are singlet states at θ = π

as shown in Fig. 2b, and this is allowed from the commutation relation. The point is that a singlet
state at θ = 0 and the singlet state at θ = π are not connected continuously by changing θ from 0
to π . Since there is no level crossing between 0 and π in this example, this condition suggests that
the ground state at θ = π is twofold degenerate and the time-reversal symmetry is spontaneously
broken; this is realized in Fig. 2b.

3.2. Gauging Zn symmetry, ’t Hooft anomaly, and global inconsistency

In order to make the connection between the general discussion in Sect. 2 and the computation in
Sect. 3.1, we rewrite everything using the path-integral formalism of this model. We discuss the ’t
Hooft anomaly and global inconsistency of the quantum mechanics (6) in this subsection, and the
connection between them will be established in the next subsection.
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(a) n = 4 (b) n = 3

Fig. 2. Energy levels as functions of θ with λ = 0.5 in Eq. (22) for the Z4 and Z3 symmetric cases, respectively.
Each color corresponds to a different Zn charge. (a) Every state forms a pair at θ = π , 3π , 5π , which is a
consequence of the t’ Hooft anomaly. (b) Not every state forms a pair at θ = π , 3π , 5π . However, a singlet
state at θ = 0 is not continuously connected to a singlet state at θ = π , which is a consequence of the global
inconsistency.

To analyze the mixed anomaly or global inconsistency, we promote the global Zn symmetry of
Eq. (6) to the local gauge symmetry; this can be done by coupling the theory (6) to a Zn topological
gauge theory [26]. First, let us write down the continuum description of the Zn topological gauge
theory:

Stop,k = i
∫

F ∧ (dB − nA)+ ik
∫

A. (23)

Here, A = A0dτ is the U (1) one-form gauge field, B is the U (1) zero-form gauge field, and
F is the zero-form auxiliary field introduced as the Lagrange multiplier. The second term is the
1D Chern–Simons term, and the level k must be an integer for invariance under the U (1) gauge
transformation:

A �→ A + dλ, B �→ B + nλ, F �→ F . (24)

The level k is identified with k + n because the equation of motion of F gives nA = dB and thus
n
∫

A = ∫
dB ∈ 2πZ. We can regard this pair (A, B) as the Zn-gauge field. In order to make the

following discussion simpler, we integrate out F : The topological action becomes

Stop,k [A, B] = ik
∫

A, (25)

and B dependence appears implicitly through the constraints nA = dB. Next, we couple Eq. (6) to the
topological Zn-gauge theory (25) by postulating the following transformation of q under the U (1)
gauge transformation (24):

q �→ q − λ. (26)

The gauge-invariant combinations are dq+A and nq+B, and thus the gauge-invariant action becomes

S[q, A, B] =
∫

dτ

[
1

2
(q̇ + A0)

2 + V (nq + B)

]
− iθ

2π

∫
(dq + A)+ Stop,k . (27)
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We can readily get the partition function Zθ ,k [(A, B)] under the background Zn-gauge field (A, B) as

Zθ ,k [(A, B)] =
∫

Dq exp(−S[q, A, B]), (28)

and the set of couplings is extended by the Chern–Simons level k ∈ Zn.
The time-reversal operation T of the Euclidean path integral is chosen as follows:

q(τ ) �→ q(−τ), A0(τ ) �→ −A0(−τ), B(τ ) �→ B(−τ). (29)

The transformation of the dynamical variable q is the same as the original one (12), and the transfor-
mation of background fields is chosen in such a way that the equation of motion is unchanged. That
is, the covariant derivative (q̇ + A0) is changed to −(q̇ + A0), and nA = dB is unchanged under this
time-reversal transformation. Under this transformation, let us check the property of the partition
function under the background gauge field at θ = 0,π .

The original theory is time-reversal invariant at θ = 0 and π . At θ = 0, the topological θ term is
absent, and thus the T transformation only flips the sign of the Chern–Simons term:

ik
∫

A �→ −ik
∫

A = ik
∫

A − 2ik
∫

A. (30)

Therefore, the transformation law of the partition function at θ = 0 is

Z0,k [T · (A, B)] = Z0,k [(A, B)] exp
(

2ik
∫

A

)
. (31)

We can eliminate the additional phase of Eq. (31) by choosing appropriate k , i.e.,

2k = 0 (mod n). (32)

When n is even, we have two solutions, k = 0, n/2 (mod n), and when n(≥ 3) is odd, we have a
unique solution, k = 0 (mod n). It should be noted that these values of k are identical with the Zn

charges for singlet states at θ = 0 that are calculated in Sect. 3.1.
At θ = π , a nontrivial thing happens because the topological θ term also flips its sign under time

reversal T. To see it, let us apply the T transformation to the θ term at θ = π :

− iπ

2π

∫
(dq + A) �→ iπ

2π

∫
(dq + A)

= − iπ

2π

∫
(dq + A)+ i

∫
dq + i

∫
A. (33)

Two additional terms appear after the T transformation of the θ term:
∫

dq and
∫

A.
∫

dq does not
play any role in the path integral, because i

∫
dq ∈ 2π iZ. Additional

∫
A shifts the Chern–Simons

level by 1. Combined with the flip of the Chern–Simons term, the T transformation of the partition
function at θ = π is obtained as

Zπ ,k [T · (A, B)] = Zπ ,k [(A, B)] exp
(

i(2k − 1)
∫

A

)
. (34)

In order to preserve the time-reversal symmetry under the background Zn-gauge field, we must
choose k , such that

2k − 1 = 0, (mod n). (35)
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For even n, the condition has no solution. The phase factor of Eq. (34) cannot be eliminated by
local counter terms, and thus there is a mixed ’t Hooft anomaly between Zn and the time-reversal
symmetry. Anomaly matching claims that the ground state must be degenerate at θ = π when n
is even. For odd n(≥ 3), this has the solution k = (n + 1)/2 modulo n, and no ’t Hooft anomaly
exists. It should again be noticed that this is the same as the Zn charge of the singlet state at θ = π

as computed in Sect. 3.1.
For odd n ≥ 3, there is a global inconsistency between θ = 0 and θ = π . To eliminate phases at

θ = 0 and θ = π , the Chern–Simons level k should be chosen as

k0 = 0, kπ = n + 1

2
, (36)

respectively. We cannot choose simultaneous k eliminating phases because k0 �= kπ and k is the
discrete parameter. To circumvent this, we need the 2D bulk � with ∂� = S1

β as in the case of the
anomaly inflow, and then the bulk topological field theory,

S2d,�[A] = iθ
n + 1

2π

∫
�

dA, (37)

can simultaneously eliminate the phases at θ = 0,π [34]. At θ = 0,π , this topological action is
independent of the choice of �, unlike the case of ’t Hooft anomaly, but this is not true for generic
0 < θ < π and information on the bulk � is necessary in order to connect θ = 0,π .

3.3. Relation between the two formalisms

The central extension in the operator formalism and local counter terms resulting from gauging
global symmetry in the path-integral formalism seemingly give the same information about mixed
anomaly and global inconsistency. Here, we show the connection by an explicit computation. We
start with the path-integral formalism (one can go the other way around) with the action (27). We
fix a gauge by requiring B = 0 (mod 2π), and the equation of motion dB = nA is solved by

B =
∑

i

2π�i(τ − τi), A =
∑

i

2π�i

n
δ(τ − τi)dτ , (38)

where(τ) is the step function and δ(τ ) is the delta function, for τi ∈ R and �i ∈ Z. Let us calculate
the partition function under this background Zn-gauge field:

Zθ ,k [(A, B)] =
∫

DqDp exp
[ ∫

dτ

(
ip(q̇ + A0)− 1

2

(
p − θ

2

)2

− V (nq + B)− ikA0

)]

=
∫

DqDp exp
[∫

dτ
(

ipq̇ − H (p, q)
)]

exp

[∑
i

2π i�i

n
(p(τi)− k)

]

=
〈∏

i

(
e−2π ik/nU(τi)

)�i

〉
. (39)

It can now be explicitly shown the relation between the commutation relation (15) and the phases in
Eqs. (31) and (34). Using the commutation relation, we get

T
(

e−2π ik/nU
)

T−1 =
{

e2π i(2k)/n
(
e−2π ik/nU

)
, (θ = 0),

e2π i(2k−1)/n
(
e−2π ik/nU

)
, (θ = π).

(40)
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The T transformation acting on the right-hand side of Eq. (39) gives the correct additional phases:
At θ = 0, we get

∏
i

(
e2π i(2k)/n

)�i = exp
(

2ik
∫

A

)
, (41)

and, at θ = π , we get

∏
i

(
e2π i(2k−1)/n

)�i = exp
(

i(2k − 1)
∫

A

)
. (42)

We should emphasize that the phase factors that come from the local counter term are precisely the
same as those that appear as a central extension.

4. Quantum mechanics of two particles on S1

We consider the quantum mechanics with the target space U (1) × U (1) corresponding to two
distinguishable particles moving on a ring with flux threading. We shall go through the parallel
argument as we have done in the last section, but this model exhibits new ingredients and the global
inconsistency plays a particularly important role. The Euclidean classical action is

S[q1, q2] =
∫

dτ

[
1

2
(m1q̇2

1 + m2q̇2
2)+ V (q1 − q2)

]
− iθ1

2π

∫
dq1 − iθ2

2π

∫
dq2, (43)

where m1 and m2 are distinct mass parameters for each particle and the potential V (x) is represented
as the Fourier series (7), which is a smooth 2π periodic function. Each qi (i = 1, 2) is the map
qi : S1

β → R/2πZ. The theta parameters θi are 2π periodic variables.
With use of the path integral the partition function is expressed as

Z(θ1,θ2) =
∫

Dq1Dq2 exp(−S[q1, q2]). (44)

In the operator formalism, the partition function is expressed as Z(θ1,θ2) = trH[exp(−βĤ )] with
the Hamiltonian given by

Ĥ (p̂1, q̂1, p̂2, q̂2) = 1

2m1

(
p̂1 − θ1

2π

)2

+ 1

2m2

(
p̂2 − θ2

2π

)2

+ V (q̂1 − q̂2), (45)

where [q̂i, p̂j] = iδij.

4.1. Symmetries, central extension, and global inconsistency

The action (43) possesses U (1) symmetry generated by

Uα : qi(τ ) �→ qi(τ )+ α, (46)

where i = 1, 2 and α is a 2π periodic constant, i.e., U2π = 1. The corresponding generator is
given by Uα = eiα(p̂1+p̂2) and satisfies a commutation relation UαĤU−α = Ĥ . The time-reversal
transformation

T : qi(τ ) �→ qi(−τ), q̇i(τ ) �→ −q̇i(−τ) (47)
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becomes an additional symmetry at (θ1, θ2) = (0, 0), (0,π), (π , 0), (π ,π), which are the high
symmetry points of the model.

We analyze the commutation relations of Uα and T to study the ’t Hooft anomaly and global
inconsistency. Let the high symmetry points be denoted by (θ1, θ2) = (j1π , j2π) with j1, j2 ∈ Z. The
condition for the time-reversal symmetry, TĤT−1 = Ĥ , combined with anti-unitarity TiT = −i
requires Tq̂iT−1 = q̂i (i = 1, 2) and

Tp̂1T−1 = −p̂1 + j1, Tp̂2T−1 = −p̂2 + j2, (θ1, θ2) = (j1π , j2π). (48)

Therefore, the commutation relations between U and T are

TUαT−1 = ei(j1+j2)αUα , (θ1, θ2) = ( j1π , j2π). (49)

At (θ1, θ2) = (0, 0), we obtained the expected relation from U (1)×Z2 symmetry.At (θ1, θ2) = (0,π)
and (π , 0), we have an additional phase factor eiα . We again try to absorb it by redefining the operator
U′
α ≡ e−iα/2Uα . However, U′

α forces the periodicity of α to be extended to 4π . Thus, avoiding the
central extension necessarily yields the double cover of U (1)×Z2 and this is a symptom of a mixed
’t Hooft anomaly. Although a similar issue seems to appear at (θ1, θ2) = (π ,π), this is not true
because the phase factor e2iα can be absorbed by a redefinition U′′

α ≡ e−iαÔα without extending the
periodicity of α. It is again noted that, although there is no central extension at (θ1, θ2) = (0, 0) and
(π ,π) respectively, we cannot choose a common operator Uα (or U′′

α). This is the global inconsistency.
So far, we have found similar observations to those that we saw in the last section.

An interesting thing happens at (θ1, θ2) = (π , −π): Tp̂1T−1 = −p̂1 + 1 and Tp̂2T−1 = −p̂2 − 1
lead to a commutation relation

TUαT−1 = Uα . (50)

Hence, there is not a mixed ’t Hooft anomaly and also a global inconsistency does not exist between
(0, 0) and (π , −π). A global inconsistency, however, exists between (0, 0) and (π ,π). It is noted
that the theory at (π , −π)must show the same property as the one at (θ1, θ2) = (π ,π) because θ2 is
a 2π periodic parameter5. This observation is not a contradiction and yields an important constraint
on the energy spectrum, as we will see momentarily.

We explore the implications of the above argument on the energy spectrum and phase diagram.
The same argument as we gave in the last section results in the existence of a degenerate state at
(θ1, θ2) = (0,π), (π , 0) and we do not repeat it here. Instead, we restrict our attention to (θ1, θ2) =
(0, 0), (π ,π), (π , −π). The simultaneous eigenstate of Uα and T would satisfy

Uα|ψ〉 = eiαk |ψ〉, T|ψ〉 = η|ψ〉, (51)

where k ∈ Z because U2π = 1. Then, by using the commutation relations (49) and (50), the parallel
discussion given in Sect. 3.1 leads to the following U (1) transformation law of states:

Uα|ψ(0,0)〉 = |ψ(0,0)〉, Uα|ψ(π ,π)〉 = eiα|ψ(π ,π)〉, Uα|ψ(π ,−π)〉 = |ψ(π ,−π)〉 (52)

at (θ1, θ2) = (0, 0), (π ,π), (π , −π), respectively. Since |ψ(π ,π)〉 has a different U (1) charge from
|ψ(0,0)〉 and |ψ(π ,−π)〉, |ψ(π ,π)〉 cannot be continuously connected to the other two states at high

5 Of course, the same is true at (θ1, θ2) = (−π ,π) by using the 2π periodicity of θ1.
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Fig. 3. Energy spectra as functions of θ with m1 = 1, m2 = 1/2, and λ = 1. Color of lines indicates the U (1)
charge of states. (a) All the levels are degenerate at (θ1, θ2) = (π , 0) due to the ’t Hooft anomaly. (b) A singlet
state at (θ1, θ2) = (0, 0) must be connected to a degenerate state at (θ1, θ2) = (π ,π) and vice versa due to the
global inconsistency. (c) Singlet states at (θ1, θ2) = (0, 0) are connected to singlet states at (θ1, θ2) = (π , −π).

symmetry points. In addition, (π ,π) and (π , −π) must be identified because θ2 is a 2π periodic
parameter, as we mentioned before. The compatible consequence is that (π ,π) and (π , −π) are
separated by a phase transition, as explained in detail momentarily. Otherwise, the T-invariant state
at (π ,π) would be connected to the T-broken state at (π , −π) without a level crossing, which
contradicts the fact that (π ,π) and (π , −π) must have identical energy spectra.

The above arguments are indeed checked by a explicit computation of the energy spectra with a
specific potential:

V (q1 − q2) = λ cos(q1 − q2). (53)

As shown in Fig. 3a, all the states at (θ1, θ2) = (π , 0) form pairs and the time-reversal symmetry
is spontaneously broken.

Figure 3b shows the energy spectra as a function of θ1 = θ2 = θ . If a nondegenerate state exists
at θ = 0, it is continuously connected to a degenerate state at θ = 0 (see the lowest blue curve in
Fig. 3b, for instance) and vice versa (the lowest brown curve). Interestingly, the vacuum (lowest-
energy) states are singlet both at θ = 0 and θ = π , which is allowed because the level crossing
(phase transition) separates these high symmetry points. The U (1) charge of the lowest-energy state
can jump at the crossing point since the points are not continuously connected by changing θ . This
is the new ingredient that we did not see in the last section. Namely, the global inconsistency does
not necessarily lead to the existence of degenerate vacuum at high symmetry points. Therefore, this
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Fig. 4. Phase diagram on the (θ1, θ2) plane withλ = 0.2. Each line represents a level crossing (phase transition).
The phase structure is 2π periodic along the θ1 and θ2 axes.

result does not contradict the fact that there is a global inconsistency between (θ1, θ2) = (0, 0) and
(π ,π).

Finally, we see that the vacuum is nondegenerate for θ1 = −θ2 = θ ′ (Fig. 3c), which is consistent
with the discussion in the last section that there is neither an ’t Hooft anomaly nor global inconsistency
at θ1 = −θ2 = π .

A phase diagram on the (θ1, θ2) plane (Fig. 4) follows the energy spectrum and level crossing
computed above. As expected from the ’t Hooft anomaly, level-crossing lines pass at (0, ±π) and
(±π , 0). High symmetry points (θ1, θ2) = (0, 0) and (π , −π) are connected without level crossing
while (0, 0) and (π ,π) are separated by a level-crossing line, which agrees with our consideration
based on the global inconsistency.

Based on the constraints from the global inconsistency, we could come up with a slightly more
exotic phase diagram that we did not find here. The other possibility that we could draw from the
global inconsistency between (0, 0) and (π ,π) is that the nondegenerate vacuum at (0, 0) is connected
to the degenerate vacua at (π ,π)without level crossing. Then, there exist degenerate vacua at (π , −π)
as well due to the 2π periodicity of θ2. Therefore, the points (0, 0) and (π , −π) must be separated
by another level-crossing line because the singlet state at (0, 0) cannot be connected to the T-broken
state at (π , −π) due to the absence of global inconsistency between these two points. See Ref. [33]
for a detailed discussion on SU (n) × SU (n) bifundamental gauge theory with two θ parameters
corresponding to two gauge groups. In the theory, almost the same conditions are obtained by using
global inconsistency and ’t Hooft anomaly and two possible diagrams are proposed, and our phase
diagram in Fig. 4 actually fits one of the proposals made in Ref. [33].

4.2. Gauging U (1) symmetry, ’t Hooft anomaly, and global inconsistency

We promote the global U (1) symmetry to the local gauge symmetry by coupling to the background
U (1) gauge field A in order to study the ’t Hooft anomaly and global inconsistency for U (1)× Z2

symmetry. To this end, we study the model (43) in the path-integral formalism (44), as we did in
Sect. 3.2. The topological U (1) gauge theory that we need to couple here is

Stop,k [A] = ik
∫

A, (54)
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which is a U (1) level-k Chern–Simons term in one dimension. The invariance under the U (1) gauge
transformation

A �→ A + dλ (55)

requires the level to be an integer, k ∈ Z. By postulating the U (1) gauge transformation,

q1 �→ q1 + λ, q2 �→ q2 + λ, (56)

we obtain the gauge-invariant action coupled to the topological gauge theory:

S[q1, q2, A] =
∫

dτ
[m1

2
(q̇1 + A0)

2 + m2

2
(q̇2 + A0)

2 + V (q1 − q2)
]

− iθ1

2π

∫
(dq1 + A)− iθ2

2π

∫
(dq2 + A)+ Stop,k [A]. (57)

Therefore, the partition function coupled to the background U (1) gauge field is given by

Z(θ1,θ2),k [A] =
∫

Dq1Dq2 exp (−S[q1, q2, A]). (58)

We will see how the partition function at high symmetry points transforms under time-reversal
operation:

q1(τ ) �→ q1(−τ), q2(τ ) �→ q2(−τ), A0(τ ) �→ −A0(−τ). (59)

At (θ1, θ2) = (0, 0), the partition function transforms as

Z(0,0),k [T · A] = Z(0,0),k [A] exp
(

2ik
∫

A

)
. (60)

The time-reversal invariance requires k = 0. Notice that the same transformation law holds at
(θ1, θ2) = (π , −π), which also results in k = 0.

As we saw in the last section, the transformation of the partition function at (θ1, θ2) = (0,π),

Z(π ,0),k [T · A] = Z(π ,0),k [A] exp
(

i(2k − 1)
∫

A

)
, (61)

leads to a nontrivial consequence. The time-reversal invariance requires 2k − 1 = 0. Since this
condition cannot be satisfied with integer k , the time-reversal invariance cannot be preserved after
gauging the U (1) symmetry. Hence, an ’t Hooft anomaly exists at (θ1, θ2) = (0,π). Clearly, the
same is true at (θ1, θ2) = (π , 0).

Finally, at (θ1, θ2) = (π ,π), the partition function transforms as

Z(π ,π),k [T · A] = Z(π ,π),k [A] exp
(

i(2k − 2)
∫

A

)
. (62)

In this case, the time-reversal invariance is unbroken by choosing k = 1, meaning that there exists no
mixed ’t Hooft anomaly. By observing the resulting Chern–Simons levels at (0, 0), (π , −π), (π ,π),

k(0,0) = 0 = k(π ,−π), k(π ,π) = 1, (63)
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we conclude that there are global inconsistencies between (0, 0) and (π ,π), and between (π , −π)
and (π ,π), respectively.

It is impossible to eliminate the phases coming out of ’t Hooft anomalies and global inconsistencies
by the local counter term, and we need the 2D bulk � with ∂� = S1

β to do it, keeping the gauge
invariance. The 2D topological action,

S2d,�[A] = i
(θ1 + θ2)

2π

∫
�

dA, (64)

cancels additional phases of the partition function.At (θ1, θ2) = (π , 0), (0,π), this topological action
depends on the topology of �, and this detects the mixed ’t Hooft anomaly. At (θ1, θ2) = (π ,π),
this does not depend on the choice of �, but information on the bulk is necessary to connect it with
(θ1, θ2) = (0, 0), and this is the signal for the global inconsistency.

4.3. More on the Zn × Z2 mixed anomaly

Finally, we briefly look at the model (43) with one-particle potentials V (nq1) and V (nq2) in addition
to the interparticle potential V (q1 − q2), which are represented as Fourier series (7) with different
sets of parameters. V (nq1) and V (nq2) explicitly break U (1) symmetry down to Zn symmetry, which
is generated by

U : q1 �→ q1 + 2π

n
, q2 �→ q2(τ )+ 2π

n
. (65)

The potentials V (nq1), V (nq2) change the conditions for the ’t Hooft anomaly and global incon-
sistency at high symmetry points. Here, we do not repeat the operator formalism but present only
the path-integral formalism. To this end, we promote the global Zn symmetry by following the pro-
cedure employed in Sect. 3.2. The topological gauge theory that we need to couple is Eq. (25) by
introducing Zn one-form A and U (1) zero-form B gauge fields with the constraint nA = dB. The
Zn-gauge transformation is given by Eq. (24) and

q1 �→ q1 − λ, q2 �→ q2 − λ. (66)

The action invariant under the gauge transformation takes the following form:

S(θ1,θ2),k [q1, q2, A, B]
=
∫

dτ
[m1

2
(q̇1 + A0)

2 + m2

2
(q̇2 + A0)

2 + V (q1 − q2)+ V (nq1 + B)+ V (nq2 + B)
]

− iθ1

2π

∫
(dq1 + A)− iθ2

2π

∫
θ2(dq2 + A)+ Stop,k [A]. (67)

Here, we list the condition for the discrete parameter k at each high symmetry point required by
invariance under the time-reversal symmetry:⎧⎪⎨

⎪⎩
k = −k , (θ1, θ2) = (0, 0), (π , −π)
k = −k + 1, (θ1, θ2) = (π , 0), (0,π),
k = −k + 2, (θ1, θ2) = (π ,π).

(mod n) (68)

These restrictions result in the following consequences: For odd n ≥ 3, an ’t Hooft anomaly does not
exist at any high symmetry point. In this case, global inconsistencies exist among (0, 0), (π , 0), (0,π),
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and (π ,π) because

k(0,0) = 0, k(π ,0) = n + 1

2
= k(0,π), k(π ,π) = 1, (69)

which take different values.
For even n ≥ 4, ’t Hooft anomalies appear at (θ1, θ2) = (π , 0), (0,π) because there is no integer

solution for k , i.e., the gauge invariance cannot be maintained. Although there is no mixed anomaly
at (θ1, θ2) = (0, 0), (π ,π), (π , −π), a global inconsistency exists between (0, 0) and (π ,π) and
between (π , −π) and (π ,π) because

k(0,0) = 0 = k(π ,−π), k(π ,π) = 1. (70)

In the n = 2 case, the first and third conditions in Eq. (68) are equivalent mod n. Hence, there is
no global inconsistency although we still have ’t Hooft anomalies at (θ1, θ2) = (π , 0), (0,π).

5. Conclusion

We have clarified the nature of the global inconsistency in comparison with the ’t Hooft anomaly
and analyzed their implications for energy spectra by looking at quantum-mechanical models. The
’t Hooft anomaly shows up as an obstruction for gauging a global G symmetry of the system and
inevitably leads to nontrivial infrared theories. The global inconsistency has a similar nature in that
it also appears as an obstruction for gauging symmetry and imposes constraints on the low-energy
theory. The global inconsistency, however, plays a role in more restricted situations, where there
exist high symmetry points connected to each other by continuous parameters of the theory. The
constraints obtained from the global inconsistency are milder than those from the ’t Hooft anomaly
due to the fact that it does not necessarily rule out the realization of trivial vacuum at high symmetry
points. When there is a global inconsistency between two high symmetry points, one can draw a
constraint that the vacuum is nontrivial at either of the points, or that those two points are separated
by a phase transition.

We carefully analyzed quantum-mechanical models that exhibit ’t Hooft anomalies and global
inconsistencies at high symmetry points of the parameter space spanned by theta parameters. We
studied them by the operator formalism and path-integral formalism. In the operator formalism, by
studying central extensions of the symmetry group, one can tell how (non-accidental) level cross-
ings appears in the energy spectrum. In the path-integral formalism, ’t Hooft anomalies and global
inconsistencies are detected by gauging a global symmetry, as we discussed in Sect. 2. We then
established a precise connection between these two formalisms in the quantum-mechanical models,
which allows us to predict the level crossing in energy spectra by studying ’t Hooft anomalies and
global inconsistency. It is noted that the ’t Hooft anomaly-matching argument constrains only the
vacuum property of the QFT because of the assumption on the locality of low-energy effective theo-
ries. However, they become more restrictive in quantum mechanics and one can extract information
on excited states as well by combining observations drawn from the central extension of symmetry
groups.

More specifically, we analyzed the following quantum-mechanical models in detail: In the model
describing a particle on a ring, the symmetry group is Zn × Z2 at high symmetry points θ = 0 and
π . There is a mixed anomaly at θ = π for even n, and a global inconsistency between θ = 0 and
π for odd n. This model is a reminiscent of the SU (n) pure Yang–Mills model at θ = π with Zn
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one-form center symmetry and time-reversal symmetry. The second model with two particles is a
reminiscent of SU (n)×SU (n) gauge theory with bifundamental matters. There are mixed anomalies
at (θ1, θ2) = (0,π), (π , 0). The global inconsistency appears between (θ1, θ2) = (0, 0) and (π ,π)
but not between (θ1, θ2) = (0, 0) and (π , −π), which indeed agrees with the phase diagram for this
model in the (θ1, θ2) plane. The interesting observation that was absent in the first model is that the
global inconsistency does not imply the existence of degenerate vacua at (θ1, θ2) = (π ,π). Instead,
the high symmetry points, (θ1, θ2) = (0, 0) and (π ,π), are separated by a level-crossing line in the
(θ1, θ2) space.

In this paper, we observed the consequence of global inconsistency in quantum mechanics, and it
would be interesting to see solvable examples of the quantum field theories with global inconsistency.
As we mentioned in the introduction, the first quantum-mechanical model mimics the SU (n) pure
Yang–Mills theory [31] or the Abelian–Higgs model [34,35], the second one the SU (n) × SU (n)
bifundamental gauge theory with massive matter fields [33]. Adiabatic compactification of these
gauge theories with double-trace deformation or with appropriate matter contents enables us to
compute the phase structure based on the controllable semiclassical approximations [54–76], and
thus the resurgence theory on QFT will provide a lot of examples to deepen our understanding of
the global inconsistency condition.
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