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Abstract

Guided by the rules of Einstein’s geometrization philosophy, a pure
geometric field theory is constructed. The Lagrangian used to derive
the field equations of the theory is a curvature scalar of a version
of absolute parallelism (AP-)geometry known in the literature as the
parameterized absolute parallelism (PAP-)geometry. The linear con-
nection of this version has simultaneously non-vanishing curvature and
torsion. Analysis of the theory obtained shows clearly that it is a pure
gravity theory. The theory is a teleparallel one, since the building
blocks of both PAP and AP geometries are the same. It is shown
analytically that the theory has a trivial version in the AP-geometry,
if gravity is attributed to curvature not to torsion. In the case of
spherical symmetry, solutions of the field equations give rise to the
Schwarzchild exterior field. The theory depends on two principles:
covariance and unification. The weak equivalence principle (WEP)
is satisfied under a certain condition. The work preserves Einstein’s
main idea that gravity is just space-time curvature, although it is not
a metric theory. It is shown that the theory reduces to vacuum general
relativity upon taking the parameter of the geometry b = 0.

keywords:Field theory; Geometric material distribution; General
relativity; Geometric Poisson equation; PAP-Geometry

0− Motivation:
In the context of Einstein’s principal ideas, gravity is just a geomet-

ric property of the space-time. He has constructed a successful theory for
gravity, the general theory of relativity (GR), by attributing gravity to the
curvature of Levi-Civita linear connection.
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GR has many advantages and successful applications. The theory still treated
as the standard theory for gravity, so far, although it has difficulties in some
applications.
On the other hand, the teleparallel equivalent of general relativity (TEGR) is
an alternative theory of gravity. It is constructed in the context of teleparallel
geometry, the absolute parallelism (AP) geometry. The Lagrangian function,
used to derive the field equations of this theory, is a torsion scalar T . Tor-
sion of the AP-geometry is the skew symmetric part of the Weitzenböck linear
connection. It is well known (cf.[1],[2]) that the curvature of this connection
vanishes identically. So, in the context of TEGR, gravity is attributed to
torsion not to curvature. This represents one of the differences between GR
and TEGR.

As it is well known the geometric structure used to construct GR has a
non-vanishing curvature and a vanishing torsion. On the other hand TEGR
is constructed in the AP-geometry having a vanishing curvature and a non-
vanishing torsion. However, a version of the AP-geometry, known in the
literature as the parameterized absolute parallelism (PAP) geometry, has
simultaneously non-vanishing curvature and torsion. This motivates us to
explore the consequence of writing a gravity theory using the curvature of the
parameterized Weitzenböck linear connection. This may help in reattributing
gravity to the curvature of a linear connection, preserving Einstein’s principal
ideas. In general, the resulting theory is not a metric one but a teleparallel
theory. In other words the gravitational potential is defined in terms of the
building blocks (BB) of the PAP-geometry, the teleparallel vector fields. It
can be reduced to GR under certain condition.

1 Introduction

One of the big achievements of the twentieth century is the successful theory
of gravity, the General Theory of Relativity(GR) suggested by A. Einstein in
1915 [3]. This theory has been applied successfully in the context of pseudo-
Riemannian geometry. The field equations of the theory can be written in
the form

Rµν −
1

2
gµνR = −kTµν , (1)

where Rµν is Ricci tensor and R is Ricci scalar, both defined in the above
mentioned geometry, while Tµν is a phenomenological 2nd order symmetric
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tensor giving the material distribution. The equation of motion of a free
massive (massless) particle in GR is the time like (null) geodesic equation.
This geodesic is represented by the equation,

dUα

dS
+ {αµν}UµU ν = 0, (2)

where Uα is the unit tangent at each point along the geodesic curve, S is
a parameter varying along this curve and {αµν} is Christoffel symbol giving
the coefficients of the Levi-Civita linear connection. The theory has been
constructed depending on two principles: the general covariance and the
equivalence principles. It has many successful applications in the domain of
Solar and stellar systems. Predictions of GR, giving rise to new phenomenae,
are still considerable, so far. For example, gravitational waves (cf. [4]), which
has been predicted through a linear version of the theory very early in the
20th century [5], are detected recently in the present century [6].

At the end of the 20th century, it seems that large scale (cosmological)
observation contradict some of the predictions of orthodox GR. The most
famous of these observation are the SN type Ia [7], [8] . Authors have tried to
interpret these observation by modifying GR or using some exotic expressions
like ”Dark Energy”, and ”Dark Matter”. Some authors started to modify
GR by reinserting the cosmological constant in its structure (cf. [9]), or by
assuming a material distribution with certain unusual properties (cf. [10],[11,
12]). Another group of authors attempted to construct other theories of
gravity, alternative to GR.

To review these attempts from the point of view of constructing their
field equations, let us recall first the methods used to construct the field
equations of GR. The first method is the most famous one. It depends on an
action principle with certain Lagrangian function, Hilbert method (cf.[13]), to
construct the field equations of the theory. The Lagrangian function usually
used, in the context of geometry, is the Ricci scalar R. The second method
is less famous. It uses differential identities, as representing conservation, to
write the field equation. Einstein [3] has used Bianchi identities, to write his
field equations. Although the two methods seem to be equivalent, we prefer
the use of the second one.

Nowadays, there are two main streams, for choosing the lagrangian, to
derive the field equations of gravity theories, alternative to GR. The first one
is known in the literature as f(R) theories (cf.[14],[15],[16]). This stream is
running in the context of the same geometry of GR. In place of using Ricci
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scalar R as a Lagrangian function, authors use a general function of R to
construct alternative theories. The main problem with this stream is that
the resulting differential equations, in application, are of 4th order which are
difficult to solve and have unstable solutions [15, 17]. The second stream
is treated by using the torsion of the AP-geometry. Many authors thought
that the (AP) geometry has vanishing curvature but non-vanishing torsion
(cf. [1]). This property is attributed to the connection used not to the whole
geometry. This point will be discussed in Section 2. GR can be constructed
in the AP-geometry by using a certain torsion scalar T , as stated above, in
place of the Ricci scalar R. The second stream is known in the literature
as f(T ) theories (cf.[18], [19], [20]). Both streams use the first method, for
deriving the field equations of alternative theories, the Hilbert method.

However, there is a third less known stream running in the context of the
AP-geometry or one of its versions, e.g. PAP-geometry. This stream started
early in the seventies of the past century [21, 22]. It can be shown that the
AP-geometry and PAP-geometry each has more than one curvature and W-
tensors [23, 24]. Using scalars of such tensors as Lagrangian functions, one
can construct different theories, alternative to GR, (e.g. [22, 25, 26, 27, 28,
29]) with successful applications (e.g. [30, 31, 32, 33, 34, 35]).

As will be shown in Section 2, the PAP-geometry has the following pa-
rameterized linear connection, ∇α

µν :

∇α
µν

def
= {αµν}+ b γαµν , (3)

where b is a dimensionless parameter, γαµν is the contortion. Taking b = 0,
(3) covers the domain of Riemannian geometry with its Levi-Civita linear
connection. Also, if we take b = 1, (3) will reduce to the Weitzenböck linear
connection, the case of AP-geometry. As stated above, Weitzenböck connec-
tion has a vanishing curvature, but its parameterized connection (3) has a
simultaneously non-vanishing curvature and torsion. Due to the importance
of curvature in describing gravity, it would be of interest to explore the con-
sequences of constructing a field theory depending on the curvature of (3).
The resulting theory would have a trivial AP-limit, as will be shown in the
following Sections.

In constructing the theory, we confine ourselves only, to geometrization
philosophy. In particular we confine ourselves to two principles:

• (i) The general covariance principle.
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• (ii) The unification principle, which is the main important part of this
philosophy.

The later principle obliges one to write every object in the theory using
only the building blocks (BB) of the geometry used, and preventing the
use of any other object from outside. Such theories are termed ” Pure
Geometric” field theories. For example GR with field equations (1) is not
a pure geometric theory because of the use of a phenomenological Tµν from
outside the geometry used. For the same reason, TEGR, f(T ) and f(R)
theories are not pure geometric. On the other hand, GR in free space (
from which most of the advantages of the theory are obtained), is a pure
geometric field theory. Physical contents of such pure geometric theories are
not known before analyzing the theory. In the present article we give three
different methods for analyzing the theory. In such theories we are not going
to impose any restrictions from old theories or laboratory physics on a pure
geometric theory unless when dealing with special cases. Also we do not
assume that terrestrial laboratory physics is the physics running, especially
in stellar interiors or generally in the cosmos. Our goal is to explore physics
resulting from geometry, providing that it reduces to laboratory physics under
certain conditions.

The article is arranged as follows, a brief account on the PAP-geometry
is given in Section 2 . In Section 3 we select a Lagrangian density using a
commutation relation and apply a variational method to construct the field
equation of the theory. The physical meanings of the geometric objects,
emerged from the equations, are extracted in Section 4, using three different
methods. Solutions with spherical symmetry are given in Section 5. The
work is discussed and some concluding remarks are given in Section 6.

2 A Brief Review of PAP-Geometry

A PAP-space (M,λ
i
) is an n dimensional smooth manifold M , and at each

point we define n globaley independent vectors λ
i

(i = 0, 1, ...., n−1) 1. Since

these vectors are linearly independent, the n2 matrix λ
i

µ is non-degenerate

1in the present article we use Greek indices to characterize coordinate components and
Latin indices for vector numbers. For more details about PAP-geometry the reader is
refered to [36] and [37].
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i.e det(λ
i

µ) = λ 6= 0. Consequently, the covariant components of the above

mentioned vectors, λ
i
α, can be defined such that:

λ
i

µ
λ
i
ν = δµν , λ

i

µ
λ
j
µ = δij. (4)

Note that Einstein summation convention is carried out over repeated latin
indices wherever they appear in each term.
In order to facilitate comparison with metric theories of gravity, specially
GR, using the above vectors, one can define the following symmetric tensors:

gµν = ηij λ
i
µ λ
j
ν , gµν = ηij λ

i

µ
λ
j

ν , (5)

where ηij(= diag(+1,−1,−1,−1)). Due to the above mentioned properties
of the vector fields λ

i
, the tensors defined by (5) satisfy the relation

gαµgνα = δµν . (6)

It can be shown that these tensors possess the same properties of a metric
tensor and can be used to define a pseudo-Riemannian structure (M, g) with
its Levi-Civita linear connection preserving metricity, given by,

{αµν}
def
=

1

2
gασ(gµσ,ν + gσν,µ − gµν,σ). (7)

In addition to the Levi-Civita linear connection (7), one can define another
linear connection, the Weitzenböck connection, by

Γαµν
def
= λ

i

α
λ
i
µ,ν , (8)

= {αµν}+ γαµν

where comma(,) is used for ordinary partial differentiation, γαµν(
def
= λ

i

α λ
i
µ;ν)

is the contortion and the semi-colon is an infix covariant differential operator
carried out using (7). It has been shown that the connection (8) preserves
metricity (gαβ|γ

+

= 0) and parallelism (λ
i

α
|β
+

= 0 = λ
i
α|β

+

) (cf.[2]). Since the

Weitzenböck connection (8) is non-symmetric, its dual Γ̃αµν(
def
= Γανµ) and

its symmetric part,

Γα(µν)
def
=

1

2
(Γαµν + Γανµ), (9)

6
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are both linear connections.
So far, we have four natural 2 linear connections, {αµν}, Γαµν , Γ̃αµν and

Γα(µν). Combining these four connections linearly and imposing some condi-
tions, one can get the result [36]

∇α
µν = {αµν}+ b γαµν , (10)

where b is a dimensionless parameter. It is easy to show that the object given
by (10) is a metric linear connection [37]. This connection will be called pa-
rameterized canonical connection or parameterized Weitzenböck connection.

It is clearly non-symmetric, so its dual ∇̃α
µν(

def
= ∇α

νµ) and its symmetric
part

∇α
(µν)

def
=

1

2
(∇α

µν +∇α
νµ), (11)

are linear connections. This adds three linear connections, ∇α
µν , ∇̃α

µν and
∇α

(µν), to the above mentioned four connections.
Now we have the following important notes.

Note 1: The parameterized linear connection (10), characterizing the PAP-
geometry, has the following properties:

- If b = 0, (10) reduces to (7) covering the domain of pseudo-Riemannian
geometry.

- While b = 1, (10) reduces to the Weitzenböck connection (8) characterizing
the (AP)geometry.

So, the pseudo-Riemannian and the AP-structures are just special cases of
the PAP-geometry.
Note 2: It is worth of mention that the PAP-geometry has the same BB as
the AP-geometry.

In what follows, we are going to use the semicolon (;), stroke (|) and double
stroke (||) as infix operators for tensor derivatives using the connections (7),
(8) and (10), respectively. As the connections (8), (10) are non-symmetric,
each will be associated with three tensor derivatives. We are going to charac-
terize the last two infix operators by a(+) sign, a (-) sign and without signs
to distinguish between tensor derivatives using the connection (8), (or (10))

2natural here is used to characterize objects constructed only from the building
blocks(BB) of the geometry. In the present case the BB are the vector fields λ

i
.
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its dual and its symmetric part, respectively.
For example, if Aµ is an arbitrary covariant vector field defined in the PAP-
space, one can write

Aµ
−
||ν

def
= Aµ,ν − Aα∇̃α

µν . (12)

Again since (8) is non-symmetric, torsion Λα
µν , contortion γαµν and the basic

vector Cµ of the AP-space can be written, in the AP-space as (cf. [1]),

Λα
µν

def
= Γαµν − Γανµ = γαµν − γανµ,

γαµν
def
= 1

2
(Λα

µν − Λ α
µ ν − Λ α

ν µ).

Cµ
def
= γαµα = Λα

µα.

 (13)

It can be easily shown that 3

∗
Λα

µν
def
= b Λα

µν ,
∗
γανµ

def
= b γαµν ,

∗
Cµ

def
= b Cµ,

 (14)

which are the torsion, contortion and the basic vector of the PAP-space,
respectively. It is obvious that(14) reduces to (13) upon taking b = 1.

Now consider the following commutation relations

Aµ
+
|νσ − Aµ

+
|σν = AαM

α
µνσ − Aµ

+
|α Λα

νσ, (15)

Aµ
+
||νσ − Aµ

+
||σν = Aα

∗
Mα

µνσ − Aµ
+
||α
∗
Λα

νσ. (16)

The tensors M,
∗
M represent the curvature tensors of the AP and PAP linear

connections (8),(10), respectively.

Note 3: It can be easily shown that
∗
M →M as b→ 1. Also it is well known

that Mα
µνσ is identically vanishing because of (8) (cf. [1]). So, a field theory

constructed using
∗
Mα

µνσ would have a trivial limit in the AP-geometry. This
is the cornerstone of the present work, and will be discussed in Section 6 .

3From now on, we are going to decorate tensors by a star if the parameter b generally
appears in its structure.
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3 A Suggested field theory

In what follows, we are going to construct a field theory in the context of
the PAP-geometry which is briefly reviewed in Section 2. In general, we are
going to relay on two important principles:

1. General covariance principle,

2. Unification principle [29] which means that all physical entities related
to the theory are to be defined from the BB of the PAP-geometry, λ

i
.

This will be discussed in Section 6.

This principle can be considered as an explicit statement of geometriza-
tion philosophy [38] which can be summarized as follows [2] ”To understand
Nature, one should start with Geometry, end with Physics”.

In the context of the above mentioned philosophy, we have three impor-
tant rules to be followed:
rule 1: Physical quantities are represented by geometric objects.
rule 2: Physical conservation laws are just differential identities in the ge-
ometry chosen.
rule 3: Physical trajectories of test particles are geodesics of connections.

3.1 The Field Equations

In the present Subsection, we construct the field equations of the theory using
the second method mentioned in the introduction, the differential identity
method. So, it is important to find such identities in the PAP-geometry.
Fortunately, Dolan and McCrea in 1963 [39] have suggested a variational
method to look for identities in Riemannian geometry. This method has
been modified to suite the AP-geometry [21], [22]. The result is the general
differential identity of the AP-geometry,

Eµ
ν|µ
−
≡ 0, (17)

where Eµ
ν is a non-symmetric tensor defined in terms of the BB of the AP-

geometry as

Eµ
ν

def
=

1

λ

δ£

δ λ
j
µ
λ
j
ν , (18)
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and δ£
δ λ
j
µ

is the Hamiltonian derivative of the Lagrangian density £ defined

by
δ£

δ λ
j
µ

def
=

∂£

∂ λ
j
µ

− ∂

∂xα
(
∂£

∂ λ
j
µ,α

). (19)

The Lagrangian density £ is defined using a Lagrangian function L as

£
def
= λL, (20)

L = L(λ
i
µ, λ

i
µ,ν). (21)

The differential identity (17) is a general identity. It can be considered as
a generalization of Bianchi differential identity. In the case of the PAP-
geometry, it can be easily shown [40] that(17) holds. The proof is easy if we
consider note 2, which states that the BB of the AP and the PAP geometries
are the same 4. The difference is that we decorate the objects Eµ

ν , £, L
appearing in expressions (18), (19), (20), (21) using a star. Then the identity
(17) can be written in the PAP-geometry as

∗
E
µ
ν|µ
−
≡ 0. (22)

Following rule 2 mentioned above, we consider the differential identity (22)

as conservation of the entities represented by
∗
Eµ

ν . Immediately, the field
equations of the theory can be written, in general, as

∗
E
µ
ν = 0. (23)

Now, for the present work, we are going to use the curvature, of the param-
eterized linear connection (10), defined from the commutation relation (16).
This can be defined in terms of (10) as,

∗
M

α
µνσ

def
= ∇α

µσ,ν −∇α
µν,σ +∇ε

µσ∇α
εν −∇ε

µν∇α
εσ , (24)

which we use to construct our Lagrangian function. Substituting from (10)
into (24) and contracting this tensor twice, we get after some reductions

∗
M = R + (

∗
C
ε
∗
Cε −

∗
γανε

∗
γενα) + 2bCα

;α, (25)

4This has also been proved using theorem-1 of [40].
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where R is Ricci scalar defined completely from Levi-Civita connection (7).
The scalar curvature (25) can be considered as the Lagrangian function for
the present work. The corresponding Lagrangian density can be written as

∗
M = λ

∗
M,

= λ R + λ (
∗
Cε
∗
Cε −

∗
γανε

∗
γενα)

+ 2b λ Cα
;α.

 (26)

As it is well known, the last term gives no contribution to the variation
results. Then (26) can be written in the equivalent form,

∗
M = λ R + λ (

∗
C
ε
∗
Cε −

∗
γανε

∗
γενα). (27)

It can be easily shown that the Lagrangian density (27) vanishes identically
in the AP-geometry. This will be discussed in Section 6. Considering (27)
as the Lagrangian density for the theory and using the following derivatives
necessary to evaluate the Hamiltonian derivative (19), we have

∂
∗
M
∂ λ
j
β

=
∂(λR)

∂ λ
j
β

+ λ b
2[λ
j

βCµCµ − 2λ
j

αCβCα + 2λ
j

αCµΛβ
αµ + λ

j

βγεµαγ
α
εµ

+2λ
j

εgµνγβµαγ
α
νε − 2λ

j

εgµνγβµαγ
α
εν ], (28)

∂
∗
M

∂ λ
j
β,α

=
∂(λR)

∂ λ
j
β,α

+ 2λ b
2[λ
j

αgνβCν − λ
j

βgναCν − λ
j

εgνβγανε]. (29)

Then substituting from (28), (29) into (19), we get

δ
∗
M
δ λ
j
β

= (
∂(λR)

∂ λ
j
β

− ∂

∂xα

∂(λR)

∂ λ
j
β,α

)+λb
2[λ
j

βCµCµ−2λ
j

αCβCα+2λ
j

αCµΛβ
αµ+λ

j

βγεµαγ
α
εµ

+2λ
j

εgµνγβµαγ
α
νε−2λ

j

εgµνγβµαγ
α
εν ]−

∂

∂xα
(2λb

2[λ
j

αgνβCν−λ
j

βgναCν−λ
j

εgνβγανε]),

11
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where the first term in the above relation represent a Hamiltonian derivative
of Ricci tensor R with respect to λ

j
ν . For the Ricci scalar R, it is easy to

show that,

λ
j

µ
δ(λR)

δ λ
j
ν

= 2
δ(
√
−gR)

δgµν
,

where λ is replaced by
√
−g according to (5) and it is well known that (cf.

[4])
1√
−g

δ(
√
−gR)

δgµν
= −Gµν .

Then we can write (23), after some rearrangements, as 5

∗
M νσ

def
= −2Gνσ + b2[gνσ((1−2b)CµCµ+γεµαγ

α
εµ+ 2Cµ

||µ
+

) + 2(b−1)γαεσγ
ε
να

+2(1− 2b)Cεγ
ε
νσ − 2Cν||σ

+
+ 2bγεναγ

α
σε + 2γανσ||α

+
]. (30)

It is to be noted that the tensor
∗
Mνσ is subject to the differential identity (22)

so, according to the scheme outlined above we can write the field equations
(23) of the present theory as,

∗
M νσ = 0. (31)

It is worth of mention that the tensor
∗
M νσ, given by (30), is in general non-

symmetric and is formed completely from the BB of the PAP-geometry. So
the field equations of the theory (31) satisfy the two principles mentioned at
the beginning of the present Section.

3.2 The Equations of Motion

According to rule 3, modified geodesic resulting from the parameterized
connection (10) can be used to study trajectories of test particles moving
in the field given by the field equations. These curves are governed by the
equation [36, 37]

d2xα

dτ 2
+ {αµν}

dxµ

dτ

dxν

dτ
= −b Λ α

(µν)

dxµ

dτ

dxν

dτ
, (32)

5
∗
Mνσ is used in the place of

∗
Eνσ for the present work.

12
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where τ is a parameter varying along the curve. The R.H.S of this equation
represents torsion effect on the curve and b is the same parameter of (10).
Also, equation (32) satisfies the above mentioned two principles. Note that
the curve (32) reduces to the geodesic (2) upon taking b = 0, as expected.

4 Extraction of Physics from Geometry

So far, all objects appeared in the treatment are pure geometric objects
constructed from the BB of the PAP-geometry. In the present section, we are
going to consider rule 1 given in Section 3. It is of importance to attribute
physical meaning to the geometric quantities admitted in the theory. In
order to do so, we are going to use three different schemes usually used in
such theories (e.g. [27, 29]).

In particular, the aim of the present section is threefold. First, is to
get physical meaning for the pure geometric objects of the suggested theory,
which is done in subsection 4.1. The second is to get the relation between the
values of any geometric quantity when written in geometric units and when
written in physical units. This is done in subsection 4.2 which facilitates
conversion between units. The third (subsection 4.3) is a covariant scheme
suggested to classify geometric structures, physically, in the context of the
theory.

4.1 Comparison with Non-linear Theories

The symmetric part of the field equations (31) can be written as

∗
M (νσ)

def
=

1

2
(
∗
Mνσ +

∗
Mσν) = 0. (33)

Using the definition of
∗
M νσ given by (30) and the second order tensors defined

in Table A.1, equation (33) can be written in the form

Rνσ −
1

2
gνσR =

∗
T νσ, (34)

where,

∗
T νσ

def
= (

1

2
)b2{gνσ[−α− ω + θ] + ψνσ − θνσ − φνσ + 2ωνσ}. (35)

13
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Note that the L.H.S. of equation (34) can be obtained using Christoffel sym-
bols alone. This is not the situation with the R.H.S. of (34) given by (35).
This is an important point which will be discussed in Section 6. The sym-
metric part of the field equations is written in the form (34) in order to
facilitate comparison with the corresponding equation of GR (1). From this
comparison we can extract the following physical meanings:

• (i) The tensor gνσ is the gravitational potential.

• (ii) The tensor
∗
T νσ is a geometric energy-momentum tensor for the

present theory, defined from the BB of the geometry used.

• (iii) The tensor
∗
T νσ is the source of the gravitational field described by

Einstein tensor, the L.H.S of (34).

• (iv) Due to (22), the tensor
∗
T νσ satisfies a differential identity and

consequently conservation. This can be shown as follows. As a conse-
quence of theorem-2 of [40], the identity for the symmetric part of the
field equations takes the form,

∗
M

(νσ)
;ν ≡ 0.

From the symmetric field equations (34) we can write,

∗
M

(νσ) def
= Gνσ −

∗
T
νσ = 0.

Using theorem-2 of [40] we can rewrite the identity for the above equa-
tion as

Gνσ
;ν −

∗
T
νσ

;ν ≡ 0.

Consequently,
∗
T
νσ

;ν ≡ 0, (35.a)

which has been proved in detailed in [40], and shows that the
∗
T νσ

satisfies conservation.

Similarly, the skew part of the field equations (31) can be defined by

∗
M [νσ]

def
=

1

2
(
∗
M νσ −

∗
Mσν) = 0. (36)

14
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Again, using the skew tensors defined in Table A.1, we can write (36),
after some reductions as

∗
M [νσ]

def
= (b2 − 1)(ενσ + ηνσ − χνσ) = 0. (37)

But, we have the algebraic identity (cf.[1])

ενσ + ηνσ − χνσ ≡ 0,

then the skew part of the field equation is satisfied identically and the
suggested theory represents pure gravity. This point will be discussed
in Section 6.

4.2 Linearization Scheme

In order to gain more clear physical information about the present theory,
one has to compare it with linear field theories. Since the present theory is
highly non-linear in the general potential λ

i
µ, one has to linearize its equations.

This can be done using the following linearization scheme [21], [41]. Let the
generalized potential be written as

λ
i
µ = δiµ + ε h

i
µ, (38)

where ’ε’ is a small parameter compared to unity and h
i
µ are functions of the

coordinates. Using the definitions of the geometric objects given in Section 2
and the form (38), we can expand all such objects in terms of the parameter
’ε’ as follows

Q = ε0
(0)

Q + ε1
(1)

Q + ε2
(2)

Q + · · · · · · · · · , (39)

where Q is any geometric object defined from the BB of geometry used. A
list of geometric objects expanded as (39), is tabulated in Table A.2 in the
appendix. Consequently, the metric tensor gµν (cf.[41]) will take the form

gµν = ηµν + εyµν + ε2ηij h
i
µ h
j
ν , (40)

where
yµν

def
= ηiν h

i
µ + ηµj h

j
ν . (41)

15

Page 15 of 32
C

an
. J

. P
hy

s.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
C

E
R

N
 o

n 
05

/0
4/

18
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



Also, the linearized form of the determinant λ (cf.[29]) can be written as:

λ= 1 + ε(h
0
0 + h

1
1 + h

2
2 + h

3
3). (42)

The linearized form of the symmetric part (34) may be written as:

(1)

Rνσ −
1

2
ηνσ

(1)

R =

(1)
∗
T νσ, (43)

the superscript (1) above tensors is used to indicate linearity.
Equation (43) may be written in another equivalent form as:

(1)

Rνσ =

(1)
∗
T νσ −

1

2
ηνσ

(1)
∗
T , (44)

where,
(1)
∗
T

def
= gνσ

(1)
∗
T νσ. (45)

For the material energy tensor which is defined in (35), we can write it,
to the first order (using Table A.2), as

(1)
∗
T νσ =

b2

2
(ηνσ

(1)

θ −
(1)

θ νσ +
(1)

ψ νσ). (46)

Consequently the scalar
∗
T (45) has the form

(1)
∗
T =

b2

2
(3

(1)

θ +
(1)

ψ ). (47)

Note that ψ = −θ (cf.[29]), then (47) can be written as,

(1)
∗
T = −b2

(1)

ψ = b2
(1)

θ . (48)

Substitute from (46), (48) in the R.H.S. of (44) we get,

(1)
∗
T νσ −

1

2
ηνσ

(1)
∗
T =

b2

2
(
(1)

ψ νσ −
(1)

θ νσ). (49)
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The L.H.S. of (44) can be written as (cf.[4]) ;

(1)

Rνσ =
1

2
(yνσ,αα + yαα,νσ − yνα,σα − yσα,να). (50)

Substitute from (50), (49) into (44), we obtain

yνσ,αα + yαα,νσ − yνα,σα − yσα,να = b2(
(1)

ψ νσ −
(1)

θ νσ). (51)

For ν = σ = 0, the above equation reduces to

y00,αα = b2(
(1)

ψ 00 −
(1)

θ 00),

i.e.

�2y00 = b2(
(1)

ψ 00 −
(1)

θ 00),
where,

�2 def
= ∂2

∂(x0)2
− ∂2

∂(x1)2
− ∂2

∂(x2)2
− ∂2

∂(x3)2
.

 (52)

Taking into consideration the assumption of a static field

∂y00
∂x0

= 0,

and recalling that [1],

(1)

θ νσ
def
=

(1)

C ν|σ
+

+
(1)

C σ|ν
+
−→

(1)

θ 00 = 0,

then equation (52) reduces to

∇2y00 = b2
(1)

ψ 00, (53)

where,

∇2 def
=

∂2

∂(x1)2
+

∂2

∂(x2)2
+

∂2

∂(x3)2
.

17

Page 17 of 32
C

an
. J

. P
hy

s.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
C

E
R

N
 o

n 
05

/0
4/

18
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



But the classical Poisson equation (cf.[4]) for gravitational potential ϕ within
a fluid of density ρ is given by :

∇2ϕ = 4πγρ, (54)

where γ is Newton’s gravitational constant. By comparing the two equations
(53), (54) we can conclude that: y00 is the classical gravitational potential
and ψ00 represents the fluid density in certain units. Consequently, we can
assume that ψ00 is a geometric representation of fluid density in the linearized
scheme. In case of ψ00 = 0 or b = 0 equation (53) will reduce to;

∇2y00 = 0, (55)

which is similar to Laplace equation (cf.[4]) describing the gravitational field
in empty space, (again, with y00 representing Newtonian potential ϕ).

Equation (53) shows that the component ψ00 has the correct geometric
units of matter (energy) density. On one hand the L.H.S. of this equation
has the geometric units cm−2 ( note that the potential y00 is dimensionless).
So, ψ00 would have the same geometric units. On the other hand the density
( mass
volume

) has physical units gm cm−3, so its geometric units would be cm−2, as
mass is measured geometrically in cm units. Therefore, ψ00 has the correct
units of density. Furthermore, the matching between the pure geometric
relation (53) and the physical relation (54) gives a conversion between the
two systems of units.

4.3 Type Analysis

This method was first suggested in 1981 [41] in order to physically classify
AP-geometric structures. It has been reformulated for different geometric
field theories (cf. [27, 28, 29]). Now, we are going to reformulate this method
to suite the present field theory. Let us define the tensor,

∗
Sυσ

def
= 2b2ωυσ − b2φυσ − b2gνσ[α + ω]. (56)

The expansion formula for this tensor starts with 2nd order terms in ’ε’. In
other words ,(56) has neither zero nor 1st order terms in ’ε’ (see Table A.2).
So, we can rewrite (35) in the form,

∗
T νσ

def
= (

1

2
){b2gνσθ + b2ψνσ − b2θνσ +

∗
Sυσ}. (57)
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Then from (30), (56) and (57) we can write the type analysis of (34) in the
following table (G is a code for gravitation). The importance of this method
appears clearly in applications ( e.g. see Section 5).
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Table 1: Type Analysis

Tensors Physical Meaning Code
∗
Mα

µνσ = 0 No gravitational field G0

∗
Mα

µνσ 6= 0,
∗
T νσ = 0 Gravitational field in empty space GI

∗
Mα

µνσ 6= 0,
∗
T νσ 6= 0, Gravitational field within

∗
Sυσ = 0 a material distribution GII

∗
Mα

µνσ 6= 0,
∗
T νσ 6= 0, Strong gravitational field GIII

∗
Sυσ 6= 0 within a material distribution

The procedure of type analysis depends on Table A.2 in the Appendix.

5 Spherical Symmetric Solution

In the case of n = 4, the standard tetrad (BB of AP or PAP) having spherical
symmetry has been constructed by Robertson [42]. It can be written in the
matrix 6,

λ
i

µ =



A Dr 0 0

0 B sin θ cosϕ B
r

cos θ cosϕ −B sinϕ
r sin θ

0 B sin θ sinϕ B
r

cos θ sinϕ B cosϕ
r sin θ

0 B cos θ −B
r

sin θ 0


, (58)

(the coordinate system used: x0 = t, x1 = r, x2 = θ, x3 = φ).
The unknowns A, B, and D are functions of the coordinate (r) only.

6Rows in the matrix are characterized by i = 0, 1, 2, 3.
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Using (5) and (58), the metric tensor of the pseudo-Riemannian space asso-
ciated with (58) can written in the form

gµν =



(B2−D2r2)
A2B2

Dr
AB2 0 0

Dr
AB2 − 1

B2 0 0

0 0 − r2

B2 0

0 0 0 − r2 sin2 θ
B2


. (59)

Using the tetrad components (58), to evaluate the tensor defined in Table
A.1 and write the field equation (31), we get the following set of differential
equations:

∗
M00 : 2(b2 − 1) (B

2−D2r2)
A2B4r

[−4BB′(B2 − 2D2r2) + 2BB′DD′r3 − 3B2D2r
−2B2DD′r2 −B′2r(−3B2 + 5D2r2) + 2BB′′r(−B2 +D2r2)] = 0,
∗

M01 : 2(b2 − 1) −D
AB4 [4BB′(B2 − 2D2r2)− 2BB′DD′r3 + 3B2D2r

+2B2DD′r2 −B′2r(3B2 − 5D2r2) + 2BB′′r(B2 −D2r2)] = 0,
∗

M11 : 2(b2 − 1) 1
AB4r

[2AB3B′ + 3AB2D2r + 2AB2DD′r2 − 8ABB′D2r2

+2A′B4 − 2ABB′DD′r3 + 5AB′2D2r3 − AB2B′2r
−2ABB′′D2r3 − 2A′B′B3r] = 0,
∗

M22 : 2(b2 − 1) r2

A2B4 [A
2B3B′

r
+ A2B3B′′ + A2B2(3D2 + 6DD′r +D′2r2)

−8A2BB′D2r − A2B2B′2 − 5A2BB′DD′r2 − 2A2BB′′D2r2 + 5A2B′2D2r2

+AA′B4

r
− 4AA′B2D2r + 3A′B′ABD2r2 − 3A′AB2DD′r2

+(B2 −D2r2)(A′′AB2 − 2A′2B2) + A2B2DD′′r2] = 0
∗

M33 = sin2 θ
∗

M22.



(60)

The above set of equations has many solutions, let us review and study some
of these solutions:

(1) Equation
∗
M01 = 0 of the set (60) is satisfied if D(r) = 0. Consequently,

substituting D(r) = 0, in the set (60), then it will be reduced to,

∗
M00 : 4

B′

Br
− 3

B′2

B2
+ 2

B′′

B
= 0, (61.a)
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∗
M11 : 2

B′

Br
+ 2

A′

Ar
− B′2

B2
− 2

A′B′

AB
= 0, (61.b)

∗
M22 :

B′r

B
+
B′′r2

B
− B′2r2

B2
+
A′r

A
+
A′′r2

A
− 2

A′2r2

A2
= 0, (61.c)

∗
M33 =

∗
M22sin

2θ. (61.d)

Note that the above set holds for any value of b except b = 1. Equation
(61.a) can be written in the form,

d(B′B−
3
2 r2)

dr
= 0. (62)

After double integration, we get,

B = (
c1
2r

+ c2)
−2, (63)

where c1 and c2 are arbitrary constants of integration. Substituting
from (63) into (61.b) and integrating we get,

A = c3

(
c2 + c1

2r

c2 − c1
2r

)
, (64)

where c3 is an arbitrary constant of integration.

In order to compare the results obtained with those of GR, under sim-
ilar conditions, we have to write the metric of the pseudo-Riemannian
space associated with the structure (58). Using (59), (63), (64) and
(5), we can write the metric of pseudo- Riemannian space, associated
with the structure (58), as 7

dτ 2 = (c3(
c2 − c1

2r

c2 − c1
2r

))−2 dt2−(
c1
2r

+c2)
4(dr2+r2dθ2+r2 sin2 θ dφ2). (65)

Choosing c1 = −m, c2 = 1, c3 = 1 then (65) will reduces to

dτ 2 = (
1− m

2r

1 + m
2r

)2 dt2 − (1 +
m

2r
)4(dr2 + r2dθ2 + r2 sin2 θ dφ2), (66)

where τ is the proper time. The expression (66) is identical with the
metric of Schwarzchild exterior field, in isotropic coordinates, in the
case of GR.

7Note that Lorentz signature (+2) corresponds to the affine parameter (s), while (-2)
corresponds to the proper time (τ). The relation between them is ds = icdτ .
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(2) If we assume that A = α1, B = α2, D 6= 0, where α1, α2 are non-
vanishing constants, then the set (60) will reduce to

2(b2 − 1)(α2
2+D2r2

α1
2α2

2r
)(−3D2r − 2DD′r2) = 0,

2(b2 − 1)( −D
α1α2

2 )(−3D2r − 2DD′r2) = 0,

2(b2 − 1)( 1
α2

2r
)(−3D2r − 2DD′r2) = 0,

2(b2 − 1)( r2

α2
2 )(−3D2 − 6DD′r −D′2r2 −DD′′r2) = 0.

 (67)

As (b2 − 1) 6= 0 ,D 6= 0 and r 6= 0, then the second equation of set of
equations (67) reduced to

3D + 2D′r = 0,

which has a solution D2 = c4
r3

, that satisfy all equations in the set (67),
where c4 is a constant of integration.
Again using (59) and D2 = c4

r3
we get,

dτ 2 = (
1

α1
2
− c4
α1

2α2
2r

)dt2+
2

α1α2
2

√
c4
r
dtdr− 1

α2
2

dr2− r
2

α2
2

dθ2−r
2 sin2 θ

α2
2

dφ2.

(68)
To remove the cross term, we use the coordinate transformation (cf.
[43])

t̂ = t+ h(r), R = r
α2
, where h(r)

def
=
∫ √ c4

r
α1

(α2
2−

c4
r
)
dr,

then the metric(68) will reduce to

dτ 2 = (
1

α1
2
− c4
α1

2α3
2R

)dt̂2− 1

(1− c4
α3
2R

)
dR2−R2dθ2−R2 sin2 θ dφ2. (69)

By substituting α1 = 1, α2 = 1 and c4 = 2m in (69), we get

dτ 2 = (1− 2m

r
)dt̂2 − 1

(1− 2m
r

)
dr2 − r2dθ2 − r2 sin2 θ dφ2, (70)

by omitting the hat (̂) in (70) then the above metric will become,

dτ 2 = (1− 2m

r
)dt2 − 1

(1− 2m
r

)
dr2 − r2dθ2 − r2 sin2 θ dφ2, (71)

which gives rise, again, to the Schwarzchild exterior field of GR, in its
standard form.

The above results imply that the present theory is reduced to GR in the
special cases given above. This point is further discussed in Section 6.
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6 Discussion and Concluding Remarks

1- The theory suggested in this article has the following properties:

• (i) It is a teleparallel theory since the BB of the geometry used (see
note 2 of Section 2) are the vectors λ

i
, subject to the condition

λ
i
µ
+
|ν = 0,

giving rise to the linear connection(8), which implies teleparallelism.

• (ii) It is a pure gravity theory as shown from the analysis carried out
in Section 4. This point is further supported by the solutions, obtained
so far, for its field equations in the case of spherical symmetry (see the
metrics (66), (71)).

• (iii) The theory re-attributes gravity to curvature, which in the present
case the non-vanishing curvature (24) of the parameterized Weitzenböck
connection (10). This preserves Einstein’s main idea that gravity is just
space-time curvature.

2- The theory is valid for any value of the parameter ’b’ except for b = 1 (the
case of conventional AP-geometry). For example, as mentioned in Note 3
Section 2 the curvature (24) reduces to zero as b = 1, and consequently the
Lagrangian (27) vanishes identically. As a conclusion, the theory is trivial in
absolute parallelism geometry, although it is teleparallel as shown in point
1, above.
3- For b = 0 we get the following results:

• (i) The parameterized Weitzenböck connection (10) reduces to Levi-
Civita connection.

• (ii) The identity (22) reduces to Bianchi identity, (theorem 2 in [40]).

• (iii) The Lagrangian function of the theory (25), reduces to Ricci scalar.

• (iv) The equations of motion (32) reduce to the geodesic equation (2),
preserving the WEP.
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• (v) The field equations (34) reduces to the Einstein field equations in
free space

Rµν = 0.

4- The field equations of any theory written in the AP-geometry or one of
its versions in four dimensions, are solved for sixteen field variable, λ

i
µ. The

field equations of the present theory (31) are sixteen in number. Six of these
equations (37), are satisfied identically. So, we are left with the ten equations,
(34), but with a geometric energy-momentum tensor (35).
5- The absence of any interaction other than gravity, in the present theory,
is due to the identical vanishing of the skew part (37) of the field equations.
This is a direct consequence of the algebraic identity between some skew
tensors of Table A.1.
6- The tensors on the R.H.S. of (35), and consequently

∗
T νσ, can not be

defined using Levi-Civita connection only. They are defined using torsion (or
contortion) as clear from their definitions (see Table A.1). For this reason
they are attributed to physical meaning different from these of the L.H.S. of
the field equations (34). In other words, the tensors in (35) represent the
material distribution responsible for the gravitational field on the L.H.S. of
(34).
7- Considering the ” Unification Principle” mentioned at the end of Section 2,
it is necessary but not sufficient principle for the goal of unifying fundamental
interactions. This principle means simply that all physical entities are to be
constructed using BB of the geometry used. In particular, in the present
work, this principle gives the possibility of writing the material energy tensor
(35) in terms of the BB of the PAP-geometry. As an important result, a
geometric form of Poisson’s equation (53) is derived in the Linearized regime
of the theory.
8- The following table gives a brief comparison between GR, TEGR ( cf. [44],
[45]) and the theory suggested in the present work.
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Table 2: Comparison between GR, TEGR and the present work.

Criteria GR TEGR Present work

Geometry pseudo-Riemannian AP PAP
BB gµν λ

i
µ λ

i
µ

Linear connection Levi-Civita Weitzenböck parameterized
Weitzenböck

Curvature X 7 X
Torsion 7 X X

Momentum-energy phenomenological phenomenological geometric
Effect of torsion no effect force spin-torsion

on motion interaction

X:nonvanishing, 7:vanishing
9- In view of the structure of the theory suggested in this article, it is easy to
conclude that flat space tetrad represents neither fields nor matter (energy).
This is clear from equation (3 .8). The second term, on its R.H.S. represents
deviation of the tetrad from its flat space values ( ε is a small parameter).
Taking ε = 0 we get the components of the flat space tetrad ( diagonal case).
Substituting these components into the linear connection (10) leads to the
identical vanishing of all components of this connection. Consequently, all
components of its curvature and torsion identically vanish. It is easy to show,
in this case, that all components of tensors listed in Table A.1 will identically
vanish as they all depend on torsion ( or contortion). This gives the above
mentioned conclusion.

Finally, let us stress on two important points, that are usually taken into
account in pure geometric field theories. The first point is that, in general,
geometry has no physical meanings without a field theory. Physics is at-
tributed to geometric objects, through the theory, satisfying certain relations
or conditions. In the situation of seeking solutions for some problems using
a theory, we are not obliged to get theoretical relations identical with those
obtained from local laboratory physics. All what we need, in general, is that
such relations reduce to local laboratory relations under certain conditions.
We do not assume, a priori, that laws of nature are identical with laws of
laboratory physics, laws that emerged in a narrow region of space-time. We
consider the geometrization philosophy as a possible avenue for physics to be
more near to nature. The second important point is that, for pure geometric
field theories, field equations are just mathematical restrictions on the field
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variables (the BB of the geometry used). In addition we consider physical
quantities to be just definitions in terms of the field variables.

Appendix A

Table A.1: Second Order World Tensors [1]

Skew-Symmetric Tensors Symmetric Tensors

ξµν
def
= γ α

µν |
α
+

ζµν
def
= Cα γ

α
µν

ηµν
def
= Cα Λα

µν φµν
def
= Cα ∆α

µν

χµν
def
= Λα

µν|
α
+

ψµν
def
= ∆α

µν|
α
+

εµν
def
= C

µ|
ν
+
− C

ν|
µ
+

θµν
def
= C

µ|
ν
+

+ C
ν|
µ
+

κµν
def
= γαµεγ

ε
αν − γανεγεαµ $µν

def
= γαµεγ

ε
αν + γανεγ

ε
αµ

ωµν
def
= γεµαγ

α
νε

σµν
def
= γεαµγ

α
εν

αµν
def
= CµCν

where,

∆α
µν

def
= γαµν + γανµ.

This Table has been extracted from reference [1]. It contains all 2nd order
tensors associated with any AP structure or PAP structure apart from the
parameter b. These tensors are of special importance in applications.
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Table A.2: Expansion of the geometric objects [21].

Geometric Terms Terms Terms Terms
Objects of 0-order of first order of second order of third and higher orders

λ
i
µ X X 7 7

gµν X X X 7

λ
i

µ X X X X

gµν X X X X

λ
def
= |λ

i
µ| X X X X

Γαµν 7 X X X
{αµν} 7 X X X
γαµν 7 X X X
∇α

µν 7 X X X
Λα

µν 7 X X X
∆αµν 7 X X X
Cα 7 X X X
θµν 7 X X X
ψµν 7 X X X
φµν 7 7 X X
$µν 7 7 X X
ωµν 7 7 X X
σµν 7 7 X X
αµν 7 7 X X
ξµν 7 X X X
χµν 7 X X X
εµν 7 X X X
ζµν 7 7 X X
ηµν 7 7 X X
κµν 7 7 X X

This Table has been extracted from reference [21]. It lists the results of
using the expansion formula (39) for different geometric objects. The Table
is theory independent.
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