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1. INTRODUCTION 

It is our purpose here to develop a numerical method capable of solving 

singular multidimensional integral equations that arise in multichannel scat- 

tering theory. To this end we investigate the use of moment methods to obtain 

finite dimensional matrix representations of integral equations. We shall 

evaluate the utility of these moment methods by applying them to a simple 

model problem, namely the solution of the partial-wave one-dimensional 

Lippmann-Schwinger equation in momentum space. This choice of a model 

problem is motivated by the fact that the Lippmann-Schwinger equation shares 

some of the problems that occur in the solution of Faddeev’s equations for the 

three-body problem. Specifically the integral equation is singular for positive 

energies and its domain of integration is infinite. 

In our notation the Lippmann-Schwinger equation reads 

co 

t@,pl;k2+i0) = v(p,p’) - 4 s v(pyp”)2t(p 2’ ‘l pV;k2+i0) p,,2dp,, 

0 P” -k -iO 
t1.11 

The potential in momentum space, after the partial wave reduction is v(p,p’), 

and t@,p1;k2+i0) is the t-matrix solution at an energy k2. The normalization 

here is such that the on-shell amplitude has the phase-shift representation 

given by, 

i$e4) 
t(k,k;k2+i0) = - + sin 6,(k) . (1.2) 

Let us now describe the general idea behind the moment method. These 

general aspects will be common to all of the various distinct formal realizations 

of the moment approach. In the following two sections we will develop two such 

distinct mathematical realizations. Consider an arbitrary one-dimension 
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integral equation 

f(x) = g(x) + S K&Y) f(y) dy (1.3) 

with kernel K(x, y), driving term g(x) and solution f(x). Let {hi: i=l, N \ be a 

set of linearly independent functions such that there exists a linear combina- 

tion of hi which is a good approximation to f, that is 

f(x) N fi ‘i gitx) 
i=l 

(1.4) 

for some set of constants Ci. In the moment method one evaluates the moments 

Ii(x) =SK(x,y) gi(Y) dY (1.5) 

and from knowledge of these moments Ii(x) one sets up a matrix equation to 

determine the expansion coefficients C i. The resulting matrix will be N dimen- 

sional and the size of N needed for an accurate approximation to the exact f 

will be determined by the number of functions gi necessary to reproduce the 

functional structure of f. One should contrast this with usual method of turning 

Eq. (1.3) into a matrix equation by using some quadrature rule to transform 

the integral into a finite sum, viz. 

f(xi) = g(xi) -t E K(xi,xj) f(xj) wj i=l ,-**, N. (1.6) 
j=l 

where the oj are the weights and xi are the abscissa of the quadrature rule. 

Here the size of the matrix, N, needed to obtain accurate solutions is con- 

trolled by the number of integration points, xi, needed to do all the integrals 

S K(x, Y) fW dy 

accurately. In the moment method the problem of doing the integrals, which 

may be singular, is isolated from the problem of setting up a matrix equivalent 
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to the integral equation. It is for this reason that moment method is capable 

of much greater efficiency (smaller matrix size) and accuracy than a method 

based on Eq. (1.6). 

2. AN EIGENFUNCTION EXPANSION 

We shall now write down a moment method for Eq. (1.1) based on an 

eigenfunction choice for the expansion functions gi. The eigenfunctions we 

choose are solutions of the operator equation 

9,(-P2) v +n = 1 $ nn (2-l) 

where go(z) = (ho-z) -1 is the free Green’s function for the free two-body 

Hamiltonian ho. Here the potential will be taken to be the square-well poten- 

tial, which in momentum space has the form 

vtP,p’) = 5 I+ 
(24 

[ j,@@+W- j,(a@tp7)} F-2) 

The coupling constant g and the range a are defined by the coordinate space 

definition of the square-well potential, viz. 

V(3 = g e(a - 171) (2.3) 

These particular eigenfunctions were selected because they have a remarkably 

simple analytic form which is convenient for computation. 

It is not difficult to solve Eq. (2.1) explicitly for the Gn. In its integral 

form Eq. (2.1) reads 

S O” v@,p’) 
0 pT2+p2 

4,@‘) P2 dp’ = $.$,(P) (2.4) 
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If we define a Hilbert space, Z@ , 
P 

with respect to the inner product 

,2 p2dp 
P2+p2 

(2.5) 

then the kernal of Eq. (2.4) generates a bounded self-adjoint operator on GJZ’ 
P 

and the +n are the corresponding orthonormal eigenfunctions. By exploiting 

the analytic properties of the kernel of Eq. (2.4) one can find the eigenfunctions 

and eigenvalues in closed form. These turn out to be 

In= T+jj- (2.6) 
p,+/J 

9,@) = Y, 
cos ap + pa j, tap) 

P”-P; 
(2-V 

where the p, is the nth zero of the numerator in (2.7) and the normalization 

constant y, is 

2pn 
Y, = m P-8) 

Now let us employ the basis {$,\ to obtain finite matrix approximations 

for the integral equation (1.1). Since the en are a orthonormal basis let us 

use them to expand the arbitrary potential v appearing in Eq. (1. l), 

m 

v(P,p’) = c “ij +i@) +j@‘) (2.9) 
i=l 
j=l 

where aij are given by 

CO O” @i(P) v@9 P’) $‘(P’) 
a = 

ij ss 
p2dp pr2dpt 

0 0 (p2+/J2) W2+/L2) 
(2.10) 
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We can obtain an approximate v by truncating the double sum in Eq. (2.9) at 

some finite number of terms N. Defining 

vN@,p’) = 5 
i=l 

aij pi@) Qj@‘) , (2.11) 

j=l 

then our approximation is, 

vN@, P’) = v@,p’) . 

With the eigenfunction method we are setting forth here this will be the only 

approximation used. 

The next step is to solve the integral Eq. (1.1) exactly with the potential 

VN We denote this solution by t N . . A well known alternate form for the 

t-matrix in (1.1) is the operator equation 

tN(z)= vN - vN g(z) v 
N (2.12) 

where g(z) = (ho+v N -z) -1 is the exact Green’s function for any complex energy 

Z. From this form and Eq. (2.11) it follows that tN must have the form 

tN@lP’;z) = all bij(z) @i(P) +j@‘) 

j=l 

The problem now is reduced to finding the coefficients bij(z) 

representations (2.13) and (2.11) into Eq. (1.1) gives 

bdz) = a ij - ~ C,(Z) bQj(z) 
Q=l 

where ci j(z) is given by 

(2.13) 

Substituting 

(2.14) 

N 
cij(z) = C a. S.(z) 

Q=l d 11 
(2.15) 
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and 

S 
co @Q(P) (b*(P) p2dp 

0 p2-z 
(2.16) 

For the eigenfunctions considered here one can exploit the fact that they are 

entire functions in p to use the residue method to evaluate (2.16). For z = k2+i0 

one obtains for the moments gnm, 

#nm (k2+iO) = ynYm 

(k2-PE) (k2-Pi) I’ 
70. eiak (k-ip) [cos ak+ b/k) sin ak] 
2 1 

6 
+ nmynym 7r 

@E-k2) 
4 

[ 3 
a+& . 

pit 

(2.17) 

Our description of this method will be complete once we have obtained the 

expansion coefficients a.. . 
11 

We could use the definition Eq. (2.10) but this is 

tedious. A more convenient approach is to take advantage of the fact that the 

qn have identical zeroes with exception at p=p,. So if we set p=p, and p’=p, in 

(2.9) then 

v@n,Pm) = 2 aij+i@n) 9j@m) 

i=l 
j=l 

all the terms in this sum vanish except when i=n and j=m, so we have 

v@i, P*) 
a.. = 

11 @i@i) ~j(Pj) 

(2.18) 

(2.19) 

Thus, for an arbitrary potential, we have a general scheme for calculating 

the matrices appearing in (2.14). All the moments $m are given in a closed 

analytic form which is independent of the structure of the potential v. All the 

singular aspects of the original Lippmann-Schwinger Eq. (1.1) have been 
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absorbed in the calculation of the moments SnmB2+iO). A further advantage, 

characteristic of the moment approach, is that the approximate solution is 

given in the analytic form, (2.13). 

We have tested the convergence properties of this method by using this 

scheme to obtain the solution for the scattering problem where v is the 

Yamaguchi potential, 

vlp,p’) = 
h 

@2+p2)@‘2+p2) - 
(2.20) 

We have chosen h and p to be such that this potential reproduces the N-P 

triplet boundstate energy and scattering length. The constants are ,CI= 1.444 

and h = -8.110. The Yamaguchi potential scattering problem is a convenient 

test problem since Eq. (1.1) has a closed form solution given by 

t(p,p1;k2+i0) A = 2 2 2 2 
@ +P)(P’+P) 1+ 

h 

2~(j?-i@)2 I 

(2.21) 

As expected we find that the approximate solutions of Eq. (1.1) given by 

Eq. (2.14) are completely insensitive to the scattering cut - i.e., solutions 

for positive energies are as accurate as solutions for negative energy. 

We summarize the convergence properties of this method in the following 

table. We have examined the solutions tN(p, k;k2+i0) at the points p=p, - the 

zeroes of our eigenfunctions. The percentage error between tN(p, k;k2+iO) and 

the exact solution t(p, k;k2+i0) for the points p=p, turns out to be independent 

of n. Thus, it is instructive to plot this common percentage error against the 
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dimensionality, N, of the method. For k = 0.1 we obtain the following results 

N per cent error 

5 11.2 

10 3.2 

15 0.83 

20 0.44 

25 0.19 

30 0.14 

40 0.061 

Table 1 

Our eigenfunctions +n have two free parameters - p and a. We choose these 

so that vN will approximate v accurately for small N. In the example above, 

~=0.0535 and a=7.22. 

The results obtained here show that this method can give reliable solutions 

to the one-dimension Lippmann-Schwinger Eq. (1.1). However the number of 

points, 15 or greater, needed for an accurate solution suggested that this version 

of the moment method would not be able to cope with two-dimensional integral 

equations. One can not easily handle matrices of greater dimension than 

100 x 100 on most computers. This implies that we need a solution method that 

utilizes 10 or fewer points for each dimension. A second drawback indicated by 

these results is that the rate of convergence as N increases is rather slow. 

The underlying reason for these results is that all of the eigenfunctions, 

+n’ are oscillatory. In order for a sum of them to reproduce a smooth function, 

like Eq. (2.20)) one must sum many terms. If one specializes to the case 

where v is the same square-well potential as used to obtain the $,, then this 
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method becomes the unitary pole expansion’ approach. A further useful obser- 

vation is that since one has solved the Lippmann-Schwinger equation exactly with 

the potential vN it follows that the result, N t , is exactly unitary. 

3, THE INDEPENDENT FUNCTION APPROACH 

The slow convergence of our eigenfunction approach was due to the fact 

that the basis eigenfunctions do not have a functional behavior similar to the 

solution of the integral equation. We shall amend this difficulty by deliberately 

constructing a basis set that mimics the solution for typical potential problems. 

The method we now present is an adaptation of the one used by Kim2 on the 

bound-state three-body problem. Let us select the functions gi, in Eq. (1.4)) 

to be 

2 i-l 
g$p)==A -CL- 

) P2+- P2 \p2+ P2, 
i=l ,a-*, N (3.1) 

These functions all fall off asymptotically like l/p2 and a linear combination of 

these gi can reproduce the structural detail of the solution for small p. In the 

Lippmann-Schwinger equations we deal with,it can be proved3 that they are only 

functions of p2 and not p. 

Given the functions gi we could construct a sequence of orthonormal functions 

and proceed as in Section 2. However it is somewhat simpler to work directly 

in terms of the gi in order to obtain a finite matrix equation. Here our principal 

approximation is to assume that the solution can be written as a finite linear 

sum of the g$), viz. 

N 
tN(p, p’;k2+i0) = & Ci(p’, k2+i0) gi@) (3.2) 

Now we substitute this form in (1.1) and solve for tN. We proceed by developing 

a quadrature rule for the integral in (1.1) that has no error when t N has the 
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form given in (3.2). This quadrature rule is defined relative to a set of inte- 

gration points {pi; i=l, N} . The construction of this quadrature rule is deter- 

mined by calculating the moments, 

2 S ~0 v@i,P) g*(P) P2dP 
-rr = Ij(pi, k2+i0) , (3.3) 

0 P2 -k2-i0 

and requiring that the associated weights give an exact result for any function 

of the form (3.2). That is 

N 
Ijbi, k2+i0) = C WiQ(k2+iO) fj (PQ) 

Q=l 
(3.4) 

For fixed i this is a linear system for the N-dimensional vector Wie. 

The real and imaginary parts of (p2-k2-i0) -1 behave quite differently so we 

shall treat each part individually. The imaginary part of (p2-k2-i0) -1 becomes 

proportional to a delta function for positive k2Q For this reason we let require 

one of the quadrature points in pi, 1=1, N { l * }, saypN, tobeequaltok. Wenow 

use the delta function property to determine the weights Im WiQ(k2+iO). We 

obtain 

Im WiQ(k2+iO) = dQ& v(pi,k) (3.5) 

Now let us examine the real part of (p2-k2-iO)-I ’ m the moment Eq. (3.3). 

First let us simplify the problem by the following definitions. Let 

G,(k2+iO) = 
Wie(k2+iO) 

P;+ P2 ’ 
(3.6) 

and 2 

‘Q” 2 
PQ 

PQ+P2 ’ 
Q=l ,**o, N . (3.7) 
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With this notation Eq. (3.4) now has the structure 

Re I1 
\ 

I 

. . . 1 

Re I2 I Re I3 = - 
Re IN 

I 

I Re si3 

. 

. 

. 

Re siN 

(3.6) 

The matrix, in this linear system is the Vandermonde matrix. This is known 

to be ill-conditioned, but by using the special algorithms developed by Bjorck 

and Pereyra4 one may reliably solve Eq. (3.8) for the Re %s and so obtain 

Re W via (3.6). 

Thus in this version of the moment technique the integral term in Eq. (1.1) 

becomes 

2 - 
s 

~0 v(pi,p) tN@,p1;k2+iO) p2dp N 

= 0 p2-k2-i0 
= c Wie(k2+iO) tN@,,p7;k2+iO) (3.9) 

Q=l 

The related matrix equation for the Vector tN@Q9 pf;k2+i0) is 

tiie + Wti(k2+iO) 
I 

tN(pQ, p1;k2+iO) = v(pp,p’) (3.10) 

Given the solution tN(pQ, p’;k2+i0) one may obtain the expansion constants, 

Ci(P’;k2+iO), by inverting (3.2). This inversion will involve the transposed 

Vandermonde problem. Once the Ci are known then one has an analytic repre- 

sentation of the approximate solution. 

Now that we have completed the formal description of this method, let us 

summarize our numerical experience with this approach. For this method 
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there is no point in choosing the Yamaguchi potential as a test problem. For 

a Yamaguchi potential the approximation (3.2) is exact with N=l, and our method 

provides an exact solution. Thus this choice does not test the validity or conver- 

gence of the expansion (3.2). The potential we have selected to test this method 

is the Yukawa potential 

v(P,p’) = &i Q, t2+Gpr2) - (3.11) 

Here Q is the Legendre function of the second kind. The value of the parameters 

are taken to be 

/J = 0.633 F-l 
(3.12) 

A= -1.58 

These values reproduce the N-P triplet scattering length and binding energy. 

We shall relate the accuracy of our method by calculating the half-off-shell 

extension function defined by 

f@;k) = $#$ . 
, ; 

(3.13) 

This is convenient since f is known5 to be a real function and depends only on 

one variable p. We do not have an exact solution for this problem so we have 

calculated f independently by using the nonsingular Kowalski-Noyes integral 

equation6 for f with a high order (32 point) Gaussian method. However, the 

errors are so small in the independent function method when one contrasts with 

the f from the Kowalski-Noyes approach,frequently most of the difference is due 

to error in the Kowalski-Noyes solution. It thus seems more reasonable to 

take a high order (here N=13) solution of Eq. (3.10) as representing a reference 

solution which is near to exact. 
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In the following table, we list the differences between the solutions of 

Eq. (3.10) with k= 0.1 for various N and our reference solution. Our notation 

is defined 

Table 2 

Reference 
P Solution % 47 

0.0 1.001620 -0.000109 +o. 000011 

1.0 0.672624 +O. 007127 +o. 000755 

2.0 0.321474 +O. 001283 +o. 000078 

3.0 0.173898 +o. 000014 +o. 000089 

4.0 0.106189 -0.000020 -0.000006 

5.0 0.070838 +o. 000033 -0.000021 

(3.14) 

where f,(p) is the f function determined from Eq. (3.2) after the expansion 

coefficients Ci are obtained from solution, tN of (3.10). The content of Table 2 

may be roughly summarized by noting that for N=5 the maximum error is about 

l%;for N=7 the maximum error reduces to 0.1%. These results demonstrate 

that the moment method can provide the solution of singular integral equations 

with fewer than 10 points and is rapidly convergent as the number of points 

(or terms in (3.2)) is increased. 

We conclude that the moment method used here leads to remarkably accurate 

results for one-dimension singular integral equations with matrix sizes smaller 

than 10 x 10. This method seems to be powerful enough to solve the two- 

dimensional integral equations occurring in multichannel scattering theory. 
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