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Abstract 

 
We investigate the emittance dilution that occurs due to long range wakefields in the ILC (International Linear Collider) 
L-band linacs. In previous simulations we have focused upon the largest kick factors (proportional to the transverse 
fields which transversely kick the beam off axis) for the first three pass-bands.  Here we supplement these calculations 
with an additional four bands.  We include seven pass-bands in our simulations with the upper dipole frequencies 
extending a little higher than 4 GHz.  Higher order dipole modes in the first three pass-bands are damped by carefully 
orientating higher order mode couplers at both ends of each cavity.   Here we investigate the impact of upper band 
modes on the beam dynamics. 
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Abstract 
We investigate the emittance dilution that occurs due to 

long range wakefields in the ILC (International Linear 
Collider) [1] L-band linacs. In previous simulations [2] 
we have focused upon the largest kick factors 
(proportional to the transverse fields which transversely 
kick the beam off axis) for the first three pass-bands.  
Here we supplement these calculations with an additional 
four bands.  We include seven pass-bands in our 
simulations with the upper dipole frequencies extending a 
little higher than 4 GHz.  Higher order dipole modes in 
the first three pass-bands are damped by carefully 
orientating higher order mode couplers at both ends of 
each cavity.   Here we investigate the impact of upper 
band modes on the beam dynamics. 

INTRODUCTION  
In the operation of any linear collider it is important to 
maintain the emittance of the beam as it travels down the 
main linacs in order to maximize the luminosity of the 
colliding beams at the interaction point. In the ILC we 
consider colliding 2820 bunches and accelerating them 
down the main linacs with an initial design gradient of 
23.4 MV/m (based on the TESLA design [3]).    Although 
there are alternative options which allow for an increased 
accelerating gradient.   Some typical parameters of the 
ILC main linacs are given in table 1.  As the main linacs 
are superconducting then little power is lost in heating the 
walls of the cavity and we can afford to have a long pulse 
train of 950 µs consisting of 2820 bunches each separated 
from their neighbors by 336.9 ns.    

Quantity Symbol L 
Accelerating freq. (GHz.) facc 1.300 
Loaded gradient (MV/m) Gacc 28 
Bunch train length (Tfill) Tb 2.88 
Bunch spacing (TRF) Tbb 438 
Charge per bunch  (1010) Ne 2 
Structure Iris radius (λRF) A 0.152 
Bunch length (µm) σz 300 
Pulse rate frep 5 

Table 1: Fundamental L-band ILC RF parameters 
The accelerated bunches of charged particles 

experience a wakefield that has both long range and short 
range components.  The former component arises from 
the electromagnetic field of the bunch itself and the latter 
component is due to the electromagnetic field experienced 
by bunches trailing the accelerated bunches which drive 
the wake.  These wakefields can dilute the emittance of 
the beams.  At the very least, this can reduce the 

luminosity, which for flat beams (εx,n/εy,n=400) is 
proportional to b y,nP / ε , where  is the beam 

power and ε

qnfP brepb ∝

y,n (εx,n) the normalized vertical (horizontal) 
emittance at the interaction point.  For the ILC a high Pb is 
achieved by compensating the low pulse repetition 
frequency, frep, with a high bunch charge q, and a large 
number of bunches nb.  In the worst case scenario the 
wakefield can give rise to a BBU (Beam Break Up) 
instability [4].  Thus, it is clear that the wakefields in the 
linacs must be damped to manageable values and this is 
achieved by providing each cavity with HOM (Higher 
Order Mode) couplers at each end and this is illustrated in 
fig. 1.  There will be close to 21,000 of these cavities in 
the collider.  Each cavity consists of nine cells, operating  

 
Figure 1: Fabricated nine-cell Nb TESLA cavity 

suitable for use in the ILC  
 

in the standing wave mode and with a π phase advance 
per cell. 

The paper is organized such that the next section 
discusses the long-range wakes for 7 pass-bands and the 
penultimate main section entails particle tracking 
simulations to calculate the emittance dilution. 

TRANSVERSE WAKEFIELDS 
The long-range transverse wakefield [5], at a distance s 

behind the first bunch, is calculated from the real part of 
the modal sum:   
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where N is the number of modes, U(s) is the unit step 
function, the nth mode has a quality factor of Qn, a kick 
factor Kn and a synchronous frequency ωn/2π.  The kick 
factors and mode frequencies for the first seven bands are 
illustrated in fig 2. These kick factors have been 
computed with the code MAFIA [6] and are taken from 
[7].  The corresponding Q values are displayed in fig 3.  
These Qs consist of experimentally determined damped 
values from a ‘cold’ measurement [8] and are 
supplemented by MAFIA calculations [6] for the upper 4 
bands.      The Qs are normalized with respect to the 
fundamental mode Q (~ 1010).   The most damaging kick 
factor is located at 2.575 GHz and this is carefully  ___________________________________________  

† Supported by the U.S. DOE grant number DE-AC02-76SF00515 



 
 

 
 
 
 
 
 
 
 
 
 
Figure 2: Kick factors for the first 6 dipole bands.  
(indicated by the dashed blue lines) The solid blue lines 
denote the TE11 and TM01 cut-off frequencies of the 
attached beam tubes.  The blue dots refer to the TM-like 
modes and the red dots to the TE-like modes 
 
damped down with HOM couplers to a Q of 5x104.    
Small errors in the dimensions of the cavities introduced 
during the process of fabricating several thousand cavities 
leads to slightly different dipole frequencies from cavity-
to-cavity.  This effectively interleaves the frequencies of 
successive cavities and reduces the coherent transverse 
kick that the beam receives.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Modal Q values normalized with respect to the 
fundamental mode’s Q. The blue dots refer to the TM-like 
modes and the red dots to the TE-like modes.   
 
We subject the beam to these wakefields for several 
systematic frequency errors and Q values.  We focus on 
the interaction of the beam with TM-like modes in the 
next section. 

BEAM DYNAMICS 
Past experience [9] has taught us that a good indication as 
to the maximum impact of the wakefield on disrupting the 
bunches of charged particles is given by the sum 
wakefield.  The sum wakefield [9], defined at each bunch 
in question, as the sum of the wakes of all wakes at all 
previous bunches, is shown in fig 4 for the three different 
Q distributions.  The abscissa refers to a percentage 
change in the bunch spacing and in practice it corresponds 
to a systematic shift in the frequencies of all cells in any 
given cavity.   For each Q configuration we take a peak 
value close to the nominal bunch spacing (indicated by1,2  
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Figure 4: RMS of sum wakefield (SRMS) in units of W0 (= 
0.13 V/pC/mm/m) versus percentage deviation in the 
bunch spacing from the design value for 3 different 
situations.   The blue dashed curve is computed using the 
Qs given in fig 3.  The black dashed curve corresponds to 
setting the Qs of the upper 4 band to 106 and the red curve 
corresponds to the Qs of the red curve with the mode at 
2.575 GHz being assigned a value of 5x 105.   
 
and 3 in fig 4), and track the beam down the linac under 
these worst case scenarios.  The results of these 
simulations, performed with the code LIAR [9], are 
presented in figs 5 and 6.  Even for no HOM damping of 
the upper four bands (fig 4a and fig 5a) only 20 % or so 
emittance dilution is expected to result.  Furthermore, for 
the case of a badly damped mode with the largest kick 
factor of all bands (illustrated in fig 5c and 6c), no more 
than 15 % dilution in the emittance occurs. 

CONCLUSIONS 
The upper band long-range dipole wakefields in the 
TESLA-style L-band accelerators are unlikely to give rise 
to significant emittance dilution for transverse injection 
offsets.  The latest LL (Low loss) and re-entrant L-band 
cavities [11] have a modified geometry in order to sustain 
higher accelerating field gradient. The impact of the 
dipole modes on the beam dynamics requires 
investigation in these modified cavities.    Furthermore, 
coupling of horizontal motion to vertical motion in 
several accelerator geometries can lead to serious 
emittance dilution.  This effect is covered elsewhere for 
the TESLA-style geometry [12].  
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