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Systems of integration-by-parts identities play an important role in simplifying the higher-loop Feynman
integrals that arise in quantum field theory. Solving these systems is equivalent to reducing integrals
containing numerator products of irreducible invariants to a small set of master integrals. We present a new
approach to solving these systems that finds direct reduction equations for numerator terms of a given
Feynman integral. As a particular example of its power, we show how to obtain reduction equations for
arbitrary powers of irreducible invariants, along with their solutions.
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I. INTRODUCTION

The computation and simplification of Feynman integrals
play a central role in the evaluation of higher-loop scattering
amplitudes, form factors, and correlation functions in
quantum field theory. In a frontier calculation, one must
often consider a large number of integrals, which are
nonetheless related by algebraic identities. Revealing the
full set of algebraic relations between integrals reduces the
number of integrals which have to be evaluated analytically
or numerically. Knowing the full set of algebraic identities is
crucial to the unitarity method [1,2] for computing scattering
amplitudes beyond one loop [3-7], as well as to computing
Feynman integrals using differential equations [8].

The integration-by-parts (IBP) approach within dimen-
sional regularization [9] is currently the method of choice for
obtaining such algebraic relations between different
Feynman integrals. As applied to integrals beyond two
points, the approach generates all possible total derivatives
with increasing powers of numerator insertions, generating
large systems of equations. One then uses Gaussian elimi-
nation, in the careful form introduced by Laporta [10] to
solve the system of equations. A number of dedicated
automated solvers [11] have been introduced and used over
the years, complemented by alternative approaches [12].

Can one reduce the size of the systems and also find a
simpler method to solve them? The first question was
answered affirmatively by Gluza et al. [13], through the
introduction of so-called generating vectors. These avoid
introducing higher powers of propagators into the system of
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equations, terms which would later disappear during
Gaussian elimination to solve the system. These generating
vectors have links to algebraic geometry [14,15] and have
seen further development [16] and applications [6,17]
recently. (Competing calculations have made use of a
mix of algebraic geometry and more conventional tools
[7].) An alternative approach to finding the vectors, less
linked to algebraic geometry, may be found in Ref. [18].

The goal of this paper is to address the second question,
and outline an approach to solving IBP systems directly. As
an example of the power of such an approach, We will show
how to find closed-form expressions for arbitrary powers of
numerator insertions, a question which is largely intractable
with current methods.

We focus in this article on planar two-loop integrals and
mostly on the two-loop planar double box with massless
external legs. This integral is simple enough to display many
formulas explicitly, but nontrivial enough to put the approach
to the test. The approach is of course applicable much more
generally, to integrals with external or internal masses, and to
higher loops as well. In the next section, we review two-loop
Feynman integrals, the IBP approach, and generating vectors.
In Sec. III, we present a pair of challenges which the new
method can address. In Sec. IV, we show how to target simple
numerators directly. Section V is devoted to a basic approach
to finding master integrals within the present approach. In
Sec VI, we show how to target numerators with generic
powers of irreducible invariants. Section VII discusses higher
powers of propagators. In Sec. VIII, we show how to solve the
kinds of equations derived in Sec. VI. We present a few
concluding remarks in Sec. IX.

II. INTEGRALS, INTEGRATION-BY-PARTS,
AND GENERATING VECTORS

Let us consider a Feynman integral with two or more
loops in dimensional regularization,
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where L is the number of loops, and n,; the number of
denominator factors. The generic numerator expression is
given in terms of dot products of loop momenta #; with
each other or with the external momenta k;. All integrals
with numerators containing dot products of loop momenta
with arbitrary external vectors can ultimately be expressed
in terms of integrals in Eq. (2.1), so they suffice to express
the result of any L-loop Feynman diagram, and hence any
L-loop amplitude or form factor.

The standard IBP approach proceeds by forming a
sufficient number of total derivatives,

(2.1)

/ de 0 v”POIY({'/ﬂJI f/»} {fh kl4}) (2.2)
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where ¢* is taken in turn to be any loop momentum or
independent external momentum, in order to close the
system of equations. The system will close, as discussed in
Ref. [10], when one considers polynomials of sufficiently
high order, along with all subtopologies where one or more
propagators are omitted.

One can instead seek special vectors v/

( such that [13],

L

0
> Vo

J=1

di X di’ (23)

for every denominator factor d;. This condition ensures that
no doubled propagators (beyond those already possibly
present) are generated, even in intermediate stages, during
the construction of a system of IBP equations.

In general, we will have several sets of vectors which
satisfy the requirement (2.3), each containing L different
vectors. It will be convenient to introduce a notation which
combines the summation over the vectors within a set along
with the summation over Lorentz indices; use capital Latin
letters for this purpose,

0 L 0
[ e — Viy 7>

We will further abbreviate 94, = 9/0¢ 4.

Given a set of vectors, an infinite tower of IBP equations
can be generated by multiplying them by polynomials in
Lorentz invariants of the loop momenta,

(2.4)
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In a certain sense, the use of the vectors v; block-
diagonalizes the IBP system. It does not completely solve
the system, however, in that we still have to generate
multiple equations and solve them together in order to
reduce a generic term in an integrand. To discuss the details
of reduction, it will be convenient to recall some classes of
Lorentz invariants from the literature and to introduce some
additional specializations.

We are interested in “natural” Lorentz invariants, products
of the loop momenta with other loop momenta or the
external momenta of the integral. Any Lorentz invariant
which can be written as linear combinations of propagator
denominators and invariants built out of external momenta is
called a “reducible invariant” or RI. (In the literature these
are often called reducible scalar products; however we wish
to consider quantities which may not be simply scalar
products.) Invariants which can be written purely in terms
of propagator denominators, without use of invariants in
external momenta, we will denote “pure reducible invari-
ants” or PRIs. Invariants which cannot be written as a linear
combination of propagator denominators and external invar-
iants are called “irreducible invariants” or Irls. They first
arise at two loops and play a central role in IBP systems.1

The coefficients of terms in the numerator polynomials
in Eq. (2.5) are all rational functions of ¢ = (4 — D) /2 and
ratios of external invariants, which we can treat as param-
eters. Terms with factors of PRIs reduce to integrals with
fewer propagators, that is corresponding to simpler topol-
ogies. In this article, we will discuss only the first stage of
reduction and so will set aside such terms. Of course, one
can and must deal with the resulting simpler topologies to
obtain a complete reduction to a basis of integrals.

III. A PAIR OF CHALLENGES

Any term in the numerator polynomial in Eq. (2.5) that
contains a PRI yields nothing interesting for the top-level
topology, as it merely cancels against a linear combination
of denominators. Accordingly we can take a generic term,
without loss of generality, to be a product of powers of Irls,

Poly™ = [ Jur1?". (3.1)
J

(We can make the polynomial homogeneous in engineering
dimension by multiplying each term by an appropriate
power of a chosen external invariant s.)

The question we want to address is whether we can
completely solve the system a priori, by writing down
appropriate linear combinations of Poly” and forming the

'Leaving aside parity-odd terms at one loop.
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corresponding single IBP equation. Ideally, the only other 2
terms in the constructed equation would correspond to
master integrals or to reducible integrals. For each term in
Poly”, a simpler version of this goal is to write down a
single IBP equation containing it, where all other terms are
simpler, in the sense that they have smaller |7i] = ;n;. Let k k
us call this value the irreducible degree or i-degree for
short. (If we need to distinguish between monomials of the
same i-degree, we can use any monomial ordering emplo-
yed in computational algebraic geometry—for example,
lexicographic—to determine which is “simplest”.) p

A pair of challenges illustrates the power of such an ¢
approach. Consider the slashed-box integral, shown in Fig. 1, FIG. 1. The slashed-box integral P, ;.

=
~\

) del dez POly
2m)P 2r)P £3(€1 — k)2 (€1 + 2 + ka)*E5(02 — k3)*

P [Poly] = (~i) (3.2)

following the notation of Ref. [13]. In this expression, the external momenta k..., are all massless and directed outwards.
The first challenge is to simplify,

Pia[(71 - k)", (3.3)

for a generic integer value of n.
Consider also the planar double-box integral, shown in Fig. 2,

de] dez POly
27)P 2)P £3(€) — ki ) (61 = Kn)2 (€1 + £2)*C5(62 — ka)* (€ — K3u)*

Py [Poly] = (~i)? / (3.4)

where the notation again follows Ref. [13], and where, IV. TARGETED REDUCTIONS

Let us begin by studying simple numerators in the
K, =kj +-+kj. (3.5)  double box. There are three linearly independent pairs of
S . IBP-generating vectors when all external legs are massless.
All generating vectors can be written as linear combina-
tions, with coefficients taken to be general polynomials in
The second challenge is to simplify, the Lorentz invariants. The first two pairs will suffice for
our initial purposes.
The first pair is

Vi = —2ky O1K + K + 2k, - 61— £1)KG
— (2ky - €1 =2ky - €, —Slz)ﬂf,
Vig = =2ky - O3k = O35 + (2ky - &2 + £3)K)
£ 4 — (2ky - €5 =2k - 5 = 512) 0%, (4.1)

P35[(¢1 - k)], (3.6)

for a generic integer value of n.

where the second index corresponds to the loop-momentum
index. [These expressions differ from those in Ref. [13], but
are equivalent as solutions to Eq. (2.3).] In the notation of
Eq. (2.4),

¢ ¢ vig = {0, v} (4.2)

It will be convenient to introduce a basis of RIs and Irls
FIG. 2. The planar double-box integral P5%. and a short-hand notation,
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S} :?fﬂ%,
rp==1-%,
rzzzf%,
upy =72k,

up =721 ky—s1/2,
Uyy =5 - k3 —512/2,

Uy = &y - ky, (4.3)

for the PRIs, and
|

ha =10 - ky, =5 ki, (44)

for the Irls. With these variables, we can rewrite the first
pair of vectors as follows:

vy = Koryy = 2Kt — Ky (ryy = 2uyy) + 265 (1 = uyy),
o = =kory + Ky (ron + 2t51) = 2K uny

=205 () + ups + 2uny). (4.5)

The second pair is

v’z‘;l = =s1(2(1 + x1a)ry = xiasio + 2614 = 2(1 + yra)uy — 2p14u10) — K{(2(1 + x14)r12810 + raas1a + 2rpu)

- k’z’(2rnr22 = riSin T 2ariaSia — 2ri1ty — 4tiaty — 2rppuyy — 2z — 2r11u24) + kﬁ("nsu +2ripsin

+ 2ry11y) — 2810ty — Atyqityy + 21y ttay + 2ryyung) + E(A(1 + x1a)P12S12 + 12812 + Y1457, — 2812814 — 281010

—4t4ty +Arpuiy — 2s10u1y — Aty iy + 21148 10Up3 — AliaUny — Aupling + 2148 12U0s — A4l — 41412“24),

”g;z = —K{rpn (12 + 2114812 = 2101 = 2up3 — 2utn4) — K5 (=213, + (1 + 2x14) ranS10 + 2roitny + 2rppitny — 4y 1ty)

+ Ky (raasin = 2raptyy + 2810001 + 483, — 2ryuiay + Aty ny — 2rppiing + Aty ung) — E5((1 4 2x14) ransia

— Aropty + 2815t + 415 — Arpuiny + 2515u03 + 8ia1uny + 4udy — Arosting + 25 15un4 + Aty Uy + duinzttay),

where y14 = s14/512.
If one forms the corresponding differential operators to
the vectors,

Vif =0a(vjaf)

the third vector (given in Azppendix A) is related to the
commutator of the first two,

(4.7)

0= Co[vl, Vz] - C1V1 - C2V2 - C3V3 + purely reducible,
(4.8)

with

co=2(1+x14) (Y4572 — 2214812014 — 20145 12121 — 8t1alry
—4y14t14ta1),
1=~ (X148512 + 221451 = 20145 Tt — 41145 ol
— 851014121 — 16y 145 12141 —AX 1451205, — 8x1a11415)).
2 =2(1+x14) 21 (114512 + 1451 = 20148 12118 = 2A 14512114
—4yius12t1 —81141y1),
c3=x1a(X14512—2151) 711 (4.9)

Our first task would be to determine the master integrals.
We will return to this question in Sec. V; for the moment, let

*We thank Harald Ita for pointing this out.

(4.6)

I
us assume we have already done this. We could in principle
do this by generating IBP equations using numerator
polynomials of increasing engineering dimension, starting
with constants, and solving the equations until the number
of independent integrals stabilizes. In the case of the double
box, we can choose our masters to be

Py [121].

We will consider Eq. (2.5) using a variety of polyno-
mials with the two pairs of vectors given in Egs. (4.5)
and (4.6). We can expand the integrand in Eq. (2.5)
and multiply by the denominator to obtain an expression
for the polynomial-dependent part of the numerator,

P51, (4.10)

- v,4Poly
D 9, Ao
enom; 4 Denom
n, " n,
=> Poly, D Op=——"—+> v,40,Poly,.
2 oly, Denom ADenom+ 2 Vyp0pb0ly,
(4.11)

In this equation, n, is the number of sets or tuples of
IBP-generating vectors. The first term in the equation
is independent of the derivative of the numerator
polynomial and hence has a universal structure. We can
record the values of the coefficients for the two vector
pairs,
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V1A
Denom 0,4
Denom

= =2¢(t14 =ty — Uyp — Up3 —2tp4),

YA _
Denom 4(1+y14)

Denom 0,4

(8(1+yx1a)erinsia — (1 + y1a(144€))ransia + 2y 14657, —desiatiy —4(1 —2€) rpty

- 2(){14 +4€)512t21 - 8€l]4t2] +4(1 - 2€)t%1 + 867‘22”12 - 4€S]2M12 - 8€t21 Ui —4(1 - 26)7‘221/!23

+2(1 - 26 +2)(14€)S12M23 - 8€[14M23 + 8(1 - 2€)t21M23 - 8€M12M23 +4(1 — 26)“%3 —4(1 —26)7‘22”24

+2(1 = 2 + 2 14€) S 1212q — Bt 41tng +4(1 = 2€) 1y  Upy — Beu putny +4(1 —2€)up3ityy).

The simplest IBP we can get comes from using the first
vector pair (4.5),

0 = =2eP5% [ty =ty — gy — Up3 — 2Upy]
= 2eP3% [ty — t14 + purely reducible]

= 2eP3% [ty — t14] + simpler topologies, (4.13)
which allows us to solve for P3% 4] in terms of the masters
and integrals of simpler topology. In the present case, the
simpler integrals cancel after using their symmetries.

If we look at the next simplest equation, multiplying the
first vector pair by ¢4, we obtain

1
0="r3, {261‘14&1 + (1 =2¢)r7, — 5)(14»‘121‘14

+ purely reducible} : (4.14)

which has two terms of i-degree two, and hence we need a
pair of equations to solve for both quadratic powers of Irls
present. If we take a more general polynomial of i-degree

(4.12)

[
we find the following IBP:

0="P55 |ar(1=2e)t1, +2(a) —ay)etytyy —ay (1-2¢)85,

1 1
—EaI)(Ms]th +§612){14S12121 +purelyreducible s

(4.16)

which has all three quadratic terms present. We can remove
only one via choices of a;,, if we want to obtain a
nontrivial equation.

If we use both vector pairs given in Egs. (4.5) and (4.6),
the situation is different. Each can be multiplied by a
different polynomial; as they have different engineering
dimensions, we must choose the polynomials to have
different dimensions too. Taking the simplest possibility,
multiplying the first pair by the polynomial in Eq. (4.15)
and the second pair by a constant expression,

one, bi(1+ x14)s (4.17)
aytiy + axtyy, (4.15) we obtain the IBP,
J
ok 1 2 1 2 1
0="P35 - 5b1)(14€S12 + 5(‘%%14 +2bje)siptiy + ar (1 —2e)ty, + 5(02)(14 +byyis +4bie)sipty

+2(a; — ay + by)etiyty; — (ay + by)(1 — 2€)13, + lower i-degree + purely reducible | . (4.18)

We can now isolate each quadratic term separately by choosing a,, and b; appropriately; for example, with

1 1 1

a, = a, = bl = - (419)

(1-2¢)° 2(1=2¢)’ 2(1-2¢)’

we obtain an IBP for P3%(r,] in terms of integrals with simpler (lower i-degree) numerators and reducible integrals,
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+¢€) € X 14€ € 3e 1

0= P |8 _late) ta————Spty +——— 82, — t —t —t -t

2.2 |14 2(1_2€)S12 14T T o002 21+4(1_2€)512 14t T oo hatos T 5 Tatios — 51017
1 € 1 € L, 1 € 1
2t211423 - §f21M24 + [ = 2¢ 22t = 5 Tl = 75 “Hhinlhs + o Has =5 Tls = 7 Tl tog + 5 Ha3tae
(I +x1a) (14 y1a)e (1 +2x14€) € (1 —2e+ 2y14¢)
T4 -2¢) Sfn TS TS 4(1-2¢) S12722 201 _2€)S12M12 + 4(1-2e) S12U23
(1- 2€+2)(14€>s "

4(1 — ¢ ) 12424
- (x14 +€) € X14€
= P2.2 l%4 — mslle — 1——26S12t21 + mslz —+ purely reduCIble (420)

Upon substituting Eq. (4.13) for the lower i-degree polynomial 7,4, this gives us a direct equation for P37 [2,],

(x14 + 3€)

P** tZ
22[ 14] 2(1_2 )

s12P55 [t ] =

X14€
4(1 -

s1,P35[1] + simpler topologies. (4.21)

2¢)

We can view the polynomials (4.15), (4.17) with the values of a; , and b, given by Eq. (4.19) as conjugates to tﬂ, for the

given basis of IBP-generating vectors (4.5), (4.0).

Similarly, we can also find direct equations for the other two quadratic Irls. Taking

1 1
_o, A 4.22
aj a de '™ % ( )
in Eq. (4.18), we obtain a direct equation for P3%[t14t5;],
. 1 1 1, , ,
0 = P2,2 t14121 + ZS12t14 —+ 55‘121‘21 - g}(14S12 + SImplertOpologles. (423)
Taking
0 ! b ! (4.24)
a; =0, a, = — , =, .
! 2T 2(1-2¢) T 2(1-2¢)
in Eq. (4.18), we obtain a direct equation for P5%[13,],
» € + 2e¢ X14€ ) .
0=P55 t%l - mslzm — (;((];_%)slztm + ﬁs?z + simpler topologies. (4.25)

We will generalize these choices to higher powers of
irreducibles in later sections.

V. MASTER INTEGRALS

In the previous section, we found equations to directly
reduce quadratic target monomials in Irls, of the form,
0 = P35 [target + simpler Irls + purely reducible]. ~ (5.1)
(The “simpler” term may contain no Irls at all, but only
powers of external invariants.) In these cases, we only

needed one solution each for the different polynomials that
can appear in Eq. (2.5), rather than the most general

|
solution. Proceeding by plugging in simple ansatz for
the solution, and solving for the coefficients, is perhaps
not the most elegant way to proceed, but it is adequate.

In contrast, in order to determine that the “target” is a
master integral,’ we need to show that there is no poly-
nomial solution to the requirement that Eq. (2.5) give rise to
an IBP equation (5.1) or one with the “simpler” term
missing,

*More precisely, in order to determine that it is a master
integral given the choice of monomials, their chosen ordering,
and the criterion of picking master integrals with the lowest
possible Irl dimension.
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0 = P35 [target + purely reducible]. (5.2)
To do this in generality, it may be possible to use computa-
tional algebraic geometry methods for D-modules. We
leave an investigation of this possibility to future work.
Here, we will limit ourselves to showing that there is no
solution for polynomials up to some degree and assume that
no solution miraculously appears for higher-degree
polynomials.

For our purposes here, instead of writing out all terms in
the polynomial in Eq. (2.5), it will be more convenient to
write out all monomials as a vector, multiplying by
appropriate powers of the selected external invariant s in
order to make the engineering dimensions of all entries
uniform; for example, a vector of “degree 3” for the double
box would be,

14121512
B3512
f1ast
1157

3
S12

We need one such vector for each tuple of IBP-generating
vectors. The entries in different vectors will of course be of
different engineering dimensions in order to ensure that the
resulting IBP equations will be of homogeneous engineer-
ing dimension. Independently substituting each entry of
each vector for Poly in Eq. (2.5) leads to a big vector of IBP
equations. Setting the purely reducible terms in this vector
to zero and taking the coefficients of all monomials in
irreducible (or external) invariants yields a matrix which
can be regarded as a linear transformation of a vector of
monomials of the appropriate engineering dimension. Each
row of the matrix corresponds to an IBP relation, one entry
in the big vector; each column, to a different monomial.
The number of possible reductions corresponds to the

dimension of the range of this matrix, while the number of
master integrals is given by the dimension of its kernel.
This latter number is the number of redundant candidate
IBP relations. A basis for its kernel, simplified using
nontrivial IBP reductions, then gives candidates for the
master integrals themselves.

As an example, let us derive the master integrals for the
double box. Although the third pair of generating vectors
turns out not to be needed for reductions of the double box,
we do not know that ahead of time, and so we include it
here [taking n, =3 in Eq. (4.11)]. The corresponding
prefactor for the first term of Eq. (4.11) is also given in
Appendix A.

The simplest construction takes a degree-zero vector for
the first pair (4.5), and omits the second (4.6) and third (A1)
pairs of IBP-generating vectors. This just yields the matrix
form of Eq. (4.13),

M= (-2 2 0), (5.4)
where the columns correspond to the monomials #4, #5,
and s;,, and the corresponding IBP equation is

T

0= P35 |M, + simpler topologies.  (5.5)

S12

The matrix M, has a kernel space of dimension 2,
generated by the two vectors,

1

and (5.6)

0 1

corresponding to P5% [t14 + t5;] and 51, P5% [1], respectively.
Using the nontrivial IBP equation and removing overall
constant factors, we then obtain P3%[ty,] and P3%[1] as
masters.

The construction of M does not make use of the second
(or third) pair of vectors, so one may worry that it is missing
information. We can proceed to polynomials of one higher
degree, using a degree-one vector for the first IBP-
generating pair, and degree-zero vectors for the second
and third pairs of IBP-generating vectors. This yields

2(1 — 26) de 0 —X14 0 0
0 —4e —2(1 - 26) 0 Y14 0
M, = 0 0 0 —2¢ 2e 0 (5.7)
0 2e _ 1-2e € Xuutde  __ yu€
14714 14714 Izs 2(14x1a) 2(I4x14)
0 —8¢ 0 —6¢ 0 X14€
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for the linear transformation, where the columns now
correspond to 3, t14ta1, 131, S12t14> S12t21, and s3,, respec-
tively. This matrix again has a kernel of dimension 2 and
gives rise to the same master integrals. Repeating this
procedure with polynomials of one higher dimension again
yields the same result, too.

VI. HIGHER POWERS OF IRREDUCIBLE
INVARIANTS

Let us continue the approach of finding targeted IBP
equations with higher powers of the irreducible invariants.
We seek equations that directly reduce them to simpler
invariants, that is combinations of invariants of lower

|

engineering dimension. We can do this by taking higher-
dimension polynomials in our basic equation (2.5). For
example, multiply the first vector pair (4.5) by

aitiy' + ax i, (6.1)
and the second pair (4.6) by
b](l +)(]4)[r1152. (62)

Feeding it through the differentiation [making use of
Eq. (4.11)], we then obtain the IBP equation,

1
0= P35 |a)(1 +2e —n)tly — (2a1e + (b — a3) (2 + 26 — n))t{y 1y + (ay + b1)(1 = 2e)175783, _E(bl(z +2e—n)

1
—ajyu(n—1))sp + 3 (b1 (2—4e+ (n—3)(x1a +2)) + asy1a(n — 3))s12t13% 12

1
+ 1 biy14(2 + 2e — n)si,11,? | + simpler topologies

= P35la (14 2¢ —n)tl, — (2a1e + (b — ay)(2 + 2e — n)) iy 'ty + (ay + by) (1 — 2€) 135213, + lower i-degree]

+ simpler topologies.

Taking

1 €

(6.3)

b, = ¢ (6.4)

al:n—l—Ze’

T TSI =20 (n—2-2¢) !

(n—1-2¢)(n—-2-2¢)’

we obtain an equation for P%[#{,] in terms of integrals with numerators of lower i-degree along with simpler topologies,

(n=1)y14 +e) -1 X 14€ w2

€ . .
20+ 2e—m) 14 Sy — 20+ 2e—n)'te 51, + mfﬁzmslz} + simpler topologies. ~ (6.5)

0="P55 |1, +

We can find an equation that avoids introducing #,; by
starting with a slightly more general polynomial. Multiply
the first vector pair (4.5) by

atiyt 4 aytl ) + astiyts, (6.6)

and the second pair (4.6) by the same coefficient as above.
Taking the same values as in Eq. (6.4) along with

1

2(n—1-2¢)’ (67)

as =

we obtain the following simplified equation for P5%[rf,]:

|
(24 (n—1)yis+3e—n)
2(1+2e-n)
_)(14(2+€_”) 242
4(142e—n) 4 712

n—1
B4 S12

0="p35 [t;lzl +
] -+ simpler topologies, (6.8)

or equivalently,

2+ (=Dyis+3e—n)
2(1+2e—n)

X142+ €—n)

4(1 +2¢—n)

+ simpler topologies.

P35[t] = - sPs5 [

st P35 (1177
(6.9)

Equation (6.9) reduces 7}, in the numerator to two
integrals with lower-dimension irreducible numerators

025008-8



DIRECT SOLUTION OF INTEGRATION-BY-PARTS SYSTEMS

PHYS. REV. D 98, 025008 (2018)

(in addition to integrals with simpler topologies). One may
wonder whether it is possible to find an equation that has
only one integral with lower-dimension irreducibles. Even
with higher-order polynomials, however, this does not seem
possible. [Not too surprisingly, using the third vector pair
(A1) does not change this conclusion.]

What higher-order polynomials do make possible is
greater reduction of the degree in #;, in one reduction
step. Multiply the first vector pair by

a1 4 ax 1Pty + asty s + agtly 63,

+ 051?13[216‘12 + 6161‘114__35‘%2, (610)

and the second pair by

bi(1+x12) 81577 + ba(1 4 y14) 05 3 021 + b3 (14 x14) 15 510
(6.11)

Choosing

1
4(n—1-2¢)(n—2-2e¢)

0=P55 |11 —

+at(n—1)(n=2))sh1152 +

Xiu(n=3—¢€)(n—2+y4(1 —n) - 3e)

B 1
L R Y
-3-2
@ = — € n as(n e)’
(n—1-=2¢)(n—2-2¢) 1—2¢
e yun—1)+¢ az(n—3—2¢)
T 2n—-1-2¢)(n—-2-2¢) 2(1-2¢)
24 pu(l-m)=30)
> 2(n—=1-2¢)(n—2—-2¢)(n—3-2e¢)
as(2n =5+ y14(n —3) —4e)
2(1 - 2¢) ’
. Caga(n=3-2¢) n-2+4y,(1—n)-3¢
6 4(1 = 2¢) 4n—1-2¢)(n-2-2¢)’
-3-2
b, = € +a4(n e)’
(n—1-=2¢)(n—2-2¢) 1—2e
b2 = —dy,
by — asyia(n —3)
g == 0]
2(1 - 2¢)
2(n—=1-2¢)(n—=2-2¢)(n—-3-2¢)’ '
with a, arbitrary, we find the following equation:
(n=2=3€)(n—3=3¢) —yiul(n—1)(n =3 = 3¢) — 2€?
53,1173 | + simpler topologies.  (6.13)

This result could also be obtained by a partial iteration of
Eq. (6.9), applying it to the 77} term on its right-hand side.

While we have implicitly taken n to be an integer in the
derivations above, there is nothing that requires it to be one.
It can be an arbitrary real value; the difference comes in the
stopping conditions—a noninteger n would not ultimately
reduce to one of the master integrals, but would require new
masters, also with fractional powers of 7.

VII. HIGHER PROPAGATOR POWERS

The IBP-generating vectors are designed to avoid intro-
ducing doubled propagators (or even higher powers) when
they are not present initially. They can of course still be used
if such higher powers are present at the beginning of a
calculation. The generating vectors will ensure that no
powers higher than those present originally will be generated
by taking derivatives. When doubled propagators are
present, the structure of the IBP equations changes; instead
of containing just terms with irreducible numerators along
with integrals corresponding to simpler topologies, a new
kind of term appears, corresponding to the original topology,
but with a lower power of the doubled propogators,

8(n—1-=2¢)(n—2—-2¢)

[
0="P3, [target + lower i-degree + lower propagator powers

-+ purely reducible]. (7.1)

For example, consider the reduction arising from
inserting a factor of

T4
— 7.2

into the basic double box integral, that is with the 1/£2
propagator doubled, making use of the first IBP-generating
vector pair,

. [ f%4 141y S12f14
0:P2’2 -—46?%+4€ f% —(1+){14)?%
1 fiqUyp fi4lin3 fi4Uny
—5(1+J{14)312+4€ 2 +4e p 4 8¢ 7
1
=P ﬁ(_4€f%4+4€f14f21—(1+)(14)S12t14)
L2
1 .
—5(1+;(14)s12+purelyredu01ble . (7.3)
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Reducibility here again means integrals with fewer propa-
gators (simpler topologies), though one of the surviving
propagators will still be doubled.

In order to solve for integrals with doubled propagators,
we must generalize the polynomials multiplying the gen-
erating vectors to rational functions, with a denominator
power corresponding to each doubled propagator. We can
repeat the analysis of Sec. V to find master integrals in the
presence of doubled propagators. Here we must take
appropriate additional powers of a propagator multiplying
the numerator insertion. In the case of the double box, we
find that the structure of the equations changes. Using just
the first IBP-generating pair (4.5), we find two additional
masters beyond those given in Eq. (4.10); with a poly-
nomial of engineering dimension 2 multiplying the first
pair, and constants multiplying the second and third pairs,
we find one additional master; and with a polynomial of
engineering dimension 4 multiplying the first pair, and
polynomials of engineering dimension 2 multiplying the
second and third pairs, we find no additional masters
beyond Eq. (4.10). This means that all integrals with
doubled propagators can be reduced to linear combinations
of integrals with lone propagator powers and integrals with
simpler topologies. In this case, we also find that the third
IBP-generating pair (A1) is no longer redundant, but is in
fact required to obtain a sufficient number of equations.

As an example, consider doubling the middle propaga-
tor, 1/(¢, + £,)?. We can reduce integrals with irreducible-
numerator insertions to a linear combination of two
integrals,

- 1
Py || and Py ||, (74
2 [(fl + 52)2} o 2 [(fl + 52)2} 74

along with integrals corresponding to simpler topologies,
using analogs of reductions given in previous sections,

(tia — 1)

] + simpler topologies,

0= pr* 1 (1+ 2714 + 2¢)
22+ £,)? 8e (¢1+62)°
(B+4e) sty yullt+e) s
8¢ (1 +62) 8¢ (41 +0)
(L42¢e)(1 +x1a)

- A slz} + simpler topologies,
€

S12l14

(7.5)

and so on. Using a polynomial of engineering dimension 4
multiplying the first vector pair (4.5), and polynomials of
engineering dimension 2 multiplying the second (4.6) and
third (A1) pairs, we find two additional equations,

st de(1 +2¢) ,
7 S12121
t1+6,)7 xu(l+e)
_ (1+2¢)(1 + 3¢) E }
x1s(1 +€) ]’

0=P5 M—E(I—I—ZG)SS
R 275 12

O:P;*2|:(

S (7.6)

which remove the remaining two integrals with a doubled
middle propagator in favor of the usual master integrals
(4.10).

VIII. SOLVING GENERAL POWERS

In Sec. VI, we saw how to obtain a reduction for an
arbitrary power of an irreducible invariant, in the form of
Eq. (6.9). One could imagine reducing a double-box
integral with a given high numerator power of the irre-
ducible invariant by repeatedly applying this reduction,
until it ultimately terminates (for integer n) when n = 2.
We would then be left with integrals which are either
masters or directly expressible in terms of masters.

We could also try to solve the recurrence directly. If we
define

wy = s P35 (1), (8.1)
and drop the purely reducible (simpler-topology) terms in
Eq. (6.8), that equation takes the form,

4(1+2e—n)w, + 22+ (n = 1)y14 + 3¢ — n)w,_;

—x1(2+e—n)w, =0, (8.2)
where “=" denotes the dropping of simpler topologies.

We will ultimately turn this recurrence into a differential
equation and solve the latter. Before doing so, however, let
us look at a simpler example.

-K

K

FIG. 3. The sunrise integral Py.
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A. The sunrise integral

Let us study the sunrise integral Py, shown in Fig. 3,

del dez POly
Py |Pol ,
P = 3 [ G s s 77

(8.3)

where K2 # 0. This two-point topology has just one master integral, which we take to be P [1], and two irreducible
invariants, t; = ¢, - K and t, = ¢, - K. It depends only on the kinematic invariant s = K?. There are three linearly
independent pairs of IBP-generating vectors,

R 1 ) 1
vlll;lzﬂll<r12_t1_is)’ UIf;Z:_ﬂfIZ'f‘(flzl-%—Kﬂ)(rlz—tl—l2—§S>,
H M w4 1 1 TR PN 1
02;1=—f2t1+K r12_t1_t2_5s +§l/ﬁl r12_t1_2t2_55 s

1 1 R 1 1 . 1
vg;zzzfﬁltz—zkﬂ<rlz—ll —12—2s> +2f’2’<r12+t1 —12—2s>,
. 1
”134;1:ﬂf<’22+”12—f1—58>,
u u " . 3 " N 1
1)3;2:f1t2—f2 r11—|—r12—t1—3t2—§s —K r22+r12—t1—t2—§s s (84)
where r; = 3 and ry, = ¢3 as in Eq. (4.3), and

1
f”lzzf]'f2+tl+t2+is. (85)

Let us try to compute Pgq[f}]. The integral is simple enough that we can compute it directly, using the following
expression for the one-loop bubble with arbitrary exponents:

/ d°¢ 1 _ i(—K2)D/2_a‘_a2 I'(a) +a, = D/2)T(D/2 — a)[(D/2 — 0’2) (8.6)
(27)? [=£2)[=(£ + K)?] ™ (4m)P/? [(a)C(@)l(D = a) — ay) '
Performing the ¢, integration first, we obtain
B i T(eI?(1-e¢) [ dP¢, 1 1 r'(2e)I3(1 —e) >y
Poolll = - (4m)>¢ T(2 - 2¢) / 2n)P A2[—(¢, + K)° (4n)*2 (1 = 2¢)T(3 — 3¢) (=),
o (e)F2(1 —e) (a0, [(£1 + K)? =25 —s]"
Pl =~ G rr=20) | @Y Al BT
L TOP-g fde g n AP — K
@rp (T2 =20 aP 2 iilialn—ji =)l A=(Z1 - K
_ i rer(i-o / Pl
(@ (2)'T2 - 2¢) ) (2m)P £ ol (n = ) [=A3][= (40 = K)o

B 1 F(e)F3(1—e) g2 e I(—j—1+42e)'(2+ j—2e¢)
S TGy T Z D ( ) e =T +3-39

(1) T(e)F2e)3(1 —e) (Lo [(n+2-2e¢)
© (4n)*2 (=2)"(1 = 2¢) [(e)T'(2 —2¢e)[(n + 3 — 3¢)

— 5/ 3T =) Pooll) 8.7)

Alternatively, we can proceed using the IBP-generating vectors. Take a linear combination of the first and third vector
pairs in Eq. (8.4), with coefficients,
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3
T 8.8
4(n+2 - 3e) (88)
and
1
T A 8.9
4(n+2-3¢) (89)
respectively. We then find the following equation:
(n+1-2¢)
0= Py |th + =— 15|, 8.10
0,0 1+2(n+2_3€)1 s ( )
Defining
Yu = sT"Poolt], (8.11)
we have the recurrence relation,
2(n+2-3¢)y,+(n+1-2¢€)y,, =0. (8.12)
We can solve this equation (for example, using
MATHEMATICA), obtaining the result,
I'(n+2-2e)'(3 -3¢
o = (27 =) pult). (8.13)

I'(n+3-3e)(2 - 2¢)

in agreement with the explicit computation in Eq. (8.7).

B. Differential equations

It can be difficult to solve the more general recurrence
relations such as Eq. (8.2) directly (MATHEMATICA, for
example, can solve them but provides the solution in an
implicit and rather unenlightening form in terms of
DifferenceRoot objects). Instead, introduce the generating
function,

o0
E a,x",

n=0

f(x)

(8.14)

and derive a differential equation for it. Once one has
solved the differential equation, one can obtain the solution
for a, by series-expanding the solution. One approach to
obtaining a differential equation is to use the RISC-Linz
MATHEMATICA package GeneratingFunctions [19]; but
one can also proceed in a more pedestrian fashion, as
described here.

First recast the recurrence relation Rec so that the indices
of a appearing in it are strictly positive for n > 0, and then
sum the recurrence (depending on n) into a generating
object,

(8.15)

o0
n
E Rec,x".
n=0

Then apply the substitution rule,

o o r—1
g Cply X" — x‘r< E CprpX" —x77 g cn_,a,,x").
n=0 n=0 n=0

(8.16)

In this rule, ¢, is a polynomial in n and r > 0; we need
consider only linear functions of n (because the single
derivative generating the IBP identity can bring down only
a single power of an exponent; though factors of n in
coefficients could in principle alter this). Finally, using the
operator,

D, = x0,, (8.17)

replace

Z nPa,x" — DY f(x). (8.18)
n=0

In the recurrences we consider, this will give an inhomo-
geneous first-order differential equation. It turns out to be
easier to solve (using MATHEMATICA, anyway) a higher-
order homogeneous equation obtained by further differ-
entiation. The behavior of f(x) as x — 0 provides the
additional boundary conditions needed for the higher-order
equation. The GeneratingFunctions package produces
such a higher-order equation directly. In the next two
sections, we give examples of using differential equations
for the generating function to solve recurrence relations for
general powers of numerator insertions.

C. The slashed-box integrals

Let us now consider a more complicated example, that of
the slashed box P, ;. For this topology, we find seven
linearly independent pairs of IBP-generating vectors. To
express them, we use the short-hand notation defined in
Egs. (4.3) and (4.4) along with,

t, =7 -k,
tyy =7k,
t24 - lxﬂz . k4, (819)

and,
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Fio =710y + 114+ 1,
il23 — fz . k3. (820)

The first four generating vectors are
Ulf;l =—kiryy = kyry = (s12 =21, = 2uyy),

Vg = K (g 4 2104) + K5 (rog 4 2154) + 264 (134 + lig3) 42k} (124 + ln3),
| 1 5 | )
vh,) =§k§r11 Jrikﬁ”n — K (F1o =t = t24) + Lhuy, Jriﬂf(slz F 14812 = 2t 10 = 2114 = 2tyy — 2tp4 — 21i3),
1 . 1 . . .
vy :Ekg(z”lz + 1y =2ty = 2ty) +§k’2(2’”12 + 1y = 2114 = 24) + ity + K| (Fro = tig — 124)
2 2

v = =4k ry = Kyri =Ky (3ryy = 2F 1y + 2814+ 2t54) = 285u1y — £ (4512 + 114812 — 8t1p = 2114 — 21 — 2154 — 6uyy — 2lin3),
Vs =4k, (1o + 2t54) + Ky (5o + 8ty4) = E5 (114512 = 2120 — 814 = 10iiy3) + K (2 + 8ty4 + 8il3),

45 ! ! —tip—tig—1lp —ly—
| 5812t XS — o —tia—In—lu—uy |,

1 1 1
Vg :ikgru +Ki(rn +f14)+§f’f(512—2f12—2f14—4M11)+§kZ(’”11 —2uyy),

1 1 . 1 .
Vyo = =k (rp +134) —Ekg(rzz +2t) +5ﬂ§()(14512 — 2ty — 2ty — 4ii3) —Ekﬁ<r22 + 214 +2i1p3). (8.21)

The fifth vector is given in Appendix B; we will not need the sixth and seventh vectors, which in any case are too large to be
displayed comfortably.

The slashed box has one master integral, which we can choose to be P, [1].

Multiplying the first generating vector pair in Eq. (8.21) by P; + P,, where

ztn—l
P =— 12 —8—8y 4 —64e—32 232¢%2-56 2 _320¢3
S T 200 (ST 20 (1 12— n) (2 2e—m)(Ge—n) 0 84— 64e = 32146 +232¢7 = 5611467~ 320¢
+64y,4€> +224€* + 96y ,6* +256€> +34n 426y ,n— S4en + 106y ,en + 144€*n + 16y, ,62n—280€3n

— 120y 14630 —128€*n — 1512 — 37y 4n* — 26€n* — 66y, 4en> + 104 n? + 32y 146> n* + 16€3n”> +Tn® +19y,4n°

sty
(14+2y14)(1+2¢—n)(2+2e—n)
=36y 146> + 43 ,€* +326% + 32y 146> —n— 2y 14n =3y n+ 16en+ 10y sen — 4yt en — 8e*n — 8y €2 n —n® + y3,n?)
_ (n=2)shrl? A(=14e)(=1426)(n=2)sppt g 20514
(142¢14)242e—n)  (142r14)(1+2e—n)(2+2¢—n) (142x14)(-1+2¢)(14+2e—n)(2+2¢—n)(4e—n)
X (=2 =214 —26€ =2y 146 — 24€* + 40y 146% +296€> + 40y 46> — 384¢€* +256€° + 1 1n+ Sy 4n+40en — 8y ,en
—152e’n—56y1462n+120€*n — 24y 1463 n — 128€*n — 12n% — 4y 4n* + 12en? + 12y 4en” + 16€*n> + 20y 146 n?

— 14en® + 8y 4en® =3y 4n*) + (2+42x3, —2e+4y 6+ 6y e —44€?

2057t
(14+2x14)(=142¢)(14+2¢—n)(2+2¢—n)
— 2y 146+ 64€* + 8y 462 — 104e 4 8y 46> + 64e* —25n+ 3y 14n — 52en — 2y ,en+20€*n — 8y 460
—16€’n+ 161> =y 4n* +10en® + 2y 46n”> —3n3) (8.22)

+16€°n? +3n® + y4n —6en’® — 4y en®) — (14 —=2y14+30€

and
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b= =i 200 2+t7§:ti4n)(z e~ (e =) O O+ T8e + Opiae — 15267 = 120514” + 264
— 120y 4€* — 768¢* + 256€> — 33n — 15y 141 — 8en + 24y ,en — 120e?n + 168y 1,6 n + 600e’n + 72y 4¢%n
—128¢e*n + 22n% 4 12y,4n? + 36en? — 36y,4en*> — 168€’n> — 60y 14621 + 16€’n* — 9n® — 3y ,n® + 18en?

2(=1+42¢)*(n=2)sppty g

(14 2714)(1 +2e=n)(2+2¢—n)’

+ 12y 46n°) — (8.23)

the second vector pair by

n—1
T+ 2 =1+ 26)%%;:?5)(2 e~ (e =) 2T 208~ 226 1815 £+ 10467 87167 — 16867 — 816
+ 64e* + 3n — Ty1un — 26en — 18y 4en + 48e*n — 1663 n + n? + Sy un* — 2en® + 4y ,en* — y14n?)
4(2¢ +n=3)r5° 1y
(1+ 2r14) (=1 + 2¢)

n—-2
251,175

+ 4 =214 — 126 = 2146 + 8€* + y1an) —

41171,

— —2—=2y14—10e -2 — 726 + 40, 2 4+ 264¢3
020 (T 7200 (1 26— (2 £ 2e —n)(de =) 2~ 2014 = 106 = Zyiae = 7267 4 40p14¢” + 264
+ 40y 463 — 192¢* + 1286 + Tn + S5y 1an + 36€n — 8y sen — 64€>n — 56y ,4€7n — 566’ n — 24y 463n — 32¢*n

— 8n% — 4y yn® — 8en? + 12y ,en® + 48> n? + 20y 462 n* + 3n® + y1un® — 6en® — 4y en?); (8.24)

the third vector pair by

21151
(1 4+2x14)(=14+2€)(1 +2¢—n)(2+2e—n)(4e —n)
+224€* 4+ 32y14€* +9n + Ty an — 22en + 38y 46n + 88€*n + 24y 1462 n — 160’ n — 32y 14630 — 3n® — 11y 4n?
2(n=2)115%1,
(14214 (-1 + 2€)

(=2 =214 — 18¢ — 10y 46 + 80€* — 32y 46> — 184€> + 8y 463

— 14en® — 26y 4en* + 40€?n® + 4y 14€*n* + 21 + 6y 40’ — den® + 4y yen’ — yi4n*)

21152t

— —2 =214 —26€ -2 40€? 4 40y 4€% — 2463 + 40y 463
052 1720 (I % 26— n) 2 7 20— m)(Ge =) 2~ 214 = 26€ = Zyuae + 4067 + 4071467 — 24" +40714¢
+128¢* 4 111+ Sy14n + 8en — 8y aen + 8€’n — 56y 14€°n — 136€3n — 24y 1,3 n — 8n* — 4y 4n* — 8en® + 12y 4en?

+48€?n® + 20y 14€°n* + 31 + y14n’ — 6en® — 4y en’); (8.25)

and the fifth vector pair (B1), (B2) by
(with the fourth, sixth, and seventh vector pairs not used), we obtain the IBP equation,

0= P [4(1 + 1) (1 +3e = n)siatiy" =203 + 214 + 3¢ + 2r146 = 2n = yian)siytly” — (n = 2)s3,115°
+ simpler topologies. (8.27)

Defining
W, = s73 Py [t,). (8.28)
this IBP is equivalent to the recurrence relation,

0= (1+n)w, +2(3+2ru)(1+¢€) = (ria +2)(3+ 1)),y +4(1+x14)(n +2 =3, . (8.29)
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Using the approach described in Sec. VIII B, we can obtain the corresponding first-order differential equation,

0 = (4e(x =3)(1 +y14) + x(x =2+ 2€))f(x) = 2(2(1 +14)e(x = 3) = (1 = €)x)wg
— 41+ 1a) (1 = 3€)y + (x = 2)x(x = 2(1 + y14)) /' (). (8.30)

Differentiating twice more with respect to x, we obtain the more convenient third-order equation,

0==2f(x) +2(2(2 =€) + 2(1 + y14)(1 = 2¢) = 5x)f'(x) = (4(1 + x14)((2 = €)(1 = x) = 2€) + x(7x = 10 + 2¢)) /" (x)
= (x = 2)x(x = 2(1 + 14))f P (2). (8.31)

We can solve the latter equation (for example, using MATHEMATICA), obtaining

xc 23¢(1 + y14)*c ( X X >
= - —3¢,—€,~2e,1 =36, -
T = G @0 T ) =) 7 T 6@l 4 gag) =y L\ 2 L3
2%(1 4 y14)*x(c3 + 2¢3) x
Fi[1-3¢,1—¢€,—2¢,2-3 _— 8.32
T30 =0 (1 4 ) 0% < Pl 173 e2=3ez 50 ). (8.32)

Here, F| is the first Appell function. The first term is not well-defined for ¢ < 0 as x — 0, so ¢; must vanish. The second
constant of integration, c,, is fixed by the requirement that f(0) = Wy,

C2 = —12<1 +)(14)€1>{/0. (833)

The last constant, cs, is fixed in terms of W, via f'(0) = w,; but w, in turn is not independent, because for n = —1, the
recursion (8.29) becomes a two-term relation,

0= (1=3€e—=2¢r14)Wo —2(1 =3€)(1 + y14)W;. (8.34)

We ultimately find that ¢; = 0. The solution with the desired boundary behavior is thus,

3 236(1 +)(14)1+2e€x X
_ Fi(1-3e,1—¢-2¢2-3¢2 — X )i
) = 05096 —0 e+~ T ©2=3¢ i)
21+3e 1 1+2¢
+ )T o (e el =3t (8.35)
(2=2x)°2(1 +x14) —x)' e F 2°2(1 +x14)

We can then extract the nth term of this function to obtain an expression for w,. After a bit of algebra and simplification, we
find the following expression:

o — 6¢* (1 4 y14)Wo
21 = 2e)0(1 —€)L(1 4 €)L(1 + 2¢)
) Lz:] (1 +x14)" (n ]— n+1-3e) ;)l;(ln‘;;jt);?j‘ jjl_—er)zle)_!j:!)
8 Z 1+ y14) :Il*l Tn;’f;;'ij) (ny +e) (1= €)(1 4 415" 1:12 = z;gg(ln—f:? —
o« ;i:o +114)" e r;”_ztl‘i)"ij) (ng + 5)] . (8.36)

. . . 4
By a bit of guesswork, we can find a more compact expression,

*We thank Yang Zhang for suggesting that a simpler form should exist.
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~

217"el(n — 2€)(1 — 3¢)
W, =—

Fi(1—e—=n 1 = n+ 26 (14 718) " )ivo. e
(1 =2e)C(n+1-3¢)? 1(I—e-n; n+2e; (1 + x14)™" )Wo (8.37)

This form is manifestly a rational function of y4 and €, as the hypergeometric function terminates for integer n.
Either form meets the challenge posed in Eq. (3.3), up to terms arising from simpler topologies.

D. The double-box integral

Let us return to the double-box integral, and the recurrence relation given in Eq. (8.2) [with the definition of w), in
Eq. (8.1)]. Rewriting the equation to make all indices positive for n > 0, we obtain

0= —yule=n)w, +2(ra +3e = n+yun)w, +4(=1+2e—n)w,.. (8.38)
Again using the approach described in Sec. VIII B, we can obtain the corresponding first-order differential equation,
0= —(—4 — 8¢ —2x — 6ex + y146x?) f(x) = 2(2 + 4e + x + 3ex)wy — 8ew; + x(2 + x) (=2 + y14%)f(x).  (8.39)

As in the case of the slashed box in the previous section, we can differentiate twice with respect to x to obtain a more
convenient third-order equation,

0 = —2y1s€f(x) = 2(=2x14 — 6€ — 3y 1ax + 2x14€x) f'(x) — (4 — 8¢ + 6x — 8y 14x — 6ex — 6y 14x% + y146x?) f(x)
+ x(2 4 x) (=2 + x14%) fO) (). (8.40)

We can solve this latter equation to obtain

B X262 + x)ec, 2¢2 4+ x)¢F (=1 = 2¢,1 4+ €, —2¢, —2¢; —%%)(14)6)02
o) =~ (2 = 214%)* (=2 + x14%) 2(1 +2€)(2 = y14%)* (=2 + x14%)
—2x2(2 4+ x)°F, (1 — 26,1 + €, —2¢,2 — 26— %, %){14)6)63 N 2°x(2 + x)°F 1 (—2¢,e,—2¢,1 — 2¢; -3, %){14x)c3
4(=142€)(2 = y14%)* (=2 + x14%) 4€(2 = 714%)* (=2 + y14%) '

(8.41)

(Here too, F is the first Appell function.)
Once again, the first term is not well-defined for ¢ < —1/2 as x — 0, and so ¢; must vanish. The second constant of
integration ¢, is fixed by the requirement that f(0) = wy to be

¢y = —4(1 + 2¢)wy. (8.42)
The third constant c¢; is fixed by the requirement that f'(0) = wy,
c3 = =2(wy + 3ewy + 4ewy) (8.43)
The solution with desired boundary behavior is then,

—2M¢(2 + x)°F (=1 — 26,1 + €, =2¢, =2¢; =3 . L y14%) W
(2 = x14%)* (=2 + x14%)
N 20224 x)F (1 — 26,1 + €, 26,2 = 26; =3, 3 y14%) (Wo + 3ewy + 4ew)
2(=1+2€)(2 = x14%)* (=2 + 1 14%)
—2°x(2 + x)°F (—2¢,€,—2¢,1 — 26, =% .1 y14%) (o + 3ewp + dew)
+ 2¢ :
26(2 = y14x)* (=2 + y14%)

fx) =

(8.44)

Once again, we can extract the nth term of this function, to obtain
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2(=1)"¢? (=x1a)™
2¢)
2'T(1 —2e)[(1 — e)T(1 4 €)T(1 + 2¢) ( + GWOZ (n—n; —1—=2¢)

w, = —

" "Z'S (=x14)"T(n—n; —ny + 1+ €)['(ny — 2€) Z C(n; —ns+ 1+ 2¢)0(ns —¢)
(n—ny —ny)'ng! = ()™ (n —ns)ins!

& —14)™ R (=) C(n=ny —ng + 1+ €)'(ng — 2¢
(o + 3ewp +dewy) 30— W™ SR (F) Tln = g )C(n — 2€)

= (n—n,+1-2¢) = (n—ny — ng) ng!
2 T(ny—ny +14+2e)0(ng =2 —¢) . N (=)™
+ extd (wo + 3ewy + 4 1)
T~ + DGy — ) 0 (o 3w dewn) 3 2o 2oy
nzm (=214)"T(n = n3 — ng + €)l(ng — 2¢) <~ T(n3 = ng +2¢)l'(ng — ¢) ) (8.45)
(n = n3 — ng)!ng! =0 (=x14)™T(n3 = ng)l'(ng + 1) .

We can repackage the inner sums as finite hypergeometric sums to obtain a visually more-compact form,
I'(1-2e)I'(1—¢)
(=2)"T(1 =2e)I'(1 =)' (1 4+ €)I'(1 + 2¢)
x [ =(1 + 2€)wy Zn: (=x1)"T(n—=n; —1-2e)l'(n—n; + 1 4+ €)l'(n; + 1+ 2¢)
= I(n—n;+ 1)['(n—=n; —2€)l(n; + 1)

X ,F (=2€e,—n+ ny;—e — n + ny;—y14),F (=€, —ny; —2€ — ny; —y1d)

— 74 (Wo + 3ewq + dew;)
» Z —)(14 "T'(n—ny =2e)l'(n—n; +¢€)l'(n; + 2e)
F'n=n;+1)'(n—n;+1-2¢)(n)

X ,F (=2e,—n+n;;1 —e—n+ny;—y4),F (=€, 1 —np;1 =2 —np;—yid)

+ (wo + 3ewqy + dewy)
XZ (=x1)" ™ T(n—n; +1=2e)[(n—n; +1+€e)(n, =1+ 2)
I'n—=ny+1)'(n—ny+2-2¢)['(n; = 1)

X F(=2e,—n+ny;—e —n+ny;—y14),F(—€,2 —ny32 —2e —ny; —)(1_41)>. (8.46)

These forms meet the challenge posed in Eq. (3.6), up to terms arising from simpler topologies.
It is not obvious how to write down an analog of Eq. (8.37), an expression which is given purely in terms of
hypergeometric functions and yet is manifestly rational in y4 and e. Lifting the latter requirement, Yang Zhang [20] has

provided a simpler form based on the cut computations in Ref. [21],

7"T(=3e)['(n —¢€)
’ <2”r(_€) I'(n - 3e) 2F1 (=26, =2¢ + ;=3¢ + n; —x) ,F (26, 1 + 26, 1 + 36, —y)

eT'(3e)l'(1 +2¢—n)
(=2)"T'(2¢)I'(24 3¢ — n)

X, F (1 =2¢,-2¢;1 =3¢e;—y),F,(1+2¢,1 +2€—n;2+3e—n;—;())

4ey"T'(—1 = 3e)I'(n —¢)
- < 2"T(—e)'(n — 3¢)
X ,F,(—2¢e,-2¢ + n; =3¢ + n;—y) ,F, (1 +2¢,1 + 2,2 + 3¢5 —y)
2I°(1 4+ 3¢)I'(1 + 2¢ — n)
(=2)"T'(2¢)I'(2 + 3¢ — n)

X ,F (—2¢,—2¢;-3¢;—y) ,F, (1 +2¢,1 4+ 2¢ —n;2 + 3¢ — n; —)()) (8.47)
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IX. CONCLUSIONS

Finding linear relations between Feynman integrals
plays a key role in higher-loop calculations in quantum
field theory. Integration by parts has become the method of
choice for finding such relations, but the conventional
approach to using them leads to equations involving many
unwanted integrals with doubled propagators. Moreover,
the standard method for solving them requires cumbersome
handling of large systems of equations. The first issue can
be addressed using the generating-vector approach first
introduced in Ref. [13]. In this paper, we presented an
approach to simplify the second issue. It eliminates the
need to handle large systems of equations by allowing one
to target desired numerator terms and derive direct reduc-
tion equations for them. A specific numerator can be
isolated by choosing appropriate polynomial prefactors
for each of the generating-vector tuples for the integral
topology under study. One can do this for specific terms, as
in the examples of Egs. (4.20)—(4.25). One can also do this
for general powers of irreducible invariants, something not
possible in the conventional approach. We gave examples
in Egs. (6.3) and (6.5). As an example of the power of the
new approach, we showed how to obtain closed-form
reductions to master integrals for such arbitrary powers,
in Egs. (8.36) and (8.45). It is also possible to find master

integrals within the new approach, as seen in Sec. V, though
the strategy outlined there can undoubtedly be improved
with more insight from algebraic geometry. The generali-
zation of generic-power equations to multiple irreducible
invariants, not discussed explicitly in the present paper, is
straightforward. Solving the corresponding differential
equations, as in Sec. VIII is less straightforward, as one-
variable differential equations are replaced by systems of
partial differential equations, but should be possible using
appropriately designed series ansatz. Even without explicit
solutions to generic powers, the approach described in this
paper will greatly simplify integral reductions to masters,
and should make possible new calculations at the high-loop
frontier in a variety of quantum field theories.
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APPENDIX A: THIRD GENERATING VECTOR PAIR FOR THE DOUBLE-BOX INTEGRAL

The third IBP-generating vector pair for the double-box integral is

Uglg = —k5(1L+ y1a)r} = xiarnsia + 2(0+ 2714)ryi g — dxiatigin) — 214K 114 (510 + 2u10) + Kyry (1 + x14)

2

-2
+4(

W M
V3p = —k5 (21471272

L4 yia)ury = 21aurn) + 2 (a1 + x1a)rinsio = 2(1 + pia) rintia + 27 1as10ta = 2714 (1 + y14)s121
L+ yia)tiaugy +2(1 + yra)rinnn = 2¢1a(1 + y1a)S12u12 + 4(1 4 3y14) taura),

+ (r1a = D)rdy + x34r12512 + x1a(1 4 014) ras1a — 4x1arntiy — 21atiatyy + 2rotag — 2y 14Uy o) + Ky(2(1
+x14)rrn + (L4 114) 13, + 21412812 + x1ar0812 + 41+ 1) ity +2(1 + y1a) rotar + x1aS12t21 + 2y
+ x1aS12U11 + 2 1ata1tyy + 2(1 4 yra)ronttyn + 2y 1atar iy 4 Ariniy + 2rantns + 214y Uz 4 Aot + 2rpniiny

+ 214ty ) = K (211272 — 2’%2 F a1+ x1a)r12810 + 21a(1 + x14) 722812 = 2014720114 — X148 12814 — 2X 14114l
= 2x1atiattos + (1 + x14)riotos + 2(2 + x14) Toallos + X148 12U0s — 2 1at1allog + 2114l 2 Uo4)

1
+ Eﬂf(zﬂ(u(] + 214)r0812 = X145 + 21as1at + droatny — 2t s1atns 4 4roguiag — 214 (1 + y14)S12U04

1
— 8uyzupy — 8u3y) _555(4)(14(1 +x12)r12512 + 11451 — 214812014 + 8(1 + y14) riatar +4(1 + x14)ranta

— 8y 1atiaty +4roauyy + 214 (1 + y14)S1ouny + 4rpuny + 223451110 + 8(1 4 y1a) riattas +4(x1a — 1) rppuns

+ 16u3, +4y14(1 + y14)S12123 — 16y 14114103 + 16(1 + y14)r1otng + 8 1aT20Uog + 41 12(2 + ¥ 14)S 12124

— 16y 14t14U4 + 8y 14U 1pUny + 16Uz 1,).

(A1)
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The corresponding prefactor for the first term of Eq. (4.11) is

Denomd, *()(14( +214) (1= 2€)r11810 + 2x1a(1 + x12) (1 + 26)r12812 + x1a(1 + x1a)rosio + xisest,

Denom
L+ y1a) (1 = 2€)ry 114 — Opraesiatiy — 2(1 + 1a)rintar — 4(1+ x1a) (1 = 2€)r1pty
= 2(1 + x14) (1 — 2€)rpnta) — 8x1a€tiaty; + derpuyy + 6x14(1 + y1a)esipun
L+ j14) (1 =2€)tiqu1y + 2(1 + x14) (1 — 2€)r1u10 + dernugy + 2142 + 3x14)€s 1212

(1 +3x14) (1 = 2€)t14u10 = 2(1 + y14)rings — 4(1 + 14) (1 = 2€)r15us3

2(1 = y14) (1 = 2€)rpttns + 4y 14(1 + x1a)€s12taz — 161146t 14u3 — 4(1 + y14) 711104

= 8(1 +x14)(1 = 2€) 12124 — 4x14(1 = 2€)roptng + 47142 + y14)€S12Un4 — 1611461 141104

+ 8y 14€uating — 8(1 — 2€)unsutry — 8(1 — 26)”%4)- (A2)

2
(
+4(
(
(

APPENDIX B: FIFTH GENERATING VECTOR PAIR FOR THE SLASHED-BOX INTEGRAL

The fifth IBP-generating vector pair for the slashed-box integral is given by
;,t

2(1+ 2)(14)
— 2(1 4 2x14)s12110 — Auyyiiny — 4(1 4 y14)s10014 + 8tiatiy — 4F1atoy + 2(1 = y14)S12t0n — 8t1atyy — 413,

1
Vs = Ek’iruslz + (2712812 = 2(1 4+ x14) 22812 + 5Ty + 3p1a8T + 207457, — 8F 1ty +4(1 + x14) ot

—4F 1oty — 214812t — 4(1 + y1a)tiatas — Sty — dtyputy) — dtygity — 4Fpplins + 281503 — 4(2 + y14)t2lln;

. . . Ky y y . . .

— 8ty — Atpyilyy — 4i133) + —L (=27}, = x1aF12812 + 2F1at1y + 14812014 — 2F 10000 + 2014100 + 2F 12ty
(14 2y14)

+ 114812004 + 2(1 4 y1a)tiatas + 2tntay — 2F1puyy + 2ty41tyy + 2tpattyy — 27 pllns + 2t141lp3 + 21040153)

/o . .
—72(—4"11”12 +2(1 + y1a)riiran — (14 2y1a)riy810 + 4r1ty — 2111t — 251411 tas + 4F1puyy

2(1 4 2y14)
v f’éun . v
— 4t 141y + Ay ataattyy — 2(1 + y14) 711 003) +m(2rlz + 114810 + 2810 + 2t 4 2uyy + 2ily3), (B1)
1

and p
_ 2
2= 2(1+2x14)

— 8112ty — 8ty4tyy — 413, — 8F1atay + 2(1 — 13,)S 12004 — 8tintag + 4(=2 + y14)tantas — 2(1 + y1a)s1201

(=2(1 + x1a)Fr2812 + 2(1 + x14)*ransio + (1 + x14)%57, — 2(1 + y1a)s12ti2 — 4(1 + y14) rantnn

v v ) v v v v v
— 8tyuty) — 8tyuttyy — 8Fypliny + 2(1 + y1a — ¥14)S 12023 — 8t12lin3 — 4(3 = y1a)taallns — 8toullny — Sutyylins

. Ky y y .
—8itdy) — ———— (2F1aran — y1aF12812 — (1 + x1a)roosia + 2rmtis + x1aSintis — 21t + 2ty
(14 2y14)

+ 2t1atyn + 2F1atas + x14(2 + x14)S10t0s + 2ti0ts — 2(=1 + y1a)tantos + 21ty + 2041y + 2riin;

ﬁ (4F12rm = 4rytiy = 2(1 + x1a) 75 = 2(1 + y14)Fiasia = (14 2x14) rosio

+2(1 + y14)S12t14 = 4F12tay + 2rmty + 414ty — 2(2 4 y14) rootog + 2(1 4 y14)7S 12004 + 4F 10004 — 4114004
K,

2(1 +2x14)

+4Fpty — 4(1 + y14) ooty — dtiatyy — 8tiatyy — i iatay — 2y 14(1 + Y14)S 12124 — dtiatas — 4(1 = y14) tatry

+ 2t40l3) —

+4(1 = y1a)toatos — i pplins + 2(1 + y14) ranlins + 4t 14llp3 + 4tpyllns) + (34 614+ 223, r0s12

u o - - - - )
— dtyuyy — dtpguyy — AFpplny — Aoglny — 2x14(1 + J14)S12dlns — 4tiallny — 4(1 — y1a)toallny — duyy i — 4iis;)

s 5
ﬁ((l Fx1a)rn = o Jata + 1ading). (B2)
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