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1 Introduction

Recent years have seen a remarkable confluence of string theory and nuclear physics, with ef-

forts to gain new theoretical insights into the strongly coupled quark-gluon plasma (sQGP)

using holographic techniques [1]. The AdS/CFT correspondence [2, 3] has proven to be a

powerful tool to investigate the thermal and hydrodynamic properties for certain strongly

coupled gauge theories [4]. Of course, the gauge theories which are amenable to such holo-

graphic study are somewhat exotic compared to QCD but one may suppose that certain

properties of the corresponding plasmas may be universal. The latter suggestion was re-

inforced by the observation that the ratio of shear viscosity to entropy density seemed to

be a universal property of the holographic theories yielding η/s = 1/4π [5, 6]. Further,

experimental data indicates that this ratio is also unusually small for the sQGP and even

appears to yield roughly η/s ∼ 1/4π [7]. It is now well understood that the holographic

result η/s = 1/4π emerges for gauge theories described by Einstein gravity as the grav-

itational dual. Still this encompasses a remarkably wide class of theories and situations,

e.g., with various gauge groups and matter content, with or without chemical potentials,

with non-commutative spatial directions or in external background fields [5, 6]. It is also

well understood that higher curvature corrections in the gravitational dual will modify

this ratio [8]–[14]. In fact, it was shown that for certain theories these corrections pro-

duce even lower values [12–14] thus disproving1 a longstanding conjecture that η/s = 1/4π

represented a strict lower bound for the viscosity of any physical system, i.e., the KSS

1See also [15].
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bound [16]. Still one may interpret these new holographic calculations with higher cur-

vature interactions as broadening the universality class of conformal gauge theories under

study [11, 14].

The focus of the present paper is to use the AdS/CFT correspondence to investigate

how a nonvanishing chemical potential µ effects the hydrodynamics of strongly coupled

gauge theories. In particular, we consider how η/s is modified at finite µ. As noted above,

with an Einstein gravity dual, the result remains η/s = 1/4π, even though individually

the viscosity and entropy density have a complicated dependence on µ [17, 18]. Hence, µ

can only modify this ratio through the correction terms appearing from higher derivative

interactions in the gravitational dual, as we will explicitly illustrate. Since the effects of the

chemical potential are tied to the higher derivative interactions, it is interesting to examine

violations of the KSS bound in this context. For example, one might find that the chemical

potential limits any violations and that the bound is restored with sufficiently large µ, i.e.,

η/s > 1/4π for µ > µc. However, we identify a broad class of theories where in fact the

opposite result is found, i.e., increasing µ only enhances the violation of the KSS bound.

In principle, studying the effect of the chemical potential on hydrodynamic properties

is also of phenomenological interest. The higher derivative modifications are associated

with corrections emerging from finite Nc and λ in the QCD plasma and these may be

significant for the sQGP [10, 11, 14]. So it is again of interest to determine whether finite

µ enhances or suppresses these effects. Unfortunately the relevant chemical potential for

baryon number is not expected to be large, i.e., µB ∼ 30MeV or µB/T <∼ 0.15 for recent

experiments at RHIC [19] and so any effects will be limited. However, they may still play

a role as the determination of η/s becomes more precise in the coming years.

Turning to the holographic hydrodynamics described by the charged black holes more

broadly, we also investigate the conductivity, σ. It was suggested that the ratio of the

conductivity to the shear viscosity could obey a bound similar to η/s [20]. The heuristic

reasoning behind this conjecture was as follows [20]: in any four-dimensional CFT, we

expect η ∼ cT 3 while σ ∼ kT where c and k are basically central charges of the CFT. The

first of these is related to the total number of degrees of freedom while k is related to the

charge degrees of freedom. Thus it is natural to expect an upper bound on σT 2/(ηe2) ∝ k/c,

which in turn may be related to the weak gravity conjecture of [21]. While this ratio

depends on the relative normalization of the current and the stress tensor in the CFT, it

was also suggested in [20] that this relative normalization would not appear in the ratio of

the conductivity to the susceptibility and so it may be more natural for this ratio to obey

a universal bound. We extend this discussion to a framework of general four-derivative

interactions, as described below.

An overview of the paper is as follows: In section 2, we present our action for five-

dimensional gravity coupled to a negative cosmological constant and a single U(1) gauge

field, including a general set of four-derivative interactions. Further we examine how the

higher-derivative terms modify charged planar AdS black holes, both the solution and

their thermodynamic properties. In section 3, we investigate the hydrodynamic properties

of these black holes with the four-derivative corrections. In particular, we calculate both

the viscosity and the conductivity of the dual CFT plasma. Finally, a concluding discussion
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is presented in section 4. We also show in appendix A that one can use field redefinitions to

reduce the most general four-derivative action to include only the five interactions explicitly

studied in main text.

2 Charged black holes in higher derivative gravity

We begin with five-dimensional gravity coupled to a negative cosmological constant and a

U(1) gauge field in the following action:

I =
1

2ℓp
3

∫

d5x
√−g

[

12

L2
+ R − 1

4
F 2 +

κ

3
εabcdeAaFbcFde + L2

(

c1RabcdR
abcd (2.1)

+c2RabcdF
abF cd + c3(F

2)2 + c4 F 4 + c5 εabcdeAaRbcfgRde
fg
)

]

,

where F 2 = FabF
ab and F 4 = F a

bF
b
cF

c
dF

d
a. As well as the conventional Einstein and

Maxwell terms, our two-derivative action also includes the Chern-Simons term propor-

tional to εabcde, which naturally arises in five-dimensional supergravity [22]. The above

action (2.1) also contains a general set of four-derivative interactions. We will treat these

terms in a perturbative framework where each of the the dimensionless coefficients ci ≪ 1.

As discussed in [14], it is natural to expect that each of these coefficients is suppressed by

a factor of ℓp
2/L2, which we are assuming is very small. We demonstrate in appendix A

that within this perturbative framework, one can use field redefinitions to reduce the most

general four-derivative action to include only the five interactions appearing above in (2.1).

The metric equation of motion arising from (2.1) is

Rab −
1

2
Rgab =

1

2
FacFb

c − 1

8
F 2gab +

6

L2
gab (2.2)

+L2c1

(

1

2
RcdefRcdefgab − 2R(a|cdeR|b)

cde + 4∇c∇dRc(ab)d

)

+L2c2

(

1

2
RcdefF cdF efgab + 3Rcde

(aFb)eFcd + 2∇c∇d
(

Fc(aFb)d

)

)

+L2c3

(

1

2
(F 2)2gab − 4F 2FacFb

c

)

+ L2c4

(

1

2
F 4gab − 4FacF

c
dF

d
eF

e
b

)

+2L2c5 εcdef
(a

(

Rg
|b)ef∇gFcd + 2Fcd∇eRf |b)

)

while the vector equation of motion is given by

∇bF
ba + κεabcdeFbcFde = −4L2c2∇b(R

abcdFcd) (2.3)

+8L2c3∇b

(

F 2F ba
)

+ 8L2c4∇d
(

F a
bF

b
cF

c
d

)

−L2c5 εabcdeRbcfgRde
fg .

As discussed above, we will solve these equations of motion perturbatively in the coefficients

ci of the interactions in the four-derivative action.
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2.1 AdS/CFT dictionary

With a negative cosmological constant, the gravitational theory described by (2.1) naturally

has an AdS5 vacuum and is dual to a four-dimensional CFT. In this holographic context,

the bulk vector field will be dual to the current generating a global U(1) symmetry in the

CFT. In all, the action (2.1) is characterized by seven dimensionless parameters: L3/ℓp
3,

κ and the five coefficients ci. The AdS/CFT correspondence then relates each of these

gravitational couplings to various parameters that characterize the dual field theory. For

example, the holographic framework relates the two central charges, a and c, of four-

dimensional CFT to [23, 24]

L3

ℓp
3 ≃ c

π2

(

1 − 3

8

c − a

c

)

, c1 ≃
1

8

c − a

c
. (2.4)

As described in [14], a key assumption in working with the effective action (2.1) is that

the five-dimensional gravity theory is described by a sensible derivative expansion. That

is, we are implicitly assuming that couplings of the four- and higher-derivative interactions

are systematically suppressed by powers of the Planck length over the (bare) AdS scale,

ℓp/L. In particular then, we expect that c1 ∝ ℓp
2/L2 ≪ 1. From the perspective of the

AdS/CFT correspondence then, we are restricted by (2.4) to consider CFT’s for which

c ∼ a ≫ 1 and |c − a|/c ≪ 1 . (2.5)

Further, our assumption about the derivative expansion in the gravity action then restricts

the size of the field theory parameters related to the four-derivative couplings, i.e., the

CFT’s of interest should have the corresponding parameters being suppressed by inverse

powers of the central charge c.

Turning to the other couplings, it is natural to consider κ and c5 together since they

both appear in interactions proportional to εabcde. Both of these Chern-Simons-like terms

are not invariant under ‘large’ gauge transformations and as a result, in the present holo-

graphic context, they play the distinguished role of determining anomalies for the global

U(1) symmetry in the dual CFT [25, 26]. In our present analysis, we leave these coefficients

to be arbitrary constants but we should also note that their precise values are irrelevant

here since these terms play no role below in determining the geometry or thermal properties

of our background solutions.

In contrast, the interactions parameterized by c2, c3 and c4 all play a role in our

perturbative analysis of the charged black holes, as well as c1. From the point of view

of the dual CFT, c2 characterizes the form of the three-point function of two currents

with the stress tensor [27]. Similarly, c3 and c4 provide two independent couplings in the

four-point function of four currents. Again, we leave all of these coefficients arbitrary

in our general analysis. However, in the context of a supersymmetric theory, a special

case arises for the R-symmetry current which is in the same supermultiplet as the stress

tensor. In this case, all of the corresponding CFT couplings will be proportional to the

difference of the central charges [27], as found for c1 in (2.4). The holographic dual of such

a supersymetric CFT is an N = 2 supergravity theory. While the latter may be gauged
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or ungauged depending on the details of the CFT, the dual of the R-symmetry current is

the particular U(1) vector appearing in the five-dimensional graviton supermultiplet. In

this framework, supersymmetry dictates the form of the four-derivative corrections to the

leading supergravity action and so all of the relevant couplings ci are again related [26, 28].

This supersymmetric setting will be of particular interest in our discussion in section 4.

We should note that there is one other (dimensionless) parameter implicit in our anal-

ysis, which can be described as the relative normalization of the gauge and gravity ki-

netic terms or alternatively as the ratio of the five-dimensional gauge coupling to, say,

the AdS scale. One can see there is an issue here since in the conventions used in (2.1),

the gauge field is dimensionless while a conventional gauge connection should have units

of energy or inverse length. Hence, we should scale the gauge field by some appropriate

scale, Aµ = L∗ Ãµ. With this choice, the Maxwell term in (2.1) becomes − 1
4g2

5

∫

d5x
√−gF̃ 2

where the five-dimensional gauge coupling is given by g2
5 = 2ℓp

3/L2
∗. In any particular set-

ting, one is typically guided by the details of the AdS/CFT correspondence or the string

theory construction to give the proper normalization of the gauge field, i.e., choosing the

scale L∗ — for example, see [17, 29]. For simplicity, in the following we make a particular

convenient choice for L∗, but of course it is a straightforward exercise to reinstate a general

L∗ in our results.

To close this subsection, we observe that typically in supergravity actions, the gauge

kinetic terms will couple to various scalars. From the dual CFT perspective, such coupling

would indicate a nontrivial three-point function mixing two currents with some scalar

operator. Hence, from this point of view, the action (2.1) is not the most general since we

are making a special choice for the form of the vector kinetic term in the two-derivative

action. Beyond this choice, we note that while we are also dropping any possible scalar

couplings in the four-derivative interactions, such couplings would only contribute at the

next order in our perturbative expansion [14].

2.2 Charged black hole solutions

We consider charged planar black hole solutions with the following ansatz:2

ds2 = −r2f(r)

L2
dt2 +

L2

r2g(r)
dr2 +

r2

L2
(dx2 + dy2 + dz2) , (2.6)

At = h(r) .

The leading order solution (of the two-derivative equations of motion) may be determined

to be:

f0 = g0 =

(

1 − r2
0

r2

)(

1 +
r2
0

r2
− q2

r2
0
r4

)

, (2.7)

h0 =
1

2
QL3

(

1

r2
0

− 1

r2

)

where Q =
2
√

3q

L4
. (2.8)

2Charged black hole solutions with spherical horizons were constructed for a general four-derivative

action in [30].
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Here r0 denotes the position of the (outer) event horizon. There is also an inner horizon at

r2
− =

1

2
r2
0

(
√

1 + 4
q2

r6
0

− 1

)

. (2.9)

The solution is characterized by the charge density, which is given by (∗F )xyz = Q, and

the mass density, which is proportional to M = r4
0

+ q2/r2
0
. Implicity, we have fixed the

integration constant in h0 such that the gauge field vanishes at the horizon, as required by

regularity.3 This leading order solution is extremal with q2/r6
0

= 2 for which (2.9) shows

the two horizons coincide, i.e., r2
− = r2

0
. With q2/r6

0
> 2, r2

− > r2
0

and the solutions actually

describe the same set of nonextremal black holes as with q2/r6
0

< 2 but with r0 and r−
exchanging roles.4 Solutions where ratio of charge to mass densities exceeds that in the

extremal black hole (i.e., Q2/M3/2 > 8/
√

3L8) are found by allowing r2
0

to become negative

but, of course, such solutions all contain a naked singularity at r = 0.

Now we wish to construct perturbative solutions to first order in the ci. We maintain

the ansatz (2.6) and parameterize the perturbative solution as

f(r) = f0(r)(1 + F (r)) ,

g(r) = f0(r)(1 + F (r) + G(r)) , (2.10)

h(r) = h0(r) + H(r) ,

where F (r), G(r) and H(r) are O(ci) corrections. It is then straightforward to solve the

equations of motion (2.2) and (2.3) to first order:5

6f0F (r) = 2 (2c1 − 3g1) +
r4
0

r4
f1 + 12

q2

r6
(h2 − 26c1 − 12c2) + 12

r8
0

r8

(

1 +
q2

r6
0

)2

c1 (2.11)

+8
q2r4

0

r10

(

1 +
q2

r6
0

)

(5c1 + 6c2) +
q4

r12
(17c1 − 24(c2 + 6c3 + 3c4)) ,

G(r) = g1 −
8

3

q2

r6
(13c1 + 12c2) , (2.12)

H(r) = h1 −
√

3
q

Lr2
h2 − 8

√
3

qr4
0

Lr6

(

1 +
q2

r6
0

)

c2

+
1√
3

q3

Lr8
(48c2 + 144c3 + 72c4 − 13c1) , (2.13)

where f1, g1, h1 and h2 are (dimensionless) integration constants.

3To see this, note that the event horizon in (2.6) is the Killing horizon where |∂t|
2 = 0. However, as a

Killing horizon, it also contains the bifurcation surface which is a fixed point of the Killing flow, i.e., ∂t = 0

on the bifurcation surface, as opposed to the previous null condition [31]. Hence if the gauge field A is to

be a well defined one-form, then At must vanish there. This is, of course, the Lorentzian analog of the

topological constraint which arises more intuitively for the corresponding Euclidean black hole.
4This symmetry between r0 and r

−
is readily seen by noting that (2.9) comes from demanding the

vanishing of the second factor in f0, i.e., r2
0 r4

−
+ r4

0 r2
−
− q2 = 0.

5Our approach was as follows: Examining the linear combination of the metric equations (2.2) propor-

tional to Gt
t − f/g Gr

r (where Ga
b is the Einstein tensor), one finds a first-order linear ODE for G(r)

which is readily soluble. Given G(r), the t component of the vector equations (2.3) is easily solved for H(r).

Finally with the solution for these two perturbations, F (r) can be determined by solving the first-order

linear ODE coming from the Gr
r equation.
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We fix the integration constants as follows:

• The background metric for the dual CFT can be extracted from the asymptotic

behaviour in the black hole metric (2.6) as

ds2
CFT

= −f∞dt2 + dx2 + dy2 + dz2 (2.14)

where we defined f∞ ≡ f(r → ∞). Hence to fix the speed of light to be one in the

dual gauge theory, we require that f∞ = 1. From (2.11), we find

g1 =
2

3
c1 . (2.15)

Note that this fixes the asymptotic behaviour g(r → ∞) → 1 + 2c1/3 which reflects

the fact that, as noted in [14], the AdS scale of the background geometry is perturbed

to be
1

L̂2
=

1

L2

(

1 +
2

3
c1

)

. (2.16)

when c1 is nonvanishing.

• For simplicity, we require a regular F (r) and fix the position of the event horizon to

remain at r = r0. That is, we require that f0F (r = r0) = 0. Again from (2.11), this

fixes f1 to be

f1 = −2 (8c1 − 3g1) + 4
q2

r6
0

(62c1 + 24c2 − 3h2) (2.17)

−
(

q2

r6
0

)2

(69c1 + 24(c2 − 6c3 − 3c4)) .

• We require that At vanishes on the horizon — as described in footnote 3. Setting

H(r = r0) = 0 in (2.13), we fix h1 to be

h1 =
√

3
q

Lr2
0

(h2 + 8c2) +
1√
3

q3

Lr8
0

(13c1 − 24(c2 + 6c3 + 3c4)) . (2.18)

• Finally we may use the remaining freedom to require that the charge density is fixed

as in the leading order solution, i.e., (∗F )xyz = Q. The perturbed vector equation of

motion (2.3) can be written in the form ∇bX
ba = 0 for the appropriate antisymmetric

tensor Xab. In the perturbed solution, (∗X)xyz is a constant independent of radius

and it is natural to define the charge density to be (∗X)xyz = Q. This allows us to fix

h2, which is most simply done by examining this constraint for asymptotic r where

lim
r→∞

(∗X)xyz = lim
r→∞

[

r3

L3

√

g/f
(

Frt − 8L2c2 Rrt
rtFrt

)

]

≃
(

1 +
1

2
g1 + h2 + 8c2

)

Q . (2.19)

Hence we fix

h2 = −1

2
g1 − 8c2 = −1

3
c1 − 8c2 , (2.20)

where in the last expression, we substituted for g1 as in (2.15).
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2.3 Black hole thermodynamics

For the thermodynamics of the above charged black holes, let us begin by first reviewing

the results for the leading order solution, (2.7) and (2.8).6 The temperature of the dual

CFT is precisely the Hawking temperature calculated as the inverse of the periodicity of

time in the corresponding Euclidean solution:

T =
r0

πL2

(

1 − q2

2r6
0

)

. (2.21)

Note that the temperature vanishes for the extremal black hole with q2/r6
0

= 2.

Next we would like to consider the chemical potential of the system which is related

to the asymptotic value of the potential At. However, as discussed in section 2.1, we

must scale the gauge field by some appropriate scale, Aµ = L∗ Ãµ, to produce a chemical

potential with the appropriate units of energy. The chemical potential then becomes

µ = lim
r→∞

Ãt =

√
3 q

L∗Lr2
0

. (2.22)

In any particular setting, one would be guided by the details of the AdS/CFT construction

or the string theory construction to give the proper normalization of the chemical potential.

However, for simplicity in our general analysis, we will make the convenient choice

L∗ = π L (2.23)

in the following. Of course, it is a straightforward exercise to reinstate a general L∗ in the

following calculations. Note that with the preceding choice, we may write

r0 = πL2 T

2

(

1 +

√

1 +
2

3

µ2

T 2

)

. (2.24)

Further in the extremal limit T = 0, the horizon radius remains finite with r0 = πL2 µ/
√

6.

It will also be convenient to denote the ratio of the chemical potential to the temperature as

µ̄ ≡ L∗

πL

µ

T
=

√
3 q

r3
0

1 − q2

2r6
0

. (2.25)

This formula may be inverted to yield

q

r3
0

=
2√
3
µ̄

(

1 +

√

1 +
2

3
µ̄2

)−1

≃ µ̄√
3

(

1 − 1

6
µ̄2 +

1

18
µ̄4 + · · ·

)

, (2.26)

where the last expression is a Taylor series for small µ̄.7

6The thermodynamics of charged AdS black holes has been well studied [32, 33], of course, but the focus

was on solutions with spherical horizons.
7We provide such a Taylor series expansion for all of our results with an eye towards the fact that µB/T

is small at RHIC.
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To proceed further, we apply the standard path integral techniques [34] in which we

identify the Euclidean action IE = W/T , where W (T, µ) is the Gibbs free energy, i.e., the

thermodynamic potential in the grand canonical ensemble.8 To calculate the Euclidean ac-

tion, as well as the bulk action (2.1), one includes the Gibbons-Hawking boundary term [34]

and the appropriate boundary ‘counter-term’ action [23, 35]. Alternatively, one can use

background subtraction and consider the difference in the (bulk) action for the charged

black hole and for AdS5 with a constant gauge potential. Further since we are considering

planar black holes (2.6), the spatial volume in the dual CFT is infinite and so we divide

our result for any extensive quantities by a regulator volume Vx and work with the corre-

sponding density. We do not go into the details of the calculations here but only present

the final result for the free energy density:

w = − r4
0

2ℓp
3L5

(

1 +
q2

r6
0

)

= − 1

2ℓp
3L5

(

r4
0

+
π2L4

3
µ2r2

0

)

. (2.27)

While in principle we could use (2.24) to express the free energy density entirely in terms

of T and µ, the last expression above with w (r0(T, µ), µ) is sufficient for most calculations.

In particular, the standard thermodynamic identities yield the entropy density and the

charge density:

s = − ∂w

∂T

∣

∣

∣

∣

µ

=
2π r3

0

ℓp
3L3

, (2.28)

nq = − ∂w

∂µ

∣

∣

∣

∣

T

=

√
3π

ℓp
3L3

q . (2.29)

Note that the result for the entropy density matches the expected result for the Bekenstein-

Hawking entropy of the black hole horizon. Using the previous expressions, we can also

express these quantities in terms of the temperature and chemical potential:

s =
π4L3

4ℓp
3 T 3

(

1 +

√

1 +
2

3
µ̄2

)3

≃ 2π4L3

ℓp
3 T 3

(

1 +
1

2
µ̄2 +

1

216
µ̄6 + · · ·

)

, (2.30)

nq =
π4L3

4ℓp
3 µ T 2

(

1 +

√

1 +
2

3
µ̄2

)2

≃ π4L3

ℓp
3 µ T 2

(

1 +
1

3
µ̄2 − 1

36
µ̄4 +

1

108
µ̄6 + · · ·

)

, (2.31)

8One could also consider the microcanonical ensemble with a fixed charge density nq by making the

standard Legendre transform to the Helmholtz free energy: F (T, nq) = W (T,µ) +
R

d3x nq µ. In the AdS5

language, this corresponds to adding an additional boundary term to the action which ensures that the

appropriate boundary condition corresponds to fixing the (radial) electric field, rather than the gauge

potential, at asymptotic infinity — for example, see [29, 32].
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where in both cases, we have also given a Taylor series for small µ̄. Hence for large T

(or small µ/T ) our holographic model yields s ∝ T 3 and nq ∝ µ T 2, as may have been

anticipated. We can also combine the above expressions, (2.28) and (2.29), to calculate the

energy density:

ρE = w + Ts + µ nq

=
3

2

r4
0

ℓp
3L5

(

1 +
q2

r6
0

)

=
3

2

M

ℓp
3L5

. (2.32)

We now turn to the first order solution (2.10) which takes into account O(ci) terms in

the equations of motion. The temperature of the perturbed black hole becomes

T =
r0

πL2

(

1 − q2

2r6
0

)(

1 + F (r0) +
1

2
G(r0)

)

(2.33)

=
r0

πL2

[

1 − 5

3
c1 −

q2

2r6
0

(

1 +
31

3
c1 + 16c2

)

−
(

q2

r6
0

)2

(9c1 − 4c2 − 24 (2c3 + c4))

]

.

Note that the corrections shift the condition for the extremal limit T = 0 to be

q2

r6
0

= 2 [1 − 48 (c1 − 2(2c3 + c4))] . (2.34)

The asymptotic value of At determines the chemical potential, as in (2.22). The modified

result is given by

µ =

√
3 q

πL2r2
0

+
h1

πL
(2.35)

=

√
3 q

πL2r2
0

[

1 − 1

3
c1 +

q2

r6
0

(

13

3
c1 − 8c2 − 24 (2c3 + c4)

)]

,

where we have chosen L∗ as in (2.23) and h1 is fixed as in (2.18).

The free energy density is most easily calculated using background subtraction, as

described above, with the final result:

w = − r4
0

2ℓp
3L5

[

1 +
19

3
c1 +

q2

r6
0

(

1 − 113

3
c1 − 32c2

)

+
q4

r12
0

(

23

2
c1 + 4c2 − 12(2c3 + c4)

)]

= −π4L3

2ℓp
3 T 4

[

1 + 13c1 +

(

1 +
11

3
c1

)

µ̄2 (2.36)

+

(

1 +
26

3
c1 + 24(c2 + 2c3 + c4)

)

µ̄4

6
− 1

108
(1 − 15c1)µ̄

6 + · · ·
]

.

Now using the same thermodynamic identities as above, we arrive at the following expres-
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sions for the entropy and charge densities:

s =
2πr3

0

ℓp
3L3

(

1 + 8c1 − 4(7c1 + 6c2)
q2

r6
0

)

,

=
π4L3

4ℓp
3 T 3

[(

1 +

√

1 +
2

3
µ̄2

)3

+
c1

3

(

1 +

√

1 +
2

3
µ̄2

)(

78 − 2µ̄2 + 6
13 + 4µ̄2

√

1 + 2
3 µ̄2

)]

≃ 2π4L3

ℓp
3 T 3

[

1 + 13c1 +
µ̄2

2

(

1 +
11

3
c1

)

+
µ̄6

216
(1 − 15c1) + · · ·

]

, (2.37)

nq =
π4L3

4ℓp
3 µ T 2

[(

1 +

√

1 +
2

3
µ̄2

)2

+
c1

3

(

33 + 46µ̄2 +
33 − 4µ̄2

√

1 + 2
3 µ̄2

)

+ 32 (c2 + 2c3 + c4) µ̄2

]

≃ π4L3

ℓp
3 µ T 2

[

1 +
11

3
c1 +

µ̄2

3

(

1 +
26

3
c1 + 24(c2 + 2c3 + c4)

)

− µ̄4

36
(1 − 15c1) +

µ̄6

108

(

1 − 73

3
c1

)

+ · · ·
]

, (2.38)

Note that the first expression for the entropy density matches precisely the result found

using Wald’s formula for higher curvature theories [36]. It is interesting to observe that

when the entropy is expressed in terms of T and µ, it becomes independent of c2, which

appears in the original ‘geometric’ expression for the entropy. In contrast, all of the coeffi-

cients, c1, c2, c3 and c4, appear in the charge density. We also note here that just as for the

leading order results, one finds ρE = −3w when the first order corrections are included.

3 Holographic hydrodynamics

We now turn to computing the shear viscosity and the conductivity of the holographic

plasma represented by the charged black holes in the previous section. We follow the ap-

proach of expressing the transport coefficients in terms of field theory correlators using

the Kubo formula and then calculating these correlators with holographic techniques [37].

However, as we are working with the higher curvature interactions in (2.1), we must gener-

alize these standard calculations. The analogous calculations for a particular four-curvature

interaction first appeared in [8] and the latter are readily adapted to the present case. Our

presentation also builds on the recent work of [6] which focussed on the hydrodynamic limit

of low frequency and momenta, showing that there is a simple relation between quantities

computed in the membrane paradigm approach and those calculated using AdS/CFT. In

particular, the shear viscosity of a field theory with a gravity dual may be related in a sim-

ple fashion to the membrane coupling constant of a certain minimally coupled scalar in the

dual gravitational background. Our calculation closely parallels the discussion of [38] which

presented a general framework to calculate the shear viscosity for higher curvature theories.

Before proceeding, we make a change of coordinates u = r2
0/r

2 which is more readily

adapted to the hydrodynamic calculations. With this coordinate choice, the background
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solution (2.6) becomes

ds2 = − r2
0

L2

f(u)

u
dt2 +

L2

4u2g(u)
du2 +

r2
0

L2

1

u
(dx2 + dy2 + dz2) , (3.1)

At = h(u) ,

where the leading order solution (2.7) and (2.8) now takes the form:

f0 = g0 = (1 − u)

(

1 + u − q2

r6
0

u2

)

, (3.2)

h0 =

√
3q

Lr2
0

(1 − u) . (3.3)

Of course, one must also make the appropriate substitution in the perturbative solution

given by (2.10)–(2.13). A simplifying feature, however, is that with our choice of the

integration constants described above, in particular for f1, the event horizon remains fixed

at r = r0 or u = u0 = 1 in the perturbative solution. Of course, in terms of the new radial

coordinate, the asymptotic boundary corresponds to u = 0.

3.1 Corrections to η/s

Kubo’s formula relates the shear viscosity to the low frequency and zero momentum limit

of the retarded Green’s function of the stress tensor in the CFT

GR
xy,xy(ω,k = 0) = −i

∫

dtdx eiωtθ(t) 〈[Txy(x), Txy(0)]〉 . (3.4)

Concretely one has

η = − lim
ω→0

1

ω
Im GR

xy,xy(ω,k = 0) . (3.5)

The retarded Green’s function may be computed using the prescription first set out in [37].

Translating the calculation of the correlator to a holographic one, one first finds the effec-

tive action for the metric perturbation hx
y(t, u) =

∫

d4k
(2π)4 φk(u)e−iωt+ikz . Evaluating the

action (2.1) to quadratic order in the fluctuations φk(u) yields

I
(2)
φ =

1

2ℓp
3

∫

d4k

(2π)4
du
(

A(u)φ′′
kφ−k + B(u)φ′

kφ
′
−k + C(u)φ′

kφ−k

+D(u)φkφ−k + E(u)φ′′
kφ

′′
−k + Fφ′′

kφ
′
−k

)

+ K. (3.6)

This form of the effective action originally appeared in [8], where the effect of certain R4

terms were considered, but this general form will arise for any action involving any powers

of the curvature tensor (but not derivatives of the curvature9) and so appears again in the

present context with the action (2.1). If we consider an action where the higher derivative

terms come coupled through some parameter γ, then the two functions E and F are O(γ).

Following [8], we have also added a generalized Gibbons-Hawking boundary term K in (3.6),

K =
1

2ℓp
3

∫

d4k

(2π)4
(K1 + K2 + K3)|u=1

u=0 . (3.7)

9A generalization to include derivatives of the curvature appears in [38].
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with

K1 = −Aφ′
kφ−k K2 = −F

2
φ′

kφ
′
−k (3.8)

K3 = E
(

p1 φ′
k + 2p0 φk

)

φ′
−k

The first term K1 is essentially the contribution of original Gibbons-Hawking term while

K2 and K3 are new O(γ) contributions. In the term K3, the coefficient functions p0, p1 are

defined in terms of the linearized equation of motion for φ:

φ′′ + p1 φ′ + p0 φ = O(γ) . (3.9)

With this boundary term (3.7), the variational principle is valid up to O(γ2) [8].

Given the effective action, let us proceed in trying to compute the shear viscosity.

First, we integrate by parts to rewrite the action in a more symmetric fashion:

Ĩ
(2)
φ =

1

2ℓp
3

∫

d4k

(2π)4
du
(

(B − A − F ′/2)φ′
kφ′

−k + Eφ′′
kφ

′′
−k

+(D − (C − A′)′/2)φkφ−k

)

+ K̃ . (3.10)

The integration by parts eliminates K1 and K2 in the boundary term and K̃ is given by:

K̃ =
1

2l3p

∫

d4k

(2π)4

(

K3 +
1

2
(C − A′)φkφ−k)

)∣

∣

∣

∣

u=1

u=0

(3.11)

At this point, it is convenient to define the (radial) canonical momentum for our

effective scalar as:

Πk(u) ≡
δĨ

(2)
φ

δφ′
−k

=
1

ℓp
3

(

(B − A − F ′/2)φ′
k(u) − (Eφ′′

k(u))′
)

, (3.12)

where in the variation we regard φ′′ as (φ′)′. The scalar equation of motion then takes the

simple form

∂uΠk(u) = M(u) φk(u) , M(u) ≡ 1

ℓp
3 (D − (C − A′)′/2) . (3.13)

together with the definition of the canonical momentum (3.12).

To compute the retarded Green’s function, we now evaluate the effective action on-

shell, which reduces to a boundary term using the linearized equation of motion (3.13)

Ion-shell =

∫

d4k

(2π)4
Fk

∣

∣

u=1

u=0
. (3.14)

The retarded Green’s function is then given by the flux factor [37] evaluated at the asymp-

totic boundary

GR
xy,xy(ω,k) = − lim

u→0

2Fk

φk(u)φ−k(u)
(3.15)
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where the factors φk(u)φ−k(u) ensure the appropriate normalization for the Green’s func-

tion. Implicitly, this expression is also evaluated on φ(u) with infalling boundary conditions

at the horizon. In the present case, the flux factor reduces to

2Fk = Πkφ−k + (C − A′)φkφ−k + Eφ′′
kφ′

−k + K3

= Πkφ−k + (C − A′)φkφ−k + Ep0φ
′
kφ−k, (3.16)

where on the second line we have used the lowest order equation of motion (3.9) for φk.

We see that the flux is given almost entirely by the canonical momentum term. However,

at this point we note that, since according to (3.5) the shear viscosity is given by the

imaginary part of the Green’s function, then the second term will not contribute as φkφ−k

is real. It turns out that we can discard the third term as well since it is of O(ω2), as we

now explain.

It is an important point that in general the effective mass M(u) in (3.13) is O(ω2) and

therefore can be set to zero in the low frequency approximation. Consider setting φ(u) to a

constant, in which case the corresponding radial momentum (3.12) automatically vanishes.

The equation of motion (3.13) must be satisfied, since a constant φ(u) simply corresponds

to a rotation and rescaling of the x, y coordinates. Therefore M(u) must be O(ω), but

time reversal invariance demands that it must be proportional to ω2. We conclude that on

general grounds we must have M(u) = O(ω2), and therefore can be set to zero in the low

frequency limit, which is taken in calculating the shear viscosity via (3.5). In particular,

with regard to the flux in (3.16), the third term is proportional to the mass term of the

lowest order equation of motion and so is O(ω2). Hence this term is also irrelevant in

calculating η in the low frequency limit. We conclude that the only relevant piece in the

flux is the canonical momentum term, and so

η = − lim
ω→0

1

ω
Im GR

xy,xy(ω,k = 0) = lim
u,ω→0

Π(u)

iωφ(u)
, . (3.17)

Here Π(u) ≡ Π{ω,k=0}(u) and φ(u) ≡ φ{ω,k=0}(u). Further, in this limit, the equation of

motion (3.13) for the canonical momentum is simply

∂uΠk(u) = 0 , (3.18)

i.e., Πk(u) is independent of the radius. Therefore we are free to evaluate the value of Π(u)

in (3.17) at any radius and in particular, it can be evaluated at the horizon.

Hence, the final ingredient to evaluate (3.17) is to determine ωφ(u). Now to fix the

fluctuations, we must impose infalling boundary conditions on φk(u) at the horizon u = u0.

These together with regularity at the horizon imply [6]:

∂uφ(u0, t) = −iω

(√

guu

−gtt

)∣

∣

∣

∣

u0

φ(u0) + O(ω2)

∂2
uφ(u0, t) = −iω ∂u

(√

guu

−gtt

)∣

∣

∣

∣

u0

φ(u0) + O(ω2)

∂3
uφ(u0, t) = −iω ∂2

u

(√

guu

−gtt

)∣

∣

∣

∣

u0

φ(u0) + O(ω2).
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Following [6], keeping ωφ(u) and Π(u) constant in the low frequency limit, the definition

of Π implies

ωφ′(u) = γ(C1(u)φ′′(u) + C2(u)φ′′′(u)) (3.19)

with some functions C1, C2 whose detailed form is irrelevant to our purposes. Working

perturbatively in γ,10 one performs a split φ(u) = φ0(u) + γφ1(u). Then, to lowest order

in γ, (3.19) yields the solution: ωφ0(u) = ωφ0(0), i.e., ωφ0(u) is also constant in the low

frequency limit. At the next order in γ, the equation of motion for ωφ1(u) then also

reduces to ωφ′
1(u) = 0 and again with the solution: ωφ1(u) = ωφ1(0). We conclude that

ωφ(u) = ωφ(0) to leading order in the low frequency limit.

Hence we arrive at the result

η = lim
ω→0

Π(u)

iωφ(u)
=

1

ℓp
3 (κ2(u0) + κ4(u0)) . (3.20)

where in the second expression, we have evaluated the ratio at the horizon u = u0 and

defined the quantities

κ2(u) =

√

−guu(u)

gtt(u)

(

A(u) − B(u) +
F ′(u)

2

)

, κ4(u) =



E(u)

(
√

−guu(u)

gtt(u)

)′




′

.

(3.21)

The indices on κi indicate the number of derivatives appearing in the corresponding terms

in (3.10). Note that up to now our discussion of calculating η has been completely general

and this approach applies to any higher derivative action involving powers of the curvature

tensor (but not derivatives of the curvature). We have verified that this approach repro-

duces the known results in the literature for theories containing four-curvature [8, 9] and

two-curvature [12, 13] interactions.

Now we specialize the discussion to considering the action (2.1). Using the action given

in equation (2.1), the functions A,B,E, F turn out to be:

A

4
√−gguu

= 1 + 4c1(f
′
0(u) − f0(u))

B

3
√−gguu

= 1 − 4

3
c1

f0(u)2 − 2u2f ′
0(u)2

f0(u)

E√−g(guu)2
= 4c1

F√−gguu
= 16c1f

′
0(u) (3.22)

where we have used that to lowest order in ci, f(u) = g(u) = f0(u). With these expressions

10For certain higher curvature actions, e.g., Gauss-Bonnet gravity, the equations of motion for φ(u) are

still second order in derivatives, in which case C1 = C2 = 0 and our conclusion follows immediately.
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in hand, it is straightforward to obtain the shear viscosity:11

η =
r3
0

2L3ℓ3
P

(

1 − 8c1(f
′′
0 − f ′

0)
)

. (3.23)

Combining this with our previous result for the entropy density (2.37), we arrive at

η

s
=

1

4π

(

1 − 8c1 + 4(c1 + 6c2)
q2

r6
0

)

. (3.24)

This agrees with the well established result when q = 0 [12, 13]. Note that c3 and c4 do

not appear in this expression. We can combine the above with (2.26) to express the ratio

in terms of µ̄ = µ/T :

η

s
=

1

4π

[

1 − 8c1 +
16µ̄2 (c1 + 6c2)

3(1 +
√

1 + 2µ̄2/3)2

]

(3.25)

=
1

4π

[

1 − 8c1 +
4

3
(c1 + 6c2)µ̄

2

(

1 − 1

3
µ̄2 + O(µ̄4)

)]

.

We note that the infalling boundary conditions are modified for the extremal black

holes and so in principle, our computation would need to be modified in this case. Neverthe-

less we can consider our result (3.24) in the extremal limit,12 where i.e., q2/r6
0
→ 2+O(ci).

This limit yields at T = 0:
η

s
=

1

4π
(1 + 48c2) . (3.26)

Notice that the leading correction is now independent of c1 unlike the T 6= 0 case.

3.2 Conductivity and higher derivative terms

We now turn to computing the DC conductivity in the perturbative background corrected

by the four-derivative interactions. This can be obtained by using a Kubo formula similar

to the one for the shear viscosity. Let us define

GR
x,x(ω,k = 0) = −i

∫

dtdx eiωtθ(t) 〈[Jx(x), Jx(0)]〉 ., (3.27)

where Jµ is the CFT current dual to the bulk gauge field Aµ. Then the DC conductivity

is given by:

σ = − lim
ω→0

e2 L2
∗

ω
Im GR

x,x(ω,k = 0) . (3.28)

Here the factor L2
∗ appears in the prefactor so that σ corresponds to the conductivity of the

current dual to the properly normalized potential Ãµ. Further, in order to interpret the

11We should point out that to obtain this result the corrections to the lowest order background play no

role other than defining the temperature and the chemical potential. This could have been anticipated since

the corrected background only comes in at the two derivative level, but there on general grounds the shear

viscosity has the universal form η = V3/(2l3p) where V3 = (gxx)3/2 [37].
12We can use the leading order result found from (2.21) here since q only appears in the correction term

in (3.24).
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result as the ‘electrical’ conductivity of the plasma, we imagine coupling the CFT current

to an external or auxiliary vector field, following [20, 39]. This auxiliary vector gauges

the corresponding global U(1) symmetry in the CFT with a (small) coupling e. Then to

leading order in e, the effects of the auxiliary vector are negligible and the conductivity

can be determined from the original CFT alone. The same result can also be related to the

thermal conductivity [17] which determines the response of the heat flow to temperature

gradients, i.e., T t
i = −κT ∂iT in the hydrodynamic limit.13 The full expression for the

thermal conductivity can be written as [17]

κT =

(

s

nq
+

µ

T

)2 T

e2
σ . (3.29)

The computations are most conveniently performed within an effective action ap-

proach, as in the previous subsection. Since the At component of the bulk vector is

nonvanishing in the background (2.6), the perturbations Ax can couple to the shear mode

graviton, i.e., metric perturbations of the form hxi. However, gauge invariance imposes a

relation between the two sets of perturbations which we use to integrate out the hxi and

obtain an action that involves only the Ax fluctuation.

Starting with the action (2.1), we compute the quadratic action for the perturbations

ht
x =

∫

d4k

(2π)4
tk(u) e−iωt+ikz ,

hu
x =

∫

d4k

(2π)4
hk(u) e−iωt+ikz , (3.30)

Ax =

∫

d4k

(2π)4
ak(u) e−iωt+ikz .

To begin, we consider only the leading order background, (2.7) and (2.8), setting ci = 0

in the action. We would like to set the perturbation hu
x to zero as a gauge choice. The

corresponding component of Einstein’s equations then becomes a constraint which yields:

gxx t′k = −A′
t ak . (3.31)

Plugging this constraint back into the effective action along with hk(u) = 0, the quadratic

action takes the simple form:

Ĩ(2)
a =

1

2ℓp
3

∫

d4k

(2π)4
du
(

N(u)a′ka
′
−k + M(u)aka−k

)

, (3.32)

where

N(u) = − r2
0

L3
f0(u), M(u) =

Lω2

4uf0(u)
− u

L
A′

t(u)2 . (3.33)

The equation of motion is solved near the horizon with the ansatz

ak(u) = Cf0(u)α (3.34)

13The full relativistic expression for the heat flow also includes a contribution proportional to the pressure

gradient [17].
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with α = ±i ω
4πT as usual. The infalling boundary condition corresponds to choosing the

minus sign. The equation of motion for ak can be re-expressed as

∂ujk(u) =
1

ℓp
3 M(u) ak(u) (3.35)

where, as in the previous section, we have defined the radial momentum for the effec-

tive scalar

jk(u) ≡ δĨ
(2)
a

δa′−k

=
1

ℓp
3 N(u) a′k(u) . (3.36)

The condition of regularity at the horizon u = u0 corresponds to setting [6]

jk(u0) = −iω lim
u→u0

N(u)

ℓp
3

√

guu

gtt
ak(u0) + O(ω2) , (3.37)

where we are expanding in small ω with the zero-frequency limit of (3.28) in mind. Next

one evaluates the on-shell action to identify the flux factor, which can be written as simply

2Fk = jk(u) a−k(u) . (3.38)

The Green’s function (3.27) is given by evaluating the flux with the appropriate normaliza-

tion at the asymptotic boundary. The DC conductivity (3.28) is then given by a formula

analogous to (3.17) for the shear viscosity,

σ = lim
u,ω→0

e2L2
∗

ω
Im

[

2Fk

ak(u)a−k(u)

]

k=0

= e2L2
∗ lim

u,ω→0

Im[jk(u)a−k(u)]

ωak(u)a−k(u)

∣

∣

∣

∣

k=0

, (3.39)

where it is convenient not to cancel the factors of a−k(u) in the final expression, as will

become apparent below. The key difference between the present case and the computation

of the shear viscosity is that neither jk nor ω ak is independent of the radial position, even

in the low frequency limit. As is evident from (3.33), the effective mass M(u) no longer

vanishes in this limit and so the equation of motion (3.35) still produces a nontrivial flow

in the radial ridection. However, if we apply (3.35) in examining the radial evolution of

the numerator in (3.39), we find

d

du
Im[jk(u)a−k(u)] = Im (f1(u)aka−k + f2(u)jkj−k) = 0 . (3.40)

Notice that this result does not rely on the fact that we are taking a low frequency limit.

Therefore we are free to evaluate Im[jk(u)a−k(u)] at any radius, e.g., at the horizon. How-

ever, at the horizon, jk is constrained by the regularity condition (3.37) and so we may write

σ =
e2L2

∗

ℓp
3 κA

2 (u0)
N (u0)

N (0)

∣

∣

∣

∣

k=0

, (3.41)

where we have defined

κA
2 (u) = −N(u)

√

guu

−gtt
and Nk(u) = ak(u)a−k(u) . (3.42)
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The quantity N (u) is real and so independent of ω up to O(ω2). This also means that to

this order, N (u) is completely regular at the horizon, since the logarithmic divergence of

ak(u) there is always accompanied by a factor of iω/T . Therefore, in computing N , we are

free to solve ak(u) imposing regularity at the horizon and setting ω to zero, which simplifies

the calculation considerably. In the leading order background (3.1)–(3.3), the solution is

easy to obtain:

ak(u) = ak(0)
1 + q2

2r6
0

(2 − 3u)

1 + q2

r6
0

. (3.43)

The leading order conductivity then follows:

σ =
e2L2

∗

2 ℓp
3

r0

L





1 − q2

2r6
0

1 + q2

r6
0





2

(3.44)

=
π3e2

4

L3

ℓp
3 T

(

1 +
√

1 + 2
3 µ̄2
)3

(

1 + µ̄2 +
√

1 + 2
3 µ̄2
)2 ,

using our previous formulae (2.23)–(2.26).

Extending these calculations to work at first order in the four-derivative couplings

ci is straightforward. One follows the same steps as above. That is, one first computes

the quadratic effective action for ak, tk, hk and obtains a constraint upon setting hk = 0.

Substituting the constraint back into the action and keeping terms linear in ci one still gets

an action of the form (3.32). In the subsequent steps to calculate σ, the equation of motion

for ak is technically harder to solve and so we only present the results to leading order for

small µ̄, i.e., to order O(µ̄2) or O(q2). The conductivity then turns out to be

σ =
e2L2

∗

2 ℓp
3

r0

L

(

1 + 16c2 +
q2

r6
0

(−3 + 68c1 + 40c2 + 96(2c3 + c4)

)

(3.45)

=
π3e2L3T

2 ℓp
3

(

1 +
5

3
c1 + 16c2 −

5µ̄2

6

[

1 − 1

5
(153c1 + 112c2 + 192(2c3 + c4))

]

+ O(µ̄4)

)

.

Now following [20], we examine the ratio

σ T 2

η e2
= 1 − 4

3
µ̄2 − 10

3
c1 + 16c2 +

8

3
µ̄2[13c1 + c2 + 12(2c3 + c4)] + O(µ̄4) . (3.46)

As described in the introduction, [20] suggested that the simplicity of the leading result

at µ̄ = 0, i.e., 1, may indicate that this result is universal. Further they argued that this

leading behaviour may then represent a universal upper bound for this ratio. The above

result certainly indicates that σT 2/(ηe2) ≤ 1 even for µ 6= 0. However, the leading order

result is also modified by the four-derivative couplings and so the upper bound conjectured

here may also be violated depending on the precise values of these couplings, similar to

what was found for the KSS bound in [12, 13].
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In [20], it was also noted that the ratio above depends on the relative normalization

of the current and the stress tensor in the CFT but they further observed that this rela-

tive normalization does not appear in the ratio of the conductivity to the susceptibility.

Hence [20] suggested that it may be more natural for the latter ratio to obey a universal

bound. To examine how the higher derivative couplings effect this ratio, we must first

calculate the susceptibility Ξ:

Ξ(T ) ≡ ∂nq

∂µ

∣

∣

∣

∣

T

. (3.47)

where nq is defined in (2.29). By using the result (3.45) for σ, we arrive at the following

expression for σ/Ξ:

σ

Ξ
=

e2

2πT

(

1 − 11

6
µ̄2 − 2c1 + 16c2 +

2

3
µ̄2

[

115

3
c1 − 32c2 + 12(2c3 + c4)

]

+ O(µ̄4)

)

.

(3.48)

It was conjectured that e2/(2πT ) would be the lower bound for σ/Ξ in [20], at least when

µ̄ = 0. However, this possibility must again be questioned in light of the fact that the uni-

versal behaviour observed to leading order is again affected by the four-derivative couplings.

Finally, let us turn to the thermal conductivity (3.29). The following interesting ratio

was constructed in [17]:14

κT µ2

η T
= 4π2

(

1 +
2

3
(23c1 + 24c2) +

2

9
(37c1 + 36(c2 + 4c3 + 2c4))µ̄

2 + O(µ̄4)

)

. (3.49)

Here we note that again the four-derivative interactions modify the leading behaviour but,

in particular, also introduce a dependence on µ̄, similar to what was found for the ratio

η/s in (3.25).

4 Discussion

In this paper, we calculated the thermal and hydrodynamic properties of the CFT plasma

dual to a charged planar AdS black hole. These calculations were made within the per-

turbative framework where the leading Einstein-Maxwell action was extended to include a

general set of four-derivative interactions (2.1). We should say that this analysis partially

overlaps with previous results and so let us briefly summarize what was already known in

the literature: In [40], the authors considered the transport properties of the charged planar

AdS black hole solution with the standard two-derivative action, including the electrical

conductivity σ. Our results agree with theirs. Born-Infeld black holes were considered

in [41], i.e., the two-derivative action was extended to include the combination of four-F

terms arising from the expansion of the DBI action. They found that η/s = 1/4π which

is obtained straightforwardly from (3.25) by observing that the ratio is independent of c3

and c4. The effect of adding a Gauss-Bonnet term to the gravitational action was con-

sidered in [42] and η/s was calculated in the charged planar AdS black hole background.

14Note that the leading order result given in [17] was 8π2 because their normalization for the gauge

kinetic term differs by a factor of 2 from that used here.
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In [43], this was extended to include both the Gauss-Bonnet term and the two independent

four-F terms. In both cases, our results are in agreement with theirs. The work was also

extended in [44] to include a dilaton coupling to the Gauss-Bonnet term. However, as

discussed in [14], this extra coupling does not effect our results with the present pertur-

bative approach. The authors of [45] had previously considered the thermodynamics with

Gauss-Bonnet gravity and the four-F terms for charged AdS black holes with flat, spherical

and hyperbolic horizons. Our results for the thermodynamic behaviour agrees with theirs

for the flat case. Finally in [46], the effect of the RabcdF
abF cd interaction was considered

on σ when µ = 0. Their result is reproduced by setting c1 = 0 = µ̄ in (3.45). Hence our

comprehensive analysis agrees with all previous results where it should.

As noted in subsection 2.3, our result for the entropy density (2.37) agrees with the

result found using Wald’s formula for higher curvature theories [36]. As expected then,

the ‘geometric’ expression for the entropy only involves c1 and c2 since it is only for these

couplings that the corresponding four-derivative interactions in (2.1) involve the curvature

tensor. It is a nontrivial result that the couplings c3 and c4 still do not enter when this

result is re-expressed in terms of the temperature and chemical potential. We might note

that these two coefficients appear in (2.33) and (2.35) and so a nontrivial cancelation is

required for the final result in (2.37) to be independent of these parameters. It is interesting

to observe that a similar cancelation occurs for c2 when the entropy is expressed in terms

of T and µ, so that s is also independent of this parameter. Referring back to (2.4), this

means that the entropy density is the sum of two contributions proportional to each of the

central charges a, c appearing in the CFT

s =
9π2

2
c T 3 g(µ̄) − 5π2

2
aT 3 h(µ̄) , (4.1)

where g(µ̄ = 0) = 1 = h(µ̄ = 0). The shear viscosity also depends only on c1 and c2, as

can be be inferred from (3.24) or (3.25). In this case, c2 still appears in the result when

it is expressed in terms of T and µ but again c3 and c4 do not appear. That is, the shear

viscosity in the CFT depends on the central charges a, c but also the coupling of the stress

tensor to the U(1) current parameterized by c2.

As noted above, only c1 and c2 appear in corrections to the shear viscosity. This result is

in keeping with the spirit of the recent work in [47]. This work considers generalized higher

curvature theories of gravity and attempts to relate the shear viscosity to a ‘gravitational

coupling’ evaluated at the horizon with a Wald-like formula [36]. While the conjectured

formulae reproduce known results for certain higher curvature actions, it is known that

these expressions fail to reproduce the correct shear viscosity in complete generality [38, 48].

All four of the couplings, c1, c2, c3 and c4, appear in our expressions for the charge

density (2.38) and conductivity (3.45), as well as the free energy and energy densities.

Since c3 and c4 parameterize couplings in the four-point function of the U(1) currents, it

is natural that they play a role in correcting the properties of the CFT plasma directly

related to the corresponding charge. It is interesting to note that these two couplings only

appear in (2.38) and (3.45) in the combination 2c3 + c4. In fact, examining all of our

expressions in sections 2 and 3, one finds that it is only this particular combination of c3
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and c4 that appears everywhere. Hence if we organized the four-F interactions in the action

in terms of (F 2)2 − 2F 4 and, say, F 4, then the first term would completely decouple from

the present analysis. This observation was previously noted in [45]. We should add that

this combination seems only to be distinguished by the particular black holes that we are

considering here. For example, this combination does not appear as the four-F interaction

in the low-energy expansion of the Dirac-Born-Infeld action [49] or in the four-derivative

extension of the N = 2 supergravity action [26].

In the extremal limit (2.34), the entropy density (2.37) becomes

s =
2πr3

0

ℓp
3L3

(1 − 48(c1 + c2)) ,

=
π4L3

3
√

6 ℓp
3
µ3 (1 − c1 − 24c2) (4.2)

This result reflects the fact that the extremal black hole still has a finite size horizon. The

interpretation in terms of the dual gauge theory is that even at zero temperature, a finite

chemical potential will produce a deconfined ‘plasma’ in the dual CFT. It is interesting

to note that the ratio η/s for this extremal plasma, given in (3.26), only depends on c2.

We should say that we expect that this ‘exotic’ behaviour of the CFT at zero temperature

reflects our restriction of including only the metric and a single vector in the gravitational

theory. That is, in many supergravity scenarios, the gauge kinetic terms will couple to

various scalars and from the dual CFT perspective, such couplings reflect a nontrivial

three-point function mixing two currents with some scalar operator. In such a scenario,

the area of the horizon typically shrinks to zero size in the extremal limit [50] and so a

finite temperature would be required to produce a deconfined plasma.

In our general analysis, the coefficients ci are treated as independent couplings. As

described above, N = 2 supergravity in five dimensions provides a particularly interesting

class of theories, since the super-graviton multiplet also contains a U(1) vector. In this

case, the bosonic action for the metric and this vector takes precisely the form given

in (2.1) with κ = 1/4
√

3. However, in this case, the bulk supersymmetry is sufficiently

restrictive to constrain all of these four-derivative couplings to be proportional to a single

overall constant. Given the result in (2.4), this means that all of these coefficients are

proportional to (c−a)/c where a and c are the central charges of the dual supersymmetric

CFT. In this case, the vector in the supergravity muliplet is dual to the CFT’s R-current,

which is in the same supermultiplet as the stress tensor [27]. Hence the previous result is in

agreement that the observation that two- and three-point functions of these two operators

in the CFT (at zero temperature and chemical potential) are parameterized entirely by the

two central charges [51].

After examining the supergravity action [26] in more detail in appendix A, we find that

c2 = −1

2
c1 ≃ − 1

16

c − a

c
. (4.3)
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Hence for these theories, from (3.25), the ratio η/s becomes

η

s
=

1

4π






1 − 8c1 −

32µ̄2 c1

3
(

1 +
√

1 + 2µ̄2/3
)2






(4.4)

in the presence of a chemical potential. It is clear that the sign of the third term is

controlled by c1 and in fact, this sign will be the same as that appearing in the second term.

Hence if c1 is positive, both of these contributions lead to a violation of the conjectured

KSS bound [16]. So in this particular class of theories, introducing a chemical potential

only makes the violation stronger.15 For example, we note that for large µ̄ (4.4) yields:

η/s ≃ 1/(4π)
(

1 − 24c1 + O(c1/µ̄
2)
)

. We should also add that in fact it was found that

c > a and hence c1 > 0 for all of the examples of superconformal gauge theories examined

in [14]. Hence it appears that such violations of the KSS bound should be considered

generic rather the exception to rule. We return to this point below.

It is also interesting to examine the bounds conjectured in [20] for the conductivity in

the case of supergravity. If we restrict our attention to µ = 0, as was explicitly considered

in [20], (3.46) and (3.48) reduce to

σ T 2

η e2

∣

∣

∣

∣

µ=0

= 1 − 10

3
c1 + 16c2 , (4.5)

σ

Ξ

∣

∣

∣

µ=0
=

e2

2πT
(1 − 2c1 + 16c2) . (4.6)

Hence while the general expressions also depended on c3 and c4, only c1 and c2 appear in

both of these ratios when µ̄ vanishes. Now let us consider these results when we substitute

the supergravity result (4.3), c2 = −c1/2, and assume that c1 is positive, as found in specific

examples [13, 14] but is plausibly a general result. In this case, the higher order corrections

reduce the value of both of the ratios, (4.5) and (4.6). Hence the first result is in agreement

with the conjecture that σT 2/(η e2)
∣

∣

µ=0
≤ 1. However, the second ratio was conjectured

to obey a lower bound σ/Ξ|µ=0 ≥ e2/(2πT ) and so the correction produces a violation of

this conjectured bound.

The fact that the sign of contribution coming from the chemical potential in (4.4) was

controlled by c1 is related, in part, to the fact that only even powers of the chemical potential

everywhere in our analysis — of course, nq has an overall factor of µ. This property

arises naturally from the tensor structure of gravitational action (2.1) and the particular

background that we are studying, i.e., all of the relevant interactions contain even powers

of the field strength Fab. Of course, the bulk vector appears with an odd power in the two

Chern-Simons-like terms in (2.1) but these interactions did not play a role in the present

calculations, e.g., the two couplings, κ and c5, appear nowhere in our results. However,

the two derivative coupling κ is known to play a role when rotation is introduced [52].

Further, these couplings should play a role if one considers the magneto-hydrodynamics of

the CFT plasma, i.e., if we introduce both bulk electric and magnetic fields, as has been

15A similar result appears in [53].

– 23 –



J
H
E
P
0
6
(
2
0
0
9
)
0
0
6

recently studied with the AdS/CFT correspondence for three-dimensional field theories [54].

Extending this work to four-dimensional CFT’s as considered here may be an interesting

direction for future research.

On the other hand, the behaviour noted above suggests that the properties of sQGP

studied at RHIC, with (µB/T )2 <∼ 0.02, should be almost unaffected by the baryon chemical

potential. Of course, one may question whether or not this property of our holographic

models carries over to the sQGP. However, it seems that the appearance of only even powers

of µ should be a general feature emerging from the CPT invariance of the underlying gauge

theory, irrespective of whether the latter has a holographic dual or is even conformal. For

example, the behaviour of the plasma with a net ‘quark’ density must be identical to that

of the charge-conjugate plasma with a net density of ‘anti-quarks’. Hence, one should

expect that the thermal and hydrodynamic properties of the gauge theory plasma should

generally be even functions of µ.

There was a striking difference in the computations in subsections 3.1 and 3.2. In par-

ticular, the shear viscosity could be framed in terms of quantities which were independent

of the radius and so the latter could be evaluated at the horizon. Hence the shear viscosity

of the CFT could also be interpreted as the shear viscosity associated to the stretched hori-

zon in the membrane paradigm [55]. In contrast, the quantities determining conductivity

evolved nontrivially in the radial direction and so the same connection could not be made

to the membrane paradigm.

Our analysis of the conductivity contrasts with the discussion in [6] which considered

the conductivity with a vanishing chemical potential. Note that in this case, the mixing

observed (3.31) vanishes and one may set ht
x = 0. Further with µ = 0, as seen in (3.33), the

effective mass M(u) vanishes in the low-frequency limit and so the radial evolution (3.35)

becomes trivial. Hence, in the absence of a chemical potential, there is a simple relation be-

tween the conductivity in the CFT and the universal conductivity of the stretched horizon,

σmb = e2/g2
5 [6]:

σCFT,µ=0 = σmb

√

gzz(u0) . (4.7)

Since the conductivity is a dimensionful quantity, the factor
√

gzz(u0) appears to convert

the length scale in the CFT to the corresponding proper length at the horizon. Of course,

our conductivity (3.44) simplifies to reproduce this result in the limit that q (or µ) vanishes.

It is interesting to consider the radial flow found with µ 6= 0 by ‘evaluating the con-

ductivity’ at an arbitrary radius, i.e., removing the limit u → 0 from (3.39). This yields

σ(u) =
e2L2

∗

ℓp
3 κA

2 (u0)
N (u0)

N (u)

∣

∣

∣

∣

k=0

= σCFT



1 − 3

2
u

q2

r6
0

1 + q2

r6
0





−2

, (4.8)

where in the second expression, we have evaluated the result for the leading order back-

ground with (3.43) and denoted the conductivity in (3.44) as σCFT. Hence the radial

evolution is such that σ(u) decreases monotonically as the radius varies from u = 1 at the

horizon to u = 0 at the asymptotic boundary. We also note that the boundary condition at

horizon is precisely σ(u = 1) = σCFT,µ=0 = σmb r0/L. Hence the membrane paradigm still
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sets the inner boundary condition for the nontrivial radial evolution but in general then,

σCFT ≤ σmb r0/L, where the equality is only achieved when µ = 0 and there is no radial

evolution.

In general, our discussion in subsection 3.2 generalizes the discussion of [6] to include

both a finite chemical potential and the effect of higher derivative interactions. While the

simplicity of the shear viscosity computation presented there is essentially not effected by

these additional complications, there are in fact additional simplications of the computation

beyond our presentation in subsection 3.1. We will examine these further in an upcoming

paper [48], as well giving a covariant Wald-type formula for η.

To close, we would like to comment on a possible implication of the ‘gravity as the

weakest force’ conjecture, i.e., the recent conjecture in [21] that there should be a general

upper bound on the strength of gravity relative to gauge forces in quantum gravity. This

conjecture requires that there are always light ‘elementary particles’ with a mass-to-charge

ratio smaller than the corresponding ratio for macroscopic extremal black holes and so

allow the extremal black holes to decay. Recently, there has been some discussion of this

conjecture in the context of the AdS/CFT correspondence and the implications for the

spectrum of the CFT [56, 57] — see also footnote 4 in [20]. The relation which we would

like to draw relies on the further corollary that higher derivative corrections should reduce

the mass-to-charge ratio of extremal black holes in a consistent theory of the quantum

gravity [21, 58]. In the present context, this suggests computing the ratio of the energy

density to charge density ρE/nq in the extremal limit (2.34)

ρE

nq
=

(

ρE

nq

)

0

(

1 − 47c1 + 48c2

3

)

. (4.9)

Here, the quantity

(

ρE

nq

)

0

=
3
√

3

2
√

2

r0

πL2
is the leading order ‘classical’ result. Hence the

weak gravity conjecture would impose the constraint 47c1 + 48c2 > 0. However, if we again

consider the specific case of supergravity with c2 = −c1/2, this constraint becomes simply

c1 > 0.

While the above analysis is suggestive, it misses the intent of the discussion in [21, 58]

which was phrased in terms of extremal black holes in asymptotically flat space. Their

natural assumption was that the ‘quantum’ corrections coming from higher derivative terms

in the gravitational action should decrease the mass-to-charge ratio but also do so in

a way that the decrease becomes more pronounced for smaller (extremal) black holes.

Hence a proper comparison requires repeating the analysis of section 2.2 for charged AdS

black holes with spherical horizons. This is a straightforward exercise and the final result

replacing (4.9) is

ρE

nq
=

(

ρE

nq

)

0

(1 − c1 f(r0/L)) with f(r0/L) =
7 + 34

r2
0

L2 + 107
r4
0

L4 + 138
r6
0

L6

3
r2
0

L2

(

1 + 2
r2
0

L2

)(

2 + 3
r2
0

L2

) . (4.10)

Above r0 is the position of the horizon in coordinates where the area of the spherical

horizon is 2π2r3
0
. In fact, a full analysis yields a ratio which depends on all of the ci but in
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presenting (4.10), we have focussed on the supergravity case where all of these dimensionless

parameters are proportional to c1. One easily verifies that in the limit of large black holes,

i.e., r0/L ≫ 1, this result reduces to that for the planar black holes given in (4.9) when

c2 = −c1/2. It is also evident that f(r0/L) is positive for all values of r0/L and hence

the higher derivative corrections always reduce the mass-to-charge ratio of these extremal

black holes as long as c1 > 0. As desired, this effect is also largest for small black holes

because of the factor of r2
0
/L2 in the denominator of f(r0/L). However, it is interesting

that f(r0/L) does not decrease monotonically as r0/L grows. Instead the function exhibits

a local minimum near r0 ∼ L, which seems to be an effect of the asymptotic AdS geometry.

In certain cases, it is well understood that there are supersymmetric bound states of

giant gravitons [59] carrying the same charges as these charged black holes with spherical

horizons. Further that there is a gap in the spectrum between the extremal black hole and

these bound states [60]. Hence one can understand the details of realizing the ‘gravity as

the weakest force’ conjecture within this framework. However, our interest in these issues

comes rather from the general constraint c1 > 0. In particular with (2.4), we can infer

that the weak gravity conjecture requires an inequality for the central charges of any four-

dimensional conformal field theory with a gravitational dual, namely c > a. Of course,

this is precisely the inequality which was observed for the broad class of superconformal

gauge theories examined in [14]. Hence it seems there may be a deep connection between

this provisional observation for superconformal gauge theories and the consistency of their

holographic duals as a theories of quantum gravity.
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A Field Redefinitions and the four-derivative action

In this appendix, we will demonstrate that our action (2.1) contains the most general

four-derivative interactions involving a single Maxwell field. We should add that a similar

analysis appeared in [30] but they began with a more restricted starting point. First, we

consider the leading order two-derivative action

I2 =
1

2ℓp
3

∫

d5x
√−g

[

12

L2
+ R − 1

4
F 2 +

κ1

3
εabcdeAaFbcFde

]

. (A.1)
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Next the most general four-derivative action for gravity coupled to a single U(1) vector

takes the form:

I4 =
L2

2ℓp
3

∫

d5x
√−g

[

α1R
2 + α2RabR

ab + α3RabcdR
abcd (A.2)

+β1RF 2 + β2R
abFacFb

c + β3RabcdF
abF cd + β4RabcdF

acF bd

+δ1

(

F 2
)2

+ δ2 F 4 + δ3∇aFab∇cFc
b + δ4∇aFbc∇aF bc

+δ5∇aFbc∇bF ac + δ6∇2Fab F ab + δ7∇a∇bFbc F ac + δ8∇b∇aFbc F ac

+εabcde
(

Fab

(

γ1F
cd∇fFfe + γ2Fcf∇fFde + γ3Fcf∇dFe

f
)

+ κ2 AaRbcfgRde
fg
)]

,

where, as in the main text, we use F 2 = FabF
ab and F 4 = F a

bF
b
cF

c
dF

d
a. Here all of the

coefficients, αi, βi, δi, γi and κ2 are dimensionless constants, that we expect are generically

very small. Many of the four-derivative terms above can be eliminated by simply integrating

by parts. For example,
∫

d5x
√−g∇aFab∇cFc

b (A.3)

=

∫

d5x
√−g

(

∇aFbc∇bF ac − RabFacFb
c + RabcdF

acF bd
)

.

Using integration by parts, as well as the identities ∇[aFbc] = 0 = R[abc]d, one can eliminate

β4, δ4,5,6,7,8 and γ2,3. In this way, the general four-derivative action can be reduced to

I4 =
L2

2ℓp
3

∫

d5x
√−g

[

α1R
2 + α2RabR

ab + α3RabcdR
abcd (A.4)

+β1RF 2 + β2R
abFacFb

c + β3RabcdF
abF cd + δ1

(

F 2
)2

+ δ2F
4

+δ3∇aFab∇cFc
b + γ1ε

abcdeFabFcd∇fFfe + κ2ε
abcdeAaRbcfgRde

fg
]

.

Now consider making field redefinitions: gab → gab + δgab and Aa → Aa + δAa. The most

general field redefinition involving two-derivative contributions can be written

δgab = µ1L
2 Rab + µ2L

2 FacFb
c +

(

µ3L
2R + µ4L

2F 2 + µ5

)

gab , (A.5)

δAa = λ1Aa + λ2∇bFba + λ3εabcdeF
bcF de .

Note that µ5 and λ1 give a (constant) rescalings of the metric and vector, respectively,

which will prove useful in the following. We also note that other than the rescaling the

field redefinition of the vector involves covariant terms so that the modified action remains

invariant with standard gauge transformations. In general, we might note that, aside from

the two rescalings, the field redefinitions (A.5) contain six two-derivative terms while the

four-derivative action contains eleven interactions. Hence, on general grounds, we expect

that we will be left with five independent terms in our higher-order action. With the field

redefinitions (A.5), the leading change in the action comes from the variation of (A.1)

δI2 =
1

2ℓp
3

∫

d5x
√−g

{[(

6

L2
+

1

2
R − 1

8
F 2

)

gab − Rab +
1

2
F acF b

c

]

δgab

+
(

∇bF
ba + κ1ε

abcdeFbcFde

)

δAa

}

. (A.6)
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Of course, one should note that we have integrated by parts to produce the expressions

in (A.6). Now we will divide this variation into two parts, examining separately the con-

tributions to the four- and two-derivative actions. Beginning with the former, one finds:

δI4 =
L2

2ℓp
3

∫

d5x
√−g

[

(
µ1

2
+

3

2
µ3)R2 − µ1RabR

ab +

(

−µ1

8
+

µ2

2
− µ3

8
+

3

2
µ4

)

RF 2(A.7)

+

(

µ1

2
− µ2

)

RabFacFb
c +

(

−µ2

8
− µ4

8
+ 8κ1λ3

)

(

F 2
)2

+

(

µ2

2
− 16κ1λ3

)

F 4 + λ2∇aFab∇cFc
b + (κ1λ2 + λ3) εabcdeFabF

cd∇fFfe

]

.

An obvious choice of the field redefinition parameters is then

µ1 = α2, µ2 = β2 + α2/2, µ3 = −(2α1 + α2)/3,

µ4 = − (24β1 − 12β2 + 2α1 − 11α2) /36, λ2 = −δ3, λ3 = −γ1 + κ1δ3.

(A.8)

These choices eliminate six of the four-derivative interactions leaving

I4 =
L2

2ℓp
3

∫

d5x
√−g

[

α3RabcdR
abcd + β3RabcdF

abF cd (A.9)

+δ̃1

(

F 2
)2

+ δ̃2F
4 + κ2ε

abcdeAaRbcfgRde
fg
]

,

where

δ̃1 = δ1 +
1

288
(2α1 − 29α2) +

1

12
(β1 − β2) − 8κ1γ1 + 8κ2

1δ3 ,

δ̃2 = δ2 +
α2

4
+

β2

2
+ 16κ1γ1 − 16κ2

1δ3 . (A.10)

One may try to be more clever with the field redefinitions in the present case. In

particular, as seen in [45] (or our calculations in sections 2 and 3), when the background

only contains a radial electric field, the four-F terms only couple to the graviton and gauge

field equations for motion with the combination 2δ1 + δ2. Hence might try to make a field

redefinition that sets this combination to zero. If we go back to (A.7), we find that the

field redefinitions yield the following variation of this linear combination:

∆ [2δ1 + δ2] =
1

4
(µ2 − µ4) . (A.11)

Hence we can indeed arrange to set this combination of couplings to zero. However, the

result will be that we would not be able to eliminate all of the R2 and RF 2 interactions

involving the Ricci tensor and Ricci scalar. Hence such a field redefinition will simply

replace the complications of accounting for the four-F interactions with those of accounting

for another set of interactions. With respect to the dual CFT, these two four-F interactions

define two characteristic parameters that would appear in the four-point function of the

dual current. So it seems to natural not to field redefine them away, as the four-point

function must be invariant and the previous parameters would just appear from exchanges
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between bulk three-point interactions rather than being manifest in a four-point contact

interaction. However, given this discussion, we could arrange the four-F terms in (A.9) as

L2

2ℓp
3

∫

d5x
√−g

[

1

2

(

2δ̃1 + δ̃2

)

(

F 2
)2

+ δ̃2

(

F 4 − 1

2

(

F 2
)2
)]

, (A.12)

in which case, the second term should not contribute in the present calculations.

At this point, we have not yet commented on fixing the values of µ5 and λ1. In this

regard, let us consider the effect of the field redefinitions on varying the two-derivative

action (A.1):

δI2 =
1

2ℓp
3

∫

d5x
√−g

[

12

L2

5

2
µ5 + R

(

6µ1 + 30µ3 +
3

2
µ5

)

(A.13)

+F 2

(

6µ2 + 30µ4 −
µ5

8
− λ1

2

)

+ κ1λ1ε
abcdeAaFbcFde

]

.

Hence the convenient choice which we make in fixing these parameters is to set

µ5 = −4 (µ1 + 5µ3) , λ1 = µ1 + 12µ2 + 5µ3 + 60µ4 . (A.14)

This choice leaves the Planck scale fixed, as well as the coefficient for the vector kinetic

term. Hence after the field redefinitions, the two-derivative action (A.1) becomes

I2 =
1

2ℓp
3

∫

d5x
√−g

[

12

L̃2
+ R − 1

4
F 2 +

κ̃1

3
εabcdeAaFbcFde

]

(A.15)

where

1

L̃2
=

1

L2
(1 − 10 (µ1 + 5µ3)) (A.16)

κ̃1 = κ1 (1 + 3 (µ1 + 12µ2 + 5µ3 + 60µ4)) .

Next we would like to apply this analysis to compare the four-derivative supergravity

action given in [26] to the effective action (2.1) studied in the present paper.16 Of course,

the leading two-derivative terms in the supergravity action take precisely the form given

in (A.1) with κ1 = 1/4
√

3 (1 − 32c1) — here and in the following, we present the results in

terms of c1 = (c−a)/(8c), as in (2.4). The four-derivative supergravity action can certainly

be described in terms of our general action (A.2) where the dimensionless coefficients are

all assigned specific values proportional to c1. However, the supergravity action is naturally

described in terms of the Weyl tensor and so to make this matching, we must first re-express

the following:

Cabcd Cabcd = RabcdR
abcd − 4

3
RabR

ab +
1

6
R2 , (A.17)

CabcdF
abF cd = RabcdF

abF cd − 4

3
RabFacFb

c +
1

6
RF 2 ,

16Note that this comparison requires care since [26] adopts the supergravity conventions of [28], with,

e.g., the mostly minus convention for the signature of the metric. We thank Sera Cremonini for her detailed

explanation of these conventions.
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which applies for the five-dimensional Weyl tensor. Now as described above, integration

by parts can be used to eliminate many terms in the general action (A.2), reducing it to

the form given in (A.4). Putting the supergravity action in this particular form yields:

α1 =
1

6
c1 , α2 = −4

3
c1 , α3 = c1 ,

β1 =
1

4
c1 , β2 = −4

3
c1 , β3 = −1

2
c1 , (A.18)

δ1 = − 41

288
c1 , δ2 =

5

8
c1 , δ3 = 2c1 ,

γ1 =
5

8
√

3
c1 , κ2 =

1

2
√

3
c1 . (A.19)

Now applying the field redefinitions (A.5) with the parameters fixed as in (A.8), we are able

to further reduce the four-derivative action to the canonical form (A.9). While these field re-

definitions leave the values of α3, β3 and κ2 unchanged from those given above, (A.10) yields

δ̃1 =
1

24
c1 , δ̃2 = − 5

24
c1 . (A.20)

As a final step, we give the Einstein and Maxwell kinetic terms their standard normalization

with (A.14) yielding

1

L̃2
=

1

L2

(

1 − 10

3
c1

)

, κ̃1 = κ1 (1 − 256c1) =
1

4
√

3
(1 − 288c1) . (A.21)

Hence, after all of these manipulations, the supergravity action takes the form given

in (2.1) with

c2 = −1

2
c1 , c3 =

1

24
c1 , c4 = − 5

24
c1 , c5 =

1

2
√

3
c1 , (A.22)

as well as κ = 1/4
√

3 (1 − 288c1) and c1 = (c−a)/(8c), as in (2.4). As discussed, this latter

combination of the central charges in the (supersymmetric) CFT is seen to explicitly fix

the coefficients all of these four-derivative corrections to the supergravity action.
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