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We give arguments for the existence of a thermodynamics of quantum complexity that includes a
“second law of complexity.” To guide us, we derive a correspondence between the computational (circuit)
complexity of a quantum system of K qubits, and the positional entropy of a related classical system with
2K degrees of freedom. We also argue that the kinetic entropy of the classical system is equivalent to the
Kolmogorov complexity of the quantum Hamiltonian. We observe that the expected pattern of growth of
the complexity of the quantum system parallels the growth of entropy of the classical system. We argue that
the property of having less-than-maximal complexity (uncomplexity) is a resource that can be expended to
perform directed quantum computation. Although this paper is not primarily about black holes, we find a
surprising interpretation of the uncomplexity resource as the accessible volume of spacetime behind a black
hole horizon.
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I. QUANTUM COMPLEXITY
AND CLASSICAL ENTROPY

Complexity theory, particularly its quantum version, is a
new and relatively unknown mathematical subject to most
physicists.1 It is a difficult subject with few quantitative
results and, at least for the moment, no experimental
guidance. Our original interest in complexity began with
questions about black holes [1–3], but broadened into the
issue of what happens to quantum systems between the
time they reach maximum entropy and the much later time
they reach maximum complexity.
The mainstream goals of complexity theory are to

organize tasks into broad qualitative complexity classes.
Our main focus will be somewhat different. Our concern is
with the quantitative behavior of complexity as a system
evolves. The two types of questions are by no means
unconnected but they are different and probably require
different tools. In this paper we will consider whether
physics—especially statistical mechanics and thermody-
namics—may be useful for analyzing the growth and
evolution of complexity in generic quantum systems.
In particular we are interested in whether there is an

analog, involving quantum complexity, for the second law

of thermodynamics. In [4,5] such a second law of complex-
ity was conjectured, and invoked for the purposes of
diagnosing the transparency of horizons, i.e., the absence
of firewalls [6]. It was argued [5] that opaque horizons with
firewalls are associated with states of decreasing complex-
ity, and that as long as the complexity of the quantum state
increases, the horizon will be transparent. A second law of
complexity would ensure that a black hole formed from
natural processes will have increasing complexity and
therefore a transparent horizon, at least for an exponentially
long time.
In this paper we argue that the second law of complexity

for a quantum systemQ is a consequence of the second law
of thermodynamics for an auxiliary classical system A.
Two distinct notions of quantum complexity will be

discussed. The first, denoted C, is computational com-
plexity, also called circuit complexity or gate complexity.
It measures the minimum number of gates required to
prepare a given unitary operator or a given state2 from an
unentangled product state. The second is Kolmogorov
complexity, denoted Cκ, whose relevance will become clear
in Sec. VI D.

A. The evolution of complexity

The object of interest is the time-development operator
UðtÞ ¼ e−iHt, for a generic k-local system of the type that
model black holes. The question of interest is how the
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computational complexity3 ofUðtÞ evolves with time. Both
black hole and quantum circuit considerations suggest the
following conjecture summarized in Fig. 1.
The complexity CðtÞ grows linearly as

CðtÞ ¼ Kt ð1:1Þ

for a time exponential in K. At t ∼ eK the complexity
reaches its maximum possible value Cmax and flattens out
for a very long time. This is the period of complexity
equilibrium [5] during which the complexity fluctuates
about the maximum,

Cmax ∼ eK: ð1:2Þ

On a much longer timescale of order exp½eK� quantum
recurrences quasiperiodically return the complexity to
subexponential values. All of this is a conjecture which
at the moment cannot be proved, but which can be related
to other complexity conjectures [7].
The pattern described above is reminiscent of the

evolution of classical entropy. Starting a classical system
in a configuration of low entropy (all the molecules in the
corner of the room) the subsequent evolution, as the gas
comes to equilibrium, follows a similar curve to Fig. 1, but
for entropy—not complexity. However, for the classical
case the linear growth of entropy will persist for only a time
polynomial (in the number of degrees of freedom), the
maximum entropy will also be of order the number of

degrees of freedom, and the recurrence time will be simply
exponential and not doubly exponential.
A simple and concise way to express the parallel is as

follows:

The quantum complexity for a system of K qubits
behaves in a manner similar to the entropy of a classical
system with 2K degrees of freedom.

The primary goal of this paper is to understand this
similarity.
In [4] a two-dimensional toy analog model for complex-

ity was conjectured. (We recommend that the reader first
read [4] before this paper.) The motivation for the toy
model was Nielsen’s geometric approach to complexity.
Here we are going to consider the far more complex case
based directly on a version of Nielsen’s high-dimensional
geometry [8,9].
Another goal that we discuss is the construction of a

resource theory of complexity in which the relevant
thermodynamic resource would be the gap between the
complexity of a system and the maximum possible
complexity—the “uncomplexity.” This is expended by
performing directed quantum computation, which means
reducing the relative complexity of the initial state and the
target state. We suggest that this resource can, under
appropriate conditions, be used to do directed quantum
computation in much the same way that in conventional
thermodynamics free energy is used to do directed work.
We will have more to say about this in Sec. VIII.
A guide to the notations and conventions and units used

in this paper can be found in Appendix A.

II. THE QUANTUM SYSTEM Q

A. Randomness

There are many problems in both classical and quantum
physics that are extremely difficult when particular
instances of the problem are considered. The strategy of
averaging over ensembles of instances sometimes allows
conclusions to be drawn about generic behavior that would
not be possible for specific cases. A particular example,
which has generated recent interest, is the Sachdev-Ye-
Kitaev (SYK) approach to scrambling. By averaging over
an appropriate ensemble of time-independent Hamiltonians
it is possible to show that almost all such Hamiltonians
saturate the fast-scrambling bound [10,11]. Potentially this
kind of averaging can also be applied to questions about the
evolution of complexity.
Another type of randomness is stochastic randomness in

which a time-dependent statistically fluctuating (noisy)
Hamiltonian is averaged over. Generally the more one
averages over the easier it is to draw conclusions, and
indeed stochastic averaging is easier than averaging over
time-independent Hamiltonians. Of course, if our interest is

FIG. 1. The conjectured evolution of quantum complexity of
the operator e−iHt, where H is a generic time-independent k-local
Hamiltonian. The complexity increases with rate K, and then
saturates at a value exponential in K. It fluctuates around this
value. Quantum recurrences occur on a timescale that is double
exponential in K; a very rare, very large fluctuation brings the
complexity down to near zero. This figure would also describe the
entropy of a classical chaotic system with exp½K� degrees of
freedom.

3The concept of computational complexity that we are using is
essentially the same as quantum circuit complexity, i.e., the
minimal number of quantum gates needed to prepare a given
unitary operator.
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in the behavior of time-independent Hamiltonians (as it is
in this paper) it is not entirely clear that the lessons we learn
from stochastic behavior are applicable.

B. k-locality

The systems we will consider are constructed from
qubits and have a type of dynamics called k-local. Other
than that they are very generic. The building blocks of a k-
local Hamiltonian are Hermitian operators that involve at
most k qubits. The term “weight” applied to an operator
means the number of single qubit factors that appear in the
operator. A k-local Hamiltonian is one that contains terms
of no higher weight than k. Ordinary lattice Hamiltonians
with nearest neighbor couplings are k local—in fact they
are 2-local. But k-locality does not assume any kind of
spatial locality. For example we may have Hamiltonians in
which any pair of qubits directly interact. The general form
of an exactly k-local Hamiltonian built out of standard
qubits is4

H ¼
X

i1<i2<���<ik

X
a1¼fx;y;zg

…
X

ak¼fx;y;zg
Ja1;a2;…;ak
i1;i2;…;ik

σa1i1 σ
a2
i2
� � � :σakik :

ð2:1Þ
The SYK model is another [12–15] type of k-local

system which is built out of real anticommuting degrees of
freedom χi,

fχi; χjg ¼ δij: ð2:2Þ

The SYK Hamiltonian is similar to Eq. (2.1),

H ¼
X

i1<i2<���<ik
Ji1;i2;…;ikχi1χi2…:χik : ð2:3Þ

The SYK model is k-local when written in terms of
fermions, but if we try to rewrite it in terms of standard
qubit operators it will be highly nonlocal. Despite this, most
of what we describe applies to it. For definiteness we will
illustrate the principles for systems of standard qubits with
Hamiltonians of the form Eq. (2.1).
There is however a caveat. The SYK model is usually

studied at low temperature where it has an approximate
conformal invariance and behaves roughly like a near-
extremal charged black hole. At low temperature, standard
qubit models are different; for example they may have
spin-glass behavior. Our interest will instead be in the
high-temperature behavior where we expect both kinds
of models behave somewhat similarly to uncharged
Schwarzschild black holes. At high temperature the con-
formal invariance does not play a role.

It should be noted that for systems of fermions or qubits
the high-temperature limit is not a high-energy limit. The
energy and entropy per qubit do not go to infinity at infinite
temperature; in fact the entropy per degree of freedom does
not change much between the usual SYK low-temperature
regime and infinite temperature. It is also true that the ratio
of the Lyapunov exponent to the energy per qubit tends to a
finite constant as temperature increases. This is in contrast
to the ratio of the Lyapunov exponent to temperature, which
goes to zero in the high-temperature limit. This means that
at higher temperatures the Maldacena-Shenker-Stanford
bound [11] is not tight and a stronger bound might be
expressed in terms of the energy per qubit rather than the
temperature.
Hamiltonians of the type Eq. (2.1) are very common.

They include lattice systems, for which the couplings are
nonzero only for nearest neighbors on some ordinary
lattice. But these “condensed matter” Hamiltonians are
very rare in the space of the couplings. The generic k-local
Hamiltonian is a fast scrambler [10,16], meaning that every
qubit is coupled to every other qubit, but only through
terms involving at most k qubits. We will be interested in
this generic case. Averages over the J’s will be dominated
by fast scramblers.
For now assume that the J’s are known definite numbers,

but keep in mind that the trick of averaging over
Hamiltonians may make otherwise impossible problems
tractable. To simplify the notation we will write Eq. (2.1) in
the schematic form

H ¼
X
I

JIσI; ð2:4Þ

where I runs over all ð4K − 1Þ generalized Pauli operators5

with the proviso that only the k-local couplings are
nonzero.

C. The quantum system

The quantum system Q consists of K qubits interacting
through a k-local Hamiltonian of the form Eq. (2.1).
Adapting the discussion to fermionic degrees of freedom,
as in Eq. (2.3), should be straightforward.
We will not be interested in any particular Hamiltonian;

following Sachdev-Ye and Kitaev we will consider the
properties of the system when averaged over a Gaussian
statistical ensemble of the J coefficients. The probability
for the k-local couplings JI to take a specified set of
values is

PðJÞ ¼ 1

Z
e−

1
2
Ba

P
I
J2I : ð2:5Þ

4By “exactly k-local” we mean a Hamiltonian that is a sum of
terms each of which acts on exactly k qubits (not that each term
acts on k or fewer qubits). See clarification 1 in Appendix B.

5By the generalized Pauli operators we mean the set of 3K
Pauli operators σai together with all possible products, with no
locality restrictions.
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The constant Ba determines the variance of the distribution.
The non-k-local couplings are assumed to be zero.
The space of states is 2K dimensional. Unimodular

unitary operators are represented by 2K × 2K matrices in
SUð2KÞ. These matrices can be thought of in twoways. The
first is as operators acting on the state space of theK qubits.
The second is as wave functions of maximally entangled
states of 2K qubits. In this latter sense the identity matrix
represents a thermofield-double (TFD) state at infinite
temperature. As such it is dominated by the highest energy
states of the system.
Let us consider the variance of the Hamiltonian in the

infinite temperature TFD state,

ðΔHÞ2 ¼ TrH2 ¼ Tr
X
I

X
J

σIσJJIJJ: ð2:6Þ

(Here and throughout this paper we normalize Tr so that
Tr1 ¼ 1.) The generalized Pauli matrices σI satisfy

TrσIσJ ¼ δIJ: ð2:7Þ
Thus

ðΔHÞ2 ¼
X
I

J2I : ð2:8Þ

Note that the average of the Hamiltonian itself is zero since
all the terms in H have zero trace. We will use the notation
E to represent the energy relative to the ground state. This is
not zero. The variance of E is the same as the variance ofH.
The normalization of J is a convention related to the

normalization of time. We choose it by observing that fast
scramblers are models for neutral static black holes. It is a
general fact about such black holes that their dimensionless
Rindler energy E (defined relative to the ground state), and
the variance of the dimensionless energy ðΔEÞ2 are both
equal to the entropy. For the infinite temperature TFD state
the entropy of each copy is S ¼ K. It follows that the
distribution of J’s should satisfy

X
J2I

����
av
¼ K ¼ E; ð2:9Þ

where the average in jav is an ensemble average.
If the Hamiltonian is exactly k-local then the number of J

coefficients is

NJ ¼ 3k
�
K
k

�
≈
ð3KÞk
k!

: ð2:10Þ

Letting J2 be the variance of any of the JI, Eq. (2.9) gives

J2 ¼ k!
3kKk−1 : ð2:11Þ

The same argument, when applied to the SYK model,
correctly gives the variance, the only difference being the

absence of the factor 3−k in the SYK case.6 The relevance
of these facts will become clear when we study the
thermodynamics of the auxiliary system A.
Hamiltonians of the form Eq. (2.4) can easily be

generalized to stochastic evolution by allowing the J’s to
have a time dependence governed by a stochastic proba-
bility distribution. The resulting “Brownian circuits” were
discussed in [17].

III. THE CLASSICAL SYSTEM A

For the moment we will ignore issues of complexity and
define a classical system that represents the evolution of a
quantum system as the motion of a nonrelativistic particle
moving on SUð2KÞ. Later we will modify the geometry to a
“complexity geometry” along the lines of [9].
The space SUð2KÞ is a homogeneous group space

generated by ð4K − 1Þ generators which in the Pauli basis
are the generalized Pauli operators σI. Each point on
SUð2KÞ corresponds to an element of SUð2KÞ: it is a
particular 2K by 2K unimodular matrix U. Up to an overall
constant factor, the unique bi-invariant metric is given by7

dl2 ¼ TrdU†dU: ð3:1Þ
This metric is called “bi-invariant” since it is invariant
under both left and right multiplication: for any W ∈
SUð2KÞ and V ∈ SUð2KÞ, transforming U by

U → W†UV ð3:2Þ
does not change the metric distance in Eq. (3.1).

A. Equations of motion

The time evolution of the system with Hamiltonian
Eq. (2.4) defines a moving point UðtÞ which we may
think of as the motion of a fictitious particle moving on
SUð2KÞ. The particle starts at the point U ¼ 1, i.e., the
identity matrix. The motion can be represented by ordinary
classical mechanics. Begin with the Schrödinger equation
for UðtÞ,

i _U ¼ HU: ð3:3Þ

This is a first order (in time) equation and, given the
Hamiltonian, through every point U there is a unique
trajectory. We would like to write this in a way that does not
make reference to a specific Hamiltonian. To that end we
first solve for H,

H ¼ i _UU†: ð3:4Þ

6The factors of 3 are due to there being three Pauli matrices.
7Throughout this paper the notation Tr refers to normalized

trace such that Tr1 ¼ 1.
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Differentiating Eq. (3.3) with respect to time and then
plugging in Eq. (3.4) gives the equation of motion

Ü − _UU† _U ¼ 0: ð3:5Þ
This is the second order equation of motion of a non-
relativistic particle moving on SUð2KÞ. It is well known
that such motion is along geodesics with constant velocity.
In terms of general coordinates the equation of motion has
the familiar form

ẌM ¼ −ΓM
AB

_XA _XB; ð3:6Þ

where ΓM
AB are the Christoffel symbols derived from the

standard metric on SUð2KÞ.
In summary, there are two ways to specify the evolution

of a unitary under a time-independent Hamiltonian. One is
to specify Uðt ¼ 0Þ and H and use the first-order equation
of motion Eq. (3.3). The second is to specify Uðt ¼ 0Þ and
_Uðt ¼ 0Þ and use the second-order equation of motion
Eq. (3.5). These two formulations are equivalent, since we
can translate between H and _U using Eq. (3.4). In what
follows we will find it more convenient to work with the
second-order equation of motion, which makes no explicit
reference to H and instead stores that information in the
initial condition _U.

B. Velocity-coupling correspondence

Note that the equation of motion Eq. (3.5) no longer
makes reference to the Hamiltonian. That information is
now encoded in the initial conditions. To see how this
works we write the Hamiltonian Eq. (2.1) as

H ¼
X
I

JIσI: ð3:7Þ

The Schrödinger equation takes the form

_U ¼ −i
X
I

JIσIU: ð3:8Þ

We can easily solve for JI,

JI ¼ iTrσI _UU†: ð3:9Þ
At the origin U ¼ 1 we may write

iTr _UσI ¼ JI: ð3:10Þ
The left side of this equation is the projection of the initial
velocity onto the tangent space axes oriented along the
Pauli basis. In other words the JI are the initial values of the
velocity components VI ,

JI ¼ VIjinitial: ð3:11Þ

We will call Eq. (3.11) velocity-coupling correspondence,
or just V/J correspondence.
A point to emphasize is that the classical mechanics

described by the equation of motion Eq. (3.8) is not the
theory of any particular Hamiltonian. It is the theory of all
Hamiltonians of the form Eq. (2.1) with the J’s playing the
role of initial velocities.

C. Action

The equations of motion Eq. (3.6), or equivalently
Eq. (3.5), may be derived from an action,8

Aa ¼
Z

Ladt; La ¼
1

2
GMN

_XM _XN: ð3:12Þ

In terms of U, this action has the simple form

La ¼
1

2
Tr _U† _U: ð3:13Þ

D. Conservation laws

The A system has a conserved Hamiltonian which is not
to be identified with the Hamiltonian of the Q system
[namely Eq. (2.1)]. From the form of the Lagrangian one
finds that the auxiliary energy is the same as the
Lagrangian,

Ea ¼ La ¼
1

2
Tr _U† _U: ð3:14Þ

The energy is of course just the familiar nonrelativistic
expression for a particle of unit mass,

Ea ¼
1

2
V2
a: ð3:15Þ

The other conservation laws follow from the bi-invariance
of the metric. Invariance under right multiplication gives
rise to conservation of the matrix elements of the right
charges,

QR
I ¼ iTrσIU† _U: ð3:16Þ

The left charges,

QL
I ¼ iTrσI _UU†; ð3:17Þ

are also conserved, but they are not functionally indepen-
dent of the right charges—the QL

I s can be written in terms
of the QR

I s and the matrices U.

8The subscript a refers to the auxiliary system; for a guide to
conventions see Appendix A.
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E. Ergodicity

Naively we might expect the motion generated by a
generic time-independent k-local Hamiltonian to be ergodic
on SUð2KÞ. But in fact the motion is very far from ergodic.
To see this, consider writing e−iHt in the energy basis

e−iHt ¼
X
n

e−iEntjnihnj: ð3:18Þ

For a given Hamiltonian there are 2K energy eigenvalues
and it follows that U moves on a torus of dimension 2K .
This is much smaller than the dimension of SUð2KÞ, which
is 4K .
The particular torus defined by Eq. (3.18) depends on the

Hamiltonian. We may ask how big a space is swept out by
varying over all Hamiltonians of the form Eq. (2.1).
Specifically does varying over Hamiltonians lead to an
almost space-filling set on SUð2KÞ? The answer is no; the
number of parameters specifying H (the J’s) is polynomial
in K and given by Eq. (2.10). Thus for a given k the
dimension of the set covered by k-local evolution is only
slightly bigger than a 2K-dimensional subset.
On the other hand we may ask: For each Hamiltonian is

the motion on the 2K torus ergodic? Generically the answer
is yes. Ergodicity is equivalent to the incommensurability
of the energy eigenvalues, a condition which will be
satisfied for almost all members of the ensemble of J’s.
To summarize, while theA system is formally defined on

a 4K-dimensional configuration space, the effective dimen-
sion of the system is actually much smaller ∼2K.
In Sec. II A we explained that by starting with a random

time-dependent quantum Hamiltonian, a stochastic system
can be defined. That stochastic system can be thought of as
a classical stochastic version of the auxiliary system A.
Reference [17] refers to such systems as Brownian circuits.
In that case, since the Hamiltonian is now time dependent,
the motion on SUð2KÞ is a random walk not restricted to
a torus—it fills up all 4K dimensions and is ergodic on
SUð2KÞ.

IV. GEOMETRY OF COMPLEXITY

A. The distance between quantum states

Consider the question, how far apart are two quantum
states jAi and jBi? The usual measure of the distance
between them is defined by

dAB ¼ arccos jhBjAij: ð4:1Þ

The distance dAB is bounded between 0 (when the two
states are the same) and π=2 (when the two states are
orthogonal). The metric defined by Eq. (4.1) is called the
Fubini-Study metric. It has the property that if dAB is very
small then the expectation values of all observables in the
states jAi and jBi are very close. But this definition misses

something important. Suppose we have a very large number
of qubits in a complicated pure state that looks thermal,
although it is actually pure. Now add one more qubit, either
in state j0i or state j1i. Let us call the two states that we get
this way jAi and jBi. They are orthogonal so they are as
far apart as possible according to Eq. (4.1). But in some
sense they are not very different; they only differ by the
orientation of a single qubit.
On the other hand, we can consider two states jA0i and

jB0i in which all of the qubits are mixed up (scrambled) by
two very different scrambling operations. These two states
would also be orthogonal, and therefore no further apart
than jAi and jBi. But clearly there is some sense in which
jA0i and jB0i are much further apart than jAi and jBi. The
inner product distance of Eq. (4.1) fails to capture this
difference.
The difference between the two senses of distance has

operational consequences. Consider the first case with jAi
and jBi: it is not hard to create a coherent superposition of
states, αjAi þ βjBi; nor is it hard to do an interference
experiment that is sensitive to the relative phase of α and β;
and nor is it hard to cause a transition between jAi and jBi.
But doing any of these three things with jA0i and jB0iwould
be extremely difficult.
Distances according to the Fubini-Study metric of

Eq. (4.1) are conserved under time evolution: the inner
product betweenUjAi andUjBi is the same as between jAi
and jBi. But that does not mean that if they start easy to
interfere, they will remain so: large differences between
initially similar states can be created merely by the passage
of time. Let us take the states jAi and jBiwhich are in some
sense similar, although orthogonal. Now let us evolve them
both by some generic Hamiltonian that allows all the qubits
to interact. After a long time the evolved states are

jA0i ¼ e−iHtjAi; jB0i ¼ e−iHtjBi: ð4:2Þ

If the system is chaotic then the states jA0i and jB0i will be
very different from one another, and also very difficult to
interfere. Some kind of distance between the states will
have grown very large. Moreover that distance will con-
tinue to grow long after the extra qubit has thermalized with
the others. In fact it will grow until it becomes exponen-
tially difficult to interfere the states.
Of course you could argue that the states jA0i and jB0i are

easy to interfere. Just initially interfere jAi and jBi to make
αjAi þ βjBi and then evolve the superposition forward for
time t. That is true, but the point is that this way of
preparing αjA0i þ βjB0i takes a very long time. With some
locality assumptions we can show that there is no faster
way to do it [7].
The question then is, Is there a different measure of the

distance between states that captures the similarity of jAi
and jBi, and at the same time the large difference between
jA0i and jB0i? To our knowledge this fundamental issue has
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not been discussed before. Here we propose that the answer
is a metric based on a concept of relative complexity.
Consider all the unitary operators that can connect the

two states,

jBi ¼ UjAi: ð4:3Þ
The relative complexity of jAi and jBi may be defined
as the complexity of the least complex unitary operator
satisfying Eq. (4.3). This of course tells us nothing
unless we have a criterion for the complexity of a
unitary operator. We shall be very brief here and just
remind the reader of the concept of circuit complexity.
We consider all K qubit circuits composed of k-local
gates that allow us to prepare U. For simplicity we take
the gates to act in series,

U ¼ gNgN−1…::g1: ð4:4Þ
The circuit complexity of U is denoted CðUÞ. It is the
minimum number of k-local gates that it takes to
construct U in this way. It depends on the choice of
allowable gates; for example it depends on k, but the
dependence is rather weak and we assume that it can be
accounted for.
We will demand that whenever g is an allowed gate so

too is g†; it follows that the complexities of U and U† are
the same. As a consequence the relative complexity is a
symmetric function of jAi and jBi.
Relative complexity defines a notion of distance between

states—a complexity metric—which is exactly what we
want in order to know how hard it is to make transitions
between states, to interfere them, and to measure the
relative phases between them in a superposition.9

Relative complexity can also be defined for a pair of
unitary operators. Let U and V be such a pair. The relative
complexity of U and V is just the complexity of U†V, or
equivalently V†U.
Inspired by ideas of Nielsen [8,9] we will build a new

auxiliary theory, A, based on a complexity metric.

B. Complexity geometry

In this subsection we examine and adapt the ideas of
Nielsen et al. [8,9] about “complexity geometry.” The idea
of the complexity geometry is to make a new metric on
SUð2KÞ, different from the standard metric, in which the
distance between two elements of SUð2KÞ reflects their
relative complexity. We will have a great deal more to say
about complexity geometry in a forthcoming paper [18], in

which we derive some of the results quoted below, and
illustrate them with simple low-dimensional examples.
There is no single unique definition of complexity, even

in the context of quantum circuits. The definition depends
on the allowed set of gates. For example one possibility is
to allow all one- and two-qubit gates. Another is to allow up
to three-qubit gates, or to choose a discrete collection of
gates as long as it is universal. Each gate set gives a
different quantitative measure of the complexity of a
unitary operator. Since any universal gate set can be
simulated by any other universal gate set, the ambiguity
is multiplicative and order unity.10

We get a different perspective by focusing on what is
not allowed. In this way of thinking we assign a very large,
or even infinite, complexity to all unallowed gates. For
example we may allow arbitrary gates but penalize all
those with weight greater than 2, i.e., those involving more
than two qubits, by assigning them a large complexity.
This strategy of allowing all gates but introducing a
penalty for large gates underlies Nielsen’s geometric
approach.
The bottom line is that there is no unique definition of

circuit complexity but rather there is a family of complexity
measures, which under certain conditions may be multi-
plicatively related.
We need a concept of complexity that is appropriate for

continuous Hamiltonian systems, and which matches
expectations summarized by the toy model of [4].
Nielsen’s idea of a geometry of computation—from now
on called complexity geometry—is a good starting point.
By a complexity geometry we will mean a nonstandard
metric on SUð2KÞ such that the minimum geodesic distance
between points U and V is proportional to the relative
complexity (or complexity distance) between them. Here
are some of the features that such a geometry should have:

(i) It should be a geometry on SUð2KÞ. The evolution of
UðtÞ defines a path on SUð2KÞ. For a discrete
quantum circuit the path consists of a sequence of
discrete segments. The segments represent individ-
ual gates in the case of a series circuit, or K=k gates
for a parallel Hayden-Preskill circuit.11

For continuous Hamiltonian systems discrete
paths are replaced by continuous paths generated
by possibly time-dependent Hamiltonians. Figure 2
shows schematic representations of discrete and
continuous paths through SUð2KÞ.

(ii) Hayden-Preskill circuits exhibit an effect called the
switchback effect [2,3]. The switchback effect is

9It can be proved that the relative complexity, i.e., the circuit
complexity of making a transition between two states and the
circuit complexity of distinguishing the phase of a superposition
of the same two states is approximately equal. It can also be
proved that the complexity of creating a superposition of the two
states is at least as large as the relative complexity [7].

10For the purpose of organizing qualitative complexity classes
such as P;NP, or BQP, which care only about the distinction
between polynomial and exponential, these ambiguities are
unimportant.

11A Hayden-Preskill circuit is one that in each time step applies
K=k gates in parallel, so that each qubit is touched exactly once.
See Appendix A.
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closely related to scrambling [10]. This same effect
appears in the complexity-action duality of [19,20]
and we regard it as an important requirement that
the geometry of computation should reproduce it.
As we will see, Nielsen’s original complexity
geometry fails in this respect and requires significant
modification.

(iii) The distance function should satisfy the triangle
inequality. Given two unitary operators U and V the
complexity of the product UV should be less than or
equal to the sum of the complexities of the two
operators. This follows from the definition of com-
plexity. The triangle inequality is not enough to
prove that complexity geometry is Riemannian, but
we will assume that it is.

(iv) The geometry should be right-invariant. Consider
the construction of U by a sequence of gates in time
order starting with the unitary operator W:

U ¼ gNgN−1…::g1W: ð4:5Þ

The relative complexity of U andW is the minimum
number of gates that satisfies this equation. Now
multiply on the right by an arbitrary unitary V,

UV ¼ gNgN−1…::g1WV: ð4:6Þ

It follows that the relative complexity of UV and
WV is the same as the relative complexity of U
and W. This is not true of VU and VW. To see this
we write

VU ¼ ðVgNgN−1…::g1V†ÞVW: ð4:7Þ

The operator VgNgN−1…::g1V† will generally not
be a product of N gates. Thus the complexity
distance is right-invariant but not left-invariant.
Right-invariance is enough to ensure that the geom-
etry is homogeneous.

(v) All right-invariant metrics are parametrized by a
symmetric “moment of inertia” tensor12 I IJ, in terms
of which the metric has the form [21]

dl2 ¼ dΩII IJdΩJ; ð4:8Þ

where

dΩI ¼ iTrdU†σIU: ð4:9Þ

The metric should penalize motions along directions
σI that are themselves highly complex. This is the
analog of what in circuit theory corresponds to the
requirement that gates be simple. Thus we require
the metric distance along non-k-local directions to
be increased relative to k-local directions. This is
accomplished by an appropriate choice of I IJ. The
ambiguity in choosing I is analogous to the
ambiguity in the choice of a gate set for circuit
complexity.

The matrix I IJ should be chosen block diagonal
with one block corresponding to the unpenalized
k-local directions, and the other block corresponding
to directions σI containing more than k single qubit
operators. Being unpenalized, the k-local block is
naturally taken to be the unit matrix with eigenvalues
all equal to 1. The non-k-local block (the penalized
block) should be positive definite, with eigenvalues
greater than 1. The eigenvalues should increase as
the weights of the σI increase.

(vi) It was shown in [4] that consistent descriptions of
scrambling and the switchback effect require that
generic sectional curvatures be negative, and of
order13 1=K. If no penalty is imposed, in other
words if I IJ ¼ δIJ, the metric is bi-invariant and all
sections are positively curved. The introduction of
penalty factors tends to make the sectional curva-
tures negative, but it is not obvious that the natural
order of magnitude is 1=K. In Sec. IV D we will
show that is indeed the case.

The original version of complexity geometry in [8,9]
fails badly in this last respect. In our present notation the
proposal is equivalent to choosing the non-k-local block to

FIG. 2. The shaded regions in these figures depict the space
SUð2KÞ. The broken trajectory represents the evolution of a
discrete quantum circuit and the smooth curve represents Ham-
iltonian evolution. In both cases computational complexity is
identified with the shortest path between the identity and the
unitary operator U.

12The parallel with the equations for an asymmetric rigid body
is intentional. The case K ¼ 1 is mathematically the same as an
ordinary rigid body in three dimensions, since SO(3) = SU(2)=Z2.
The matrix I would be the moment of inertia tensor and dΩ=dt
would be the angular velocity vector. The symmetric rigid body
corresponds to Eq. (A1). We will have more to say about this
in [18].

13At first sight this seem inconsistent with [4] where we
claimed the curvature should be 1=K2. The reason for the
discrepancy is that in [4] we assumed complexity is geodesic
length rather than action as in Sec. V B. The factor of

ffiffiffiffi
K

p
relating

length and action in Eq. (5.7) accounts for the difference. This is
explained in Appendix C.
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be diagonal with all eigenvalues being equal to the
enormously large value 4K . As we will see, this has the
effect of making typical sectional curvatures negative
(which is good) but huge ∼4K (not good). This is a far
cry from the sectional curvatures ∼1=K required by [4] in
order to reproduce the switchback effect. The penalty
assumed in [9] is much too draconian and must be made
more moderate.

C. A more moderate penalty

The reason why [9] chooses the penalty factor for non-k-
local operators to be of order 4K is that the most complex
unitary operators have complexity of order 4K. In order to
insure that this is reflected in the properties of the
complexity metric, the authors simply penalize all non-
k-local operators by the common factor 4K. It is certainly
true that the highest weight operators should be penalized
by such a factor but the switchback effect requires a much
more gradual growth of the penalty as the weight of σI
increases. This will be seen in Sec. IV D.
Let wI be the weight of the generalized Pauli operator σI.

We will assume that the moment of inertia tensor is
diagonal,

I IJ ¼ δIJIðwIÞ ðno sumÞ: ð4:10Þ

For wI ≤ k the coefficients IðwIÞ ¼ 1. Our basic
assumption is that the penalty factors IðwÞ for w < K
are independent of K. In other words the price that we pay
for moving along the direction I is independent of the total
number of qubits and depends only on the weight of σI .
For wI > k we assume the eigenvalues smoothly

increase from order 1 to order 4K. A simple behavior
would be

IðwÞ ¼ 1 ðw ≤ kÞ; IðwÞ ¼ c4w−k ðw > kÞ; ð4:11Þ

with c some constant of order one.
We will now show that for14 k ¼ 2 the typical sectional

curvatures are indeed negative and of order 1=K as required
by the switchback effect.
In a companion paper devoted to quantitate aspects of

complexity geometry [18], we will calculate geometric
properties of the complexity metric for various k-local
systems. In the next section we will show the answer for
one particular such system, and show how the sectional
curvature is typically negative and of order 1=K.

D. Sectional curvature

Our intuition for how complexity geometry should work
is based on the two-dimensional toy model of [3,4]. Wewill

now argue that the toy geometry can be thought of as being
embedded as a two-dimensional section of the full com-
plexity geometry.
Certain basic facts about the evolution of complexity,

including the switchback effect, can be summarized by two
properties of such sections (that are briefly reviewed in
Appendix C): the typical sectional curvatures are negative,
and the magnitude of the sectional curvature should be of
order 1=K.
We will now compute the two-dimensional sectional

curvatures of the complexity geometry defined by
Eqs. (4.8) and (4.9), and see that they indeed are negative
and of order 1=K.
Our “section” is the two-dimensional surface consisting

of all geodesics through a given point (we will label this
point the “origin”) that are generated by linear combina-
tions of two k-local Hamiltonians. For definiteness we will
choose k ¼ 2 for the remainder of this section. By
definition the sectional curvature is the curvature at the
origin.
Without loss of generality we may choose one

Hamiltonian to be H and the other to be H þ Δdθ, where
Δ is a 2-local operator orthogonal to H and dθ is an
infinitesimal angle.
The surface defined in this way will generally not have

zero extrinsic curvature, and so geodesics connecting two
points on the section will in general take shortcuts off the
surface. For the sectional curvature defined as the curvature
at the origin, t ¼ 0, this issue does not arise.
The Loschmidt echo operator eΛ is defined by

eΛ ¼ e−iHteiðHþΔdθÞt: ð4:12Þ

By the Baker-Cambell-Hausdorff formula,

Λ ¼ −
X
m¼0

ðitÞmþ1

ðmþ 1Þ! ½H; ½H; ½H; ½H|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m

;Δ����dθ

¼ −
�
itΔþ ðitÞ2

2
½H;Δ� þ ðitÞ3

3!
½H; ½H;Δ��

þ ðitÞ4
4!

½H; ½H; ½H;Δ��� þ ::

�
dθ: ð4:13Þ

We find that, to order dθ and t3, this comes to

Λ ¼
�
iΔtþ t2

2
½H;Δ� − it3

6
½H; ½H;Δ�� þ � � �

�
dθ:

ð4:14Þ

The metric distance along the infinitesimal interval defined
by Δ is

dl2 ¼ Tr½Λ† · Λ�dθ2; ð4:15Þ
14As an illustration we will consider the case in which there are

only weight 2 operators in the Hamiltonians defining the section.
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where the dot product is taken with the moment of inertia
tensor IIJ as the metric.15 The metric distance along the
radial direction (the t direction) is

dl2 ¼ Tr½H ·H�dt2: ð4:16Þ
In total, to order t4 and order dθ2 the metric is

dl2 ¼ Tr½H ·H�dt2 þ
�
Tr½Δ · Δ�t2 − t4

3
Tr½Δ · ½H; ½H;Δ���

−
t4

4
Tr½½H;Δ� · ½H;Δ��

�
dθ2: ð4:17Þ

In order to evaluate the weighted traces, we need to know
the weights of the operators involved. The first two terms
are easy—since both H and Δ are by assumption 2-local,
and since 2-local terms by assumption are unpunished, we
have I ¼ 1 and so Tr½H ·H� ¼ Tr½H2� and Tr½Δ · Δ� ¼
Tr½Δ2�. For the third term, the commutator ½H; ½H;Δ�� has
both 2-local and 4-local pieces, but only the 2-local pieces
survive when the trace is taken against Δ, and so the third
term also has I ¼ 1. The fourth term is harder: ½H;Δ� has
both 1-local and 3-local pieces. However, as we will argue,
in the limit of large K the expression is dominated by the
three-local terms, so it is a good approximation to treat it as
weighted by a factor we will denote I3. In total we have

dl2 ¼ Tr½H2�dt2 þ
�
Tr½Δ2�t2 − t4

3
Tr½Δ½H; ½H;Δ���

−
t4

4
I3Tr½½H;Δ�½H;Δ��

�
dθ2: ð4:18Þ

Notice that the last term is positive because ½H;Δ� is anti-
Hermitian.
The sectional curvature at the origin (t ¼ 0) is propor-

tional to the coefficient of the t4 term with a minus sign,

Rjt¼0;K≫k¼2 ¼
Trðþ 1

3
Δ½H; ½H;Δ�� − 1

4
I3½H;Δ�½Δ; H�Þ

TrΔ2TrH2

ð4:19Þ

¼
�
1

3
−
I3

4

�
2fTr½H;Δ�½Δ; H�g

TrΔ2TrH2
; ð4:20Þ

where in the last step we have used the identity
Trð½H;Δ�½Δ; H�Þ ¼ TrðΔ½H; ½H;Δ��Þ. The factor in the
curly brackets is positive.

We have already assumed that H and Δ have the exactly
2-local form

H ¼
X

Jαβij σ
α
i σ

β
j ; Δ ¼

X
Dαβ

ij σ
α
i σ

β
j ; ð4:21Þ

let us now assume that all the coefficients are independent
random variables with zero mean (for example they could
be Gaussian, though that will not be essential). After
averaging over the random variables we have (for large K)

fTr½H;Δ�½Δ; H�g
TrΔ2TrH2

∼
1

K
: ð4:22Þ

Were it not for k-locality this quantity would be of order
one, but because of k-locality all except a fraction 1=K of
terms in H commute with Δ, so the answer is ∼1=K.
Putting it together we will find [18]

Rjt¼0;K≫k¼2 ¼
28

K

�
1

3
−
I3

4

�
þO

�
1

K2

�
: ð4:23Þ

Let us now examine the implications of this remarkable
formula. First (as noted in [9]) the sectional curvatures will
generically be negative if I3 is large enough, I3 > 4=3.
Second, Eq. (4.23) shows that if I3 is of order 4K (as
assumed in [9]) the curvature will also be of order 4K, which
as we explained is too large. In particular it is incompatible
with the switchback effect and with the scrambling time
being logK. (Instead, geodesics would deviate so violently
that scrambling would be almost immediate.) However,
suppose that Eq. (4.11) governs the Iw. In that case I3 is
about 4 and the curvature is of order 1=K.
[We have confirmed [18] that for all k-local generaliza-

tions of Eq. (4.21) the sectional curvature is generically
∼k2=K. Again, this is because the probability that two
randomly chosen k-local terms share a qubit and therefore
fail to commute is roughly k2=K.]
The significance of the negative curvature is that geo-

desics exponentially diverge with typical (local) Lyapunov
behavior. This suggests that the motion in complexity space
is chaotic. The Lyapunov exponent corresponds to the
exponent that controls the “growth of operators” obtained
from out-of-time-order correlations [11]. However, to
follow the exponential growth of complexity all the way
out to the scrambling time, we would need to compute
higher orders in t which we have not yet done.
It should be noted that the sectional curvature at the

origin only depends on the first penalty factor I3. In
calculating the geodesic deviation to higher orders in t, the
higher-weight penalty factors will appear.

V. PARTICLE ON THE
COMPLEXITY GEOMETRY

Earlier we considered the motion of a particle on the
bi-invariant geometry of SUð2KÞ. What we really want to

15Let us be more explicit. Since Λ is anti-Hermitian it can be
written as a weighted sum over the generalized Pauli matrices
Λ ¼ P

IiΛIσI . With the standard bi-invariant metric the trace
would be Tr½σIσJ� ¼ δIJ , but with the complexity metric of
Eq. (4.8) this trace gets weighted by a factor of the moment
of inertia, Tr½σI · σJ� ¼ I IJδIJ . Equation (4.15) then gives
dl2 ¼ P

IΛ2
II II .
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study is the motion on the right-invariant complexity
metric Eq. (4.8).
What is the relation between the geodesics of the bi-

invariant metric and those of the complexity metric
Eq. (4.8)? The answer is simple and easy to prove.
Suppose the initial velocity components lie in the k-local
subspace. In that case the geodesic will always lie in the
k-local subspace. That follows from the right-invariance of
the metric. Furthermore such a geodesic will be exactly the
same for either metric—bi-invariant or right-invariant. This
includes the length along the geodesic.
In fact we only care about these k-local geodesics, but we

can generalize the above statement to a wider class.
Suppose the initial velocity is any eigenvector of I IJ,X

I

IJIJI ¼ λJJ: ð5:1Þ

Again this will continue to be the case along the entire
geodesic. Furthermore such geodesics will define the same
curves for both metrics, but the length along them will
differ by a factor equal to the corresponding eigenvalue

ffiffiffi
λ

p
.

Since we are only interested in the k-local geodesics we
can calculate them and their lengths from an action
principle using either metric. In fact most of the discussion
in Sec. III remains the same if we replace the bi-invariant
metric with the complexity metric. The only exception is
that the complexity metric is not left-invariant and as a
result the left charges are not conserved.

A. Geodesic deviation

Let us consider a pair of neighboring geodesics, both
generated by k-local Hamiltonians H and H þ Δdθ. The
geodesics intersect at the origin t ¼ 0 as in Fig. 3.
Geodesic deviation is defined in terms of the rate of

change of the length of the Jacobi vectors along the
geodesics. Because length in the complexity metric and
in the standard metric are not the same, geodesic deviation
will be different in the two metrics. In particular the sign
of the geodesic deviation is controlled by the sectional
curvature of the section containing the two geodesics. The
sectional curvatures in the standard metric are all positive,
corresponding to geodesic convergence (negative geodesic
deviation). By contrast, in the complexity geometry the
sectional curvatures are typically negative for large enough
penalty factors, and geodesics diverge (positive geodesic
deviation). This property of negative sectional curvature is
central to the duality between classical and quantum chaos
that we are proposing.
Ergodic behavior (see Sec. III E) is necessary for

classical chaos but not sufficient. The additional ingredient
is the sort of instability characteristic of negative curvature
and geodesic deviation. Without being precise about the
definition of chaos, positive deviation leads to the kind of
sensitivity to initial conditions that characterizes chaos.
However, because of the conservation laws the chaos of the

A system can only take place within a 2K-dimensional
submanifold.
The fact that merely ergodic motion can be made to

appear chaotic by changing the metric from the standard
metric to the complexity metric is a mathematical repre-
sentation of the differences discussed in Sec. IVA. It is
something that needs more study.
The negative curvature controls the Lyapunov exponents

of the classical auxiliary model and the largest Lyapunov
exponent may be identified with the quantum Lyapunov
exponent discussed in [4].

B. Complexity equals action

The obvious guess would be that the complexity of the
unitary operator UðtÞ is the minimal geodesic distance
separating it from the identity operator 1,

C ¼
Z

U

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMNdXMdXN

q
; ð5:2Þ

where the integral is taken along the shortest geodesic
connecting 1 and U. However, with the normalization for
the metric we have chosen in Eq. (3.1), rather than using
geodesic length we instead use the action of the auxiliary
system,16 as discussed further in Appendix C,

C ¼ 1

2

Z
U

1
GMN

_XM _XNdτ; ð5:3Þ

FIG. 3. Two neighboring geodesics (in blue) leave the origin at
t ¼ 0; this corresponds to evolution under two nearby k-local
Hamiltonians. The two geodesics are connected by a Jacobi
vector (in red); this corresponds to the (non-k-local) connecting
operator eΛ ¼ e−iHteiðHþΔdθÞt. As t increases the connecting
Jacobi vector grows, and the acceleration of this growth rate
gives the geodesic deviation. In the bi-invariant metric the
geodesics always converge, but on the complexity metric the
geodesics can diverge for I3 > 4=3.

16This is another example of the connection between action
and complexity. Its relation with the action-complexity connec-
tion of [19,20] is at the moment not clear but we certainly find it
suggestive.
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with the constraint that the conserved energy Ea of the
auxiliary system is equal to the actual dimensionless
Rindler energy E of the quantum system Q,

Ea ¼ E: ð5:4Þ

Since it is well known (see e.g. [22]) that the total energy of
a black hole in Rindler units is proportional to its entropyK,
we may identify

Ea ¼ E ∼ K: ð5:5Þ

Thus we postulate the following:

The complexity of a unitary operator U is the minimum
action of any trajectory connecting U and the identity,
subject to the condition that the energy Ea of the particle
is fixed and equal to K.

(The minimum action here refers to the action evaluated in
the complexity metric, not the bi-invariant metric.)
The relation between geodesic length Eq. (5.2) and the

quadratic action of Eq. (5.3) is easy to derive,

Action ¼
ffiffiffiffiffi
Ea

p
Length; ð5:6Þ

or, using Ea ¼ K,

Action ¼
ffiffiffiffi
K

p
Length: ð5:7Þ

Now let us argue that length and complexity C are related
in exactly the same way; in other words that

C ¼
ffiffiffiffi
K

p
Length: ð5:8Þ

In order to normalize length, we note that according to
the standard (bi-invariant) metric the geodesic length
between any two orthogonal unitary operators is
π=2 ∼ 1. Along k-local directions this is also the distance
that it takes forU to become orthogonal to its initial value.17

In other words, two points U and U0 are orthogonal if they
are separated along a k-local direction by a distance π

2
∼ 1.

Second, the Aharonov-Anandan bound [23] tells us that
the time for U to become orthogonal to its previous value
(orthogonality time) is ∼1=ΔEwhere E here refers to theQ
system. From Eqs. (2.8) and (2.9), we see that ΔE ¼ ffiffiffiffi

K
p

.
It follows that the orthogonality time is ∼1=

ffiffiffiffi
K

p
. This is

discussed in detail in [24] and also in [20].
On the other hand, the rate at which effective gates act

(the rate of complexity growth) is K. Therefore the number
of gates that act in an orthogonality time is ∼

ffiffiffiffi
K

p
. Putting it

all together we see that the number of gates corresponding

to a geodesic distance ∼1 is
ffiffiffiffi
K

p
. Thus the complexity

accumulated over a distance L is

ΔC ¼
ffiffiffiffi
K

p
ΔL; ð5:9Þ

where L is length. It follows that complexity and length
differ by precisely the same factor—namely

ffiffiffiffi
K

p
—as action

and length. The factor of
ffiffiffiffi
K

p
in Eq. (5.8) is the same factor

that appears in Appendix C.

C. The growth of complexity

From the ordinary nonrelativistic connection between
kinetic energy and velocity, and from Eq. (5.5), we find that
the velocity of the auxiliary particle satisfies

La ¼
1

2
V2
a ¼ K: ð5:10Þ

It also follows that the value of the Lagrangian is

La ¼ K: ð5:11Þ

Our basic hypothesis—that complexity equals action—
implies that the rate of growth of complexity is La. Thus we
find that, as expected, complexity grows according to

C ¼ Kt: ð5:12Þ

Aswe have seen, the classicalmotion generated by k-local
Hamiltonians takes place on a submanifold of dimension
slightly larger than 2K . Recall the conjecture of Sec. I that the
quantum computational complexity of a K-qubit system Q
evolves in a similar manner to the entropy of a classical
system with ∼2K degrees of freedom. The new conjecture
should now be obvious: up to a factor to be determined,
the ensemble-averaged complexity ofQ is the entropy ofA,
denoted Sa. We will have to refine this idea, but in essence
that is the proposal. Given an energy and entropy, the
classical system A has its own thermodynamics which is
quite distinct from the thermodynamics ofQ. We may call it
the thermodynamics of complexity.
As we mentioned at the end of Sec. II we can generalize

the quantum system by allowing stochastic time depend-
ence in the J’s. The effect on the classical auxiliary system
is to turn it into a problem of diffusion on the complexity
geometry.

VI. STATISTICALMECHANICS OF COMPLEXITY

As we mentioned earlier in this paper, the growth of
complexity for a quantum system of K qubits resembles the
growth of entropy for a classical system with an exponen-
tial number of degrees of freedom. We will now consider
the statistical mechanics of A and how it is related to the
complexity of Q.

17The inner product of two unitary operators U1 and U2 is
defined as TrU†

1U2.

ADAM R. BROWN and LEONARD SUSSKIND PHYS. REV. D 97, 086015 (2018)

086015-12



A. Average complexity equals entropy

The phase space probability distribution for a classical
nonrelativistic gas often separates into two factors, one
depending on the positions of the particles and the other on
the momenta,

Pðx; pÞ ¼ FðxÞGðpÞ: ð6:1Þ
As a consequence the total entropy is a sum of two terms:
the positional entropy associated with the distribution FðxÞ,
and the kinetic entropy associated with GðpÞ,

S ¼ −
Z

FðxÞ logFðxÞdx −
Z

GðpÞ logGðpÞdp: ð6:2Þ

It is not necessary that the system be in equilibrium for the
entropy to separate in this way. It is only necessary that the
probability factorizes.
Let us now state the basic two-part conjecture. The first

part is about the computational complexity of U and the
positional entropy of the A system. The second part is
about kinetic entropy and Kolmogorov complexity. In both
cases the term ensemble average implies an average over
initial velocities, or by V/J correspondence, an average over
the couplings J.

B. Computational complexity and positional entropy

Our conjecture states the following:

At any instant, the ensemble average of the computa-
tional complexity of the quantum system Q is propor-
tional to the classical positional entropy of the auxiliary
system A.

There are two qualifications to note. The first is that we
identify computational complexity with positional entropy
instead of total entropy. The reason for this qualification is
that computational complexity has only to do with the
distance of a point U from the origin; in other words its
position in complexity space, not its velocity. In Sec. VI D
we will consider kinetic entropy and its connection with
complexity.
The other qualification is the use of proportional to rather

than equal to. Computational (or circuit) complexity
depends on a number of factors such as the gate set. We
assume that different choices lead to a multiplicative
ambiguity in the definition of complexity. On the other
hand, if our conjecture is correct, a particular normalization
of complexity will allow us to equate average complexity
with positional entropy.
The conjecture can be stated in another way. We consider

the number of unitary operators that can be reached by
time-independent k-local Hamiltonians, with complexity
less than or equal to C. Call it NðCÞ. Our conjecture
amounts to the claim that for 1 ≪ C < 2K

NðCÞ ¼ eaC; ð6:3Þ
with a being a constant independent ofK, but dependent on
the specific scheme (gate set, etc.) for defining complexity.
If true it would allow us to define a normalization for
complexity for which a ¼ 1.
An intuitive counting argument for the conjecture will be

given shortly.

C. Kinetics

We have considered the positional aspects of entropy.
Now let us consider the kinetic aspects. The auxiliary
energy in Eq. (3.15) is simply expressed in terms of J,

Ea ¼
1

2

X
J2; ð6:4Þ

i.e. the energy is proportional to the sum of the squares
of the couplings. Recall that the probability distribution
PðJÞ in Eq. (2.5) has the form of a Gaussian. Using the
velocity-coupling (V/J) correspondence of Sec. III B this
distribution is seen to be a Maxwell-Boltzmann velocity
distribution,

PðVÞ ¼ 1

Z
e−

1
2
Ba

P
I
V2
I : ð6:5Þ

Alternatively it defines a Gibbs ensemble,

P ¼ e−BaEa

Z
; ð6:6Þ

with the constant Ba being the inverse temperature of the
auxiliary system,

Ta ¼ 1=Ba: ð6:7Þ
The temperature may be determined in a number of

ways, the easiest being to use the fact that every degree of
freedom in a Maxwell-Boltzmann distribution has energy
Ta=2. The result depends on the locality parameter k. For
illustration we consider k ¼ 2. The total energy is given by
Eq. (5.5) as Ea ¼ K and there are of order ðK

2
Þ32 excited

degrees of freedom.18 Thus the energy per degree of
freedom is 2=9K and the temperature is

Ta ¼
4

9K
: ð6:8Þ

More generally, if the Hamiltonian is k-local instead of
2-local the temperature will satisfy

Ta ∼ 1=Kk−1: ð6:9Þ

18Once again the factor 9 ¼ 32 is due to the three Pauli
operators for each qubit.

SECOND LAW OF QUANTUM COMPLEXITY PHYS. REV. D 97, 086015 (2018)

086015-13



(To be clear, Ta is the temperature of the classical auxiliary
system A; it is not the temperature of the quantum
system Q.)
There is of course an entropy associated with the

probability distribution of the J’s. By V/J correspondence
it may be thought of as the kinetic part of the total entropy.

D. Kolmogorov complexity and kinetic entropy

This raises an interesting question: What, if anything,
does the kinetic term in the entropy have to do with
complexity? It would be odd and maybe disappointing if
one term in the auxiliary entropy (the positional entropy)
was an average complexity and the other (the kinetic
entropy) was not. We do not believe this to be the case.
Given that the velocities are related to the J coefficients,

we can identify the kinetic entropy of the classical auxiliary
system A with the entropy of the probability distribution
PðJÞ. (Since this is a function of the coupling constants J,
this is a property not of the quantum state but of the
quantum Hamiltonian; this is a consequence of Sec. III A,
where we saw that the velocities in A are given by the
quantum Hamiltonian in Q.)
For a moment suppose the J’s are each either 0 or 1.

The Hamiltonian Eq. (2.1) would then be specified by
a bit-string (0110100…..). It would be natural to ascribe a
Kolmogorov complexity CκðsÞ to the string s. Kolmogorov
complexity measures the length of the shortest algorithm
that can prepare a string. Applied to the string of J’s it
would define a Kolmogorov complexity for each specific
instance of a Hamiltonian.
The Kolmogorov complexity is a measure of random-

ness which, unlike classical entropy, does not depend on
probabilistic assumptions, or the existence of a statistical
ensemble. In some respects it is a more physical quantity
than entropy in that it is defined for each instance and does
not make reference to the state of knowledge of the
observer [25]. Its disadvantage is that it is uncomputable
and difficult to work with. Fortunately under suitable
assumptions the average Kolmogorov complexity is con-
nected to entropy.
If we are given a statistical ensemble of bit-strings, we

may define two measures of randomness or genericity for
the ensemble. The first is the good old entropy defined by
the usual formula −

P
PðJÞ logPðJÞ. The other is the

ensemble average of the Kolmogorov complexityP
PðJÞCκðJÞ. What if anything is the relation between

these quantities? In fact under mild assumptions19 the two
are the same [25,26],

−
X

PðJÞ logPðJÞ ¼
X

PðJÞCκðJÞ ¼ hCκi: ð6:10Þ

The J’s are real numbers, not binary digits. This means
that to specify them with infinite accuracy will in general
take an infinite amount of information, which means
infinite Kolmogorov complexity (the same infinity that
shows up in the classical entropy of continuous variables,
such as velocity). We will fall back on a discrete approxi-
mation to the continuum. For example, suppose J takes on
real values on some interval. We can replace the real
numbers by a fine lattice with spacing δ. All together there
are ∼1=δ points on the lattice. A value of J can be specified
by an integer from 1 to 1=δ. It is well known that the typical
Kolmogorov complexity of such an integer is of order
log ð1=δÞ and therefore diverges logarithmically as δ → 0.
Despite this divergence we still expect the ensemble

averaged complexity to be the same as entropy. This is
because the same log δ divergence appears in the entropy
for the reason that the probability for any value of J is
order δ and the sum

P
P logP will be proportional to

− log δ. The average Kolmogorov complexity of the J’s
depends logarithmically on the tolerance in specifying the
Hamiltonian.20

Before concluding this section we will give a circuit
analogy. The analog of Hamiltonian evolution would be to
start with a unitary circuit of small depth, call it Γ, and to
repeat it over and over,

UðtÞ ¼ Γt ðt ¼ integerÞ: ð6:11Þ

Most of what we described here can be adapted to that case.
Averaging over Hamiltonians would be replaced by aver-
aging over an ensemble of Γ’s.
In computer science terms, Γ is the program that

determines what computation the circuit carries out. Part
of the complexity of the entire computation is the
Kolmogorov complexity of Γ. The ensemble average
defines an entropy, which as we have seen, is related to
kinetic entropy.
The kinetic entropy of the A system is time independent

and of order the number of J’s. This is polynomial inK. On
the other hand the positional entropy is time dependent and
can grow to exponential size ∼2K at equilibrium. During

19The important assumption is that the probability distribution
itself not be too complex. For simple distributions, such as
Gaussian, this complexity is negligible. See Grunwald and
Vitanyi [26].

20To be clear, we are calculating the Kolmogorov complexity
of a time-independent Hamiltonian, with a tolerance δ. The time t
does not appear. If instead we were calculating the Kolmogorov
complexity of a quantum state evolving under a time-independent
Hamiltonian—which, to be even clearer, is not the quantity of
interest for the purposes of relatingQ andA—we would find that
this generically scales like log t at intermediate time. Consider the
algorithm for specifying the state that first gives the (simple)
initial state, then says “evolve for time t,” and then specifies the
time-independent Hamiltonian to be used in the evolution. The
first part is a fixed overhead that does not scale with t. The second
part—specifying the time—requires log t bits. The third part—
specifying the Hamiltonian—also requires log t bits, because to
approximate e−iHt for a time t requires an accuracy inH that is an
inverse polynomial in t [27].
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the early period of complexity growth, the two can compete
but in equilibrium the entropy is dominated by the
positional term. To put it another way, the Kolmogorov
complexity is essentially a fixed overhead having to do with
the complexity of the algorithm, but after the algorithm has
run for a long time the computational complexity vastly
exceeds the fixed overhead.
The computational complexity measures the total number

of gates required to build the minimal circuit that generates
the state. Even for a time-independent Hamiltonian, this
scales like t since you need to keep paying over and over
again to apply the same gates over and over again. The
Kolmogorov complexity is (no more than) the number of bits
in the most compressed possible description of this circuit.
For time-independent Hamiltonians you do not need to keep
paying over and over again as you concatenate identical
subcircuits, since you can just specify the total number of
such subcircuits with log t bits.
Whether or not we add the Kolmogorov complexity to

the circuit complexity to define a total complexity is a
matter of definition. In ordinary thermodynamics, the two
kinds of entropy are transmutable into each other, for
example, by adiabatic compression or expansion, so adding
them is essential. In the present context one thing is clear:
the Kolmogorov complexity of Γ and the circuit complexity
both contribute to the overall complexity of carrying out a
computation.

E. A counting argument

The set of operators reached by evolving with k-local
Hamiltonians forms a space of dimension not much bigger
than 2K . Ideally we would like to know how much of the
volume of that space is occupied by operators of complex-
ity C. The conjecture of Eq. (6.3) is that it is exponential but
we have not proved it. Brownian or random circuits which
fill all ð4K − 1Þ dimensions of SUð2KÞ are easier to
analyze. The counting problem in this case is the unre-
stricted counting of all unitary operators with complexity
less than or equal to C. We’ll do that counting now.
There is an important difference between the time-

independent Hamiltonian model and stochastic random
circuit models. The difference has to do with the
Kolmogorov complexity of the circuit. In both the time-
independent Hamiltonian model, and the repeated-Γmodel,
the Kolmogorov complexity is essentially a fixed overhead
which does not grow linearly as the circuit evolves. Thus,
whether we include it or not, we may ignore it over long
timescales. This is not the case for random circuits, where
at each time step a new random choice of gates has to be
made. It is evident that the Kolmogorov complexity
increases linearly with time and therefore, if included, it
will contribute to the growing total complexity of an
evolving circuit. In what follows we include the
Kolmogorov complexity in the counting for a stochastic
or Brownian circuit.

In the simplest model at each instant a single gate acts. If
we only have to choose from a small gate set, the
Kolmogorov complexity per gate would be order 1 and
would not be very important. But at each step the choice
also involves which set of k qubits the gate acts between.
For example in the case k ¼ 2 there are KðK − 1Þ=2
possibilities to choose from. That means that each gate
adds a Kolmogorov complexity ∼ logK2. We can easily
account for this by assigning a complexity logK2 to each
gate. [We would not do this in the Γ model in which the
Kolmogorov complexity is essentially a fixed overhead. In
that case each gate is assigned complexity Oð1Þ.] The full
complexity of a unitary operator in the stochastic model is
logK2 times the minimum number gates that are required to
prepare U.
We can give a rough counting argument for how

complexity grows. The argument is closely related to
one given by Roberts and Yoshida [28]. Let us consider
a path through SUð2KÞ defined by a series of n two-qubit
gates

UðnÞ ¼ gngn−1…g1: ð6:12Þ

The gate set is assumed universal and includesm gate types
which can act on any pair of qubits. Thus each gate involves

a choice of mKðK−1Þ
2

possibilities. The system of paths
defined this way forms a tree [4]. The tree is a discrete
analog of complexity geometry.
The number of such paths of length n is

NðnÞ ∼
�
mKðK − 1Þ

2

�
n
∼ en log ðmK2Þ: ð6:13Þ

Does each path produce a different unitary operator or are
there collisions where two paths produce the same oper-
ator? Because of the very high dimensionality of SUð2KÞ,
collisions of this type are rare until n is very large. In fact,
the fundamental assumption that this work is based on is
that collisions do not generically occur until n is expo-
nential in K.
Under these conditions the set of unitary operators that

can be reached in this way include all U with complexity
less than C ¼ n logK2, and no U with complexity greater
than n logK2. The conclusion is that the number of unitary
operators with complexity less than or equal to n logK2 is
NðnÞ. Thus the number ofU0swith complexity of order C is

NðCÞ ¼ eC: ð6:14Þ

We may think of all the operators with complexity
between C and C þ δC as living in a shell of volume eC

surrounding the root of the tree. The positional entropy of
an ensemble supported in this shell is the logarithm of this
volume and is therefore
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Sa ≈ C: ð6:15Þ
Thus, if the Kolmogorov complexity is included, in the

stochastic model we are justified in identifying average
complexity with auxiliary entropy.
This counting argument relies on the assumption that at

subexponential times collisions are rare. This assumption
seems particularly warranted in the context of the stochastic
random circuit model we have considered so far in this
subsection. To establish Eq. (6.3) we would like to make
the same assumption in the context of unitary operators
generated by the exponentiation of k-local time-indepen-
dent Hamiltonians. In this case the assumption seems less
secure, since by restricting ourselves to this special subset
of unitaries we may have made collisions more likely.
Nevertheless, the subset of unitaries that may be generated
by k-local time-independent Hamiltonians is still exponen-
tially big, and our conjecture is that this should be good
enough to underwrite Eq. (6.3).

F. A state-complexity argument

We will give one more argument for Eq. (6.3), not based
on operator complexity but on state complexity. Earlier, in
Sec. IVA, we discussed relative state complexity. In order
to define absolute state complexity one needs a concept of a
simple state. By a simple state we mean one with no
entanglement, for example the product state j000::00i.
Once one specifies what states are simple, the absolute
state complexity of jψi just means the smallest relative
complexity between jψi and a simple state. To say it
another way, the state complexity of jψi is the minimum
number of gates required to convert it to an unen-
tangled state.
The geometry of state complexity is similar to that of

unitary operator complexity [18]. The most important
difference with unitary operator complexity is that the
space SUð2KÞ is replaced by the projective space of
normalized states CPð2K − 1Þ.
In order to count states we have to regularize CPð2K −1Þ

by dividing it into cells of linear size ϵ. The number of such
cells in CPð2K − 1Þ is obtained by dividing the volume of
CPð2K − 1Þ by the volume of a ball of radius ϵ. The answer
is that the number of states is given by

Nϵ ¼ ϵ−2
K ¼ ej log ϵj2K : ð6:16Þ

This is often simplified to e2
K
. We will return to the ϵ

dependence in a moment.
Now consider the number of states that have complexity

C. Let us assume that it is exponential

NðCÞ ¼ eαC; ð6:17Þ

where α is a constant to be determined. The maximum
state complexity is ∼2K and almost all states have that

complexity. On the other hand the total number of epsilon-
balls in CPð2K − 1Þ is given by

Nϵ ¼ e2
K
: ð6:18Þ

Consistency of Eqs. (6.17) and (6.18) requires α ¼ 1. Thus
the number of quantum states with a given complexity
grows as the exponential of the complexity. Taking the
logarithm implies that average complexity is auxiliary
entropy.
Coming back to the ϵ dependence, the logarithmic

divergence in the counting of states is familiar in classical
statistical mechanics. Strictly speaking the continuous
nature of phase space implies that entropy is infinite.
The divergence may be regulated by discretizing space
and momentum space, and one finds the divergence being
logarithmic as in the exponent of Eq. (6.16).
On the complexity side we have been a bit sloppy in

claiming that the maximum complexity is 2K . Complexity,
like entropy, also requires a cutoff, and a more correct
statement is that the maximum complexity is j log ϵj2K .
Thus the divergences in complexity and entropy match.
The two arguments we have given—the counting argu-

ment and the state-complexity argument—are arguments
for the plausibility of our conclusion, but are far from
rigorous, and it would be interesting to explore this
question further.

VII. THE SECOND LAW

In this section we come back to the original question that
we asked in Sec. I: Is there a second law of complexity? Let
us first discuss an obstruction to complete thermalization
of A.

A. Obstruction to thermalization

The Maxwell-Boltzmann velocity distribution in
Eq. (6.5) is an initial condition connected with a choice
of a Gaussian distribution for the coupling constants J. It is
not a consequence of dynamical thermalization of the A
system. In fact the large number of conservation laws
associated with right-multiplication invariance creates an
obstruction to thermalization. By contrast the tendency
toward maximal positional entropy is not obstructed and
takes place for each value of the conserved quantities.
There are 4K conserved generators of right multiplica-

tion. They are given by Eq. (3.9). Within each leaf of the
foliation (by the values of the generators) the auxiliary
system with complexity metric is chaotic. This means that
the positional entropy will grow with time and eventually
reach its maximum, but if the initial velocities are not
Maxwell-Boltzmann distributed, the system will never
reach thermal equilibrium. This is roughly like a gas of
completely free particles on a very large negatively curved
Riemann surface. The kinetic energy of every particle is
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conserved, but the positions will spread out and eventually
fill the space.
Granting the correspondence between average complex-

ity and auxiliary entropy, we can give a rough analogy for
the growth and evolution of computational complexity.
Initially a large number ∼2K of particles are located near
the origin of a large box of volume e2

K
. The velocities are

Maxwell-Boltzmann distributed. The gas begins to expand
and the positional entropy grows. Eventually the gas fills
the box and comes to equilibrium. It stays in equilibrium
for a very long time but on timescales e2

K
recurrences

happen. Figure 1 is the result of translating this picture into
the computational complexity of the system Q.

B. Second law of complexity

The thermodynamic laws of complexity are just the usual
laws of thermodynamics applied to A. The second law,
applied to positional entropy implies a second law of
computational complexity [4]:

If the computational complexity is less than maximum,
then with overwhelming likelihood it will increase, both
into the future and into the past.

The classical system A tends to positional equilibrium
after a time polynomial in the number of classical degrees
of freedom, and then remains in equilibrium for a classical
recurrence time. This implies that the quantum system Q
comes to complexity equilibrium after a time exponential in
the number of qubits, and remains there for an even greater
quantum recurrence time, the quantum recurrence time
being doubly exponential inK. Thus we achieve our goal of
understanding the growth of complexity for a K-qubit Q
system (Fig. 1) in terms of the behavior of classical entropy
for an A system of 2K degrees of freedom.
In principle one can reverse the evolution of a large but

finite system by intervening with a process which changes
the sign of its Hamiltonian. In classical physics this reverses
the trajectory in phase space and if it can be done with
sufficient precision it will reverse the increase of entropy,
causing an apparent violation of the second law of
thermodynamics. The only problem is that decreasing
entropy is unstable when the system is chaotic. The effect
of a tiny change in a single degree of freedom will
exponentially grow, and quickly reverse the decrease of
entropy, turning it back to an increase.
We can apply this property of classical physics to the A

system and derive an important property of quantum
complexity. In principle, quantum states of a many body
system can be prepared which will evolve toward decreas-
ing complexity.21 But the quantum-classical duality
between system Q and system A implies that the decrease

is unstable. The application of a small perturbation to a
single degree of freedom will exponentially spread through
the system, and reverse the decrease of complexity. This
phenomenon and its relation to negative curvature was
studied in the toy model [4]. It can also be explicitly seen in
black hole dynamics using the classical shock wave
calculus of [29].
Finally, as pointed out in [4], the largest classical

Lyapunov exponent of A is the quantum Lyapunov
exponent [11] of Q.

VIII. UNCOMPLEXITY AS A RESOURCE

When a classical gas explodes from the corner of a room
that does not contain a turbine, the increase in entropy is
wasted.
In a similar way, when a black hole evolves, it

uselessly generates complexity. Black holes are not only
the fastest computers in Nature, they are also the most
useless. They implement the highest number of gates per
unit mass per unit time, but which gates they implement
are chosen by quantum gravity, not by the user. The
result is computation that, while extremely fast, is
undirected—useful only for those whose purpose is to
simulate black holes.
But the second law of thermodynamics has another side

to it beyond the inevitability of the increase in entropy, the
side that led to its creation by steam engineers. An entropy
gap, namely the difference between the entropy of a system
and the maximum entropy in thermal equilibrium, is a
resource [30]. This resource can be harnessed to perform
directed work.
In this paper we are interested in the question of whether

complexity defines a resource that can be harnessed in a
useful, directed, manner, in analogy with thermodynamic
work.We expect that the analog of directed work is directed
quantum computation—we will call this “computational
work.”
In exploring this conjecture, we will be guided by the

analogy between the complexity of the quantum system Q
and the entropy of the classical system A. This is an
incompletely defined idea, but nevertheless we will give
some reasons to believe that a resource interpretation of
complexity exists.
Without giving a formal definition of thermodynamic

“work,” for a process to do work it must have the following
features:
(1) Doing work enacts a directed transition from one

macroscopic state to another, with a deliberate goal
(for example, raising a weight).

(2) Doing work expends a resource. Once the available
resource is fully expended, no further work is
possible until the resource is replenished.

(3) Doing work involves a procedure that depends only
on the macrostate of the system involved, and not on
the specific microstate.

21In gravitational physics a white hole is an example of a state
of decreasing complexity.
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(This definition of work excludes the kind of work that
involves Maxwell’s demons.)
By a quantum computation we mean a quantum circuit

that begins with a pure input quantum state and ends with a
pure output quantum state. The circuit may be composed of
gates or a possibly time-dependent Hamiltonian. In other
words it is a quantum-in—quantum-out process and its
purpose is to reach a target state. The computation can be
thought of as a trajectory on the space of states or in the
configuration space of the auxiliary system A. No meas-
urement is allowed during the course of the computation, as
measurements are not part of the Q-A correspondence. Of
course to be useful the computation must be followed by a
measurement but only at the very end. The computational
work and the necessary resources refer to the quantum-in—
quantum-out computation and not to the measurement.
In thermodynamics, the free energy

F ¼ E − TS;

is a resource that represents the amount of energy that can
be directed toward useful work. Applied to the auxiliary
system the definition of free energy would be Ea − TaSa, or
equating auxiliary entropy with complexity,

Fa ¼ Ea − TaC: ð8:1Þ

For the auxiliary system, as formulated thus far, both the
energy Ea and the temperature Ta are fixed parameters that
only depend on the number of qubits through Eqs. (5.5) and
(6.8). The only variable in the free energy is the complexity.
Therefore we propose that the quantity −C be treated as a
resource. More exactly we propose that the gap between the
complexity and the maximum possible complexity—the
“uncomplexity”—is a resource that can be utilized for
directed computation,

Resource ¼ ΔC ¼ ðCmax − CÞ: ð8:2Þ

To understand why uncomplexity might be viewed as a
resource, let us consider how useful a computer would be if
the resource is all used up. Consider a tired old quantum
computer that has been allowed to run for such a long time
that the state complexity has reached its maximum value,
exponential in K, and therefore ΔC ¼ 0.
For most purposes a state of maximal complexity is

indistinguishable from a maximally mixed density matrix.
In both cases the expectation values of all but the most
complex operators are given by their Haar-random values.
Suppose our computer is initialized in a mixed state with
density matrix proportional to the unit operator,

ρ ∼ 1:

Consider any unitary operation G that we may apply. (We
use the notation G to suggest that the operation may be

composed of gates.) The action of G on any density matrix
changes it to GρG†. This may or may not be useful in
general, but when applied to the maximally mixed density
matrix it does nothing. Whatever operation is applied, the
result is the same: the maximally mixed state. Therefore
unless the computer is reinitialized, no useful computation
is possible.
The same is true for a maximally complex state as long

as G is not so complex that it can undo the exponential
complexity of the initial state.
The state with the maximal resource has C ¼ 0 which

means a simple unentangled product state. It seems
reasonable that the most powerful initial state for general
all-purpose computing would be the simplest state.
In attempting to think of the uncomplexity ΔC as a

resource, we will use the correspondence between the
quantum complexity of Q and the classical entropy of A
as a guide. We will now give some examples based on
thermodynamic analogies.

A. Combining systems: A paradox

Many thermodynamic questions concern what happens
when two isolated systems, each in equilibrium, are
brought into contact. The first question is, What does it
mean to combine two auxiliary systems, and how is it
related to combining the corresponding quantum systems?
Here we will consider a simple case: two thermodynami-
cally identical A subsystems at the same temperature Ta
and entropy Sa are combined. This should give rise to a
single system in equilibrium at the same temperature, with
an entropy 2Sa.
We would like to understand what it means to combine

two classical auxiliary systems, each in complexity equi-
librium, into a composite auxiliary system. In other
words, given an auxiliary system A, what is the meaning
of A ×A?
Here is the paradox: Naively we might think that

combining two auxiliary systems involves combining the
two corresponding quantum systems in the form Q ⊗ Q,
where each factor contains K qubits, and is in complexity
equilibrium. Let us see what happens if we do so. Each
subsystem has complexity of order C ¼ 2K. Immediately
after combining the systems the total entropy is 2 × 2K , and
the maximum complexity of the combined system is

Cmax ¼ 2ð2KÞ: ð8:3Þ
This is the square of the individual complexities, not the
sum. Therefore the resulting systems, when combined, will
be very far out of complexity equilibrium. That is not what
should happen if we combine two identical thermodynamic
systems; the entropy should be additive.
Evidently combining two quantum systems does not

correspond to combining the auxiliary systems in an
additive way. Instead it multiplies the number of degrees

ADAM R. BROWN and LEONARD SUSSKIND PHYS. REV. D 97, 086015 (2018)

086015-18



of freedom of the auxiliary systems. This seems to be
evidence that complexity does not behave like entropy.
The resolution of this paradox is that the operation of

combining auxiliary systems is entirely different from
combining the corresponding quantum systems. The right
idea is to take the system of K qubits and add just a single
additional qubit. Adding one qubit doubles the dimension
of the Hilbert space, and therefore doubles the number of
classical degrees of freedom of the auxiliary system.
Let us show this in equations. If jψ0i and jψ1i are bothK

qubits states with hψ0jψ1i ¼ 0, we combine these two
systems by constructing the maximally entangled K þ 1
qubit state

jΨi ¼ j0ijψ0i þ j1ijψ1iffiffiffi
2

p : ð8:4Þ

The new auxiliary system has twice as many degrees of
freedom22 as the auxiliary system for the original K qubit
quantum system. This is because the wave function has
twice as many components. Thus we see that the addition of
one qubit is the operation that doubles the auxiliary system.
If the states jψ0i and jψ1i are independently picked at

random, their relative complexity will almost always be
maximal. In that case it can be shown that the complexity of
jΨi will be twice the complexity of either jψ0i or jψ1i.
Let us suppose that the new qubit, which we will call τ, is

uncoupled from the other qubits and that jψ0i and jψ1i are
separately maximally complex. Thus the overall auxiliary
system is two copies, each in complexity equilibrium.
Next we turn on generic k-local interactions between τ

and all the other qubits. The overall system will come to
complexity equilibrium with complexity

Cfinal ¼ 2Kþ1 ¼ 2K þ 2K: ð8:5Þ

In other words the final complexity will be the same as the
sum of the complexities of jψ1i and jψ0i. This is exactly
like mixing two uncorrelated gases of classically identical
particles, each initially in equilibrium at the same temper-
ature. The final entropy is the sum of the initial entropies
and the process is reversible.
In the thermodynamic case it is obvious that no useful

work can be extracted from such a process. In the
complexity case, at all stages of the process the system
is in a state of maximal complexity; thus according to our
earlier discussion, no useful directed computational work
can be done.
Now let us consider the case jψ0i ¼ jψ1i. In this case,

the extra qubit is not entangled with the rest of the system,
which we continue to assume is in complexity equilibrium,

jΨi ¼ j0i þ j1iffiffiffi
2

p ⊗ jψ0i: ð8:6Þ

This time the two auxiliary systems are in exactly the
same state.
The initial complexity is 2K, but after turning on an

interaction that depends on the extra qubit and waiting for a
long time, the final complexity is 2 × 2K , i.e. double the
initial complexity.23 Is there a thermodynamic analog to
this situation? Indeed there is. Imagine creating the two
gases in exactly the same microstate. Such a distribution is
far from equilibrium: every particle of one gas is con-
strained to have exactly the same position and momentum
as the corresponding particle of the other gas. The total
initial entropy is the same as the entropy of one copy.
However, perturbing one of the copies of the system, and
then letting the whole system interact and come to
equilibrium will result in a final entropy that is twice the
initial. This is schematically illustrated in Fig. 4.
For a genuine classical system it follows from the laws of

thermodynamics that work can be extracted from the initial
out-of-equilibrium state. In the quantum-complexity case
this would correspond to a resource being available in a
state of submaximal complexity. This resource—uncom-
plexity—can be used to do computational work.

B. One clean qubit

In this subsection, we will give an example of how
uncomplexity can be used to do “computational work.”We
will see that in the process, the uncomplexity is expended.
First consider a system that has no uncomplexity—a

state of maximal complexity. A maximally complex state is
very much like a maximally mixed density matrix as long

FIG. 4. The left panel shows a gas of 2N classical particles
created with the particles paired. The entropy is the same as a gas
of N particles. In the right panel the gas has come to equilibrium
and the particles become randomly distributed. The entropy in the
right panel is twice the entropy in the left panel. No work can be
extracted from a gas in equilibrium, but the gas of paired particles
is far from equilibrium and so can be used to do work.

22Technically it has more than twice, because a K qubit system
has 2Kþ1 − 2 real degrees of freedom, but this distinction is
unimportant in the limit of large K.

23This effect was the basis for the claim in [5] that dropping an
additional thermal photon into a black hole doubles the time that
the horizon will be transparent (firewall free).
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as we restrict ourselves to reasonably simple experiments.
If we act on such a state with a polynomial size circuit the
complexity can only be reduced by a negligible fraction.
For any measurement of a nonexponentially complex
observable, the result will be Haar random, so again no
useful computation can result from an initial maximally
complex state. A quantum computer that runs for an
exponential time and reaches maximal complexity becomes
useless for computation.
Now consider adding to this maximally complex state a

single additional qubit in a pure state. This does not change
the complexity, but the maximal complexity doubles, so the
complexity is now only half the maximal value. From the
analogy with the two component out-of-equilibrium gas in
Fig. 4, we should expect that the additional qubit, which
has replenished24 the uncomplexity resource, will allow us
to once again perform useful computational work.
Computation that makes use of either a maximally mixed

state (or a maximally complex state) plus just one additional
unentangled qubit is called “one clean qubit” computation.
Just how much power one clean qubit computation provides
and how to quantify it is not certain but it is known to be able
to efficiently solve problems including some classically hard
problems [31]. Known examples include calculating the
trace of a unitary operator and estimating certain properties
of Jones polynomials. We will review the illuminating
example of calculating the trace of a unitary operator, which
was first worked out in [31].
We suppose we have a unitary operator G in the space

SUð2KÞ. The operator G is constructed as a known product
of a polynomial number of gates G ¼ gNgN−1…:g1. The
goal is to approximate its trace. For simplicity let us only
worry about the real part of the trace.
Begin with the space of states CPð2K − 1Þ. We will try to

construct a K qubit circuit such that a measurement of σz1
will give some nontrivial information about the value of
TrG† þ TrG. Assume the circuit is initialized to the simple
state j00000…0i.
Consider the neighborhood of all the states jψi for which

hψ jσz1jψi ¼ TrG: ð8:7Þ

Call that the target set. If by running the circuit we can
navigate to one of these points, then by a subsequent
measurement of σz1 we learn something about TrG† þ TrG.
By repeating the experiment we can improve our knowl-
edge. Thus the goal of directed computation is to decrease
the relative complexity to zero between the initial state and

some state that is in the target set. Figure 5 schematically
illustrates the idea. The circles represent CPð2K − 1Þ in a
way such that distance from the center represents state
complexity. In order to have a high probability of success it
is important that each step increases the complexity.
Now let us suppose that instead of starting with the

minimally complex state j000::00i we start with a state in
the darker pink outer region where the complexity is
maximal ∼2K . There are no blue points in this region since
the expectationvalueof anyobservable isHaar random.With
overwhelming probability any gate that acts on a state in the
dark pink region will leave the point in that region. This
shows that directed computation is not possible startingwith
a state of maximal complexity, i.e., ΔC ¼ 0.
But now let us add one clean qubit τ, thereby doubling

the maximal complexity. The larger circles in Fig. 6
represent CPð2Kþ1 − 1Þ, the space of K þ 1 qubit states.
The darker pink still shows states of complexity 2K, but the
region beyond it goes out to twice that complexity.
Note that the initial state for the one-clean-qubit calcu-

lation is in the dark pink region, but now we can reach blue
dots by moving outward towards increased complexity; we
do not have to fight against the second law.
The actual algorithm is simple [31] and we will describe

it now. Consider the quantum circuit shown in Fig. 7. The
initial state is

j0i ⊗ jmaxi; ð8:8Þ
where jmaxi is any state of the K qubit system with
maximal complexity. We act with the first Hadamard gate25

to give

j0i þ j1iffiffiffi
2

p ⊗ jmaxi: ð8:9Þ

Next apply the controlled G operation Gc ¼ j1ih1jGþ j0i
h0j1, where G ¼ gNgN−1…:g1; this circuit applies G to

FIG. 5. The interior of the circles represent the spaceCPð2K−1Þ
with the center point being the state j0000i. The blue regions are
the target set. The left panel shows the evolution of a circuit
programmed to get to a point on the target set. The trajectory is
built from gates and each step increases the complexity.

24This exponential rejuvenation may have a remarkable
consequence for black holes. In [5] it is argued that black hole
event horizons are only transparent if complexity is increasing,
and so a black hole in complexity equilibrium would not have a
transparent horizon. But as pointed out in that paper, throwing a
single qubit in a pure state into an old maximally complex black
hole rejuvenates the horizon for an additional exponential time. 25The Hadamard gate is defined by the matrix ðτz þ τxÞ= ffiffiffi

2
p

.
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jmaxi if the control qubit is j1i, and otherwise leaves it
unchanged. This gives

j1i ⊗ Gjmaxi þ j0i ⊗ jmaxiffiffiffi
2

p : ð8:10Þ

Now acting with the second Hadamard yields

j0i ⊗ 1þ Gffiffiffi
2

p jmaxi þ j1i ⊗ 1 −Gffiffiffi
2

p jmaxi: ð8:11Þ

This completes the computation. To make use of it we note
that the expectation value of τz is given by

hτzi ¼ hmax jG† þ Gjmaxi: ð8:12Þ
This in itself is not useful for our purpose—determining
TrG—but because jmaxi is a maximally complex K qubit
state, with overwhelming likelihood

hmax jGjmaxi ¼ TrG: ð8:13Þ
Thus by applying the circuit HGcH we have set up a state
in which we can learn something about TrG by making a
measurement of τz.

The measurement itself cannot be represented as an
operation in the classical auxiliary system. As we said
earlier it should not be considered as part of the computa-
tional work. The computational work is associated with the
process that went into setting up the state, i.e., acting with
the circuit HGcH, and only then at the very end do we
allow a measurement. By repeating this experiment,
including the measurement, over again with fresh clean
qubits we can get an arbitrarily accurate estimate for TrG.
In classical thermodynamics we can repeat an operation

designed to raise a weight one meter and thereby raise it two
meters, three meters, four meters, and so on until we run out
of resource. The same is true of computational work. For
example by repeating the circuit of Eq. (8.14) in the form

ðHGcHÞnj0i ⊗ jmaxi ð8:14Þ
one can determine information about the trace of Gn. (As
beforewe onlymake ameasurement at the end.) For obvious
reasons the problem of determining the trace of a higher
power ofG becomesmore difficult as the power increases. It
is also clear that the repeated action of the circuit depletes the
resource, roughly by the complexity of G each time it is
repeated.
One clean qubit computation is an example of using

uncomplexity to do computational work. It exhibits all
three of the criteria that we listed at the start of Sec. VIII.
(1) First, it implements a transition that is directed

towards a goal—the goal of calculating the trace ofG.
(2) Second, it uses up a resource—at the end of the

computation, the additional qubit is no longer clean,
and the complexity of the K þ 1 qubit state has
increased by approximately the complexity ofG. Or,
to put it another way, the uncomplexity resource has
diminished by that amount.

(3) Third, the process involves a transition from one
macroscopic state to another by a procedure that
does not depend on the microscopic state—we
extracted information about TrG without knowing
precisely which state we started or ended in. (Thus
no Maxwell’s demons were involved. Instead we did
something analogous to doing work by expanding
the volume of a gas using a procedure that does not
require knowledge of the starting microstate.)

It would be very interesting to know how the power
of one clean qubit is connected to the doubling of the
maximum complexity, and whether it is similar to the
ability to do work with a system of identical gases in which
the molecules are paired in a nonthermal distribution.

C. Kolmogorov uncomplexity as a resource

We have argued that computational uncomplexity is a
resource that can be used to do directed quantum
computation. But computational complexity is not the
only kind of complexity that has arisen in this paper. In

FIG. 6. Left: adding an extra qubit doubles the maximum
complexity (adding an annulus to the space of possible states) and
replenishes the uncomplexity resource. Right: given the addi-
tional resource, what was previously a state of maximal complex-
ity now has some uncomplexity and can be used to further
computation; this is illustrated by showing how a target state can
be reached from the original maximally complex configuration.

FIG. 7. Circuit for using a clean qubit to compute Tr½G�. The
input state has a total of K þ 1 qubits—the one clean qubit (top)
and the K maximally complex qubits (bottom). The symbol H
represents a Hadamard gate acting on the clean qubit. The clean
qubit acts as a control for the circuitG: the circuit appliesG to the
other K qubits if the clean qubit is j1i, and does nothing if the
clean qubit is j0i.
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Sec. VI D we argued that while the positional entropy of
A corresponds to the computational complexity of Q, the
kinetic entropy of A corresponds to the Kolmogorov
complexity. This therefore raises the question of whether
Kolmogorov uncomplexity is also a resource.
The answer is yes, but we will see that the resource is

useful for a rather different purpose than computational
uncomplexity. This means that from the point of view of the
Q-A correspondence this subsection is something of an
aside, but it is well worth explaining. In this subsection we
will explain that Kolmogorov uncomplexity is a resource
that is useful for doing erasure.
This is beautifully illustrated by an example in an old

paper of Bennett, Gacs, Li, Vitanyi, and Zurek [32], which
examines apparent violations of Landauer’s principle [33].
Landauer’s principle says that, while reversible transfor-
mations can be performed without free-energy cost, to erase
a bit (to reset it to zero no matter whether it starts at one or
at zero) requires a free energy of kBT log 2. However, there
are some examples where bits can seemingly be reset much
more cheaply than this.
What Bennett et al. show is that these apparent violations

occur precisely in cases that have Kolmogorov uncom-
plexity, since in those cases the states can be compressed
before being erased. (For example, it requires less free
energy to erase the first million digits of π than to erase a
million random digits. This is because it is possible to
reversibly transform the first million digits of π to the much
shorter computer program that outputs them. Since this
compressed description has much less Kolmogorov uncom-
plexity than the original description, performing the com-
pression expends uncomplexity.) Specifically, they show
that the free energy cost of deleting a bit string is not given
by the total number of bits, but by the Kolmogorov
complexity of the bit string. For generic bit strings these
two coincide, but for special low complexity strings the
Kolmogorov complexity is less. The total saving compared
to a naive application of Landauer’s principle is given
exactly by the uncomplexity,

ΔFjsaved ¼ kBT log 2ΔCκ: ð8:15Þ
The Kolmogorov uncomplexity of one bit string can be
used to erase another bit string; in the process, the resource
is expended.
We thus see that both computational uncomplexity

and Kolmogorov uncomplexity can be used to carry out
information theoretic tasks.

IX. UNCOMPLEXITY AS SPACETIME

Our original interest in complexity theory began with the
following question: How does one describe the interior of a
black hole in holographic terms? In this section we would
like to come back to that question in light of the conjecture
that uncomplexity is a resource. We will see that the

black-hole/complexity-connection provides a new way to
think about uncomplexity as a spacetime resource26 based
on classical general relativity (GR). In particular classical
GR provides another way to think about the rejuvenating
power of one clean qubit.
To understand the uncomplexity resource in GR terms,

let us suppose Alice is a black hole explorer stationed just
outside a one-sided AdS black hole at boundary time t. She
intends to jump from the AdS boundary into the black hole.
The resource that she cares about is spacetime volume—
without which she will perish at the horizon.
Recall that the quantum state of the black hole interior

has a growing complexity (for t > 0) that is dual to the
growing spacetime volume behind the horizon. At any
instant the complexity is given by the Einstein-Hilbert
action of the Wheeler-DeWitt (WDW) patch anchored at
time t on the boundary [19,20]. The part of the WDW patch
outside the horizon has a time-independent divergence,
which after initial transients can be regulated by consid-
ering only the portion of the space behind the horizon, as

FIG. 8. The Penrose diagram for a one-sided black hole in AdS.
The WDW patch anchored at a boundary time t is shaded yellow;
the part of it behind the event horizon is dark yellow. The blue
line in the top right is a null geodesic emanating from the point at
which the boundary state complexity becomes maximal.

26We would like to thank Douglas Stanford for a critical
remark that led to this section.
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shown in Fig. 8. The action of the dark yellow region
behind the horizon is of order its spacetime volume.
Slightly simplifying the discussion, we can say that the

complexity is given by the spacetime volume V4 of the dark
yellow region, multiplied by some numerical factors that
depend on the gravitational constant G and the AdS radius
of curvature lAdS,

CðtÞ ∼ V4

Gl2
AdS

: ð9:1Þ

A straightforward GR calculation shows that the action
increases linearly with time, with a coefficient equal to
the mass of the black hole. This is consistent with the
early growth of complexity in Fig. 1. It is believed that
the classical description of the black hole breaks down
when the complexity stops increasing, once C ¼ Cmax.
This occurs at tmax ¼ eS at which time the horizon
becomes opaque by developing a firewall [5,6]. In
Fig. 8 the cutoff at tmax is shown as a blue diagonal
slash in the upper right corner of the diagram. Time does
not literally run out at the cutoff, but because complexity
is bounded by Cmax the classical growth of the black hole
interior must break down.

Let us consider in more detail the maximum complexity.
Figure 9 shows the WDW patch pushed up to the cutoff
time. The maximum complexity Cmax is the action of this
new WDW patch. Classically the action (4-volume) in the
upper corners would grow indefinitely, but the cutoff at
tmax ∼ eS keeps it finite.
The uncomplexity ΔCðtÞ≡ Cmax − CðtÞ is given by the

action of the dark yellow region of Fig. 9 minus the action
of the dark yellow region of Fig. 8. This difference is shown
in blue in Fig. 10.
The uncomplexity is proportional to the 4-volume of

the blue triangular region, which is cutoff at tmax ∼ eS. This
4-volume is finite, and goes to zero as t → eS.
We see something interesting from the figure. The blue

region may be identified with the union of all interior
locations behind the horizon that Alice can visit if she
enters the black hole at any time after t. The uncomplexity
therefore represents the spacetime resource available to an
observer who intends to enter the horizon.
Suppose Alice wishes to jump in after the black hole has

become maximally complex. According to [5] she will run
into an obstruction at the horizon. The situation is analo-
gous to attempting to compute with a computer that has
reached maximal complexity; the resource will have been
exhausted. Can Alice do anything to renew the resource?

FIG. 9. The WDW patch for maximum complexity.

FIG. 10. The uncomplexity is proportional to the spacetime
volume of the blue region.
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As explained in [5], all Alice has to do is to throw in
one thermal photon and wait a scrambling time. This will
restore the transparency of the horizon for an additional
exponential time, in the same way that the computing
power of a maximally complex computer can be restored
by adding a single clean qubit. This phenomenon is
essentially a classical GR effect, which we illustrate in
Fig. 11.
The conclusion drawn in [5] is that the obstruction at the

horizon due to maximal complexity will be removed by
adding to the black hole one clean qubit in the form of a
thermal quantum. The rejuvenating effect of the added
qubit parallels the effect in a quantum computer that has
reached maximal complexity.

X. SUMMARY

Let us summarize the material in this paper:
(i) Section II introduced the class of quantum systems

Q that we study, namely k-local systems composed
of K qubits interacting through a Hamiltonian which
is a sum of terms, each containing no more than k
qubits. Alternatively the qubits may interact in a
k-local quantum circuit built of gates with no
more than k qubits. Such systems are typically fast
scramblers.
We explained that the evolution of complexity for

a k-local system of K qubits closely resembles the
classical evolution of entropy for a system of exp½K�
classical degrees of freedom and raised the question
of the source of this similarity.
We also explained the SYK strategy of averaging

over randomly chosen time-independent Hamilto-
nians. This sometimes allows us to determine the

average behaviors for problems which are too
difficult to solve in individual instances.

(ii) In Sec. III we formulated the evolution of the time-
development operator e−iHt as a classical mechanics
problem of an “auxiliary” system A. The system A
consists of a nonrelativistic particle moving on the
space SUð2KÞ. The auxiliary system for a system of
K qubits has a number of classical degrees of
freedom exponential in K.

The first-order Schrödinger equation of Q is
replaced by a second-order equation of motion for
A, in which the Hamiltonian is eliminated alto-
gether, in favor of initial conditions on the velocity
of the particle. Averaging over a Maxwell-Boltz-
mann ensemble of initial velocities is equivalent to
averaging over quantum Hamiltonians as in SYK.

(iii) The usual inner-product metric on either the space of
states or the space of unitary operators is poorly
suited to studies of quantum chaos. Section IV was
devoted to the concept of relative complexity: a
metric which represents the degree of difficulty in
making a transition between two states, and also of
doing an interference experiment that measures the
relative phase between states. Relative complexity
can also be defined for unitary operators and has a
similar meaning.

The “complexity metric” defined by relative
complexity is much better suited to measuring the
difference between states of a chaotic system than
the standard inner product metric. Inspired by the
work of Nielsen and collaborators [8,9], Sec. IV
worked out the basic mathematical properties of
complexity metrics and showed that they are closely
related to the negatively curved geometry of the toy

FIG. 11. The first panel shows the upper-right corner of the black hole Penrose diagram with the red line representing an opaque
horizon that would be expected for a black hole of maximal complexity. The opaque horizon can be modeled by an infinitely thin
Shenker-Stanford gravitational shockwave. The blue line in the second panel is a thermal quantum injected from the boundary. Such a
quantum increases the entropy of the black hole by one bit. The effect of the low energy quantum is to shift the shockwave up and to the
left thus separating it from the horizon. In a scrambling time it will be lost into the singularity. The right panel which was taken from [5]
shows the process in more detail. The upshot is that within a scrambling time the horizon has become transparent; this newfound
transparency lasts for an exponential time.
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model. In particular, we calculated sectional curva-
tures and showed behavior consistent with the
toy model.

(iv) Section V introduced the A system as a classical
nonrelativistic particle moving on this complexity
geometry. The relative complexity of two unitary
operators is the minimal action required to go from
one to the other subject to a constraint on the
auxiliary energy of the particle.

(v) Section VI introduced our basic conjecture relating
classical entropy to quantum complexity. We argued
that after averaging over Hamiltonians (as in SYK)
the ensemble-average of quantum complexity is
equal to the classical entropy of the auxiliary system
A. In order to make this identification complete we
must include not just the circuit complexity—the
number of gates in the circuit—but also the Kolmo-
gorov complexity of the algorithm that the circuit
implements. In the case of a Hamiltonian quantum
system the Kolmogorov complexity is the length of
the shortest program needed to specify the Hamil-
tonian. Unlike the gate complexity, it does not grow
linearly with time and so soon becomes negligible
compared to the gate complexity.
The connection between quantum complexity and

classical entropy is the link that suggests a thermo-
dynamic description of complexity. In Sec. VII we
used this connection in order to formulate a second
law of complexity which is really just the second law
of thermodynamics for the auxiliary classical system
A. This line of reasoning explains the observation in
Sec. I that the evolution of complexity for a K qubit
system behaves like the evolution of entropy for a
system with a number of classical degrees of free-
dom exponential in K.

(vi) In Sec. VIII we discussed the concept of uncom-
plexity—the gap between the complexity of a state
and the maximum possible complexity—and gave
evidence that it is a resource useful for doing
computational work. An important component of
resource theory [30] is combining systems into
bigger systems. In the present framework this means
combining auxiliary systems. Surprisingly, combin-
ing two auxiliary systems has nothing to do with
combining the corresponding quantum systems. To
double the size of an auxiliary system one only
needs to add a single qubit to the quantum system.
We illustrated the idea of uncomplexity as a resource
with the example of “one clean qubit” computation.

(vii) Finally, in Sec. IX, we looked at the holographic
dual to the uncomplexity of a boundary state. We
showed that when a black hole is present the
resource—uncomplexity—is the total spacetime
volume accessible to an observer who plans to cross
the horizon.

XI. QUESTIONS

The strategy of averaging over an ensemble of
Hamiltonians (in computer science this would amount to
averaging over algorithms) may allow one to solve prob-
lems about average behaviors that would be much too hard
for individual instances. We are raising the possibility that
very difficult problems of complexity theory may be solved
on average by classical statistical mechanics and thermo-
dynamics. As an example we point to the correspondence
between the evolution of quantum complexity—an
extremely difficult problem for specific Hamiltonians—
and the classical evolution of entropy—a merely hard
problem.
This paper raises many questions, a few of which we will

mention here.
(i) Definition of complexity.—We have assumed that

there is a robust concept of complexity, but in fact
there is a large family of complexity measures. It is
important to understand how they are related and
whether a preferred measure of complexity can be
identified. In the context of the complexity geometry
the different measures are encoded in the moment of
inertia tensor I IJ. We showed that the sectional
curvatures will generically be negative and order
1=K (in agreement with the toy model) as long as the
penalty factors are not too small. What are the rules
governing the choice of I , how should its elements
grow with increasing weight, and is the curvature
approximately constant as predicted by the toy
model of [4]?

(ii) Counting.—The conjecture that average complexity
and classical entropy are the same rests on the
assumption that the number of unitary operators
with complexity less than or equal to C grows like eC

for submaximal C. We were able to give arguments
in the stochastic context and for state complexity, but
the arguments are far from a proof. Proving the
conjecture requires counting the unitaries on 2K-
dimensional tori in SUð2KÞ.

(iii) Local vs global chaos.—The motion of the A
system with a time-independent Hamiltonian is
generically ergodic. Whether or not it is chaotic
seems to depend on what metric we attach to
SUð2KÞ. According to the bi-invariant metric, all
sectional curvatures are positive which implies that
geodesics converge.

On the other hand, as we emphasized in Sec. (4.1),
conventional inner-product metrics do not capture an
important concept of distance between states, or for
that matter, between unitary operators. Distances in
the bi-invariant metric are bounded by π=2 but
complexity distances can grow to enormously large
values. Evidently complexity distances between
neighboring trajectories can grow exponentially
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with time whereas the inner product distances do
not, although in both metrics the system is ergodic.
The question is whether the motion in complexity

geometry is genuinely chaotic, and does it matter?
True classical chaos is often diagnosed by the
spectrum of Lyapunov exponents, with a single
positive Lyapunov exponent indicating chaos. The
concept of a Lyapunov exponent is a global one,
defined by the infinite time average of trajectory
deviation. By contrast there is also a concept of
local Lyapunov exponents, which diagnoses local
deviation, and local unpredictability. Local Lyapunov
exponents are positive in regions of negative curva-
ture. When local Lyapunov exponents are positive the
system will behave chaotically for a length of time,
but over sufficiently long times it may only be
ergodic. Of course if this time is long enough—say
for example exponential in K—the distinction be-
tween global and local chaos may be unimportant.
Our guess is that the A system (with the complex-

ity metric) is locally chaotic over an exponentially
long time, but that it is not truly chaotic. But by then it
hardly matters.

(iv) Classical complexity.—In this paper we have been
concerned with the thermodynamics of quantum
computational complexity. However, many of the
arguments would apply to classical computational
complexity. Can we also define a thermodynamics
of classical computational complexity?

(v) Least action and least computation.—We can ask
about the action-complexity connection. By now we
have several versions of action equals complexity. In
[20] it was conjectured that the principle of least
action for a gravitational system might ultimately
become a principle of least computation. In this
paper we have proposed another least action prin-
ciple for the auxiliary system A, which would also
describe the evolution of the state of a black hole.
The question is, what is the relation between these
apparently different but similar principles of least
action/computation? More specifically, are they
somehow the same? A similar suggestion in a
slightly different context was recently proposed
in [34].

(vi) Uncomplexity as a resource.—One of the most
interesting questions raised by this paper is whether
there is a sense in which the gap between quantum
complexity and maximal quantum complexity—the
uncomplexity—is a quantitive measure of a resource
useful for quantum computation. Can we precisely
characterize the resource and does it fit into standard
resource theory [30]?
Can we understand the interplay between com-

putational uncomplexity and Kolmogorov uncom-
plexity?

(vii) First law of complexity.—In this paper we have
argued for the existence of a second law of complex-
ity. Identifying a first law of complexity is left for
future investigation.

The conventional theory of thermodynamics
was developed through a sequence of thought
experiments involving adiabatic compression, heat
engines, refrigerators, and the vanquishing of Max-
well’s demon. Can we come up with a set of parallel
thought experiments involving quantum complex-
ity? What will be the steam engine of quantum
computation?
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APPENDIX A: SOME TERMINOLOGY

For easy referencing, we list here some terminology and
notations.
(1) The two-dimensional model of [4] will be referred to

as the toy model. The toy model represents quantum
evolution as the motion of a nonrelativistic particle
on a two-dimensional hyperbolic space with a
curvature of order 1=K.

(2) The space of special unitary operators acting on K
qubits (or 2K real fermion operators) is SUð2KÞ.
Elements of SUð2KÞ are denoted U;V;W;…. The
Pauli basis for the generators of SUð2KÞ consist of
the Pauli operators σai , where a labels the three axes
x, y, z and i labels the K qubits and all products of
Pauli operators for multiple qubits. In all there are
ð4K − 1Þ such generators. They will be labeled σI
where I runs over ð4K − 1Þ values.
The weight of a σI is the number of single qubit

Pauli operators that it contains. Thus for example the
weight of σx1 is 1, and the weight of σx1σ

y
3σ

y
4 is 3.

(3) JI is a coefficient or coupling constant in the
quantum Hamiltonian of the Q system.

(4) The conventional bi-invariant metric on SUð2KÞ is
called the standard metric. (This is different than
Nielsen’s usage.) Bi-invariant means that the
metric is invariant under left and right multiplication
by unitary operators. The standard metric can be
written
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dl2 ¼ Tr½dU†dU�: ðA1Þ

(The Tr notation denotes normalized trace, i.e.,
Tr1 ¼ 1.)

(5) The complexity metric [8,9] is right-invariant but not
left-invariant. The precise form of the metric is given
in Eqs. (4.8) and (4.9).

(6) The complexity metric is written

dl2 ¼ GMNdXMdXN; ðA2Þ

where the X0s are coordinates on SUð2KÞ.
(7) The classical auxiliary system defined in Sec. III is

denotedA. The original quantum system ofK qubits
with Hamiltonian given by Eq. (2.1) is denoted Q.

(8) A subscript a indicates that a quantity refers to the
auxiliary system, not the quantum system. Thus Va
represents the magnitude of the velocity of the
particle in the auxiliary system. Ea indicates the
energy of the A system, etc.

(9) The time t is measured in dimensionless units. For
an uncharged neutral black hole the time t differs
from the asymptotic Schwarzschild time tschw by a
factor β=2π,

t ¼ 2π

β
tschw; ðA3Þ

where β is the inverse temperature of the black hole.
The time t is the Rindler boost-angle time. The
corresponding energy is also dimensionless and is
equal to the entropy, which in the qubit model is
equal to the number of qubits K.
For quantum circuits with parallel Hayden-

Preskill architecture, t also has special significance.
In that case t has the significance of the clock time
which ticks off one unit for every step in which there
are of order K gates. For subexponential times the
rate of complexity growth in these units is ∼K.

(10) The circuit complexity is denoted by C. The Kol-
mogorov complexity of a string s is denoted CκðsÞ.

(11) Ba is the coefficient in the Gaussian probability
distribution of the coupling constants J. It is also the
inverse temperature of the A model. Ta ¼ 1=Ba is
the temperature of the A model.

(12) I IJ is a symmetric matrix in the adjoint representa-
tion of SUð2KÞ. It is called the moment of inertia
tensor.

(13) Gates are denoted g. A sequence of n gates forming a
circuit is denoted gngn−1…:g1.

(14) eΛ denotes a Loschmidt-echo operator defined
by eΛ ¼ e−iHteiðHþΔÞt.

(15) By a Hayden-Preskill circuit we mean a circuit of K
qubits such that in each time step the qubits are
paired and interact through K=2 gates [16]. (This is

the version with two-local gates; it can be general-
ized to a version with k-local gates in which at each
time step the qubits are sorted into groups of k and
interact through K=k gates.)

(16) The uncomplexity is the amount ΔC by which the
computational complexity C of a state is less than the
maximum possible complexity for that state, as in
Eq. (8.2)

ΔC ¼ Cmax − C: ðA4Þ

APPENDIX B: SOME CLARIFICATIONS

After we initially circulated this paper some questions
came up from colleagues that we find worth discussing.
(1) The first concerns Eq. (2.1) and the definition of

k-local. The expression in Eq. (2.1) contains only
terms of weight k whereas the standard definition of
k-local allows all terms of weight up to and includ-
ing k. In several places throughout the paper the
equations refer to the more restricted version of
“exact” k locality—only operators of weight k in the
Hamiltonian—but they can be easily generalized to
accommodate the more general case.

(2) The choice of time units that we use throughout is
motivated by black hole physics, where the dimen-
sionless Rindler time t is defined in terms of the
Schwarzschild time tschw by

t ¼ tschw
2πβ

; ðB1Þ

as in Eq. (A3); here β is the inverse Hawking
temperature of the black hole. We may also think
of t as measuring the number of time steps in a
Hayden-Preskill circuit. With such a choice of units
the Hamiltonian and the J coefficients are also
dimensionless.

(3) We have been asked why the draconian choice of
penalty factors in [9] is inconsistent with the switch-
back effect. To understand this we remind the reader
how the circuit complexity of precursors evolves for
times earlier than the scrambling time (for a review
see [4]). The complexity of precursors grows very
slowly until the scrambling time, and then suddenly
begins to increase linearly. (The same is true for
Loschmidt echo operators.) Before the scrambling
time the growth rate is not zero but is negligible.
However, draconian penalty factors of order 4K

would punish shortcuts exponentially harshly. With
shortcuts effectively forbidden, the complexity would
grow linearly almost immediately. In order to agree
with the complexity growth for discrete quantum
circuits we need the penalty factors in the continuous
Hamiltonian theory to turn on much more smoothly.
We will come back to this point in [18].
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(4) Another question that came up is why, in Sec. VIII B,
we do not consider the measurement at the end of a
computation as part of computational work. For
example why do we not allow a complete measure-
ment that reinitializes the computer to a random
simple state? The answer is that measurement is
not something that is part of the auxiliary description
of the quantum evolution. But more importantly, from
the global point of view the measurement is equiv-
alent to the development of entanglement of Q with
the rest of the world. To follow the resource we would
have to consider the changes in the complexity of
everything, including the observer. We believe that if
we did so the overall complexity would increase
when a measurement is done, and that would cause a
decrease in the global version of the resource.

(5) The circuit depicted in Fig. 7 does not obviously
look like a k-local circuit. However let us define the
(kþ 1)-local gate

g̃n ¼ HgncH; ðB2Þ
where H is the Hadamard gate and gnc is the k-local
gate gn controlled by τ. Then if the operator G is a
product of k-local gates

G ¼ …g5g4g3g2g1;

the circuit in Fig. 7 is equivalent to the (kþ 1)-local
circuit

…g̃5 g̃4 g̃3 g̃2 g̃1 : ðB3Þ
We may therefore think of the computational work
as being done in small (kþ 1)-local steps, each
using a small amount of the resource.
It is interesting to view the computation from

the point of view of the 2-gas model in Fig. 4. The
effect of the operations in Eq. (B3) is to evolve one
of the component gases according to the circuit
…g5g4g3g2g1 while leaving the other component
fixed. Since the initial state jmaxi is maximally
complex the fixed gas is already in equilibrium. The
effect of the circuit Eq. (B3) is to break the
correlation between the two components, and if it
goes on long enough, to bring the whole system to
equilibrium.

APPENDIX C: ACTION VS DISTANCE
IN THE TOY MODEL

(Note about conventions: In [4] the time variable was
called τ while in this paper the same variable is called t.)
In the original version of complexity geometry, complex-

ity was identified with geodesic distance from the identity.
In [4] we remarked that there is an alternative formulation
in which complexity is identified with the action along a

geodesic. However the analysis was carried out with the
earlier formulation. Since this paper uses the action
formulation, there is a minor difference of conventions
between [4] and the present paper. The difference between
the two formulations can be absorbed into a redefinition of
the scale of the metric.
In the toy model the complexity geometry is simplified

to a two-dimensional geometry with uniform negative
curvature. The metric has the form

dl2 ¼ F2ðdr2 þ sinh2 rdθ2Þ: ðC1Þ

Consider two neighboring geodesics passing through
r ¼ 0. The distance between them grows like er which can
be written as

dðtÞ ¼ e_rt: ðC2Þ

This identifies _r as the Lyapunov exponent controlling
scrambling. With our choice of dimensionless time (Rindler
time) the Lyapunov exponent is 1 which constrains the
motion to satisfy

_r ¼ 1: ðC3Þ

The two formulations can be expressed as follows:
Distance formulation:

C ¼ F
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð_r2 þ _θ2sinh2rÞ
q

dt: ðC4Þ

Action formulation:

C ¼ 1

2
F2

Z
ð_r2 þ _θ2sinh2rÞdt: ðC5Þ

In both cases the complexity should grow like Kt. In the
distance formulation this requires F ¼ K. This is equiv-
alent to the curvature being ∼ − 1=K2.
In the action formulation the growth of complexity

requires

F2

2
¼ K ðC6Þ

and the curvature is ∼ − 1=K in agreement with the
calculation in Sec. IV D.
There is no inconsistency between the two formulations.

The difference can be absorbed into the normalization of
the metric Eq. (3.1). If we wish to use distance rather than
action we would need to modify Eq. (3.1) to

dl2 ¼ KTr½dU†dU�:

Such a change would have no effect on the agreement
between the curvature and the calculation in Sec. IV D.
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