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ABSTRACT 

The nature of the impulse approximation in local field theory is 

clarified by dividing the interaction Hamiltonian into two parts V and 

W, where V contains only those interactions causing large energy trans- 

fers. Partons are introduced as eigenstates of&%$?, + V, wheretio is the 

free Hamiltonian. Their time development is governed by the soft opera- 

tor W, thus making it possible to use the impulse approximation in deep 

inelastic processes. Application is made to deep inelastic electron 

scattering and the Drell-Yan process. Making some reasonable assumptions 

on the parton matrix elements, the variation of parton density functions 

with Q2 is expressed in terms of a set of integrodifferential equations, 

which reduce to the known results when restricted to the longitudinal 

distributions. Explicit solutions of the scaling violation equations 

are obtained in some simple cases. 
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(Submitted to Phys. Rev.) 
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1. INTRODUCTION 

The parton.model' has been a very useful guide in analyzing deep 

inelas"tic experiments involving a large momentum transfer Q. In this 

model the structure functions of the deep inelastic lepton scattering 

processes are identified with the longitudinal momentum distributions of 

partons inside the hadronic targets. The partons are assumed to be free 

at large Q, giving Bjorken scaling in rough agreement with experiment. 

In local field theories, however, the partons cannot be free and there 

is no reason to expect Bjorken scaling to occur. This dilemma was 

solved by the discovery of asymptotic freedom in non-Abelian gauge 

theories, 2 in which the scaling is violated only logarithmically. Fur- 
n 

thermore, explicit calculations' based on quantum chromodynamics (QCD) 

give results which agree well with recent experimental data. 

However, the reconciliation of the simple parton model with field 

theory does not seem to be completely satisfactory. First, the usual 

analysis 4 of scaling violations involves sophisticated mathematical tech- 

niques such as the operator product expansion and the renormalization 

group equations, whose physical meaning is not as transparent as the 

intuitive parton model. Second, the method has been successful only 

for the calculation of the longitudinal momentum distributions of par- 

tons, but not successful for the transverse momentum distributions. 

Finally, the usual treatment can not be generalized in a straightforward 

manner to other deep inelastic processes such as the Drell-Yan process. 5 

This is because the Drell-Yan process is not light-cone dominated6 so 

the operator product expansion does not apply. 7 In contrast, all deep 

inelastic processes are more or less on the same footing in the frame- 

work of the parton model. 
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The purpose of this paper is to provide a more satisfactory field 

theoretic foundation of the parton model in the context of QCD. 8 The 

startfhg point of the present approach is to recall that the concept of 

the parton is useful and natural only in connection with the impulse 

approximation. 9 Now the validity of the impulse approximation depends 

essentially on our choice of the basis states which are thought to inter- 

act with the external hard currents. Thus the impulse approximation may 

be applicable for scattering of a fast electron off a nucleus, but it 

will not in general work if one chooses the nucleons themselves as the 

basis states. In atomic physics the choices of the basis states is 

obvious because the length scales change discontinuously. In field 

theories, however, the change in the length scales is continuous and the 

identification of the basis states is not so straightforward. To iden- 

tify the correct basis states in field theory, it is necessary to formu- 

late quantum mechanically the classical notion that a system remains 

essentially the same during a short time interval At. In quantum 

mechanics, the time evolution of a system is described by the U-matrix. 

Therefore, it is natural to define the basis states to be such states 

in which U(t+At,t) can be approximated by 1 for a small time interval 

At. In this paper, this will be achieved by defining the basis states 

(i.e., the partons) to be dressed quanta whose internal energy transfers 

are restricted to be larger than some given value which depends on Q. 

With this definition of the parton states, it is then possible to give 

a physical derivation of the parton model expressions of cross sections 

for deep inelastic lepton scattering and the Drell-Yan process. The 

scaling violations arise in the present approach simply because the 

parton states change as Q varies. 
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The physical basis of the scaling violation was originally treated 

on an intuitive level by Kogut and Susskind. 10,ll They argued that the 

parto% probed in a deep inelastic process with momentum transfer Q are 

the dressed quanta whose internal transverse momenta are larger than Q. 

However, in their approach it is difficult to formulate the transverse 

momentum cut-off in a precise way. The cut-off in the energy transfer 

employed here is precise and its relation to the impulse approximation 

is straightforward. 

The paper is organized as follows: 

In Sect. II a precise definition of the parton states is given by 

dividing the interaction Hamiltonian into two parts, one containing the 

large energy transfers while the other contains the rest of the inter- 

actions. The matrix element between the parton states so defined is 

assumed to be governed by an effective coupling constant: This is quite 

reasonable in view of the usual renormalization group analysis in the 

Green's function theory. Sect. III discusses some properties of the 

parton states which play an important role later on. In particular, it 

is shown that hadrons have finite wave functions if expressed in terms 

of the parton states defined in Sect. II. In Sect. IV, the physics of 

the impulse approximation is clarified in terms of the present definition 

of the parton states. Although the impulse approximation fails in general 

for a local field theory, the approximation is justified in. the so-called 

A-picture. In Sect. V, the concepts developed so far are applied to 

deep inelastic electron scattering and to the Drell-Yan process. For 

the former process, one obtains the usual parton model result, the only 

modification being the replacement of the naive parton distribution func- 

tions by the Q2 dependent distribution functions. For the latter process, 
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one obtains a formula identical to the one recently conjectured by Kogut 11 

and Hinchliffe and Llleweylin Smith. 12 However, some more assumptions 

are nnessary in arriving at this result. Sect. VI is devoted to the 

subject of scaling violation effects. An integro-differential equation 

is derived which describes the change of a general distribution function 

of partons as Q2 varies. If restricted to the longitudinal distribution, 

the equation is identical to the one derived using the method of the 

operator product expansions and the renormalization group equations. 

This formalism is applied in Sect. VII to discuss the parton transverse 

momentum distributions. Explicit solutions are obtained for the parton's 

transverse momentum squared averaged over the longitudinal fraction x. 

Sect. VIII contains some concluding remarks. Finally in the Appendix, 

the explicit form of the QCD Hamiltonian used throughout this paper is 

derived. 
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11. DEFINITION OF THE PARTON STATES 

In order to discuss wave functions of hadrons in terms of partons, 

it is:ecessary to employ time ordered perturbation theory. The rules 

of time ordered perturbation theory are simplest in the infinite momentum 

frame (IMF) because vacuum effects are absent there. Therefore I will 

be working with time ordered perturbation theory quantized in the IMF 13 

throughout this paper. Thus the momentum p and the coordinate variable 

x have the following IMF decompositions: 

pu = (P0,P,,P3) = (rl,Pi'c!?) 

(2.1) 

x1-I = (x0+x3) = hx,,gJ , 

where 

n = -&- (E + Ps) , 
n '= + (E - pz) 

(2.2) 
1 

T = E (t + z, 
and 1 ,zJ = - (t - z) 

v5 

Here E, Pz and pl are the components in the ordinary reference frame. 

For the particle on the mass shell, one has 

8 = (pi2 + M2)/2n 

where M is the mass. One also has 

(2.3) 

p-x =Er + ng- P1'XI (2.4) 

In the IMF, one identifies T as the time variable. Then its conjugate 

variable is 8, which is identified as the energy variable. Finally, the 

vector p = (s,p,> will be used to specify the momentum of a state. 

The discussions in this section are applicable to any theory, but 

I will work with QCD defined from the following Lagrangian density: 



where 
- 

D =a 
l-r 1-1 

- ig Ta A; 

Ga = a A a - a A a + g f abc ~~~~~~ 
pv Ilv v 1-I 

(2.5) 

(2.6) 

In the above, $ and AU a1s are the field variables for the quarks and the 

gluons, respectively, and f abc 's are the structure constants of the 

gauge group and Tal s are the group generators in the fermion representa- 

tion. Notice that the quark masses are set to zero in the above 

Lagrangian. Although the following discussion can be generalized to 

incorporate the mass of quarks, it will be neglected for simplicity. 

To obtain the Hamiltonian it is necessary to impose a gauge condition. 

In the IMF, it is convenient to choose the infinite momentum (IM) 

13 
gauge defined as follows: 

_ A'(x) = 0 (2.7) 

In this gauge, no ghosts appear and the independent variables are the 

transverse components Ala of the gluon fields and the two component 

Pauli spinor x of the quarks. The derivation of the Hamiltonian2Z'is 

well known14 and the result is given in the Appendix. For the present 

purpose, it is sufficient to write the Hamiltonian.SV'in terms of the free 

part *MO and the interacting parts1 as follows: 

3z? = re, + "eI (2.8) 

&%5?I in the above is a sum over virtual processes such as those shown 

in Fig. (1). Each of these processes conserves the total momentum 

p = (n,pi) but causes the total energy to change from 8'. to 8'. It 1 f 

should then be possible to divideXI into two parts so that the first 
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part V contains only those interactions involving large energy transfers 

while the second part W contains only small energy transfers. If one 

defines the parton states as the eigenstates of the operatorXo + V, 

their time development will be governed by the soft interaction W only. 

In lowest order, it is trivial to carry out the desired decomposi- 

tion of X. I In higher order, however, the operators V and W cannot be 

expressed in a closed form because of the occurrence of divergences. 

One would like to have the wave functions of a hadron in terms of the 

dressed partons free of ultraviolet divergences. To meet these 

requirements, the operator V (or W) and the corresponding parton states 

will be defined in the following steps: First let there be operators 

5 and W A so that 

a$ = VA + w* (2.9) 

where A is an arbitrary parameter. Next introduce the parton Hamiltonian 

4% as follows: A 

x* = x0 + v* (2.10) 

Let In,A > be the eigenstates of 3$ with energy En. 15 The operator WA 

will now be specified in terms of its matrix elements (n,A/WAlm,h) as 

follows: 

(n,AIWAlm,A) = (n,Al3?.Ilm,h)for 1 En - EmI <n2 
- ho 

(2.11) 

'10 in the above is the T-I of the parent hadron whose partons are under 

study. 

The definition of the operators WA and VA introduced above is not 

a simple one because they are defined in terms of the states In,h) 
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which in turn are defined in terms of W A' Therefore VA and WA can only 

be determined perturbatively. Nevertheless, it is clear from the above 

-defitition that WA is the operator which contains only small energy 

transfers. Since VA =x1 - w*, it follows that VA contains only large 

energy transfers. Since every particle appearing in the intermediate 

states is on the mass shell in time ordered perturbation theory, it 

follows from the mass shell condition Eq. (2.3) that large energy 

transfers correspond roughly to large transverse momenta if the longi- 

tudinal variable n is not too small. It is in this sense that the 

present definition of the parton states is qualitatively the same as 

the one introduced by Kogut and Susskind 10 in their intuitive analysis 

of the scaling violation effects. 

Explicit construction of the operator VA or WA, and the parton 

states In,A>, will not be attempted in this paper. Wilspn16 has carried 

out such constructions for some simpler models using a momentum cut-off 

rather than the cut-off in energy transfers. He found that the coupling 

between states at momentum scale 1-1 is governed by an effective coupling 

constant g(u2). 

analysis can be 

More precisely, 

( n,fl' / (WA, 

In this paper, I will simply assume that a similar 

carried out for QCD with a cut-off in the energy transfer. 

I assume that, for Al2 >> A2 >> At2 - A2 , 

- W,)lm,h) 

= (nl%,Im) (g + g(A2)) , $ < 
0 - 

IE, - E,l ( Awl0 , 

= 0 , otherwise. (2.12) 

In the above, In)' s are the bare states, i.e., the eigenstates of the 

free HamiltonianXo, and (g -+ g(A2)) implies that the bare coupling 

constant g should be replaced by the effective coupling constant g(A2>. 
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The restriction of the energy transfer appearing in Eq. (2.12) follows 

from Eq. (2.11). In the present case, g(A2) is given by 

g(A2) = g; l+ --$-b gg Ln(h2/n$ , 

where'-/ 

b=+g-+Tr . 

(2.13) 

(2.14) 

gO in Eq. (2.13) is the coupling constant at A = ho; go = g(nG). Through- 

out this paper, b will be taken to be positive so that the theory is 

asymptotically free. 

A crude argument can be given which renders the statement made in 

Eq. (2.12) plausible. Consider a parton state In,A>. As I\ approaches 

infinity, In,A > should approach the bare state In>. This is because the 

operator Wh must approach the entire interactionXI so that V = 

,wI - Wn approaches zero in some sense. Consider Eq. (2.12) in the limit 

A + 03, keeping A' >> A. Then it is reasonable that the matrix element 

will be governed by the bare coupling constant g in this limit. The 

behavior specified by Eq. (2.12) is reasonable since the effective 

coupling g(A2) approaches the bare coupling constant g as n -t 03. 
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III. PROPERTIES OF PARTON STATES 

There are several important remarks concerning the nature of the 
- 

parton states defined in the previous section. First, a parton state 

In,A> depends on the property of the parent hadron through the appearance 

of the quantity no in Eq. (2.12). Therefore, to completely specify a 

parton state, one should label the state in terms of the quantity A as 

well as 7-j o, i.e., ln,A,no). This dependence on no means that the states 

are not invariant under longitudinal boosts 13 which transform a momentum 

(n,p,> into (An,pi). This is also clear from the fact that the quantity 

% - Em transforms into (En - Ern)/h under a longitudinal boost. More 

precisely, there exists no unitary operator which connects a state 

1 (n,p,),fl,nO > to the state I On,p,),n,noY. This property is desirable 

because one should expect that the nature of parton states change under 

longitudinal boosts. The Lorentz invariance is not lost; however, 

because there exists a unitary operator which connects the state 

I(n,Pl)JJlo)to I(Xn,Pl)'hJno). In the following, the level no will 

be suppressed when no confusion will occur. 

It is possible to define parton states which are invariant under 

longitudinal boosts. This can be achieved if one replaces the inequality 

in Eq. (2.11) by le, - Em/ <A2/2n, where n is the total longitudinal 

momentum entering the vertex. Then both sides of this inequality trans- 

form the same way under longitudinal boosts. Recently, Lam and Yan 18 

have investigated the transverse momentum distribution of partons by 

generalizing the scaling violation equations to incorporate the trans- 

verse momentum distributions. Their analysis essentially amounts to 

introducing an energy cut-off which is invariant under longitudinal 

boosts as discussed above. However, it will be shown later in this 
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paper that the impulse approximation cannot be established if one uses 

parton states which are invariant under longitudinal boosts. In contrast, 

.the parton states introduced in this paper are quite well suited for the 

impulse approximation in deep inelastic processes. 

On the other hand, the parton states defined above are invariant 

under Galilean boosts 13 which transform a momentum (n,p,) into 

(&Pi + nv1). This is because the quantity En - Em is invariant under 

such transformations. Therefore, there exists a unitary operator which 

connects a state I(n,p,),~,n~ > to I(n,p, + nvL),A,no). This invariance 

of the parton states under Galilean boosts will play an important role 

in deriving the Drell-Yan formula in Sect. V. 

The definition in the previous section implies that the wave func- 

tion of a hadronic state Ih) expressed in terms of the states Im,A)'s 

is well defined and free of ultraviolet divergences. This follows from 

the formula 

Ih) = 

In,A )+ 
, c 1 (m,AIWAln,A) 

m,A)- 8 m -& n m 

(3.la) 

' Im,A> (m h/WI\IR,A)(a,,nIWnin,") 
; E,-E 1 (3.lb) 

h- m R 

Here In,A) is any state whose quantum numbers and energy are the same 

as those of the parent hadron, and the prime in the summation symbols 

implies that states which have the same energy as the parent hadron 

are to be excluded from the sum. The constant Zh is the renormalization 

constant which can be computed by comparing the normalization of both 
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sides of Eq. (3.1). Now the usual ultraviolet divergences arise from 

the intermediate state sums in Eq. (3.lb). However, the sums cannot 

give r&se to divergences in the present case because the matrix elements 

appearing in Eq. (3.lb) vanish outside the finite regions of phase space 

specified by Eq. (2.12). Notice that as A approaches infinity, the 

region of the relevant phase space extends to the whole space and the 

terms in Eq. (3.lb) will in general blow up. This is precisely the 

usual ultraviolet divergence appearing in field theories. In the 

present approach, things are arranged so that all the divergences are 

contained in the definition of the states In,A), so that the rest of 

the dynamics evolve in a finite way. It is perhaps worthwhile to empha- 

size the importance of the finiteness of the wave functions in connection 

with the parton interpretation of deep inelastic processes. If the 

hadronic wave functions in terms of partons contained divergences, 

then it would be meaningless to talk about the probability of finding 

the partons, etc. In fact, the elaborate definition of the parton 

state In,A> introduced in the previous section is tailored to satisfy 

the requirement that the hadronic wave functions should be finite. 

(Notice that the above argument also implies that the expansion (3.lb) 

is free of divergences in the n-integration because n cannot be zero.) 

Finally, it should be remarked that only those states with energy 

Gm 2 f12/2n o appear in the expansion of Eq. (3.1). This follows from 

Eq. (2.12), and will be relevant in the derivation of the scaling 

violation equations later in this paper. 
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IV. IMPULSE APPROXIMATION 

In this section the states In,n> introduced in Sect. II will be 4r 

used to clarify the impulse approximation in deep inelastic processes. 

For this purpose, one must first define the meaning of the impulse 

approximation. Qualitatively, the impulse approximation is applicable 

if nothing much happens during a short time interval. Quantum mechani- 

cally, the evolution of a physical system in time is described by the 

U-matrix. This suggests that the impulse approximation should be iden- 

tified with the approximation U(r',r) - 1 when 'c' - T is small. Through- 

out this paper, the impulse approximation will be understood in this 

sense. In this regard, recall that approximating U(-r',r) by 1 was one 

of the most crucial steps in the original derivation of the parton model 

from cut-off field theory by Drell et al. 19 

Now the U-matrix will be constructed in the representation intro- 

duced in Sect. II. To do this, consider a Heisenberg operator OH which 

develops in time as follows: 

OH(T) = e i3Vr 
OS e 

-i*r 
, (4.1) 

where 0 
S 

= OH(O) is the corresponding operator in the SchrBdinger 

picture. Introduce the operator O1\ which may be called the operator in 

the A-picture as follows: 

O*(T) = e 
iGf*T -i&%*-c AOse A . (4.2) 

Here%* is the parton Hamiltonian defined by Eq. (2.10). The Heisenberg 

picture and the A-picture are connected by the formula 

OH(T) = u+,o) o*w U~hO) - (4.3) 

Here Un is the time evolution matrix in the n-picture, and given by 
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UA(~2,~ll = e 
iLY$A.Tle-iL%?(~1-r2) e-i3ZjA.r2 

= T Exp[il: Wi(r)dr) . 

Here T is the -r-ordering symbol and 

(4.4) 

(4.5) 

Consider now the matrix element of VA between the states In,A). It has 

the expansion 

(n,Al UA(T,O) Im,A) = 

T 

6nm - i 
/ 0 

drle 
i(8n-&m)'rl 

. (n,AIWAim,A) 

ei (En-EE> * T1 
r1 i (E,-En) l T 

dr2e (4.6) 

(n,AIW*II?,n)(a.,AIWhlrn,A) 

+ higher orders. 

Suppose now r << 2n0/h2. Then since the matrix element of WA is limited 

by Eq. (2.11), it follows that I(E~ - ~,)*rl <c 1. Therefore one has 

(n,AlU,(r,O) Im,A) * 6n m- 
, 

ir(n,AlWJm,h) 

(4.7) 

f (-i?)2C(n,hlWI\le,h)te,nlWnlm,*) +... 
R 

In view of Eq. (2.12), one has 

T*(n,hlWAIm,A) 2 2 g(A2) r , (4.8) 

where r is some finite quantity independent of A as h -+ m. From Eqs. 

(4.7) and (4.8), it is then clear that U(r,O) can be approximated by 1 
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if r << 2n0/h2 and if g(A2) does not blow up like A2 as A -t m. The lat- 

ter condition is certainly satisfied in QCD where g(A2) vanishes logarith- 

.micaUy. Therefore, if the kinematics of the system are such that only 

small r is relevant, one can always make the impulse approximation by 

suitably choosing the quantity A. 

Notice that the above arguments do not go through if one introduces 

parton states which are invariant under longitudinal boosts as described 

in the second paragraph of the previous section. In this case, the 

energy differences appearing in Eq. (4.6) are restricted as follows: 

IE, - E,I < f12/2rl * (4.9) 

The variable rl appearing in the above can be made as small as possible 

so that the quantity I (En - ~,)*rl can always be made larger than one, 

however small -c may be. 
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V. APPLICATION TO DEEP INELASTIC PROCESSES 

In this section, the ideas developed so far will be applied to 
-h 

deep inelastic electron scattering and the Drell-Yan process,5 and 

obtain the parton model expressions with scaling violation effects 

incorporated. 

A. Deep Inelastic Electron Scattering 

The kinematics of this process are shown in Fig. (2). The cross 

section can be computed from the following well known tensor: 

Wiv(q,Pi)ar 
/ 

. 
dx eiqox (hlJ'(x)J'(O)lh > , (5.1) 

where lh ) is the physical hadronic state with momentum Pi, and J' is 

the electromagnetic current in the Heisenberg picture. Choose the 

coordinate frame so that 

4 = (O,Q,,vh,) 

'i = (rio'o,~o) , 
(5.2) 

where n = 0 Mh/fi, 'J = q-Pi and q2 = -QL2 = -Q2. In this frame, one 

has 

q*x = vr/no - QI.xI . (5.3) 

In the Bjorken limit v + m and Q2 + 00 with Q2/2v : x held fixed, the 

r-integration in Eq. (5.1) is only appreciable in the range 

1~1 < no/v 2 2no/Q2 . (5.4) 

The second inequality in the above follows because x < 1. In view of - 

the discussions in the previous section, the inequality (5.4) suggests 

that one identify n with Q. Let us then undress the Heisenberg operator 

Jn into the Q-picture as follows: 
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P(x) = u9-l b,O) J; (4 uQhO) , (5.5) 

is the current in Q-picture, whose time development is given by 

J;(~,xl,& = e iHQT J$O,xl,g)e-i-xQr . (5.6) 

From Eq. (5.4) and the discussions in Sect. IV, the matrix U 
Q 

(r,O) 

appearing in Eq. (5.5) can be approximated by 1, the correction terms 

being of order m2/Q2 where m is some finite, dimensionful parameter. 

Eq. (5.1) can then be approximated as follows: 

wpv a 
/ 

dx e iq'x (h\Jg(x) J:(O) Ih) + O(m2/Q2) . (5.7) 

At this point, the reader must have noticed that the present 

derivation parallels closely the derivation of Drell et al. 19 The only 

difference is that they have used the interaction picture in a cut-off 

field theory, while the present derivation uses the Q-picture in a full 

theory. The ideas of undressing the Heisenberg current and of approxi- 

mating the U matrix by 1 originated in their papers. The rest of the 

steps are then clear: one sandwiches the identity 

c In,Q)(n,QI = 1 
n 

(5.8) 

between the hadronic state Ih) and the operator 5' in Eq. (5.7), and 
Q 

uses the constraint of momentum conservation. The resulting expression 

is especially simple if one considers the quantity Woo because the 

charge density J'(x) is simply given by Eq. (A.14a). In this way, one 

finds that vW2(x,Q2) = F(x,Q2) is the probability of finding a Q-parton 

of longitudinal fraction x: In equations, this means 

F(x,Q2> = c 
n,P 

l(hl (nox,Pl),n,Q)12 . 
1 

(5.9) 
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This function changes as Q changes because the state In,Q) changes, giv- 

ing rise to the scaling violations. The effects of scaling violation 

willBe studied in detail in Sect. VI. Notice that the function F 

depends only on the ratio n/no = x because of invariance under longi- 

tudinal boosts. Of course, the parton states change as remarked in 

Sect. III, but the existence of the unitary operator which connects the 

state I(n,Pl),A,n 0 ) to I(A~,P~),A,x~ 0 
> is sufficient for the boost 

invariance of F. 

B. Drell-Yan Process 

+ Now consider the process hadron a + hadron b + U- + LI + anything 

as shown in Fig. (3.a). In the parton mode1,5'g this process goes via 

the annihilation of parton-antiparton pair into massive photons, as 

shown in Fig. (3.b). Perturbative calculations 20 show that brems- 

strahlung gives a correction of order (g(Q2))4 to the annihilation 

term. In this paper, only the annihilation diagrams as shown in Fig. 

(3.b) will be considered. The main purpose here is to investigate the 

modification of the naive parton model result coming from the scaling 

violation effect. 

Fig. (3.a) also specifies the coordinate system adopted in the 

present derivation. Notice that the longitudinal direction, the 

z-direction, is chosen to be perpendicular to the collision axis. This 

is necessary if one would like to treat the two incoming ha.drons on the 

same footing. If one chooses the collision axis to be the z-direction, 

then it is necessary to consider two IMF's, one associated with the 

hadron moving along the +z direction, the other associated with the 

hadron moving along the -z direction. The coordinate system shown in 
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Fig. (3.a) was proposed by Drell and Yang in their original derivation 

of the cross section in the cut-off field theory. 

ne production cross section is proportional to the quantity 

w= 
J * 

dx .-=qax (P,P'~J~(x)J"(x)~P,P~) , (5.10) 

where IP,P') is the physical state of two incoming hadrons. In the 

present coordinate system, the vectors P,P' and q have the following 

IMP components: 

p = h,,fi no'o,~o) (5.11a) 

p' = hoA no,Odlo) (5.11b) 

and 

q = hq,q1,(Q2 + q12)kq) , 

where 

nO 
=$&iT, s = (P + P')2 . 

(5.11c) 

(5.12) 

From (5.11~) one obtains 

q-x = -r(Q2 + qL2)/2nq + nq.$ - q/x1 . (5.13) 

Now it will be argued that the partons measured in the process 

described by Fig. (3) are the Q-partons, i.e., the states \n,Q>'s 

defined in Sect. II. It does not seem to be easy to demonstrate this 

in a straightforward way. Therefore, I will first assume that it is 

indeed the case, and then show that the impulse approximation as de- 

scribed in Sect. IV works for the process. To do this, it is necessary 

to limit the kinematics as follows: 

S >> Q2 -f m . (5.14) 

Most present experiments are in the region specified by (5.14). With 

these assumptions, let us estimate the magnitude of the vectors Pl and 1 N 
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39 whose components are 

2 = (‘llJll) and P2 = (n2,P21) l (5.15) 

SincFP (P,) is the parton momentum appearing in the hadron a (b), 
2 n7 

and the n-variables are conserved and positive, one can write 

ni = QOXi , 05x1, X221 . (5.16) 

To estimate the magnitude of the transverse components, it is convenient 

to perform a Galilean boost 13 with the boost parameter u 1 = (4,O). 

In the boosted frame, the hadron a has only a longitudinal momentum 

component, and the magnitude of the transverse momentum of the Q-partons 

in the hadron a can be at most of order Q. This follows from the dis- 

cussion given in the last paragraph of Sect. III. By transforming back 

to the laboratory frame, one finds that 

pll = p;I +firj x e 
0 1,x ' 

where e 
X 

is a unit vector along the x-direction. In Eq. (5.17), the 

first term is of order Q while the second is of order &, SO the 

second term dominates this expression for finite x 1 in the region given 

by Eq. (5.14). Similarly, one obtains 

P21 = Pi1 - fi no x2 ex . (5.18) 

Again, the first term in the R.H.S. of Eq. (5.18) is negligible compared 

to the second. From Eqs. (5.17) and (5.18), one obtains 

% = Qo(X1 +x2) , 

41 = p;I + ‘;I + fi no (x1 - x2) e . 
,x 

(5.20) 

and 

(5.21) 
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The coefficient of r in Eq. (5.13) can now be computed. It is 

Q2 + qL2 
2nq = 

Q2 + 217; (5 - x2j2 
. (5.22) 

4 2710(x1 + x2> 

From this equation, one sees that the r-integral in Eq. (5.10) is 

limited to the following region: 

T < 
2no(x1 + x2> 2n0 <- . 

Q2 + 2n;(x1 - x2j2 Q2 
(5.23) 

The second inequality follows because the product x1*x2 is small if 

Q2/S is small, so that x 1 + x2 can be at most 1. Notice that the range 

of 'c given by (5.23) is identical to that appearing in (5.4). Therefore 

if one undresses the Heisenberg operator J 
!J 

appearing in (5.10) into 

the Q-picture, then the impulse approximation will be valid in exactly 

the same manner as'in the previous subsection. 

There is one complication to be dealt with in obtaining the cross 

section. In the case of vW2, it was only necessary to consider the 

charge density Jo which is simple. In the present case, one is dealing 

with the product 

JUJli = 2J"J3 - Jl'Jl . (5.24) 

From Eq. (A.14), one sees that the currents J3 and Jl involve the 

covariant derivative Dl = 81 + igAl. In the present derivation, the 

terms involving the gluon fields Al's will be dropped without a detailed 

justification. They could contribute correction terms of order g2(Q2). 

With these remarks, it is now straightforward to compute the cross 

section. One obtains 
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da - . 4lTrc12 
O4' 

WQ2 
3 S ~ia(~p~lpQ2)~ib(~' ,p ,Q2> 

2 

(5.25) 

$ S(Q2 - s12> wq63(q - P1 - P2) dxldx2 d2Pll d2PL2 

Here w 
q 

and 4, are the energy and momentum components of q, respectively, 

in the ordinary reference frame, S 12 = (PI + P2)2. L+) appearing in the 

above is the &function in the ordinary reference frame, i.e., 

p (9 - p1 -P2) =S(q 
Z 

-Plz-P2z)~(q 
X -Plx-P2x) 

(5.26) 
b(q -p1y-p2y) l 

Y 

Finally Fia($;l,Q2) is the probability of finding a Q-parton of quantum 

number i inside the hadron a whose momentum is 2, i.e., 

?ia@,P_l,Q2) = c 1 (a,21 (rl 1,Pli)i9n,Q)l 2 a 
n 

(5.27) 

By a simple Galilean boost, this quantity can be related to the proba- 

bility Fia(x,p12,Q2) of finding a Q-parton of momentum (xno,Pl) in 

the hadron of momentum (n,,O> as follows: 

via (~,P_1,Q2) = Fia(X1,P~12,Q2) , (5.28) 

where P I' is related to PI by Eq. (5.17). Similarly one has 

~~b(P_’ ,P2,Q2) = Fia(X2,P;22,Q2) . (5.29) 

Notice that the functions Fia depend only on the longitudinal fraction 

x as discussed in the last paragraph of the previous subsection. Also, 

the function depends on P 1 only through PI 2 by rotational invariance. 

Now consider the B-functions appearing in the integrand of (5.25). 

From (5.17) and (5.18), taking into account the fact that the PiI1s 

are small, one has 
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NQ2 - s12) - -& S(Q2/S - xlx2) (5.30) 

and 
4h 

alx - Plx - P2J 
2qx -$ 6(----x 
47 1 

+x2) * 

Next, consider the z-component. One has 

P. 2+P 2 
P iz = * (rli - ILx 2n iy > . 

i 

From (5.32), (5.17) and (5.18), it follows: 

P lz m -Pix and P2z - Pix . 

Therefore 

B(q Z - plz - p2z) - 6(qz+Pix-p;x) . 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

Putting these results back into Eq. (5.25), one obtains 

da 
a4 

= 4m2 

W-Q2 3 CJ i 
e: Fia(x1,PlL2,Q2) 

Fibb29P2: Q2) + UQ2/S - x1x2) B(qz + Plx - Pzx) (5.35) 

2w 
"(4y-ply-p2yP - 

JS 
+x dxl dx2 d2PlL d2P2L 

The above formula is somewhat peculiar in that the z-direction and the 

x-direction appear mixed in the b-function. This can be cured by the 

following observation: First notice that Plx and P2x appear as inte- 

gration variables, so one may call them -Plz and P2z, respectively. 

Under this substitution, the quantity Fia(x1,PlL2,Q2) becomes 

F. (x ,P 2 -I- Plz2,Q2), la 1 ly 
which can be interpreted as the probability of 

finding a Q-parton of longitudinal fraction xl and the transverse momentum 

@ P ly' lz > inside the hadron a moving along the x-direction. The same 
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can be repeated for F- (x Ib 2,P12,Q2). Finally, one obtains 

4 do 4Tcl2 
u.9 -=- 

' dzdQ2 
3 Fia(x1,PlL2,Q2) 

*Fib(~2J’21 2,Q2) + 6(Q2/S - x1x2) 6 - Pzl) (5.36) 

l 2&(2- x1+ x2)dxldx2 d2P1Ld2P21 

11 
Exactly the same formula as Eq. (5.36) was conjectured by Kogut 

and also by Hinchliffe and Lllewellyn-Smith. 
12 Kogut and Shigemutsu 21 

have given a numerical analysis of this formula. 
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VI. SCALING VIOLATIONS 

In this section, the variation of the quantities Fai appearing 
- 

in the cross sections of the deep inelastic electron scattering and the 

Drell-Yan processes will be discussed. They are defined by 

Fa&,Q2) = 'C bl (g,i),n,Q)12 , 
n 

(6.1) 

where 

g = hOX'PI) * (6.2) 

As is clear from Eq. (6.1), Fai(g,Q2) is the probability of finding a 

Q-parton of momentum g and quantum number i inside the hadron with 

momentum (n,,O> and the quantum number a. Given Fai(P-,Q2>, let us 

compute Fai(P-,Qt2) where 

Q I2 >> Q2 >> Q12 - Q2 = AQ2 . (6.3) 

For this purpose, it is necessary to compute the quantity l(alE,n,Q')12 

for arbitrary n. By sandwiching the complete set of states Im,Q), 

one obtains 

Fai(g,Q'2) = c Ix(a Im,Q)(m,Ql$n,Q') 1 2 - (6.4) 
n m 

Therefore the problem reduces to computing the matrix element 

(mQIP,n,Q'). To do this, consider the following expansion: 

Ig,n,Q' ) = Ig,n,Q) + c' 1 a,~) 
(R,QlAWlP,n,Q'> 

Agg (6.5) 
R 

where 

AW = w 
Q'-'Q 

and Agk=&'-& -& . 
P n 

The sum over R in (6.5) excludes the states which have the same energy 

with the state IF',n,Q'). ZA's 'in the above are the wave function 
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renormalization constants which can be computed from the normalization 

condition 

(m,Qln,Q) = (m,Q'ln,Q') . 

From Eq. (6.5), one obtains 

(6.6) 

m,p + n 
+ (mQlAWlR,n,Q'> 

A&m 1 (6.7) 

The matrix element (m,QlAWlP -,n,Q'> can be computed from Eq. (2.12). To 

order g(Q2), only the l-particle processes as shown in Fig. (4) need to 

be considered. As discussed in Eq. (2.12), the matrix element is non- 

vanishing only in the region 

Q2ho( lA8m/(q’2/2qo . (6.8) 

From Eq. (6.8) and from the discussions in the last paragraph of Sect. 

III, it follows that the diagram shown in Fig. (4.b) does not contribute, 

since the state Im,Q > does not have enough energy. For a given configu- 

ration n, the configurations m that contribute to Fig. (4.a) and the 

one contributing to Fig. (4.~) are distinct. For Fig. (4.a), one has 

(m,QIAW]g,n,Q') = (P',QlAW/P,q,Q')+O(g2(Q2)) . 

And for Fig. (4.c), one has 

(6.9) 

(m,QlAWlF',n,Q') = (m',QlAWln) + O(g(Q2)> . (6.10) 

Now substitute the results (6.7), (6.9) and (6.10) into Eq. (6.4). 

Considering the incoherence, one obtains 

F(g,Q'2> = q.$Zi 1 (alP9n9Q)12 

+ x\(alP',n,Q)[2. 'p'yQ'~p'qyQ') 2 
n 

+ c 1 (a 
n,n' 

Ip,n,Q >I 2s (n,QlAWln',Q'> 
A& 

2 
- + O(g4(Q2 

(6.11) 
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Now up to order g2(Q2), one has 

g-1=1 n - ZA + O(g4(Q2>> 

n 

(n,QlAWln',Q') 
2 

= 
A& + O(g4(Q2)) . (6.12) 

By means of Eq. (6.12), it is easy to show that the last and the first 

term in Eq. (6.11) combine to yield the final result: 

F(P,Q*~) = .$ F (2,~~) 

(6.13) 

+ c I(alP',n,Q)12 (P17Q'A~~yqyQ1)~2 . 
n,g' ,q 

Eq. (6.13) is the desired relation describing the scaling violation 

effects. Restoring the quantum number indices and writing 

F(:,Q~> = Fai(X,P12,Q2) , (6.14) 

Eq. (6.13) can be written in the following form: 

Fal(X’P12, Q2+AQ2) = 2; Fai(x,P12,Q2) 

7 (6.15) 

f ij (g,E’).Faj(y,p~12,Q2) , 

where fij(P,g') is the probability of a Q-parton of momenta E' = 

(noy,Pl') going into a Q'-parton of momenta 2 = (nox,Pl) via the action 

of the AW vertex, as shown in Fig. (5) * Notice that, by longitudinal 

and Galilean boost invariance, the function f ij(z,x') depends only on 

the combinations x/y and Pl where 

P1= Pl - x/y*P1' . (6.16) 

It is convenient to rewrite Eq. (6.15) in terms of the following 

quantities: 
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z;=1-- dQ2> A2z 
-%- 2~r Q i' (6.17) 

where- 

AQ2 = QT2 - Q2 , 

and 

a(Q2) 1 fij($P') = Fp2 F 
1 

ij WY) * 

Here 

a(Q2) = q . 

(6.18) 

(6.19) 

(6.20) 

The factorization implied by Eq. (6.19) holds in lowest order. Eq. 

(6.15) now becomes 

Fib3 12,Q2+AQ2) - Fi(x,P12,Q2) 

I _ zi $ Fi(x,P 2 I ,Q2) (6.21) 

1 
+ 
J / 

5iY d2p d2W 
Y 1 

X ITi? 2 
yij $1 Fj (y,PL2,Q2) . 

1 

Here and in the following, the hadronic quantum number a will be sup- 

pressed. Let us now work out the restriction of phase space implied by 

Eq. (2.12). For this purpose it is only necessary to compute the energy 

difference A&'between the initial and the final states of the diagram 

shown in Fig. (5). It is 

2.x 
x (y-x) * 

From this and Eq. (2.12), one finds 

(6.22) 

f (Y - x)Q2 2 FL2 < ’ (Y - x> (Q2 + AQ2) , (6.23) 
-Y 

where q is defined by Eq. (6.16). The inequality (6.23) must be 

imposed in the second term in the R.H.S. of Eq. (6.21). The restriction 
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of the phase space integral on the wave function renormalization constant 

Zt is already taken into account by Eq. (6.17). 

"It remains to compute the quantities zi and F..'s. In the lowest 
=J 

order, they can be computed from the knowledge of the bare vertices 

shown in Fig. (1.a) and Fig. (l.b), the corresponding matrix elements 

being specified by Eqs. (A.12) and (A.13) in the Appendix. The calcula- 

tion is straightforward and already reported elsewhere, 
22 and need not 

be repeated here. To write down the result, let us first discuss the 

indexing of the quantum numbers. In QCD, there appear color and flavor 

indices. Since the color group is an exact symmetry, the probabilities 

of finding a given parton and the probability of finding another parton 

which differs from the first one only in its color index must be iden- 

tical. This implies that one need only consider the transition proba- 

bilities ? which are averaged over the initial colors and summed over 

the final colors. It is not hard to see that these quantities then 

become independent of the flavor indices. The distribution functions 

F, however, still depend on the flavor indices. Let F 
qi 

and Fg be the 

color summed probability distributions of finding a quark of flavor i 

and a gluon, respectively. Eq. (6.21) can then be rewritten as follows: 

qq $1 Fqi(~,P;2,Q2) 

(6.24a) 

+G 2N qg (f)) F,(YJ';~,Q~) II 
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.- 

and 

Fg(x,Pl 2,Q2+AQ2) - Fg(x,P12,Q2) 
4h 

, (6.24b) 

where 

Fqq(x) = cJw1 - d - (1 + x)1 , 

Fgq(x) = Fqq (1 - x> , 

Fqg(x) = 2Tr (1 - x)~ + x2 , 
(6.25) 

F 
Ex 

= Cg[2/(1 - x) + 2/x - 4 + 2x(1 - x)1 

and 

2 
4 

= ~~(21~ - 3/2) and zg = 21coC - b . 
g 

(6.26) 

N appearing in Eq. (6.25) is the number of the quark fields. The flavor 

index i runs from 1 to 2N to include anti-flavors. The quantity Ice 

appearing in Eq. (6.26) is an infinite constant defined by 

J 
1 

IO0 = dx/(l-x) . (6.27) 
0 

However, the infinities in z's are cancelled by the integral terms in 

Eq. (6.24), which diverge because the functions ? are singular at 

x = 1. Eqs. (6.24) - (6.26), together with the inequality (6.23), 

constitute the main results of this section. Equations of the same 

general structure were first proposed by Kogut and Susskind, 10 and 

Kogut. 11 
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If one integrates both sides of Eq. (6.24) w.r.t. the transverse 

variable P 1' then one obtains a simpler set of equations which we will 

call The longitudinal equations. The longitudinal equations were first 

written down by Parisi. 23 He obtained them by taking the inverse Mellin 

transform of results obtained from the operator product expansion and 

the renormalization group equations. A derivationof the longitudinal 

equations in a spirit closer to the present paper was given by Altarelli 

and Parisi, 24 and also independently by Kim and Schilcher. 
22 

For actual calculation, it is convenient to express Eq. (6.24) in 

a slightly different form. Define 

2N 

Fq = c 
F qi ' (6.28) 

i=l 

Also, let 6 be the set (qi,qj), and define 

F*=F -F 
qi qj l 

(6.29) 

Eq. (6.24) can then be reduced to the following set of equations: 

F6 (x,P 12,Q2+AQ2) - F6(x,P12, -zq $ F6(x,P12,Q2) 

1 

+ J / !Y 
d2Pld2P ' 

1 , 
X 

Y ITT 2 
~,(x/Y) Fg (Y ,Pi2 ,Q2) 

1 

(6.30a) 

Fq(x,P 12,Q2+AQ2) - Fq(x,P12,Q2) = e - zq $ F (x,P12,Q2) + 
q 

1 
J J iY 

d2Pld2P ' 
1 ' 

x y TF 2 
Fqq(f) Fq(~,Pl’2, Q2> + Fqg(;) 

1 
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and 

Fg(xJl 2,Q2+AQ2) - Fg(x,P12,Q2) = +$ 

4h 

- ?f aq2 Fg(x,P12,Q2) + 

/.‘ ; 
GY 

d2Pld2PI' 

[ 
Fgq(;) Fq(~.Pl’2, Q2) + :gg(;) Fg(~,p1'2,Q2) . (6.30~) 

Y 7TF 2 1 
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VII. SOLUTION OF SCALING VIOLATION EQUATIONS 
AND PARTON TRANSVERSE MOMENTUM DISTRIBUTIONS 

'A. 2eneral Introduction 

Let us first consider the general form of the equation given by 

Eq. (6.21). In order to impose the phase space cut given by the 

inequality (6.23), it is convenient to consider the transverse moments 

,h) 
i defined as follows: 

Ffn)(x,Q2) = (7.1) 

Multiplying both sides of Eq. (6.21) by (P12)" and integrating over 

Pl keeping the inequality (6.23) in mind, one obtains the following 

differential equation: 

aFI")(x,Q2) 
Q2 aQ2 

F(“)(x,Q2) + 
ii 

n 

c Q 
2r n. 1 

r=O 'r!(n - r)! / 

1 

iY (--> 
x 2n-r(1 - 7' Y Y 

X 

Fij $1 Yy” 

The quantities Z i's diverge as shown in Eq. (6. 26). However 

easy to see from the explicit forms of the f's given in Eq. 

-r> 

, i 

(6. 

(7.1 

(y,Q2> 

.t is 

25) 

that these divergences cancel the divergences arising from the r = 0 

term in the integrals appearing in the above equation. Therefore the 

function F(n)(x,Q2)' s must be finite if they were finite for some given 

value of Q2. One expects also that the large n behavior of the 

,(n> (x,Q2) dictate the large P12 behavior of Fi(x,Pl 2,Q2>. This point 

should be investigated further. For any given n, Eq. (7.2) can be 

solved numerically. This is presently under investigation. 

Eq. (7.2) can be simplified further in terms of the following 

Mellin-transformed quantity: 
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/ 

1 

M;;' (Q2) = dx x 
0 

'-' Fp)(x,Q2) . 

~ One-obtains 

aM(n) . dQ2) Q2 +- = 27F M(n)(Q2) i ai 

+ reo Q2r n- 
1 (n-r> 

r!(n - r)! ma(n,r>. . Ma+r 1J 1 , 
where 

1 

mo(n,r).. = 4Y 
l 

=J / 0 YY 
a+2n-r(l - YP- ?ij(y) 

(7.3) 

(7.4) 

(7.5) 

Eq. (7.4) is considerably simpler than Eq. (7.2). Still it is suf- 

ficiently complicated so that an analytical solution does not seem 

feasible at the present time. 

B. Average Transverse Momentum Squared of Partons _ 

To give an explicit example of the solution of equations derived 

in the previous subsection, let us now compute the partons average 

momentum squared (P:ji = Ti(Q2). In terms of the M's defined in Eq. 

(7.3), it is 

Ti(Q2) = M;$Q2) (7.6) , 

It is also necessary to know the partons average longitudinal momentum 

(x>~ E Ni(Q2), which is 

Ni(Q2> = M~'$Q~) * , 

The N's and T's satisfy the following coupled set of equations: 

(7.7) 

-$=-$$-balNg , (7.8) 
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.$.%&s!d--.b 
I 

-bl Tg + Q2 Cl Ng 
I 

, 

and 

Tq 
T 

g 
. 

(7.9) 

(7.10) 

(7.11) 

In the above b is given by Eq. (2.14), and al, bl and cl are the (1,l) 

elements of the matrices A, B and C, respectively. These matrices are 

given as follows: 

A= al a2 

a3 a4 

1 =-- 
b 

B= 

and 

413 Cr -213 Tr 

-413 Cr 213 Tr , (7.12) 

25112 Cr -7115 Tr \ 

-7112 Cr 715 Cg + 213 Ti 
I 

C=B-A= 
It is straightforward to solve Eqs. (7.8) - (7.11) 

0 cl = cx(Qi), Ni(Qi) = NY and Ti(Qi) = To . 1 

Also, it is convenient to define the function 

v(Q2) = dQ2>ho + c . 

The solutions of (7.8) and (7.9) are 

Q!Q2> = N&Oh (Q2> la1 

(7.13) 

(7.14) . 

One writes 

(7.15) 

(7.16) 

(7.17) 



I 
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and 

T6 (Q2) = h(Q2>lb1 T6' 

4 

Cl&O 
f 2w b.N6' 

/ 

Q2 

Qo’ 
dv2hCu2>11-c1 

Eq. (7.10) has the following solutions: 

Nq = K - h(Q2)lh [K - 1 + Ni] and 

Ng = 1 - K + [r(Q2)lX [K - 1 + N;] . 

(7.18) 

(7.19) 

(7.20) 

Here X is the non-vanishing eigenvalue of the matrix A and is given by 

1 x = 5 2Cr -I- Tr -t J(2Cr - Tr)' + 8CraTr C 1 , (7.21) 

and 

K = Tr/(Tr + 2Cr) . (7.20) 

Eqs. (7.17), (7.18) and (7.19) describe the Q2-variation of the 

average longitudinal momentum of the partons, and are well known from 

the usual method employing the operator product expansion and the 

renormalization group equations. Their explicit form is necessary to 

solve Eq. (7.11). To solve the latter equation, let us introduce the 

following eigen modes of the matrix B: 

Tt (Q2) = 5, Tq(Q2) + Tg (Q2) , (7.21) 

where 

- b4) + hbl - b4)L + 4b2b3 . 
1 

The corresponding eigenvalues are 

(7.22) 

i, = $ (bl + b4) 5 d(bl - b4)z + 4b2b3 . 1 (7.23) 



- 38 - 

The solutions are 

4 T&Q21 = h(Q2>lXt T+' + 

/ 

Q2 1 
- 

where 

Uf + C4 + K'[S,(Cl - C2) + C3 - C4)1 - 

and 

v+ = b'[S+(Cl - C2) + C3 - C4]'[K - 1 + N;] . - 

From Tt, one recovers 

Tq(Q2) = [T+(Q2> - TJQ2)1/(5+ - E-1 

and 

Tg(Q2) = [E+T-(Q~) - 5-T+(Q2>1/(5+ -E-> * _ 

(7.24) 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

Eqs. (7.18), (7.27) and (7.28) describe the Q2-variation of the 

parton's average transverse momentum squared. To analyze these results 

numerically, consider QCD with color W(3) B flavor SU(4) in which 

case 

c 3, = 
e 

cr = 413 and Tr=2 . (7.29) 

Also, it will be assumed that the parton distributions inside the 

nucleon can be divided into a valence contribution, an SU(3) symmetric 

sea of quarks and anti-quarks and a charmed sea. For an iso-spin zero 

target, one has 

F 
P 

= + Fv f Fs, Fn=+Fv+Fs, FA = Fs, F , = Fc 
P 

(7.30) 

FF = Fs, FZ = Fs, FX=FsandFir,=Fc . 
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The notations in the above are self-explanatory: p, n, X and p' denote 

the proton, the neutron, the strange and the charmed quarks, respectively 

whil: the barred ones denote the antiquarks. From Eq. (7.30), it is 

clear that the quantities TV = T 
P 

- TX and Tc s = Tc - Ts = TX - T , 
P 

belong to Tg. Thus their Q2-development can be determined if the 

initial values To V' T:+y - Nz and Nz are known. s Also the Q2-development 

of T 
9 

and Tg are determined if the initial values To, Ti and No = 1 - 
9 g 

Nl are known. Furthermore, it follows from (7.30) that 

2N 

Tq = c Ti = TV + 2Tc + 6T 
S 

I+L 

and 

2N 

Nq = c Ni = NV + 2Nc + 6Ns . 

(7.31) 

(7.32) 

i=l 

Therefore, if one knows the Q2-development of TV, Tcms and T , then one 
9 

can determine the behavior of Tc and Ts separately. 

Before going into a detailed numerical analysis, let us first 

discuss some general properties of the function Ti(Q2). Schematically 

it can be written as follows: 

Ti(Q2) = Ci(To) Ai(Q2) + Di(No) Bi(Q2) . (7.33) 

The first (second) term in the above corresponds to the first (second) 

term of Eq. (7.18) or (7.24). At Q2 near Qi, one has the-behavior 

Ai(Q2> a [Y (Q2> lai (7.34a) 

and 

Bi(Q2> a (Q2 - Q;) 9 (7.34b) 

where a i is a positive constant. As Q2 becomes large, one has 

Ai(Q2) - 1/ (logQ2> ai (7.35a) 
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and 

Bi (Q2> - Q2/(losQ2)bi , (7.35b) 

where bi is another positive constant. From Eqs. (7.33) - (7.35), one 

sees that the function Ti(Q2) behaves roughly as follows: At Q2 near 

Q;, it is mainly governed by Ai(Q2> which decreases as Q2 increases. 

At large Q2, on the other hand, it is mainly governed by the function 

B(Q2) whose behavior is given by (7.35b). Furthermore, the coefficient 

of B(Q2) involves only the initial values NY as shown in Eq. (7.33). 

Therefore, the behavior of the partons' transverse momentum at large 

Q2 is determined if the initial values of the parton's average longi- 

tudinal momentum are known. 

Consider now Eq. (7.24) in the ultra high Q2 region. Integrating 

by parts, one obtains 

/ 

Q2 
du2hh2> la 

QZ 
= Q2 va(Q2> - Q; va(Q;) 

-1 
Q2 

dv2 h(,sf) Ia 
du’ 

Qi 
(7.36) 

= Q2ya(Q2) + O[Q2va(Q2)/log(92/Q~) 1 l 

If log(Q2/Q;> " 1, one may retain only the first term in Eq. (7.36). 

In the same limit, the term involving v+ in the integral in (7.24) may 

also be neglected, and one gets 

T 

f 
(42) Q2” CLo 

--@+_*Q2 l 

From (7.37), (7.27) and (7.28), one obtains 

(7.37) 

r(Q2) = Tq(Q2) /Tg(Q2) -r 
Q2_tco m = 23Tr/(56cg+ 15T,) . (7.38) 
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However, the approach to rW should be very slow, the correction terms 

being logarithmic. 

'For numerical evaluation, it is necessary to specify the initial 

values a ', No's and To's at Q2 = Qi = 1 Gev2. I use 

0 
cl = 0.5 (7.39) 

NV0 
= 0.46, NC0 = 0, Nso = 0.01, N ' = 0.48, 

g 
(7.40) 

TV0 
= 0.75 Gev2, T ' = 0, T ' = 0.25 Gev2 and 

C S 

TO 
(7.41) 

= 0.25 Gev2. 
g 

In the above, (7.39) and (7.40) are the standard results that follow 

from the analysis 25 of deep inelastic lepton scattering data. They are 

thus presumably reliable. In writing (7.41), it was assumed that the 

average transverse momentum per quark in the nucleon is 0.5 Gev at 

Q2 = 1 Gev2. Since there are three valence quarks, one-obtains 

TT” 
= 3.(0.5)2 = 0.75 Gev2. T ' is set to zero since no charm should 

C 

be present at low Q2. The choice T ' 
g 

= 0.25 Gev2 was made by naively 

assuming that the quarks and the gluons have the same transverse momenta. 

The Toi 's given by (7.41) are at most speculative, and it is conceivable 

that the present estimate could be wrong by a factor of 2. According 

to the discussion in the previous paragraph, however, the behavior of 

the function Ti(Q2) at large Q2 is insensitive to the precise value 

of the To 's. 26 
i 

Table I presents the result of the calculation in the Q2 range 

from 1 Gev2 to 120 Gev2, which covers most of the present experiments. 

The gluonic contribution rises rapidly, while the quark contribution 

changes very slowly in the Q2 range investigated. The general trend 

of the Ti(Q2)'s agree with the qualitative analysis carried out above. 
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At Q2 = 120 Gev2, r(Q2) a 2/5 which should approach ra = 0.232 according 

to Eq. (7.38). At Q2 = lo5 and lo7 Gev2, r(Q2) = 0.276 and 0.265, 

respzctively. Such a slow approach to rcois to be expected. 

In interpreting the result shown in Table I, it should be kept in 

mind that Tv(Q2) is the average transverse momentum squared summed over 

the three valence quarks. Thus the average transverse momentum squared 

of a valence quark is -0.56 Gev2 at Q2 = 120 Gev2. By the same token, 

the rapid rise of the gluonic transverse momentum squared may simply 

mean that the average number of gluons increases rapidly. The average 

transverse momentum of quarks obtained in this section seems reasonable 

in view of the recent experiments. However, more assumptions are neces- 

sary in order to compare the result of Table I with experiment. This 

is beyond the scope of the present paper. 
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VIII. CONCLUDING REMARKS 

In this paper, it was shown how to reconcile the apparently contra- 
4 

dictory concepts of field theoretic local interactions and the impulse 

approximation. It was observed that the impulse approximation requires 

the time development matrix U to be close to unity during a short time 

interval. To accomplish this, the interacting part of the Hamiltonian 

was separated into two parts, one containing only those terms involving 

large energy transfer, the other containing the remaining small energy 

transfer pieces. The parton states were introduced to be eigenstates 

of the large energy transfer Hamiltonian. The evolution of such a state 

is then governed by the soft operators with small energy transfer, thus 

enabling one to make the impulse approximation. It was then possible 

to give a physically transparent derivation of the usual formula for 

the cross section of the deep inelastic electron scattering. With some 

additional assumptions, it was also possible to confirm the conjecture 

that the cross section for the Drell-Yan process can be obtained from 

the naive parton model result by replacing the naive parton density 

functions with the Q2-dependent density functions. The variation of 

the density functions with Q2 was determined in terms of coupled integro- 

differential equations. The equations reduce to the usual ones when 

restricted to the longitudinal distributions only. As for the transverse 

distributions, explicit solutions were obtained for the simple case of 

the average transverse momentum squared. 

There are still many questions to be cleared up. First, it must 

be rigorously proved that the separation of%I into Wn and Vn as defined 
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in Sect. II works so that Eq. (2.12) follows, although they are highly 

reasonable in view of our intuition gained from the renormalization 

theo;y of the Green's functions. The problem here is essentially to 

find a consistent renormalization procedure within the framework of 

the Hamiltonian approach. Solving this problem and thus reformulating 

the usual renormalization group theory in terms of the Hamiltonian 

language should be very useful, since the Hamiltonian approach has a 

strong intuitive appeal. 

Second, the discussion of the Drell-Yan process in Sect. V is 

still incomplete, because the covariant derivatives occurring in the 

electromagnetic currents were replaced by the usual derivative without 

any justification. These are indications that the results in Sect. V 

are correct from the explicit calculations in lowest order perturbation 

theory 20 and from the calculation 27 in one time one space dimensions. 

However, the problem should be investigated further. 

Finally, the scaling violation equations were only solved for the 

simplest case. Extending the solutions to a more general case is 

presently under study. At any rate, the problem here is a technical 

one and not one of physics. 
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Added Note 

Since this work was submitted for typing (Oct. 771, the theory of the 

impuls:approximation presented in this paper is developed further as 

follows: 

Eq. (2.12) is not completely satisfactory on dimensional ground. 

Instead, it should be replaced by 

<n, A’ 1 (WA, - WA) Im,A> 

= <,13TIIm> (g -f s(x2)), g 
0 

I Iccn - &mI <g> 
0 

=o, otherwise , (N. 1) 

where T2 is a quantity of order A2. To determine x2, note that A2 enters 

into W ,, only in the combination h2/2rio. Therefore the most general structure 

that T2 can have is 

(N-2) 

Here rl is the o-component of the total momentum of state n. Sn m is a 
I 

dimensionless quantity c%epending on momenta and quantum number of the states 

n and m. It must be invariant under longitudinal boosts as well as Galilean 

boosts. For the discussions in this paper, it is only necessary to consider 

the three point coupling shown in Fig. (51, in which case it is easy to see 

that Cn m can only depend on the ratio x/y (in the notation of Fig. (511, 
I 

being independent of P or P'. Assuming that En m is independent of the 
L FL I 

quantum number of the states n and m, one has 

5 = SWY) (N-3) 
n,m 
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The scaling violation equation (6.21) can be straight forwardly generalized 

to in&porate (N.2) and (N-3). One obtains 

Fi(x,Pl ,h2+Ah2) - Fi(x,P; ,h2) 

1 - 
2Tr I 

Ah2 =- - zi (xl - - F (x,P2 ,h2) 
A2 i 1 

Here 

with 

a PI 
ij $1 d2PI --I Fj (y,T2,h2) . 

s 
(N-4) 

G2 
1 

1 
zi (xl = J 2p) d2x eNa2 , 

0 

l,(Z) = cr lDZ (" - $) and 9q(z) = 2-b (N.6) _ 

(M.5) 

The P'-' I Integral in (N.4) is limited, of course, by the inequality (6.23). 

In the limit AA2 -+ 0, Eq. (N-4) can be written in the following differential 

form: 

2iTh2 
aFi(X,P$h2) 

=- 
ah2 

Ei (x) Fi (x,P12 ,h2) 

1 
+ 

s 
21 

/ 

2lr 

2;; de Fij $, Fi(y,P;,h2) I (N.7) 
X 0 

where 

p; = (;)2 bf + hz;(y-x) - 2 cos elF,$hJ$z] - (~23) 
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In Section V, it is shown that if one choose A2 5 G/x for deep 

inelastic electron scattering and A2 .L (Q2 + s(x1 -x ) /4)/(x1+x2) for the 2 

Drell-Gn process, then U,(T,O) can effectively be approximated by 1. On 

the other hand, JI approaches the free current as A -t =. Therefore A2 

should be chosen as large as possible. These considerations determine the 

relevant A2 for deep inelastic electron scattering (A: s ) and the Drell-Yan . . 

process (Ai y ) as follows: . . 

*; s 
= g and A; y = 

Q2+s(xl-x2)2/4 
. 

. . . . x1+x2 

Therefore deep inelastic electron scattering measures the quantity 

G i (x,P2 ,Q2) F 
1 

(x P2 Q2/X) i 'I' , 

(N-9) 

(N. 10) 

while the Drell-Yan process measures 

Q2+ (x 
Fi(x,PL2, 

l-x2)2s/4 
. (N. 11) 

xl+x2 

Eqs. (N-8) and (N.9) then determine completely deep inelastic ,cross sections. 

In a recent paper (K. J. Kim, Impulse Approximation in QCD, Parton's 

pT -Distribution and Application to Deep Inelastic Process, MZ-TH 78/l), 

phenomenological consequences of these equations were studied. Agreement 

with recent data on R = GL/GT in deep inelastic electron scattering and 

the average transverse momentum of the Drell-Yan pairs is found to be very 

good. 
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APPENDIX 

b this Appendix, the explicit form of the Hamiltonian.%correspond- 

ing to the Lagrangian density (2.5) will be derived. Since the procedure 

is well known, 13,14 it is not necessary to go into the details of the 

derivation. For the present purpose, it is convenient to represent 

the Dirac matrices in the ordinary reference frame, $J, as follows: 28 

p" = (y -k), p3 =(p 3, ?j =(+:j izj), 

The IMF components corresponding to the above representation are 

. 
and yJ = pJ . 

(A. 1) 

(A. 2) 

In the IM gauge specified by Eq. (2.7), the independent degrees of free- 

dom are the transverse components A;' s of the gluon fields and the two 

component Pauli spinor x. The latter is related to the 4-component 

quark field J, as follows: 

where 

(A. 4) 

Here l/a0 is the inverse of the differential operator a0 = a3 = a/a2 

and 6 is the covariant derivative given by 

6 = 3 + igx" Ta . (A. 5) 

In this appendix, the superscript -+ is used to denote two dimensional 

transverse vectors. The fundamental equal r commutation relations are 

I 
x(x> ,x(x’> E.T 

I 
= 2 S(2 -2’) s(qF - 2) 

(A. 6) 
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[A;(x) ,r”+x) lEnT = + 6ab Sij S(s-3') 6 (2) (;: - ;I) . 

These commutation relations can be realized by introducing the Fourier 

decomposition 

xcx) zjs im &(W(s) emRPmx b(E,s) + W(-s)eiPox d+(;,s)} (A.7) 

and 

Ai =[a lm ::{si(h)e-ip*x a(;,A) + eip'x s;(h) a+(p,X) 1. (A.8) 

The Hamiltonian can be obtained by the standard procedure, and is 

given as follows: 

v2 1 x 
a0 

and 

,$+q? = I / 
dzdx 1 

+ L x+[-ig 
fi 

(A. 9) 

(A.lO) 

+ gfabc aiA; 4 A; + ti f 4 abc fade % 
i Aj Ai Aj 

I cde ' 

where J 0 a is the color-charge density given by 

J~=fix+Tax+fabc$.ao~c . (A.ll) 

The matrix element (rnlCS~n~ in the momentum space can be obtained 

from (A.ll), (11.7) and (A.8). For the purpose of the present paper, 

it is only necessary to consider the matrix elements shown in Fig. (1.a) 

and (1.b) and those which can be obtained from them by the substitution 

rule. The matrix element corresponding to Fig. (1.a) is 

qi oiz*i: 
---- 
% 211 

(A.12) 
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and the one corresponding Fig. (1.b) is 

4 
M2 = igf abc - (P, - p3)i 6jk 

(A.13) 

+ cyclic permutations . 
1 

Finally the electromagnetic current J'(x) = Ty'j, will be expressed 

in terms of the independent field variables x and A 's. 1 From (A.2), 

(A.3) and (A.4), it follows: 

Jo = 6 x+ x , (A.14a) 

and 

(A.14b) 

(A.14~) 
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TABLE I 

Q2-dependence of Ti(Q2)= < p", >i (all units in GeV2) 
4\ 

Q2 
2 < p2 > 2 2 

<p,'V -L c < P,'s < Pl'g 

1. 1 0.738 0 0.245 0.272 

1. 4 0.712 0.002 0.235 0. 329 

2.6 0.667 0.005 0.214 0.504 

4.6 0.653 0.010 0.202 0.735 

7.4 0.662 0.017 0.197 1.023 

15.4 0.727 0.032 0.200 1.763 

26.6 0.832 0.052 0.213 2.715 

41. 0 0.968 0.076 0.235 3.867 

70. 0 1.230 0.122 0.279 6.065 

120.0 1.657 0.196 0.357 9.640 
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FIGURE CAPTIONS 

1. Examples of virtual processes contained in %'I. a, b and c are the 

groiSip indices and i, j and k are the polarization indices of gluons. 

2. Deep Inelastic Electron Scattering. 

3. Drell-Yan Process. 

4. Lowest order diagrams contributing to the matrix element (m,QlAWl E,n,Q'). 

A indicates the action of AW vertex. 

5. A diagram contributing to f.. . 
J-J 

The dotted line can either be a gluon 

or a quark. 
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