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Abstract We present a SUSY SU(5)× T ′ unified flavour model with type I see-saw mecha-
nism of neutrino mass generation with θ13 ≈ 0.14 close to the recent results from the Daya
Bay and RENO experiments. The model predicts also values of the solar and atmospheric
neutrino mixing angles, which are compatible with the existing data. The T ′ breaking leads to
tri-bimaximal mixing in the neutrino sector, which is perturbed by sizeable corrections from the
charged lepton sector. The model exhibits geometrical CP violation: all complex phases arise
from the complex Clebsch–Gordan coefficients (CGs) of T ′. Both normal and inverted ordering
are possible for the light neutrino mass spectra. We give also predictions for the 2β0ν-decay
effective Majorana mass.

26.1 Introduction

The recent results of the short-baseline reactor experiments on θ13, Daya Bay [1] and RENO
[2], clearly indicate that the precise measurements era for neutrino physics has started. A
non zero value of θ13 has been reported with an accuracy around 5σ by both experiments.
More specifically, Daya Bay and RENO measured sin2 2θ13 = 0.092± 0.016± 0.005 and
sin2 2θ13 = 0.113± 0.013± 0.019, respectively. Motivated by the fact that at present we
know all three angles in the PMNS mixing matrix with a good precision, we tried to construct
a unified model of flavour, which describes correctly the quark and charged lepton masses,
the mixing and CP violation in the quark sector, the mixing in the lepton sector and predicts
a value of the angle θ13 compatible with the recent data (all the details in [3]). The model
is supersymmetric and is based on two main ingredients: i) a GUT embedding using SU(5)
as gauge group; this may eventually lead to a sizable θ13 [4] ii) a discrete family symmetry
T ′, double-valued group of the tetrahedral symmetry T which is isomorphic to A4; the latter
has three inequivalent spinorial unitary irreducible representations which are relevant in the
description of the quarks and lepton mixing. Moreover the complex CGs of the T ′ group can
be source of CP violation, so-called “geometrical” CP violation.

We must notice that an interesting model based on SU(5) × T ′ as symmetry group was
proposed in the literature [5] [6], but it is now ruled out by the current data on θ13. In contrast,
due to a non-standard Higgs sector content [4, 7], the model we are going to describe predicts
a value for this angle compatible with the recent data.

The model presented in this talk includes three right-handed (RH) neutrino fields NR,  =
e, μ, τ, which possess a Majorana mass term. The light active neutrino masses are generated
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by the type I see-saw mechanism and are naturally small. The corresponding Majorana
mass term of the left-handed flavour neutrino fields νL(),  = e, μ, τ, is diagonalized by the
so-called tri-bimaximal unitary matrix:
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. (26.1)

Of course this mixing pattern has to be “corrected” in order to get a non zero value for θ13
in the standard PMNS mixing matrix, UPMNS. Indeed from the simultaneous diagonalization
of the neutrino and the charged lepton mass matrices the PMNS mixing matrix reads (RL
convention):

UPMNS = U†eLUν (26.2)

Moreover, a relation between the charged leptons and the down-type quarks mass matrices is
established through the SU(5) gauge symmetry in such a way that the antireactor mixing angle
θ13 results connected to the Cabibbo angle θc: sin2 θ13 ∼= C2(sin2 θc)/2 where C ∼= 0.9 is
a constant determined from the fit.

26.2 Matter and Scalar Fields

The model we proposed in [3] is based on SU(5) as gauge group and T ′ as discrete family
symmetry plus an extra shaping symmetry, Z12×Z38×Z

2
6×Z4, which is required to select the

correct vacuum alignments and to forbid unwanted terms and couplings in the superpotential.
We impose as well the U(1)R symmetry, the continuous generalization of the usual R-parity.
The three generations of matter fields are defined in the usual 5̄ and 10, representations
of SU(5), F̄ = (dc, L)L and T = (q, c, ec)L and we introduce three heavy right-handed
Majorana neutrino fields N as singlets under SU(5). The Higgs sector is composed by a
number of copies of Higgs fields in the 5 and 5̄ representation of SU(5) which contain as linear
combinations the two Higgs doublets of the MSSM. To get realistic mass ratios between down-
type quarks and charged leptons and to get a large reactor mixing angle we have introduced
Higgs fields in the adjoint representation of SU(5), 2̄4, which are as well responsible for
breaking the GUT group. In Tab. 26.1 we summarize the charge assignments of the matter

T3 T F̄ N H
(1)
5 H

(2)
5 H

(3)
5 H̄

(1)
5 H̄

(2)
5 H̄

(3)
5 H̄′′5 H′′24 H̃′′24

SU(5) 10 10 5̄ 1 5 5 5 5̄ 5̄ 5̄ 5̄ 24 24
T ′ 1 2 3 3 1 1 1 1 1 1 1′′ 1′′ 1′′

Table 26.1: Matter and Higgs field content of the model including quantum numbers.

and the Higgs fields under SU(5)× T ′ (the charge assignments under the extra symmetries
are given in full detail in [3]). Note that the right-handed neutrinos N are accommodated in T ′

triplets in such a way that the tri-bimaximal mixing pattern arises in the neutrino sector before
considering corrections from the charged lepton sector. Notice that the complex CGs, involved
whenever the spinorial representation is used, is a source of CP violation in the quark and in
the lepton sector.
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The scalar sector of fields related to the breaking of T ′ is composed by 13 flavons. We
introduce triplets with two possible alignment in flavour space:

〈ϕ〉 =
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
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ξ0 . (26.3)

The alignment (0,0,1) is relevant for the quark and the charged lepton sector while the
(1,1,1) alignment couples only to the neutrino sector. For the doublets we considered two
possible orthogonal alignments:

〈ψ′〉 =
�
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�
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0
1

�

ψ′′0 ∼ 2
′′ ,
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1
0

�
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�

0
1

�
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(26.4)

Furthermore we have introduced six flavons in one-dimensional representations of T ′ which
receive all non-vanishing (and real) vevs

〈ζ′〉 = ζ′0 , 〈ζ′′〉 = ζ′′0 , 〈ζ̃′〉 = ζ̃′0 , 〈ζ̃′′〉 = ζ̃′′0 , 〈ρ〉 = ρ0 , 〈ρ̃〉 = ρ̃0 . (26.5)

The primes indicates the type of singlets 1, 1′, 1′′. We assume here that all flavon vevs are real
i.e. we considered as only source of CP violation the complex CGs introduced geometrically by
the group T ′. In the Appendix of [3] we show a superpotential that provides the desired flavon
vev structure. The latter is obtained adding the so called “driving fields”, fields that are gauge
singlets but transform non trivially under T ′ and the extra shaping symmetry.

26.3 Yukawa couplings

When T ′ breaks and the flavons take their real vevs, one can write down at GUT scale the
Yukawa coupling matrices (RL convention). In our model the elements of the Yukawa coupling
matrices are generated dynamically through a number of effective operators up to dimension
seven which structure is tightly related to the matter fields assignment under the T ′ discrete
symmetry. CP violation in the quark and charged lepton sector is entirely due to the CGs of
the T ′ discrete group. For the up-type quarks we find:

Y =







ω̄ b 0
b c ωd
0 ωd e






, (26.6)

while in the down-type sector and the charged lepton sector the Yukawas read:

Yd =







ωd b′
d

0
ω̄ bd cd 0
0 0 dd






and Ye =







−32 ωd ω̄ bd 0
6  b′

d
6 cd 0

0 0 −32 dd






, (26.7)

where ω = (1+ )/
p
2 and ω̄ = (1− )/

p
2. The ten parameters appearing in the matrices are

(real) functions of the underlying parameters. Notice that in this model b− τ unification is not
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realized. Indeed in order to get fermion mass ratios compatible with experimental data we used
new relations that have been recently proposed in the literature [7], for instance yτ/yb = −3/2
and yμ/ys ≈ 6. Furthermore it was shown in [4] (see also [8]) that those new SU(5) CGs
might also give a large reactor neutrino mixing angle θ13. More importantly, due to the SU(5)
symmetry of the model, Yd and Ye are related (and therefore the corresponding down quark
and charged lepton mass matrices) and are expressed in terms of the same parameters. As
a consequence, since Ye (and as well Yd) is a block diagonal matrix in the 1-2 sector it is
diagonalizable by a rotation of angle θe12 (i.e. UeL ∼ R12(θe12)). In this way θe12 is related
to the Cabibbo angle θc ∼= 0.226. Specifically using the results of a fit performed on the 10
parameters that appear in the Yukawas from GUT scale down to the electroweak scale (more
details in [3]) we get:
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One can also get an expression for the angle θPMNS
13 using the equation (26.2):

θPMNS
13 =

1
p
2
θe12 =

0.9
p
2
θc.

This value is compatible with the recent Daya Bay and RENO results.

26.4 Neutrino Sector

The model includes three heavy right-handed Majorana neutrino fields N which are singlets
under SU(5) and form a triplet under T ′. Through the type I seesaw mechanism we gen-
erate light neutrino masses. The neutrino sector is described by the following terms in the
superpotential

Wν = λ1NNξ+NN(λ2ρ+ λ3ρ̃) +
yν

Λ
(NF̄)1(H

(2)
5 ρ)1 +

ỹν

Λ
(NF̄)1(H

(2)
5 ρ̃)1 , (26.8)

where we have given the T ′ contractions as indices at the brackets for non-renormalizable
terms. From the superpotential we get the mass matrix for the Majorana right-handed neutrinos
and the Dirac neutrino mass matrix

MR =







2Z + X −Z −Z
−Z 2Z −Z + X
−Z −Z + X 2Z






, MD =







1 0 0
0 0 1
0 1 0







ρ′

Λ
, (26.9)

where X, Z and ρ′ are real parameters. The right-handed neutrino mass matrix MR is
diagonalized by the tri-bimaximal mixing (TBM) matrix such that the heavy RH neutrino masses
read:

UT
TBM

MRUTBM = DN = diag(3Z + X,X,3Z − X)
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It is more convenient to change parametrization and to use α ≡ |3Z/X| > 0 and ϕ ≡
rg(Z)− rg(X) so the diagonal Majorana mass matrix becomes :







3Z + X 0 0
0 X 0
0 0 3Z − X






−→ |X|







|1+ αeϕ|eϕ1 0 0
0 eϕ2 0
0 0 |1− αeϕ|eϕ3







where ϕ1 = ϕ2 = ϕ3 = 0, π. The light neutrino Majorana mass term is obtained via type I
see-saw mechanism:

Mν = −MT
D
M−1
R
MD = U∗ν diag (m1,m2,m3)U†ν ,

where the unitary matrix Uν that diagonalize the Majorana light mass matrix is proportional to
UTBM, precisely:

Uν =  UTBM diag
�

eϕ1/2, eϕ2/2, eϕ3/2
�

.

The masses of the light neutrinos result:

m =

�

ρ′

Λ

�2 1

M
,  = 1,2,3 m > 0

The value of the phase ϕ defines the type of the neutrino mass spectrum in the model since
one can show that:

Δm2
31 ≡ Δm

2
A
=

1

|X|2

�

ρ′

Λ

�4 4α cosϕ
�

�1+ αeϕ
�

�

2 �
�1− αeϕ

�

�

2 . (26.10)

Thus, for cosϕ = +1, we get Δm2
31 > 0, i.e., a neutrino mass spectrum with normal ordering

(NO), while for cosϕ = −1 one has Δm2
31 < 0, i.e., neutrino mass spectrum with inverted

ordering (IO). In order to find the numerical values of the light masses one can use as input

parameters the experimental values of Δm2
21 and r =

Δm2
�

|Δm2
A |
= 0.032± 0.006. For a given

type of neutrino mass spectrum, i.e., for a fixed ϕ = 0 or π, one can find a value of the
parameter α. It is easy in this way to get the value of the lightest neutrino mass, which together
with the data on Δm2

21 and Δm2
31(32) allows to obtain the values of the other two light neutrino

masses. Knowing the latter one can find also the two ratios of the heavy Majorana neutrino
masses. In the case of NO neutrino mass spectrum (ϕ = 0), there are two possible values of
α and so there are two possible spectra (solution A and B):

m1
∼= 4.44×10−3 eV ,m2

∼= 9.77×10−3 eV ,m3
∼= 4.89×10−2 eV , soltion A (NO) .

(26.11)
m1
∼= 5.89×10−3 eV ,m2

∼= 1.05×10−2 eV ,m3
∼= 4.90×10−2 eV , soltion B (NO) .

(26.12)
The ratios of the heavy Majorana neutrino masses read for the solution (A) M1/M3

∼= 11.0
and M2/M3

∼= 5.0. For solution B we find: M1/M3
∼= 8.33 and M2/M3

∼= 4.67. In both
cases we have M3 < M2 < M1. For the IO spectrum (ϕ = π), we find only one possible value
for α and in this case the light neutrino masses read:

m1
∼= 5.17× 10−2 eV ,m2

∼= 5.24× 10−2 eV ,m3
∼= 1.74× 10−2 eV , (O) , (26.13)
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i.e., the light neutrino mass spectrum is not hierarchical exhibiting only partial hierarchy. For
the heavy Majorana neutrino mass ratios we obtain: M1/M2

∼= 1.014 and M3/M2
∼= 3.01.

Thus, in this case N1 and N2 are quasi-degenerate in mass: M1
∼= M2 < M3.

In this model is possible to predict also the values of observables such as the fundamental
parameter of 2β0ν-decay, the Majorana effective mass 〈m〉. At this purpose one has to find
the values of the angles and phases of the PMNS mixing matrix and this can be done with
standard formulae (see [4] for instance) recasting the PMNS mixing matrix in the standard
parametrization. We list in table 26.2 the numerical values of the angles and phases found
in our analysis. We found that the Dirac phase is δ ∼= 84.3◦ and the values of the Majorana
phases in the standard parametrization are not CP conserving. As one can see the value of
δ predicted by the model is close to π/2: this implies that the magnitude of the CP violation
effects in neutrino oscillations, is predicted to be relatively large. The rephasing invariant
associated with the Dirac phase reads JCP = m(U∗e1Uμ1Ue3U

∗
μ3) = 0.0324. Finally we are

Quantity Experiment (2σ ranges) Model
sin2 θ12 0.275 – 0.342 0.340
sin2 θ23 0.36 – 0.60 0.490
sin2 θ13 0.015 – 0.032 0.020

δ - 84.3◦

β1 - 337.1◦ + ϕ3
β2 - 11.5◦ + ϕ3 - ϕ2

Table 26.2: Numerical results for the neutrino sector. The experimental results are taken from
[9] apart from the value for θ13 which is the DayaBay result [1].

able to compute the value of the Majorana effective mass 〈m〉 for NO:

〈m〉 = 4.90 (7.95)× 10−3 eV , soltion A (B) ,

and for IO:
〈m〉 = 2.17× 10−2 eV.
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