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Abstract

This thesis consists of two parts. In the first part we review the LLM’s bubbling

AdS5 and its application to different cases, and bubbling AdS3 ansatz from which we

derive the conical defect solution and the Aichelburg-Sexl solution, which turns to be the

superstar in AdS3. In the second part we consider the AdS6 black hole with D4-D4 flavor

branes. We study the phase structure of the system. We find that deconfinement and

chiral symmetry breaking might not occur together and it depends on the ratio L/R. We

also find a more general model that includes backgrounds given by near extremal limit of

Dp critical and non-critical branes. We also study the mesonic spectrum of the system

and the drag effect on quarks and mesons.
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Chapter 1

Bubbling AdS5 space and 1/2 BPS

geometries

1.1 Introduction

String theory is the most promising candidate to accommodate all the fundamental forces

of the universe, including gravity. Unfortunately, our understanding of this theory is far

from complete. In particular, how quantum gravity and the standard model are realized

within string theory is still elusive. However, we do not need to solve in full string theory

to learn important lessons: in some cases, even simple toy models produce amazing

physical outputs. This is the case of the AdS/CFT conjecture, where we can study closed

string theory (and therefore quantum gravity) as dual to super Yang-Mills theory (SYM).

Actually what we really mean is that within this framework, we can concentrate on a

sector of the theory where a lot of control is achieved but physical relevance is still present.

A beautiful example is the bubbling construction of Lin, Lunin and Maldacena (LLM) [1],

where they looked for solutions of type IIB supergravity theory with only the metric and

the self dual Ramond- Ramond 5-form excited. Furthermore, it is required to have regular

solutions with an SO(4)×SO(4) symmetry and at least 1/2 BPS supersymmetry. Once

the above solutions are found, by means of the AdS/CFT duality, the corresponding dual

operators in N=4 SYM theory are identified. One of the most interesting outcomes of the

above studies is the simplicity of the dual field theory, a matrix quantum mechanics, that

gives the possibility to obtain a deeper understanding on fundamental issues of quantum
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gravity: for example the role of closed time-like curves (CTC) [2], the study of black

hole thermodynamics [3] and the appearance of stretched horizons [4] probing black hole

entropy laws, the structure of the quantum phase space [5], [6] and many others [7].

In this chapter we consider a beautiful idea of LLM and its applications to several

cases. We consider a class of 1/2 BPS states that are associated to chiral primary

operators with conformal weight ∆ = J , where J is a particular U(1) charge in the

R-symmetry group. For small excitation energies J ≪ N these BPS states correspond

to particular gravity modes propagating in the bulk [8]. As one increases the excitation

energy so that J ∼ N one finds that some of the states can be described as branes in

the internal sphere [9] or as branes in AdS [10]. These were called “giant gravitons”.

As we increase the excitation energy to J ∼ N2 we expect to find new geometries. The

BPS states in question have a simple field theory description in terms of free fermions

[11]. In a semiclassical limit we can characterize these states by giving the regions, or

“droplets”, in phase space occupied by the fermions. We can also picture the BPS states

as fermions in a magnetic field on the lowest Landau level (quantum Hall problem).

Geometries corresponding to these configurations that preserve 16 of the original 32

supersymmetries. The general form of the solution is given in terms of an equation

whose boundary conditions are specified on a particular plane. There are two possible

types of boundary conditions corresponding to either of two different spheres shrinking

on this plane in an smooth fashion. This plane, and the corresponding regions are in

direct correspondence with the regions in the phase space. Once the occupied regions

are given on this plane, the solution is determined uniquely and the ten (or eleven)

dimensional geometry is non-singular and does not contain horizons. For very symmetric

cases solutions are pretty simple. On the other hand, for cases with less symmetries

things become very complicated and the simple dual description does not help.

The topology of the solutions is fixed by the topology of the droplets on the plane.

The actual geometry depends on the shape of the droplets. In the type IIB case we

simply need to solve a Laplace equation. A circular droplet gives rise to the AdS5 × S5

solution (figure 1.1).

Small ripples on the droplet correspond to small fluctuations corresponding to gravi-

tons in AdS. A small droplet far away from the circular one corresponds to a group of D3
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(a) (b) (c)

Figure 1.1: Droplets representing chiral primary states. In the field theory description
these are droplets in phase space occupied by the fermions. In the gravity picture this
is a particular two-plane in ten dimensions which specifies the solution uniquely. In
(a) a droplet corresponding to the AdS × S ground state. (b) ripples on the surface
corresponding to gravitons in AdS × S. The separated black region is a giant graviton
brane which wraps an S3 in AdS5 and the hole at the center is a giant graviton brane
wrapping an S3 in S5. (c) a more general state.

branes wrapping an S3 in AdS5. A hole inside the circle corresponds to branes wrapping

an S3 in S5. In the limit that the droplets become small these solutions reduce to the

giant graviton branes. Some of our solutions smoothly interpolate between branes wrap-

ping the sphere and branes wrapping AdS. We can also have solutions that correspond

to new geometries which cannot be thought of as branes. In other words, when we put

many branes together they back-react on the geometry and we get new geometries with

new topologies that are determined by geometric transitions. The transition is that the

sphere the branes are wrapping becomes contractible while the transverse sphere becomes

non-contractible and the branes get replaced by flux.

We can also describe 1/2 BPS excitations of the plane wave geometry, which corre-

sponds to a half filled plane. In this case the fermion becomes a relativistic Dirac fermion

in 1+1 dimensions. The light-cone energy of the solution is the same as the usual energy

for a Dirac fermion. Particle-hole duality corresponds to exchanging the 3-sphere in the

first four of the eight transverse coordinates with a 3-sphere in the last four coordinates.
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1.2 1/2 BPS states in the field theory

We consider N = 4 super Yang Mills on S3 ×R. We are interested in the class of states

that preserves one half of the supersymmetries. These are the states associated to chiral

primary operators that are built by taking products of traces of powers of a single chiral

scalar field of N = 4 Yang Mills. Denoting by φi the six scalars, we are interested in the

field Z = φ1 + iφ2, and the operators
∏

i(TrZ
ni)ri . These BPS states can be described

in a variety of ways. The one that will be most useful for our purposes will be the

description in terms of free fermions discussed in [11]. We are interested in states with

∆−J = 0. The only such state is the lowest Kaluza-Klein mode of the field Z on the S3.

This mode has a harmonic oscillator potential which arises from its conformal coupling

to the curvature of S3 [8]. So we are interested in the gauge invariant states of a matrix

Z in a harmonic oscillator potential.

The system consists of a Hermitian N ×N matrix Z, (or with explicit U(N) indices

Zi
j) with potential 1

2
tr(Z2), and kinetic term 1

2
tr(DtZ)2, where

Dt(Z) = Ż + [A,Z]

and A is the gauge connection and acts as a lagrange multiplier (which is also a hermitian

N × N matrix). We choose the matrix Z to be diagonal. Let us label the eigenvalues

of Z as λi. Then, when we write wave functions for the Schrödinger equation, they will

be functions of λi. There is a discrete subgroup of U(N) which leaves the matrix Z

diagonal. This is the permutation group of the eigenvalues, so the wave functions have

to be invariant under this symmetry, and this means that we get totally symmetric wave

functions on the eigenvalues.

Classically, the Lagrangian for the eigenvalue basis becomes

L =
∑ 1

2
λ̇2
i −

1

2
λ2
i (2.1)

So the classical motion of the eigenvalues is that of a harmonic oscillator. However, quan-

tum mechanically there is a change of measure from the matrix basis to the eigenvalue

basis. This change of measure is the volume of the gauge orbit of the matrix Z, and it is
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FE

Figure 1.2: Filling the potential well.

equal to the square of the Van der Monde determinant of the λi, namely

µ = ∆(λ)2 =
∏

i6=j
(λi − λj) (2.2)

So that the Hamitonian in the quantum theory will be given by

Hψ =
1

2

∑

−µ−1∂λi
(µ∂λi

ψ) + λ2
iψ (2.3)

with ψ the wave function of the eigenvalues.

The measure can be absorbed in the wave functions for the λi, by attaching a factor

of the Van der Monde to the wave function. We define ψ(λ) = ∆−1(λ)ψ̃(λ), where ψ̃(λ)

is the new wave function in the Z variables expressed in terms of the eigenvalues of Z

(these are the λi), and the measure for ψ̃ is is just
∏

dλi. This can be done for any

one matrix model quantum mechanics with a single trace potential. This is a similarity

transformation on the space of wave functions, so it affects the form of the Hamilltonian.

The new Hamiltonian is

H̃ =
1

2

∑

i

−∂2
λi

+ λ2
i (2.4)

so it becomes a Hamiltonian for N free particles in the harmonic oscillator potential well

(figure 1.2). After this is done the wave functions are completely antisymmetric in the λi:

the eigenvalues become fermions due to the Van Der Monde determinant. The system is

reduced to N free fermions in a given potential, which is just V (x) = x2/2.

9



String states

λ
p

λ

EF

Figure 1.3: String states as small perturbations of the Fermi surface.

We can think of these fermions as forming droplets in phase space. The ground state

corresponds to a circular droplet. Equivalently, we can say that we have a quantum hall

fluid. We can form the new Hamiltonian H ′ = H − J = ∆ − J , where J is the angular

momentum in the 12 plane. In terms of this new Hamiltonian we have a Landau level

problem. The 1/2 BPS states are the ground states of H ′ and correspond to the lowest

Landau level. The AdS ground state corresponds to a circular droplet. The conformal

dimension ∆ = J of any excitation is given by the angular momentum on the Hall plane,

or the energy of the harmonic oscillator, above the ground state corresponding to the

circular droplet. Small perturbations of the Fermi surface of the eigenvalue distribution

in the phase space correspond to string states (figure 1.3).

These BPS states preserve 16 non-trivial supersymmetries as well as SO(4)×SO(4)×
R bosonic symmetries, where R corresponds to the Hamiltonian H ′ = H − J . This

generator commutes with the preserved supercharges.

1.3 1/2 BPS geometries in type IIB supergravity

1.3.1 Type IIB solutions

We now look for the most general type IIB geometry that is invariant under SO(4) ×
SO(4) ×R. This implies that the geometry will contain two three-spheres and a Killing
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vector. We only expect the five–form field strength to be excited. So we assume we have

a geometry of the form

ds2 = gµνdx
µdxν + eH+GdΩ2

3 + eH−GdΩ̃2
3

F(5) = Fµνdx
µ ∧ dxν ∧ dΩ3 + F̃µνdx

µ ∧ dxν ∧ dΩ̃3 (3.1)

where µ, ν = 0, · · · , 3 and dΩ2
3, dΩ̃

2
3 denote the metric on 3–spheres with unit radius.

In addition, we assume that the dilaton and axion are constant and that the three-form

field strengths are zero.

The self duality condition on the five-form field strength implies that Fµν and F̃µν are

dual to each other in four dimensions and we have only one independent gauge field:

F = e3G ∗4 F̃ , F̃ = −e−3G ∗4 F , F = dB , F̃ = dB̃ (3.2)

We now demand that this geometry preserves the Killing spinor, i.e. we require that

there are solutions to the Killing spinor equations

∇Mη +
i

480
ΓM1M2M3M4M5F

(5)
M1M2M3M4M5

ΓMη = 0 (3.3)

By analyzing the Killing spinor equations one can relate the various functions appearing

in the metric to a single function. This function ends up obeying a simple differential

equation.

The conventions for normalizing differential forms are as follows:

A(k) =
1

k!

∑

Ai1...ikdx
i1 ∧ · · · ∧ dxik (3.4)

For example, A(1) = Aidx
i,, F = dA(1) = ∂jAidx

j ∧ dxi = 1
2
Fijdx

i ∧ dxj. The dual

B =⋆ F is defined by Fij = ǫijkBk, Bk = 1
2
ǫijkFij.

Using techniques similar to the ones developed in [12–14] one first write the 10-

dimensional spinor as a product of 4-dimensional spinors and spinors on the sphere.

Therefore we choose the following basis of gamma matrices

Γµ = γµ ⊗ 1 ⊗ 1 ⊗ 1, Γa = γ5 ⊗ σa ⊗ 1 ⊗ σ̂1, Γã = γ5 ⊗ 1 ⊗ σ̃a ⊗ σ̂2, (3.5)

11



where σa, σ̃a, σ̂a are ordinary Pauli matrices. In this basis

Γ11 = Γ0 . . .Γ3

∏

Γa
∏

Γã = −γ5σ̂3 , γ5 = iΓ0Γ1Γ2Γ3 (3.6)

The spinor obeys the chirality condition

Γ11η = −γ5σ̂3η = +η. (3.7)

We begin with the spinor equation on the sphere [15, 16]. Suppose we have a spinor

on a unit radius 3-sphere. We consider spinors obeying the equation

∇′
cχ = a

i

2
γcχ =

ia

2
Ea
c γaχ , a = ±1 (3.8)

where Ea
c are vielbeins on a unit sphere. The solutions of this equation transform in

the spinor representation under the SO(4) isometries of the sphere. The chirality of the

SO(4) spinor representation is correlated with the sign of a.

Now let us consider the full metric (3.1). The vielbeins are:

eµ = e
µ
µdx

µ

ea = e
1

2
(H+G)Ea

eã = e
1

2
(H+G)E ã (3.9)

From the equation

deM + ωMN ∧ eN = 0 (3.10)

we find the spin connection

ω
aµ
c = −1

2
∂µ(H +G)eµµe

1

2
(H+G)Ea = −1

2
∂µ(H +G)eµµe

a
c (3.11)
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The warp factors lead to the following covariant derivatives in the sphere directions

∇c =∇′
c +

1

2
ω
aµ
c γaµ

=
ia

2
Ea
c γa −

1

4
∂µ(H +G)e

µ
µe
a
cγaµ

= a
i

2
e−

1

2
(H+G)Γcγ5σ̂1 −

1

4
∂µ(H +G)Γcµ (3.12)

We now decompose the ten dimensional spinor as

η = ǫa,b ⊗ χa ⊗ χ̃b (3.13)

where χa, χ̃b obey equation (3.8) with overall signs a, b = ±1. The spinor ǫab is acted

on by the four dimensional γ matrices and the matrices σ̂. For simplicity we now drop

the indices a, b on the spinor ǫ. We are interested in geometries that are asymptotically

AdS5 × S5 or plane waves which preserve a half of the original supersymmetries. Since

the original supersymmetries have correlated chiralities under SO(2, 4) and SO(6), and

we are looking at supercharges with H ′ = ∆− J = 0, we expect them to have chiralities

++ or −− under the SO(4) × SO(4) generators.

The expression involving the five–form becomes (γc = Ea
cΓa):

M ≡ i

480
γM1M2M3M4M5F

(5)
M1M2M3M4M5

=
i

480

5!

3!2!

[

ΓµνFµνǫabcγ
abc + ΓµνF̃µνǫãb̃c̃γ

ãb̃c̃
]

=
i

48

[

e−
3

2
(H+G)ΓµνFµνǫabcΓ

abc + e−
3

2
(H−G)ΓµνF̃µνǫãb̃c̃Γ

ãb̃c̃
]

= −1

8

[

e−
3

2
(H+G)ΓµνFµνγ5σ̂1 + e−

3

2
(H−G)ΓµνF̃µνγ5σ̂2

]

(3.14)

Using the chirality condition (3.7), the self duality condition (3.2) and the equality

Γµ1...µsΓ = −(i)−k+s(s+1)

(d− s)!
ǫµ1..mudΓµs+1...µd

(3.15)
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where d is the dimension of the spacetime and k = (d− 2)/2, we get

M = −1

8

[

e−
3

2
(H+G)ΓµνFµνγ5σ̂1 + e−

3

2
(H−G)

(

− i

2
ǫµνρλΓρλγ5

)

(

−e−3GǫµνρλF
ρλ
)

γ5σ̂2

]

= −1

4
e−

3

2
(H+G)ΓµνFµνγ

5σ̂1 (3.16)

Using (3.12), (3.16) and the anticommutation relation of Γ-matrices Γµa = −2γµΓa

the equation (3.3) becomes a system of equations:

(iae−
1

2
(H+G)γ5σ̂1 +

1

2
γµ∂µ(H +G))ǫ+ 2Mǫ = 0 (3.17)

(ibe−
1

2
(H−G)γ5σ̂2 +

1

2
γµ∂µ(H −G))ǫ− 2Mǫ = 0 (3.18)

∇µǫ+Mγµǫ = 0 (3.19)

These equations are effectively four dimensional. The four dimensional system involves

the four dimensional metric, one gauge field and two scalar fields.

It is now convenient to construct some spinor bilinears. An interesting set of spinor

bilinears is

Kµ = −ǭγµǫ, Lµ = ǭγ5γµǫ , ǭ = ǫ†Γ0

f1 = iǭσ̂1ǫ, f2 = iǭσ̂2ǫ, Yµν = ǭγµν σ̂1ǫ (3.20)

where ǭ = ǫ†γ0.

Applying (3.19) on f1 we get:

∇µf1 = i∇ǭσ̂1ǫ+ iǭσ̂1∇ǫ

=
i

4
e−

3

2
(H+G)

[

ǭγµνFµνγ
5γµǫ− ǭ(−γµ)ǫγµνFµνγ5

]

=
i

2
e−

3

2
(H−G)ǫµνK

νγµν(−e−3G)Fµνγ
5

= −1

2
e−

3

2
(H+G)ǫµνλρFλρK

ν

= −e− 3

2
(H−G)F̃µνK

ν (3.21)
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The same way we get the folowing equations:

∇µf2 = −e− 3

2
(H+G)FµνK

ν (3.22)

∇νKµ = −e− 3

2
(H+G)

[

Fµνf2 −
1

2
ǫµνλρF

λρf1

]

= −e− 3

2
(H+G)Fµνf2 − e−

3

2
(H−G)F̃µνf1 (3.23)

∇νLµ = e−
3

2
(H+G)

[

−1

2
gµνFλρY

λρ − Fµ
ρYρν − Fν

ρYρµ

]

(3.24)

Another interesting set of spinor bilinears involves taking the the spinor and its transpose,

e.g. the one-form which obeys a useful equation

ωµ = ǫtΓ2γµǫ , (3.25)

dω = 0 (3.26)

where in our conventions Γ2γtµΓ
2 = −γµ, and the last equation says that the exterior

derivative vanishes.

By Fierz rearrangement identities we find

K · L = 0 , L2 = −K2 = f 2
1 + f 2

2 (3.27)

We now use all these facts to constrain the metric and the gauge fields. First we

observe that Kµ is a Killing vector and Lµdx
µ is a (locally) exact form. We begin by

choosing a coordinate y through

γdy = Lµdx
µ , γ = ±1 (3.28)

We will later determine the sign of γ. We choose the other three coordinates in the

subspace orthogonal to y

ds2 = h2dy2 + ĝαβdx
αdxβ (3.29)

Let us now look at the vector Kµ. Using the relation

0 = KµLµ = KyLy = γKy (3.30)
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we find that Kα is a vector in three dimensional space spanned by xα. Choosing one of

the coordinates along Kα (we will call it t), we find the metric

ds2 = −h−2(dt+ Vidx
i)2 + h2(dy2 + h̃ijdx

idxj) (3.31)

were i, j take values 1, 2. We have used the equation K2 = −L2 to link the gtt and the

gyy coefficients of the metric. We also pulled out a factor of h2 out of the remaining two

dimensions for later convenience.

Now we look at equation (3.22). Since Kµ has only one component Kt = 1 (we can

always choose this normalization of t), and Bi is independent of t, that equation becomes

∂µf2 = −e− 3

2
(H+G)∂µBt, i.e. df2 = −e− 3

2
(H+G)dBt (3.32)

We now compute

∂µBt = FµνK
ν = −Fµν ǭγνǫ = −1

4
ǭ[γµ, 6 F ]ǫ (3.33)

where 6 F = Fµνγ
µν . Now we recall the equation coming from the sphere (3.17) and its

adjoint

1

2
e−

3

2
(H+G) 6 Fǫ = (iae−

1

2
(H+G) +

1

2
γ5 6 ∂(H +G)σ̂1)ǫ,

1

2
e−

3

2
(H+G)ǭ6 F = ǭ(iae−

1

2
(H+G) +

1

2
γ5 6 ∂(H +G)σ̂1)

Using this in (3.33) we obtain

∂µBt = −1

4
ǭγµ 6 Fǫ+

1

4
ǭ 6 Fγµǫ = e

3

2
(H+G) 1

2
∂µ(H +G) ǫ†Γ0γ5σ̂1ǫ

= −e 3

2
(H+G) 1

2
∂µ(H +G) f2 (3.34)

We now get an equation which involves only f2 and H +G

∂µf2 =
1

2
f2∂µ(H +G), (3.35)
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which can be easily solved

f2 = 4αe
1

2
(H+G), Bt = −αe2(H+G) (3.36)

In the same way, starting from equations (3.21), (3.18), we can prove that

f1 = 4βe
1

2
(H−G), B̃t = −βe2(H−G) , 4β = 1 (3.37)

Here we have set 4β = 1 by choosing the overall sign of the five–form field strength and

an appropriate rescaling of the Killing spinor. We will fix α below.

We will now show that H has a simple coordinate dependence. We begin with the

equation coming from the sum of (3.17) plus (3.18) and its adjoint

σ̂1 6 ∂Hǫ = (−iae− 1

2
(H+G)γ5 + be−

1

2
(H−G))ǫ (3.38)

ǭσ̂1 6 ∂H = −ǭ(−iae− 1

2
(H+G)γ5 + be−

1

2
(H−G)) (3.39)

We find

∂µHf1 = i∂µHǭσ̂1ǫ =
i

2
ǭ[γµ, (−iae−

1

2
(H+G)γ5 + be−

1

2
(H−G))]ǫ = (3.40)

= −ae− 1

2
(H+G)ǭγ5γµǫ = −ae− 1

2
(H+G)Lµ

so H is a function of y only. Using (3.37) we can determine this function

∂H

∂xµ
eH = −aLµ

dHeH = −aγdy

eH = −aγy = y , γ = −a (3.41)

where we have fixed the sign of γ. We now fix α by multiplying (3.38) by ǭγ5σ̂1 and
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using (3.36),(3.37) and (3.27) we get

ǭγ5σ̂1σ̂1 6 ∂Hǫ = −ǭγ5σ̂1iae−
1

2
(H+G)γ5ǫ+ ǭγ5σ̂1be−

1

2
(H−G)ǫ

Lµ∂µH = −ae− 1

2
(H+G)f1 − be

1

2
(H−G)f2

Lµ∂µHe
H = −a

(

f 2
1 +

b

4aα
f 2

2

)

f 2
1 + f 2

2 = f 2
1 +

b

4aα
f 2

2 (3.42)

We see that we need to have ab4α = 1. We can now choose 4α = 4β (the sign choice

in α = ±β corresponds to whether we look at chiral primaries with ∆ ∓ J = 0). Note

that with these choices only supersymmetries with b = a are preserved, but still we have

both choices of sign for a.

We now go back to (3.38). Using (3.41) we find (σ̂1γ
µ∂µH = −aσ̂1Γ

3Ly
1
y
)

(

γ
1

y
σ̂1Γ

3Ly + iae−
1

2
(H+G)γ5 − be−

1

2
(H−G)

)

ǫ = 0 (3.43)

Using (3.27), (3.36), (3.37), this reduces to the projector

[

γe
1

2
(H−G) 1

y
Lyσ̂1Γ

3 + iae−Gγ5 − a

]

ǫ = 0

[

γe
1

2
(H−G)eHe

1

2
(H+G)

√

1 + e−2Gσ̂1Γ
3 + iae−Gγ5 − a

]

ǫ = 0
[

γ
√

1 + e−2Gσ̂1Γ
3 + aie−Gγ5 − a

]

ǫ = 0 (3.44)

The definitions (3.20) and the equations Kt = 1, Ly = −a imply that ǫ†ǫ = 1 and

ǫ†Γ0Γ5Γ3ǫ = −a. Since Γ0Γ5Γ3 is a unitary operator we conclude that we must also have

the following projection condition

[

1 + aΓ0Γ5Γ3

]

ǫ = 0, or [1 + aiΓ1Γ2] ǫ = 0 (3.45)

The two projectors (3.44) and (3.45) imply that the Killing spinor has the form

ǫ = eiδγ
5Γ3σ̂1

ǫ1 , Γ3σ̂1ǫ1 = aǫ1, sinh 2δ = ae−G (3.46)
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We can fix the scale of ǫ1 by inserting (3.46) in the expression for f2 which gives

ǫ1 = e
1

4
(H+G)ǫ0 , ǫ†0ǫ0 = 1 (3.47)

We can set the phase of ǫ0 to zero by performing a local Lorentz rotation in the 12 plane.

Then ǫ0 is a constant spinor.

We can now insert this expression for the Killing spinor in the definition of the one

form (3.25) to find that

ω2̂ = ǫtΓ2Γ2ǫ = e
1

2
(H+G) cosh 2δ ǫt0ǫ0 = h−1ǫt0ǫ0

ω1̂ = ǫtΓ2Γ1ǫ = −iah−1ǫt0ǫ0 (3.48)

ωµ = ωĉe
ĉ
µdx

µ = (constant)(ẽ1̂i + iaẽ2̂i )dx
i

Where ẽĉi is the vielbein of the metric h̃ij = ẽĉi ẽ
ĉ
j and eîi = hẽîj is the full vielbein for

the four dimensional metric in the directions 1,2. Equation (3.26) implies that these

vielbeins are independent of y and that the two dimensional metric is flat. So we choose

coordinates such that h̃ij = δij.

We now use equation (3.2) to write an expression for the gauge field

B = Bt(dt+ V ) + B̂ ,

dB̂ +BtdV = −L2e3G ⋆
3dB̃t (3.49)

B̃ = B̃t(dt+ V ) + ˆ̃B

d ˆ̃B + B̃tdV = L2e−3G ⋆
3dBt (3.50)

where B̂, ˆ̃B have no components along the time direction and ∗3 it the flat space epsilon

symbol in the directions y, x1, x2. It is now possible to obtain an expression for the vector

V . We start from the antisymmetric part of the equation for the Killing spinor (3.23)

−1

2
d[L2(dt+ V )] =

1

2
dK = e−(H+G)F + e−(H−G)F̃ (3.51)

This equation splits into two equations, one gives no new information, the equation giving
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new information is

1

2
L2dV = −e−(H+G)(dB̂ +BtdV ) − e−(H−G)(d ˆ̃B + B̃tdV )

= L−2(e−H+2G ∗3 dB̃t − e−H−2G ∗3 dBt) (3.52)

dV = 2L−4e−H(e2G ∗3 dB̃t − e−2G ∗3 dBt) (3.53)

= 2L−4y ∗3 dG (3.54)

From (3.27) we find

L2 = h−2 = f 2
1 + f 2

2 = y(eG + e−G) (3.55)

We define

z ≡ 1

2
tanhG

dz =
1

2
sech2GdG =

1

2

(

2

eG + e−G

)2

dG = 2y2h4dG (3.56)

Therefore we get

dV =
1

y
∗3 dz (3.57)

The consistency condition d(dV ) = 0 gives the equation

1

y
∂2
i z + ∂y(

1

y
∂yz) = 0 (3.58)

From equations (3.49), (3.50) and (3.53) we can determine the gauge fields

dB̂ = −1

4
y3 ∗3 d(

z + 1
2

y2
) (3.59)

d ˆ̃B = −1

4
y3 ∗3 d(

z − 1
2

y2
) (3.60)

In summary, we have derived the full form of the metric and gauge fields described in

(3.61)–(3.65). In addition we found the expression (3.46), (3.47) for the Killing spinor.

It is possible to show that this killing spinor obeys all other equations, so that we have

a consistent solution.
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The end result is:

ds2 = −h−2(dt+ Vidx
i)2 + h2(dy2 + dxidxi) + yeGdΩ2

3 + ye−GdΩ̃2
3 (3.61)

h−2 = 2y coshG, (3.62)

y∂yVi = ǫij∂jz, y(∂iVj − ∂jVi) = ǫij∂yz (3.63)

z =
1

2
tanhG (3.64)

F = dBt ∧ (dt+ V ) +BtdV + dB̂ ,

F̃ = dB̃t ∧ (dt+ V ) + B̃tdV + d ˆ̃B (3.65)

Bt = −1

4
y2e2G, B̃t = −1

4
y2e−2G (3.66)

dB̂ = −1

4
y3 ∗3 d(

z + 1
2

y2
) , d ˆ̃B = −1

4
y3 ∗3 d(

z − 1
2

y2
) (3.67)

where i = 1, 2 and ∗3 is the flat space epsilon symbol in the three dimensions parameter-

ized by y, x1, x2.

1.3.2 Solution to the differential equation

We see that the full solution is determined in terms of a single function z. This function

obeys the linear equation

∂i∂iz + y∂y(
∂yz

y
) = 0 (3.68)

Since the product of the radii of the two 3-spheres is y, we would have singularities at

y = 0 unless z has a special behavior. It turns out that the solution is non-singular as

long as z = ±1
2

on the y = 0 plane spanned by x1, x2. Let us consider the case z = 1
2

at

y = 0. Then we see that z will have an expansion z ∼ 1
2
−e−2G = 1

2
−y2f(x)+ · · · , where

f(x) will be positive with our boundary conditions. From this we find that e−G ∼ yc(x).

So we see that the metric in the y direction and the second 3-sphere directions becomes

h2dy2 + ye−GdΩ̃2
3 ∼ c(x)(dy2 + y2dΩ̃2

3) (3.69)

In addition we see that h remains finite and the radius of the first sphere also remains

finite. One can also show that V remains finite by using the explicit expression we write
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below. When z = −1
2

the discussion is similar. In fact the transformation z → −z and

an exchange of the two three–spheres is a symmetry of the equations. This corresponds

to a particle hole transformation in the fermion system. This will not be a symmetry

of the solutions if the fermion configuration itself is not particle-hole symmetric, or the

asymptotic boundary conditions are not particle-hole symmetric (as in the AdS5 × S5

case). We will explain below that the solution is non-singular at the boundary of the two

regions. So in order to determine the solution we need to specify regions in the x1, x2

plane where z = ±1
2
. These two signs corresponds to the fermions and the holes, and the

x1, x2 plane corresponds to the phase space. After defining Φ = z/y2 the equation (3.68)

becomes the Laplace equation in six dimensions for Φ with spherical symmetry in four

of the dimensions, y is then the radial variable in these four dimensions. The boundary

values of z on the y = 0 plane are charge sources for this equation in six dimensions. It is

then straightforward to write the general solution once we specify the boundary values.

We find

z(x1, x2, y) =
y2

π

∫

D

z(x′1, x
′
2, 0)dx′1dx

′
2

[(x − x′)2 + y2]2
= − 1

2π

∫

∂D
dl n′

i

xi − x′i
[(x − x′)2 + y2]

+ σ(3.70)

Vi(x1, x2, y) =
ǫij
π

∫

D

z(x′1, x
′
2, 0)(xj − x′j)dx

′
1dx

′
2

[(x − x′)2 + y2]2
=
ǫij
2π

∮

∂D

dx′j
(x − x′)2 + y2

(3.71)

where in the second expressions for z, Vi we have used that z(x′1, x
′
2, 0) is locally constant

and we have integrated by parts to convert integrals over droplets D into the integrals

over the boundary of the droplets ∂D. In these expressions ni is the unit normal vector

to the droplet pointing towards the z = 1
2

regions, σ is a contribution from infinity which

arises in the case that z is constant outside a circle of very large radius (asymptotically

AdS5 × S5 geometries). σ = ±1
2

when we have z = ±1
2

asymptotically. The contour

integral in (3.71) is oriented in such a way that the z = −1
2

region is to the left. We see

from the second expression for V in (3.71) that V is finite as y → 0 in the interior of a

droplet. We also see from (3.71) that V is a globally well defined vector field.
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AdS
Plane wave

Figure 1.4: Plane wave configurations correspond to filling the lower half plane. This
can be understood from the fact that the plane wave solution is a limit of the AdS × S
solution.

1.4 Solutions for special cases

1.4.1 Plane wave solution

Let us now consider a simple solution which is associated to the half filled plane (figure

1.4). We have the boundary conditions

z(x′1, x
′
2, 0) =

1

2
sign x′2 (4.1)

From this data we can compute the entire function z(x2, y) using (3.70), (3.71)

z(x2, y) =
1

2

x2
√

x2
2 + y2

(4.2)

V1 =
1

2

1
√

x2
2 + y2

, V2 = 0 (4.3)

Inserting this into the general ansatz (3.61) and performing the change of coordinates

y = r1r2 (4.4)

x2 =
1

2
(r2

1 − r2
2) (4.5)
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we obtain the usual form of the metric for the plane wave [17]

ds2 = −2dtdx1 − (r2
1 + r2

2)dt
2 + d~r 2

1 + d~r 2
2 (4.6)

We see that the final solution is smooth, despite the fact that on the y = 0 plane

V diverges at the boundary between two regions (x2 = 0 in this case). In fact, this

computation shows that, in general, the boundary between two regions is smooth. The

reason is that locally the boundary between two regions looks like the plane wave and

therefore we will get a non-singular metric.

1.4.2 AdS5 × S5 geometry

Now we are able to recover the familiar AdS5 ×S5 geometry. In this case it is convenient

to introduce a function z̃ = z − 1
2
. The Laplace equation for z̃/y2 has sources on a disk

of radius r0 (figure 1.5). We choose polar coordinates r, φ in the x1, x2 plane. We obtain

z̃(r, y) = −y
2

π

∫

Disk

r′dr′dφ

[r2 + r′2 − 2rr′ cosφ+ y2]2

z̃(r, y; r0) ≡ r2 − r2
0 + y2

2
√

(r2 + r2
0 + y2)2 − 4r2r2

0

− 1

2
(4.7)

Vφ = −r sinφV1 + r cosφV2 = − 1

2π

∫

∂D

rr′ cosφ′dφ′

r2 + r′2 + y2 − 2rr′ cosφ′

Vφ(r, y; r0) ≡ −1

2

(

r2 + y2 + r2
0

√

(r2 + r2
0 + y2)2 − 4r2r2

0

− 1

)

(4.8)

Inserting this into the general ansatz and performing the change of coordinates

y = r0 sinh ρ sin θ (4.9)

r = r0 cosh ρ cos θ (4.10)

φ̃ = φ− t (4.11)

we see that we get the standard AdS5 × S5 metric

ds2 = r0[− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
3 + dθ2 + cos2 θdφ̃2 + sin2 θdΩ̃2

3] (4.12)
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Figure 1.5: A droplet corresponding to the AdS5 × S5 ground state.

So we see that r0 = R2
AdS = R2

S5 . In fact, under an overall scaling of the coordinates

(xi, y) → λ(xi, y) the metric scales by a factor λ. This is what we expect since the total

area of the droplets is equal to the number of branes, a fact which we will demonstrate

later. By comparing the value of the AdS radius we obtained in (4.12) and the standard

answer, R4
AdS = 4πl4pN , we can write the precise quantization condition on the area of

the droplets in the 12 plane as (we define lp = g
1

4

√
α′)

(Area) = 4π2l4pN , or ~ = 2πl4p (4.13)

where N is an integer, and we have defined an effective ~ in the x1, x2 plane, where we

think of the x1, x2 plane as phase space.

We can check that the flux equals exactly to N . We can consider a surface that ends

on the y = 0 plane on a region with z = −1
2
. Looking at the expressions for the field

strength (3.1) in terms of the four dimensional gauge field (3.67), (3.65) we find that the

spatial components are given by F |spatial = d(BtV ) + dB̂. Since BtV is a globally well

defined vector field the flux is given by

N =
1

2π2l4p

∫

dB̂ = − 1

8π2l4p

∫

Σ2

y3 ∗3 d

(

z + 1
2

y2

)

=
(Area)z= 1

2

4π2l4p
(4.14)

where Σ2 is the two surface in the three dimensional space spanned by y, x1, x2. This
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(a) (b) (c)

Figure 1.6: Various configurations whose solutions can be easily constructed as superpo-
sitions of the AdS5 × S5 solution: (a) generic configurations that lead to solutions which
have two Killing vectors and lead to static configurations in AdS, (b) the solution cor-
responding to a superposition of D3 branes wrapping the S̃3 in S5, (c) the configuration
resulting from many branes, which can be thought of as a superposition of branes on the
S3 of AdS5 uniformly distributed along the angular coordinate φ̃ of S5.

expression gives the total charge inside this region for the Laplace equation, which in

turn is equal to the total area with z = −1
2

contained within the contour on which Σ2

ends at y = 0and it leads to the quantization of area.

As long as y 6= 0 we have two S3s: S3 contained in AdS5 and S̃3 contained in S5. At

the y = 0 plane the first sphere S3 shrinks in a non-singular fashion if z = −1
2
, i.e. inside

the circular droplet, while the second sphere S̃3 shrinks if z = 1
2
, i.e. outside the circle.

We can also construct in a trivial way the solutions that are superpositions of circles,

see figure 1.6.

Among these the ones corresponding to concentric circles have an extra Killing vector.

These lead to time independent configurations in AdS. All other solutions will depend

on φ = t + φ̃ where t is the time in AdS and φ̃ is an angle on the asymptotic S5 (see

(4.12)). The solutions corresponding to concentric circles are therefore superpositions of

(4.7) and (4.8)

z̃ =
∑

i

(−1)i+1z̃(r, y; r
(i)
0 ), Vφ =

∑

i

(−1)i+1Vφ(r, y; r
(i)
0 ) (4.15)

Here r
(1)
0 is the radius of the outermost circle, r

(2)
0 the next one, etc (see figure 1.6(a)).
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The solution corresponding to a single black ring, when the white hole in the center is

very small, can be viewed as branes wrapping a maximal S̃3 in S5 (figure 1.6(b)). When

the area of this hole, Nh, is smaller than the original area, N , of the droplet (Nh ≪ N),

the solution will locally look like an AdS5 ×S5 solution near the hole. When we increase

the number of branes wrapped on S̃3 in S5 the area of the holes becomes very large and

in the limit we get a rather thin ring, which could be viewed as a superposition of D3

branes wrapping an S3 in AdS5, see figure 1.6(c).

1.4.3 Bubbling Orientifolds

1
2
-BPS bubbling geometries associated to orientifolds of type IIB string theory correspond

to excited states of the SO(N)/Sp(N) N = 4 supersymmetric Yang-Mills theory. It was

found in [18] that these geometries are in correspondence with free fermions moving in

a harmonic oscillator potential on the half-line. Besides being of intrinsic interest, these

solutions may also occur as local geometries in flux compactifications where orientifold

planes are present to ensure global charge cancellation.

We are interested in an AdS5 × RP 5 ground state, arising from a Z2 orientifold

projection of the S5. Introducing an orientifold plane changes the gauge group on a

stack of D-branes to SO(2N), SO(2N + 1) or Sp(2N), instead of previously SU(N).

The orientifolded theory has no fixed points on the S5, so there is no open string sector.

The spectrum consists only of those AdS5 × S5 states which are invariant under the

orientifold projection.

AdS5 × S5 is parametrised as (4.12):

(ds)2 = r0

(

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 + dθ2 + cos2 θ dφ̃2 + sin2 θ dΩ̃2

3

)

(4.16)

27



with θ ∈ [0, π
2
], φ̃ ∈ [0, 2π]. In terms of embedding coordinates in an R6, one can write:

X1 = R cos γ sinα sin θ

X2 = R sin γ sinα sin θ

X3 = R cos β cosα sin θ

X4 = R sin β cosα sin θ

X5 = R cos φ̃ cos θ

X6 = R sin φ̃ cos θ (4.17)

with α, θ ∈ [0, π
2
] and β, γ, φ̃ ∈ [0, 2π]. The embedding condition is

∑

iX
2
i = R2 ≡ r0.

The orientifold action on this R6 is XI → −XI , I = 1, 2, · · · , 6. In terms of the

angular variables this amounts to

β → β + π

γ → γ + π

φ̃ → φ̃+ π. (4.18)

Going to the x1 − x2 plane of the bubbling geometry, we recall that it is described by

polar coordinates (r, φ) where

r = r0 cosh ρ cos θ

φ = φ̃+ t, (4.19)

and ρ, φ̃ are the coordinates appearing in Eq.(4.16) above. Therefore, under the orien-

tifolding operation, the x1 − x2 plane undergoes the involution φ → φ + π, which is the

same as the reflection (x1, x2) → (−x1,−x2).

The precise picture is a little more complicated because at y = 0, the full spatial

geometry is not really 2-dimensional. In the regions where z = ±1
2

(the white and black

regions) the geometry is 5-dimensional, and consists of the (x1, x2) plane together with

one of the 3-spheres S3 or S̃3, parametrised respectively by dΩ3 or dΩ̃3, while the other
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Figure 1.7: (a) Profile describing AdS5 × RP 5 and (b) two types of giant gravitons in
the AdS5 ×RP 5

3-sphere has shrunk to zero size. The sphere S̃3 lies inside S5 (and is parametrised by

the angles α, β, γ in Eq.(4.17)). Thus it is inverted by the orientifold action, while the

other 3-sphere S3 that lies in AdS5 remains unaffected. Thus, at a generic point of the

(x1, x2) plane, the orientifold involution acts by reflecting (x1, x2) and simultaneously

inverting S̃3. In the white regions, where z = 1
2
, the S̃3 shrinks to zero size, while in the

black regions, where z = −1
2
, it is S3 that shrinks. It follows that in the white regions,

the orientifolding operation acts solely by inverting the (x1, x2) plane and turning it

into C/Z2. The same is true on boundaries between the black and white regions with

z = −1
2
, z = +1

2
respectively (where both S3, S̃3 shrink). In the black region, however, one

has to keep in mind that the S̃3 above a given point of the (x1, x2) plane is identified with

a reversed S̃3 above the diametrically opposite point. Finally, at the origin x1 = x2 = 0

which is the fixed point of φ→ φ+π, the S̃3 gets an antipodal identification and becomes

RP 3.

The profile describing AdS5 × RP 5 is drawn in figure 1.7 (a). ”Giant gravitons” in

the bubbling ansatz are small holes inside an area which is much bigger than the area of

the hole.In the orientifolded case there are two types of such holes, and correspondingly

two types of giant gravitons (figure 1.7(b)).

If the small hole is in a generic location then we have giant gravitons wrapping a
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3-sphere S̃3 in RP 5. On the other hand if the hole surrounds the origin, we have giant

gravitons wrapping an RP 3 cycle of RP 5. As the hole around the origin becomes large

enough to interpret this as a new back-reacted geometry, the RP 3 cycle has disappeared

because the black region does not enclose the origin. Also, when the hole expands further

so that the black region forms a thin semicircular ring (stuck to the horizontal axis), we

can interpret the configuration as consisting of dual giant gravitons wrapping an S3 of

AdS5, and uniformly distributed around an equator of RP 5.

The orientifolded geometries themselves have no orientifold plane and therefore the

underlying string theory has no open-string sector. These backgrounds have the same

amount of supersymmetry and, upto discrete factors, the same SO(4)×SO(4) symmetry

as the original bubbling geometries. They are associated to free fermions in a half-

oscillator potential, which in turn arise as the eigenvalues of matrices in the Lie algebra

of SO(2N), Sp(2N) and SO(2N + 1).

1.4.4 Superstar in AdS5 × S5

The BPS solutions of 5-dimensional black holes, called superstars, in AdS5 × S5 were

first introduced in [19] and were derived using the LLM ansatz [1] in [2], where the

corresponding function z(R, φ, y;R0) was found

z =
1

2(1 + Q
L2 )

[

y2 +R2 −R2
0

√

(y2 +R2 +R2
0)

2 − 4R2R2
0

+
Q

L2

]

Cφ = − 1

2(1 + Q
L2 )

[

y2 +R2 +R2
0

√

(y2 +R2 +R2
0)

2 − 4R2R2
0

− 1

]

CR = 0 (4.20)

with

R2
0 = L4 + L2Q (4.21)

Inserting these functions in to the LLM ansatz (3.61) and using the coordinate transfor-

mation

y = Lr cos θ R = L2
√

f sin θ t→ Lt (4.22)
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Figure 1.8: A ”grey” disk that corresponds to the superstar solution.

we get the following metric for the superstar:

ds2 = − 1

∆

(

cos2 θ +
r2

L2
∆

)

dt2 +
L2H√

∆
sin2 θdφ2 +

2L√
∆

sin2 θdtdφ

+
√

∆

(

r2dΩ2
3 +

dr2

f

)

+ L2
√

∆dθ2 +
L2

√
∆

cos2 θdΩ̃2
3 (4.23)

with

H = 1 +
Q

r2
f = 1 +

Hr2

L2
∆ = sin2 θ +H cos2 θ (4.24)

The S5 factor of the metric in these coordinates is given by dθ2 + sin2 θdφ2 + cos2 θdΩ̃2
3.

For Q = 0 we recover standard AdS5×S5. For Q > 0 case exhibits a naked singularity at

the origin r = 0 of AdS, where a condensate of giant gravitons growing in the five-sphere

sits, and acts as a source for the supergravity fields [19]. The corresponding fermion

distribution in the dual CFT can be interpreted as a dilute gas of holes in the Fermi sea

and it gives a ”grey” disk on the phase space (figure 1.8).

On the y = 0 plane radii of both spheres shrink to zero inside the circle, that is ”grey
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disk” gives us singular geometry, and one of the radii remains constant outside the circle:

z =







1
2

R > R0

Q−L2

2(L2+Q)
R < R0

R2
Ω3

= yeG = y

√

1
2

+ z
1
2
− z

∝







0 · 1
0

∣

∣

y=0
= const

∣

∣

y=0
R > R0

0 · const
∣

∣

y=0
= 0
∣

∣

y=0
R < R0

R2
Ω̃3

= ye−G = y

√

1
2
− z

1
2

+ z
∝







0 · 0 = 0
∣

∣

y=0
R > R0

0 · const
∣

∣

y=0
= 0
∣

∣

y=0
R < R0

We can define the fermion distribution ρ = 1/2 − z(R, 0):

ρ(R) =



















1

1 +Q/L2
R < R0

0 R > R0 .

(4.25)

The vacuum AdS5 ×S5 is represented by a Fermi droplet of density ρ = 1 and radius

L2. Its total area πL4 consists therefore exactly of N Fermi cells of area ~ = 2πl4p.

By turning on the R-charge Q, the probability density spreads to a disk of radius

L2
√

1 +Q/L2, but with lower density, in such a way that the correct number of fermions

1
~

∫

ρ da = N is recovered. This fact supports the interpretation of ρ as a density distri-

bution of fermions. The fermion system represents a uniform gas of holes delocalized in

the Fermi sea, and since such holes correspond to giant gravitons growing on the five-

sphere [11], the superstar can be thought of as the backreaction on spacetime produced

by a condensate of giant gravitons [19].
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Chapter 2

Bubbling AdS3 space

2.1 General solution of bubbling AdS3

2.1.1 Introduction

The results of the previous part provide the most general supersymmetric solutions of

Type IIB supergravity, in the presence of a five-form flux admitting an SO(4) × SO(4)

group of isometries. In this part we study solutions that correspond to 1
2
-BPS deforma-

tions of AdS3 × S3 (or its pp-wave limit) and the shock wave solution, which are dual

to chiral primaries in the boundary CFT. The existence of a free fermion description

of primaries in the two-dimensional CFT [22] suggests that bubbling solutions should

find room in six-dimensional supergravity. Here we show that this is indeed the case.

Much is already known about the supergravity description of chiral primaries of the

two-dimensional CFT [21–23], and we will ask ourselves whether these results can be

reinterpreted in terms of bubblings of AdS3.

The AdS3 case is interesting, as it has a somewhat richer structure, harbors many

well-known solutions such as conical defect metrics, the BTZ black hole and black rings,

and plays an important role in most of the microscopic derivations of black hole entropy.

Half BPS geometries associated to excitations around AdS3 × S3 are dual to chiral

primaries in the two-dimensional D1D5 (or FNS) CFT. The spectrum of chiral primaries

and its dual KK descendants in supergravity have been worked out in [24–27]. States in

the CFT are classified by four charges h, h̄, j, j̄ describing the quantum numbers under

the isometry group SO(2, 2)×SO(4) ∼ SL(2, R)L×SL(2, R)R×SU(2)L×SU(2)R. h, h̄
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describe the conformal dimension of the two-dimensional CFT and j, j̄ the R-symmetry

charges. In the case of minimal N = (1, 0) supergravity inD = 6, the CFT has N = (4, 0)

supersymmetry. This sector is universal to any supergravity in D = 6 and solutions are

shared by supergravities following from reductions on T 4, K3 and orientifolds.

In analogy with the ten-dimensional case we start by decomposing the isometry group

as SO(2)2×SO(2)2
θ1,θ2

and consider states with zero SO(2)2
θi

charges i.e. h = h̄ and j = j̄.

1
2
-BPS states correspond to chiral primaries h = j and therefore we look for states with

h = h̄ = j = j̄ = m
2
. There is a single state of this type for each m in the spectrum of KK

descendants of the gravity multiplet and one for each tensor multiplet. We therefore look

for solutions in the pure N = (1, 0) supergravity and its minimal extension by adding a

tensor multiplet.

Notice that, contrary to the ten-dimensional case studied in [1], requiring the solution

to admit an SO(2) × SO(2) group of isometries does not fix uniquely the form of the

internal space. In particular, on the two-torus T 2 we could have a non-diagonal metric,

and generically a non-trivial fibration structure.By working in the minimal supergravity

and mimicking the ansatz used in [1] with T 2 = S1×S1 we find an almost identical set of

equations describing our solutions. In particular, it turns out that a function z obeys the

same equation as in [1]. However, unlike in the LLM case, the Bianchi identity translates

into a further harmonic condition on the function h2, related via a non-linear equation to

z. The important property of linearity of the equations is in this way lost and solutions

are rare: AdS3 × S3, the pp-wave and the multi-center string.

Relaxing the initial metric ansatz, namely, considering a torus which is not any more

rectangular we can get a more general form of 1
2
-BPS solutions of minimal supergravity.

In this case, the non-linear relation between z and h2 is lifted, and one is able to freely

superpose different solutions in a fashion similar to [1]. The resulting geometries are

given in terms of harmonics generated by lines of charges distributed along the boundary

of droplets in a two-dimensional plane. The cycles of the torus degenerate along this

plane, while crossing the charged strings the corresponding pinching cycles get flipped.

By adding a tensor multiplet to the minimal theory, namely an anti–self–dual three-

form, and a scalar field we derive a wider class of D1D5 classical geometries like, for

instance, giant gravitons that have been systematically studied in [21]. The familiar string
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profiles describing these solutions are reinterpreted here as the boundaries of the droplet

configurations in the two-dimensional plane, i.e. the classical string profile corresponds

to a certain parametrized curve F(s) ⊂ R4. The 1/2-BPS geometries are obtained by

dualizing solutions describing classical string profiles in [22].

2.1.2 General solution of bubbling AdS3

In [28–34] the AdS/CFT conjecture for the D1/D5 case was studied, focusing on the

simplest 1/4 BPS sector (from the ten dimensional point of view) with an SO(2)×SO(2)

symmetry, that is known as bubbling AdS3. Half-BPS states in the dual CFT2 correspond

to chiral primaries with h = h̄ = j = j̄. This states appear only in the KK towers

descending from the gravity and tensor multiplets of N = (1, 0) superravity.

We can get a general solution in the bubbling ansatz if we consider a tilted torus (4

compact dimensions). It reads

ds2 =h−2(dt+ C)2 − h2(dy2 + dx2
1 + dx2

2) −
(

h2y2 + h−2(z +
1

2
)2
)

dθ2
1−

−
(

h2y2 + h−2(z − 1

2
)2
)

dθ2
2 + 2

(

h2y2 − h−2(
1

4
− z2)

)

dθ1dθ2 (6.1)

with dC = 1
y
∗3 dz and the requirement d(dC) = 0 implies

∆3z −
1

y
∂yz = 0 (6.2)

The Bianchi identity and Einstein equation reduce to

∆3h
2 − 1

y
∂yh

2 = 0 (6.3)

which can be expressed as Laplacian equations in 6 and 4 dimensions respectively

∆6

(

z

y2

)

= 0

∆4h
2 = 0 (6.4)
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z(x1, x2, y) =
y2

π

∫

D

z(x′1, x
′
2, 0)dx′1dx

′
2

(|x − x′|2 + y2)2
= σ − 1

2π

∫

C
dv

|∂vx′(v)|n · (x − x′(v))

|x − x′(v)|2 + y2

Ci(x1, x2, y) =
ǫij
π

∫

D

z(x′1, x
′
2, 0)(xi − x′i)dx

′
1dx

′
2

(|x − x′|2 + y2)2
=
ǫij
2π

∫

C
dv

∂vx
′
j(v)

|x − x′(v)|2 + y2

h2(x1, x2, y) =

∫

D

ρ(x′1, x
′
2)dx

′
1dx

′
2

|x − x′|2 + y2
=

1

2π

∫

C
dv

|∂vx′(v)|
|x − x′(v)|2 + y2

(6.5)

σ = ±1
2

is a contribution coming from infinity arising for solutions for which z = ±1
2

outside some circle of large radius [1]. Note that the functions z and h2 are in generally

independent, but if we reduce them to line integrals using Stokes theorem and considering

regularity conditions [29] (ρ(x′1, x
′
2) = 1

2π
), we get that both functions are integrals along

a curve C that divides the two-dimensional phase space into two regions - black and

white. We parameterize the curve C with parameter v in the {x1, x2, 0} plane. x′(v) is a

derivative with respect to v, therefore we can call it ”velocity”.

2.1.3 Solution for a rectangular torus

Only in 3 cases (AdS3, pp-wave and multi-center string) the tilted torus can be reduced

to a rectangular one. Then we recover the equation that relates h2 and z as it was in the

case of AdS5:

h2 =
1

y

√

1

4
− z2 (6.6)

Then the metric is specified by a single function G and is given by

ds2 = h−2(dt+ C)2 − h2(dy2 + dx2
1 + dx2

2) − yeGdθ2
1 − ye−Gdθ2

2

h−2 = 2y cosG

z =
1

2
tanhG

dC =
1

y
∗3 dz (6.7)
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where ∗3is the Hodge star in {y, x1, x2}. The 3-form is given by

F = dBt ∧ (dt+ C) +BtdC + dB̂

F̃ = dB̃t ∧ (dt+ C) + B̃tdC + d ˆ̃B

Bt =
1

2
yeG B̃t =

1

2
ye−G

dB̂ = −d ˆ̃B =
1

2
y ∗3 dh

2 (6.8)

The requirements d(dC) = 0 and d(dB̂) = 0 impose the equations (6.4) to be satisfied

by h2 and z.

Here we write explicitly the form of z and h2 for the 3 known cases.

pp-wave

z =
1

2

x2
√

x2
2 + y2

h2 =
1

2

1
√

x2
2 + y2

. (6.9)

This corresponds to dividing the y = 0 plane in two regions (filled and empty), separated

by the x1 axis [1]. The functions z and h2 can be written as the integrals (6.5) over the

x1-axis dividing the two regions:

x′(v) = (v, 0) −∞ < v <∞ . (6.10)

It is depicted in the figure 2.1(a).

AdS3 × S3

z =
1

2

x2 + y2 − a2

√

(x2 + y2 + a2)2 − 4 a2 x2

h2 =
a

√

(x2 + y2)2 − 2a2(x2 − y2) + a4
. (6.11)
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(b)(a) (c)

Figure 2.1: The basic figures in minimal supergravity. (a) The pp-wave, (b) AdS3 × S3,
(c) Multi-center string.

This corresponds to a round disk of radius a centered in the origin (figure 2.1(b)). The

functions z and h2 can be written as the integrals over the droplet boundary (a circle of

radius a) parametrized by v:

x′(v) = (a cos v, a sin v) 0 < v < 2π . (6.12)

Multi-center string

h2 =
1

λ2
H H =

∑

i

Qi

(~x− ~x0,i)2 + y2

z = ±
√

1

4
− 1

λ4
H2y2 λ→ ∞ . (6.13)

In this case the equation for z is satisfied in the limit λ→ ∞. Suppose we take the plus

sign in (6.13), then in the limit, e−G ∼ yH/λ2. Substituting these into the metric one

finds C ≈ 0 and

ds2 = H−1(dt̃2 − dw2) −H(d~̃x2 + dỹ2 + ỹ2dθ2
2) (6.14)

where we have rescaled t̃ = λ t, w = λ θ1, ỹ = λ−1 y, ~̃x = λ−1 ~x. The resulting solution

corresponds to a multi-center string inD = 6 (figure 2.1(c)). Obviously, the same solution

is obtained choosing the minus sign in (6.13), upon exchanging θ1 and θ2.

Notice that also in this case, the harmonic function h2 can be thought of as arising

38



from a profile, but now the boundary of the droplets are points ∂D = {x0,i}. The profile

function reads:

x′(vi) = x0,i 0 < vi < Qi .

2.1.4 Connection to the solutions for a regular distribution of

D1-D5 branes

In fact, half-BPS solutions, we are interested in, lie within the general class of solutions

for a regular distribution of D1-D5 branes. To show this we can rewrite the metric in

terms of new angular variables (α, φ) as

ds2 = h−2((dt+ C)2 − (dα+B)2) − h2(dx2
1 + dx2

2 + dy2 + y2dφ2)

dB = − ∗4 dC (6.15)

We can write B = zdφ and hence we reproduce the equation dC = 1
y
∗3 dz and the

equation (6.4) ∆6

(

z
y2

)

= 0 as well. Therefore we get the same functions h2, Ci and z as

in (6.5) here. To get the metric (6.1) with a general tilted torus fibration we need to

change variables

θ1 = α+
1

2
φ θ2 = α− 1

2
φ (6.16)

This solution (6.15) is a more general one than (6.1) because it includes tensor multiplet

in addition to minimal sugra.

Now we turn our attention to the general near horizon metrics of the D1-D5 system.

It is possible to construct the metric for the D1-D5 system by mapping it by a set of S, T

dualities to the FP system [21]. The F string has a vibration profile in the non-compact

spatial directions described by the profile {F1(v), F2(v), F3(v), F4(v)}. The metric of the
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D1-D5 system is [23,28]

ds2 =
1√
f1f2

((dt+ A)2 − (dy +B)2) −
√

f1f2dx
2 +

√

f1

f5

dz2

dB = − ∗4 dA e2Φ =
f1

f5

f1 = 1 +
Q5

L

∫ L

0

dv
|∂vF(v)|2

|x − F(v)|2 + y2
f5 = 1 +

Q5

L

∫ L

0

dv
1

|x − F(v)|2 + y2

Ai =
Q5

L

∫ L

0

dv
∂vFi(v)

|x − F(v)|2 + y2
(6.17)

The solutions are asymptotically R1,4 × S1 × T 4, y parametrizes the S1, which has the

radius R, and z are the coordinates on the T 4, which volume is V4. The Hodge duals ∗4

are defined with respect to the four non-compact transversal coordinates x. We can take

a decoupling limit which simply amounts to erasing the 1 from the harmonic functions.

The resulting metric will then be asymptotically equal to AdS3 × S3 × T 4.

The number of D1 and D5-branes is denoted by N1 and N5, and they are related to

the charges Qi by

Q5 = gsN5 Q1 =
gs
V4

N1 (6.18)

The parameter L has to satisfy

L =
2πQ5

R
(6.19)

Besides, the curve has to satisfy the following relation

Q1 =
Q5

L

∫ L

0

|∂vF(v)|2dv (6.20)

Actually we can directly relate our curve x(v) in (6.5) parameterized by v to the

profile of the F string in 2 dimensions {F1(v), F2(v), 0, 0}. If we identify

h2 ≡
√

f1f2 x′(v) ≡ F(v) R = 1 (6.21)

and omit the T 4 coordinates, then we get the metric (6.15) with Ci ≡ Ai and α ≡ y .

Now in stead of one harmonic function h2 we have two, which have to obey the Laplacian
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Figure 2.2: Generic bubbling profile: fixing the length we can draw any set of discon-
nected closed curves.

equation

∆4f1 = 0 ∆4f5 = 0 (6.22)

but when the velocity x′(v) is constant we come back to the single function h2 as in (6.5).

From (6.17) we see that when the velocity ∂vF(v) is not constant we get a non-

constant dilaton. This refers to including a tensor multiplet in addition to the minimal

sugra. That is the minimal sugra solution refers to taking the velocity to be constant.

An interesting fact that the most general solution (6.15) is specified not just by the

boundaries in the {x1, x2, 0} plane, but also by the velocity {x′1(v), x′2(v)} in contrast to

the AdS5 1/2 BPS solutions. The classical phase space of gravitational solutions of AdS3

is the set of curves x′(s) of fixed length, which is defined by fixing the flux (6.20)

N =
1

2π

∫

dv|∂vx′(v)|2 (6.23)

and therefore it does not make much sense to look at black and white parts of the phase

space (figure 2.2). In the AdS5 case the regularity condition was to fix the flux, which

was equivalent to fixing the area of the droplet, but in the AdS3 case fixing the flux

means a fixed length but with an arbitrary number of disconnected parts of any shape.

The Fourier modes of F correspond to standard free bosonic string oscillators without
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the zero mode, with the length corresponding to the energy or L0 eigenvalue of a state.

The Hilbert space in question is therefore the set of states of level N in the Hilbert space

of four free bosons.

2.2 The general conical defect metric

In the next two sections we get the conical defect and the shock wave metrics from certain

distributions on the phase space.

By taking a specific distribution of curves x′(v) on the phase space and computing the

harmonic functions h2 and C we can get the conical defect metric with an arbitrary open

angle [20]. According to [21] the source for the conical defect metric has to be contained

in a circle of radius a on the phase space. The most general source curve satisfying this

requirement is

x′1(v) = a cos [f(v)] x′2(v) = a sin [f(v)] (7.1)

where f(v) is some arbitrary function that has to satisfy

∫ 2π

0

eif(v)dv = 0 (7.2)

because x′ does not contain a zero mode. The source (7.1) also should be invariant under

rotations in the x1, x2-plane, therefore we need to coarse grain over all U(1) rotations of

(7.1). This is mostly easily done by introducing polar coordinates

x1 + ix2 = ueiϕ x3 + ix4 = weiψ (7.3)

so that the average over rotations can be expressed as

h2 = a
1

(2π)2

∫ 2π

0

dξ

∫ 2π

0

dv
∂vf(v)

|ueiϕ − aeif(v)+iξ|2 + w2

C = −a 1

(2π)2

∫ 2π

0

dξ

∫ 2π

0

dv
i∂vf(v)eif(v)+iξ

|ueiϕ − aeif(v)+iξ|2 + w2
(7.4)

The flux (6.23) reads

N =
a2

2π
< (∂vf)2 > with < (∂vf)2 >≡ 1

2π

∫ 2π

0

(∂vf)2dv (7.5)
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It is straight forward to evaluate the integrals in (7.4) to get

h2 =
a

(u2 + w2 + a2)2 − 4a2u2

Cϕ =
a3

2π

u2 + w2 + a2 − (u2 + w2 + a2)2 − 4a2u2

(u2 + w2 + a2)2 − 4a2u2
< ∂vf > (7.6)

In order to put it in a form which resembles the conical defect one as much as possible,

one has to make the following change of coordinates

u2 = (r2 + a2) sin2 θ w = r cos θ (7.7)

Using these new coordinates, the various ingredients of (6.15) become

h2 =
a

r2 + a2 cos2 θ

Cϕ = β
a2

r2 + a2 cos2 θ
sin2 θ

Bψ = −β a2

r2 + a2 cos2 θ
cos2 θ (7.8)

where

β2 =
1

2π

< ∂vf >
2

< (∂vf)2 >
(7.9)

is a constant introduced for later convenience.

Inserting the functions (7.8) into (6.15) we get the following metric

ds2 =
r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + r2 cos2 θdφ2 + (r2 + a2) sin2 θdϕ2 (7.10)

Next we define a =
√
Q1Q2 and γ = 2πβ/ < ∂vf >, and also rescale r by a factor of

a/R. Then after some straightforward algebraic manipulations we end up with

ds2 =
√

Q1Q2

[

− (r2 + γ2)
dt2

R2
+ r2dα

2

R2
+

dr2

r2 + γ2

+

(

dθ2 + sin2 θ(dϕ− βγ
dt

R
)2 + cos2 θ(dφ− βγ

dα

R
)2

)

+
(1 − β2)γ2

r2 + γ2 cos2 θ
(sin2 θdΥ2

1 + cos2 θdΥ2
2)

]

(7.11)
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where we defined

dΥ2
1 = sin2 θdϕ2 + (r2 + γ2 cos2 θ)

dt2

R2

dΥ2
2 = − cos2 θdψ2 + (r2 + γ2 cos2 θ)

dα2

R2
(7.12)

This metric is a conical defect metric for β = 1 so the question is which values of γ are

compatible with β = 1. To analyze this, we recast the constraints on f(v) for β = 1 here

∫ 2π

0

eif(v)dv = 0 (7.13)

(∫ 2π

0

∂vf(v)dv

)2

= 2π

∫ 2π

0

(∂vf(v))2dv =
4π2

γ2
(7.14)

However, according to Schwarzs inequality,

(∫ 2π

0

∂vf(v)dv

)2

≤ 2π

∫ 2π

0

(∂vf(v))2dv (7.15)

for integrable functions ∂vf(v) with equality if and only if ∂vf(v) is a constant. Thus,

β ≤ 1 and β ≥ 1 only if ∂vf(v) = const. Interestingly, the metric (7.11) is in general

a perfectly acceptable metric, since β ≤ 1 is precisely the condition for the absence of

CTC’s as one can derive using the results in [35]. If β = 1 then ∂vf(v) = const together

with (7.13) imply that f(v) = kv for some nonzero integer k, and γ = 1/k. We can

therefore indeed only construct conical defect metrics with γ = 1/k and k integer. For k

non-integer, we find a bound on β

β2 ≤
[

1

γ2

]

γ2 (7.16)

with [x] the largest integer less than or equal to x. Indeed, we cannot come arbitrarily

close to a non-integer conical defect metric in this way.

2.3 Superstar in AdS3 × S3

Now we are interested in finding a solution analogous to the superstar solution in AdS5×
S5 (section 1.4.4). Since in AdS3 (in contrast to the AdS5 case) configurations on the
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phase space do not completely define the corresponding metrics on the gravity side (there

are only 3 solution when z is enough and from it we find h) and we should in addition tell

what the velocities of the configurations are. It turns out that there is a map between

the bubbling AdS3 ansatz and the black rings supertube solution. From the alternative

description we find that the analog of the superstar is not a kind of a black hole, as one

would expect, but it is a shock wave, which is the Aichelburg-Sexl solution.

2.3.1 A map between bubbling AdS3 and the black supertube

solution

The solutions corresponding to supersymmetric black rings with three charges and three

dipoles in 10 dimensions can be realized as D1-D5-P black supertubes, carrying the usual

charges of the D1-D5-P system [36]. In addition the solution carries dipole charges of D1

and D5 branes as well as KK-monopoles. The d5-branes wrap a 4-torus parameterized by

z1, ..., z2, ψ parameterizes a contractible torus (the direction of the ring) and the solution

carries momentum in the z-direction, which is the coordinate that describes the U(1)

fiber of the KK-monopoles. The string frame metric of the black supertube is given by

(we omit the torus coordinates)

ds2 = − 1

H3

√
H1H2

(dt+ ω)2 +
H3√
H1H2

(dz + A3)2 +
√

H1H2dx
2
4

H1 = 1 +
Q1

Σ
− q2q3r

2
0 cos 2θ

Σ2

H2 = 1 +
Q2

Σ
− q1q3r

2
0 cos 2θ

Σ2

H3 = 1 +
Q3

Σ
− q1q2r

2
0 cos 2θ

Σ2
(8.1)

where Σ = r2+r2
0 cos2 θ and the base space dx2

4 a flat space written in a peculiar coordinate

system

dx2
4 = Σ

(

dr2

r2 + r2
0

+ dθ2

)

+ (r2 + r2
0) sin2 θdψ2 + r2 cos2 θdφ2 (8.2)
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The one form ω = ωφdφ+ ωψdψ and gauge potential Ai are given by

ωφ = −r
2 cos2 θ

2Σ2
Y

ωψ = −(q1 + q2 + q3)
r2
0 sin2 θ

2Σ2
− (r2 + r2

0) sin2 θ

2Σ2
Y

Ai = H−1
i (dt+ ω) +

qiR
2

Σ
(sin2 θdψ − cos2 θdφ) (8.3)

where we defined

Y = q1Q1 + q2Q3 + q3Q3 − q1q2q3(1 +
2r2

0 cos 2θ

Σ
) (8.4)

Defining γ as

γ =
√

H3
q3r

2
0

Σ
(sin2 θdψ − cos2 θdφ) (8.5)

we can rewrite the metric as

ds2 = − 1√
H1H2

[(
√

H3dz + γ)2 +
2√
H3

(dt+ ω)(
√

H3dz + γ)] +
√

H1H2dx
2
4 (8.6)

For the case H3 = 1 (Q3 = q2 = 0) we find a direct map to the Bubbling AdS3 metric

(6.15). To do so we define dχ ≡ dz + dt and we get

ds2 =
1√
H1H2

[

(dt+ ω)2 − (dχ+ (γ + ω))2]−
√

H1H2dx
2
4 (8.7)

Looking at the bubbling AdS3 metric (6.15) we see that it is the same as (8.7) if we do

the following identifications:

h2 =
√

H1H2 C = ω B = γ + ω χ = α (8.8)

and we get (6.15)

ds2 = h−2((dt+ C)2 − (dα+B)2) − h2(dx2
1 + dx2

2 + dy2 + y2dφ2) (8.9)
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2.3.2 Aichelburg-Sexl solution

To find the superstar solution the simplest guess is to take h2 with constant velocity and

C (dC = ∗3dz) as in the AdS5 superstar:

h2 =
R0

√

(R2 + y2 +R2
0)

2 − 4R2
0R

2

Cψ = −q3
[

y2 +R2 +R2
0

√

(y2 +R2 +R2
0)

2 − 4R2R2
0

− 1

]

(8.10)

Then using the transformation of coordinates R = R0

√
1 + r2 sin θ and y = R0r cos θ we

get

h2 =

√
Q1Q2

r2 + r2
0 cos2 θ

Cψ = −q3
r2
0 sin2 θ

r2 + r2
0 cos2 θ

(8.11)

where r0 =
√
Q1Q2. This is exactly the solution of supertube with three out of six charges

set to zero q1 = q2 = Q3 = 0. Then using the identifications (8.8) and inserting them

into (8.7) we get

ds2 =
Σ√
Q1Q2

[

(

dt− q3
r2
0 sin2 θ

Σ
dψ

)2

−
(

dχ− q3
r2
0 cos2 θ

Σ
dφ

)2
]

−
√
Q1Q2

Σ
dx2

4 (8.12)

Making the transformations

dt→ q3r0√
Q1Q2

dt dχ→ q3r0√
Q1Q2

dχ (8.13)

and doing some algebra we get

ds2 =
1

r0

[

(r2 + r2
0)dt

2 − r2
0 sin2 θ(dt+ dψ)2 − r2dχ2 − r2

0 cos2 θ(dφ− dχ)2

]

− r0
r2 + r2

0

dr2

− r0dθ
2 − q

Σr0

[

(r2 + r2
0)dt

2 + r4
0 sin4 θ(dt+ dψ)2 − 2(r2 + r2

0)r
2
0 sin2 θ(dt+ dψ)dt

− r4dχ2 − r4
0 cos4 θ(dφ− dχ)2 + 2r2

0r
2 cos2 θdχ(dφ− dχ)

]

(8.14)
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where we defined q3 =
√

1 − q. Performing the coordinate change

ψ̃ → ψ − t φ̃→ φ− χ (8.15)

that gives spectral flow and writing r′ = r/r0 we get the metric

ds2 = r0

[

(r′2 + 1)dt2 − sin2 θdψ̃2 − r′2dχ2 − cos2 θdφ̃2 − 1

r′2 + 1
dr′2 − dθ2

]

− qr0
r′2 + cos2 θ

[

((r′2 + 1)dt− sin2 θdψ̃)2 − (r′2dχ− cos2 θdφ̃)2
]

(8.16)

which is the Aichelburg-Sexl solution. Near the singular line θ = π/2, r′ = 0 it behaves

as a shock wave

ds2 = −dt2 + dz2 +
q

xixi
(dt− dz)2 +

4
∑

i=1

dxidxi (8.17)

and it goes over to AdS3 × S3 at large r.

In the AdS5 × S5 case the superstar solution could be interpreted as a condensate

of giant gravitons. In AdS3 the dipoles in the supertube solution actually correspond to

giant gravitons. But this dipole charges q1, q2 we had to set to zero to get the superstar

solution, and the only non zero charges are the the usual charges Q1, Q2 and the KK-

monopole charge q3 but if set q3 = 0 the solution does not change. Therefore it is unclear

how to interpret the result. We expected that the superstar would be a kind of a black

hole solution but the shock wave solution we get is not what we expected. Looking for a

superstar solution we assumed the velocity of the profile on the phase space was constant,

but, on the other hand, we can thing about a more general configuration, e.g. with a

nonconstant velocity, since the only constraint on h2 (6.21) that it is a solution of the

equations (6.22), but then the solution is very complicated and it is very hard to identify

it with any known background.
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Chapter 3

Deconfinement and Chiral

Symmetry Restoration in the

Non-critical Flavored AdS6 System

3.1 Introduction

The AdS/CFT duality first was realized as a correspondence between a string theory

in AdS5 × S5 space and a 4-dimensional conformal field theory [8, 37–39]. Since then

there were many attempts to extend it to more general cases for non-conformal and non-

supersymmetric theories. The aim is to get more realistic QCD from the string/gauge

duality with such features as confinement and spontaneous chiral symmetry breaking.

This approach is often called the holographic QCD. One of the interesting recent devel-

opments in the holographic approach to QCD is the D4/D8-D8 model proposed by Sakai

and Sugimoto [40,41]. In this model probe D8-branes were introduced in such a way that

strings stretching between them and the original branes have the properties of flavored

fundamental quarks. In [39] it was observed that in the SS model at finite temperature

deconfinement and chiral symmetry restoration can happen at different temperatures and

it depends on the ratio L/R.

In this chapter, we look at the non-critical AdS6 black hole solution [43]. This model

was shown [44] to reproduce some properties of the 4-dimensional non-supersymmetric

YM theory like an area law for the Wilson loop, a mass gap in the glueball spectrum

etc. At high energies the theory is dual to a thermal gauge theory at the same tem-
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perature as the black hole temperature and at low energies the dual theory is effectively

4-dimensional pure YM. For any non-critical model, the curvature is of order one in units

of α′. But taking large Nc limit guarantees small string coupling and one expects that

stringy corrections will not affect calculations on the non-critical gravity side.

In this work we introduce flavor in this setup by adding D4,D4 probe branes. This is

similar to the D8,D8 SS model in critical dimension and it inherits from it many qualita-

tive features. As in the SS model there are three different phases. In the low-temperature

phase the background is the Euclidean continuation of a Lorentzian background. Glu-

ons are confined in this phase. After the confinement/deconfinement transition for the

gluons, there is the intermediate-temperature phase. In this phase gluons are deconfined,

but chiral symmetry is still broken. Mesonic bound states still exist, as the D4-brane

embedding is not yet touching the horizon. At sufficiently high temperature, the lowest-

energy configuration of the D4-branes is the one in which they are parallel and fall down

to the horizon. This is the high-temperature phase, in which chiral symmetry is restored.

If the ratio L/R > 1.06, there is no intermediate-temperature phase, so that the confine-

ment/deconfinement and the chiral symmetry breaking transition coincide.

We also analyze the spectrum of low-spin and high-spin mesons. Low-spin mesons

correspond on the string theory side to fluctuations of the massless fields on the probe

branes. We identify the Goldstone boson associated with the chiral symmetry breaking.

High-spin mesons, as for the critical case, can be described as classical spinning open

strings. The temperature dependence for both low-spin and high-spin mesons is similar,

that is the masses of mesons go down as the temperature goes up. For high-spin mesons

there is a maximum value of angular momentum beyond which mesons cannot exist and

have to melt. We find the drag force that a quark experiences moving through a hot

gluon plasma, and we also find that high-spin mesons do not experience any drag force

because for high-spin mesons at finite temperature, one can find generalized solutions

where the meson moves with linear velocity, rigidly, with free boundary conditions in the

direction of motion. Hence one does not need to apply any force to maintain this motion.

The main interest was to find what are the changes in the non-critical theory compar-

atively to the critical one. Adding the CS term to the action would be the direct naive

generalization from the 10-dimensional theory, but it is not well understood what should
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be written in this two-derivative approximation to the non-critical setup. We had to omit

the CS term because if we leave it a parallel brane configuration cannot be a solution of

the equation of motion and we will not get a chiral symmetry restoration. Without the

CS term our non-critical theory is similar in the phase structure to the critical SS model.

We begin in section 2 with a short review of the SS model and its behavior at finite

temperature. In section 3 we describe the AdS6 model at zero temperature. In section

4 we discuss the behavior of this theory at finite temperature. We discuss the bulk

thermodynamics, which leads to the confinement and deconfinement phases, and chiral

symmetry restoration at a certain temperature. In section 5 we have a close look on the

spectrum of low-spin as well as high-spin mesons in different phases and also discuss the

drag force on quarks and mesons.

3.2 Review of Sakai-Sugimoto model at finite tem-

perature

The Sakai-Sugimoto model [40, 41] is based on a D4/D8-D8 brane system consisting of

Nc D4-branes compactified on S1 and Nf D8-D8-brane pairs transverse to the S1. The

brane configuration of the system is

t x1 x2 x3 x4 x5 θ1 θ2 θ3 θ4

D4 ⋄ ⋄ ⋄ ⋄ ⋄
D8-D8 ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄

with x4 and θ’s being coordinates of S1 and S4 respectively.

We look at the D4-branes in the large Nc and near horizon limits. In these limits they

are classical solutions of the type IIA supergravity in ten dimensions. This gravitational

background is dual to a five-dimensional gauge theory, which looks four-dimensional at

energy scale below the compactification scale. Imposing periodic boundary conditions

on the bosons and antiperiodic ones on the fermions along the compactified direction,

supersymmetry is explicitly broken. The scalars and the fermions on the D4-branes

become massive and are decoupled from the system at low energy. Thus one obtains a

U(Nc) pure gauge theory. To describe quarks in the fundamental representation of the
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gauge group U(Nc) one introduces flavor Nf D8−D8 pairs into the D4 background. We

assume Nf << Nc and it allows us to treat the Nf D8 −D8 branes as a probes.

The finite temperature behavior of the Sakai-Sugimoto model was discussed in [42,45–

47]. As opposed to the zero temperature case there are two solutions at finite temperature,

because one Wick-rotates the metric (generates a black hole solution) and an asymptotic

symmetry between compactified Euclidean time coordinate (with periodicity β = 1/T )

and x4 (with periodicity 2πR) appears. In [42] it was shown that one of them dominates

at low temperatures and the other one at high temperatures. A phase transition between

these backgrounds occurs at the temperature Tc = 1/2πR. This phase transition is of

the first order and represents a confinement/deconfinement transition [48].

The bulk background geometry at low temperature is represented by the following

metric

ds2 =

(

u

RD4

) 3

2
(

dt2 + δijdx
idxj + f(u)dx2

4

)

+

(

RD4

u

) 3

2
(

du2

f(u)
+ u2dΩ2

4

)

,

eφ = gs

(

u

RD4

) 3

4

, F4 = dC3 =
2πNc

V4

ǫ4, f(u) = 1 − u3
T

u3
, (8.1)

where dΩ2
4 is the metric of S4 and R3

D4 = πgsNcl
3
s with gs and ls being the string coupling

and the string length. ǫ4 and V4 are the volume form and the volume of S4. The x4-u

submanifold has a cigar-like form with a tip at u = uT . To avoid singularity at the tip

of the cigar x4 should be periodic with periodicity

δx4 =
4π

3

(

R3
D4

uT

)1/2

= 2πR (8.2)

The effective action of the D8-branes consists of the DBI action and the Chern-Simons

term

SD8 = T8

∫

d9x e−φ Tr
√

det(gMN + 2πα′FMN) − i

48π3

∫

D8

C3 TrF 3, (8.3)

where gMN and FMN are the induced metric and the field strength on the D8-brane and

T8 is the tension of the D8-brane. The CS term in the D8-action does not affect the

solution of the equation of motion of the gauge field since it has a classical solution of a

vanishing gauge field.
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Figure 3.1: The configuration of flavor branes at three phases: (a) low-temperature phase,
(b) intermediate and (c) high-temperature phases.

The Hamiltonian of the action does not depend on du/dx4 (a slope of the profile of

D8-branes) and therefore the equation of motion equals to a constant. To solve it we

assume that there is a point u0 where the profile u(x4) has a minimum (u′|u=u0
= 0).

The form of the profile is drawn in figure 3.1(a).

The x4 circle shrinks to zero at u = uT . Therefore D8 branes and antibranes have

no place to end and should stay all the time connected. Because of this configuration

the chiral symmetry U(Nf )L × U(Nf )R on the probe D8-D8 pairs is always broken to a

diagonal subgroup U(Nf )V in the low temperature phase.

In the high temperature phase the preferred background is the one with the inter-

changed role of the t and x4 circles (by moving the factor of f(u) in (8.1) from the dx2
4

term to the dt2 term). Now the t-circle shrinks to zero at uT (which is now related to

T rather that to R), while the x4 circle never shrinks. While the configuration with

connected flavor branes is still possible, a new configuration with parallel branes appears

(see figure 3.1(b) and 3.1(c)). This new configuration is also a solution of the equa-
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tion of motion of the new background DBI action and it means that chiral symmetry

U(Nf )L × U(Nf )R is restored.

Both configuration are possible at the high temperature phase (deconfinement phase).

To see when they are preferred we need to compute their free energy (the one with the

lower free energy is preferred in the given temperature range). In [42] it was found that

in the range Tc ≤ T < TχSB (TχSB = 0.154/L, L is the separation distance between

the flavor branes at u → ∞) the preferred configuration is with connected branes and

at T ≥ TχSB - with parallel branes. Therefore deconfinement and chiral symmetry

restoration do not occur together but there is an intermediate phase with deconfinement

and broken chiral symmetry.

3.3 Near extremal AdS6 model with flavor branes at

zero temperature

We are interested in the non-critical flavored version of the ten-dimensional black hole

background, which was considered in [43], [49]. The starting point is to consider unfla-

vored conformal AdS6 background, which is the dual of a fixed point non-supersymmetric

5-dimensional gauge theory without fundamental quarks. The construction of the model

can be made by either first taking the near extremal limit of the AdS6 background and

then adding flavors, or by adding flavors first and then taking the near extremal limit

of the flavored AdS6. We follow the former one. The non-critical version of the near

horizon limit of Nc near extremal D4-branes wrapped over a circle with anti-periodic

boundary conditions takes the form of a static black hole embedded inside AdS6. The

only surviving fermionic degrees of freedom are excited Kaluza-Klein modes because the

anti-periodic boundary conditions project massless fermions out of the spectrum. At

high energies the system is dual to a thermal gauge theory at the same temperature as

the black hole temperature and at low energies the KK modes can not be excited and

the dual theory is effectively 4-dimensional pure YM.

The 6-dimensional background metric, 6-form field strength and constant dilaton are
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given by

ds2
6 =

(

u

RAdS

)2

(−dt2 + δijdx
idxj + f(u)dx2

4) +

(

RAdS

u

)2
du2

f(u)

F(6) = Qc

(

u

RAdS

)4

dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ du ∧ dx4

eφ =
2
√

2√
3Qc

R2
AdS =

15

2
f(u) = 1 −

(

uΛ

u

)5

(8.4)

The space spanned by u and x4 has a topology of a cigar with the minimum value uΛ

at its tip. To avoid a conical singularity at the origin, x4 needs to be periodic with

periodicity

x4 ∼ x4 +
4πR2

AdS

5uΛ

= x4 + 2πR (8.5)

The typical mass scale below which the theory is effectively 4-dimensional is

MΛ =
2π

δx4

=
5

2

uΛ

R2
AdS

(8.6)

Since the gauge theory is not supersymmetric there seems to be two ways to add

flavor to the AdS6 black hole background - by adding D4- or D5-probe branes. But it

seems natural to include probe D4-branes and antibranes extended along the Minkowski

directions and stretching to infinity in the radial direction since then the low energy

limit of the gauge theory will contain massless fundamental quarks, while adding D5-

branes, which need to wrap the S1, due to the antiperiodic boundary conditions on S1

will generate mass to the quarks of the 4-dimensional gauge theory. When all the quarks

are massless there is an ability to reproduce a spontaneous chiral symmetry breaking in

terms of the string dual theory. The brane configuration looks the following way

t x1 x2 x3 x4 x5

D4 ⋄ ⋄ ⋄ ⋄ ⋄
D4-D4 ⋄ ⋄ ⋄ ⋄ ⋄

In the limit of large Nc and very small gs (with fixed gsNc), Nf ≪ Nc and L≫ ls, the cou-

pling of the strings stretching between two D4-probe branes, two D4-probe antibranes or

between a D4-probe brane and an antibrane goes to zero and they become non-dynamical
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sources. Hence, the degrees of freedom in the low energy limit and in the above limiting

case are described by the strings stretching between color branes or between a color brane

and a probe brane/antibrane. The gauge symmetry of the flavor branes U(Nf )×U(Nf )

becomes a global symmetry of QCD and represents a chiral symmetry of the quarks. The

fermions that appear from the color - D4-probe branes intersection transform as (N̄f , 1)

of the global symmetry and that from the color - D4-probe branes intersection transform

as (1, N̄f ). Both fermions transform in the fundamental Nc representation of the color

group.

The picture is similar to the Sakai-Sugimoto model [41, 42] but the background we

consider is non-critical. For any non-critical model, the curvature is of order one in units

of α′. But taking large Nc limit guarantees small string coupling and one expects that

stringy corrections will not affect calculations on the non-critical gravity side. The results

in [44] are at least of the same order of magnitude as those given by experiments or lattice

calculations, showing therefore that this assumption is not meaningless.

We consider the action

SD4 = T4

∫

d5xe−φ
√

−detĝ − ãT4

∫

P(C(5)) (8.7)

where ĝ is the induced metric over D4-brane worldvolume and P(C(5)) is the pull-back of

the RR 5-form potential over the D4-brane worldvolume. Taking ã is a constant which

fixes the relative strength of the DBI and CS terms in (8.7). ã should be taken equal

to zero if WZ coupling is not present at all. ã equal to one would be the direct naive

generalization from the 10-dimensional theory, but it is not well understood what should

be written in this two-derivative approximation to the non-critical setup. We leave ã

general here but we will see that we should set CS term to zero at finite temperature.

The induced metric on the D4-branes is

ds2
6 =

(

u

RAdS

)2

(−dt2 + δijdx
idxj) +

(

u

RAdS

)2(

f(u) +

(

RAdS

u

)4
u′2

f(u)

)

dx2
4 (8.8)

Substituting the determinant of the metric and the pullback of the RR 5-form potential
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C(5) into the action (8.7),we get

SD4 = T̂4e
−φ
∫

dx4

(

u

RAdS

)5[
√

f(u) +

(

RAdS

u

)4
u′2

f(u)
− a

]

(8.9)

where T̂4 includes the outcome integration over all coordinates apart from dx4 and a ≡
2√
5
ã.

The action does not depends explicitly on x4 therefore the Hamiltonian will be con-

served:

(

u

RAdS

)5(
f(u)

√

f(u) +
(

RAdS

u

)4 u′2

f(u)

− a

)

=

(

u0

RAdS

)5

(
√

f(u0) − a) (8.10)

where u0 is a point of a vanishing profile u′(u)
∣

∣

u0
= 0.

Defining y ≡ u
u0

, yΛ = uΛ

u0
, f(y) ≡ 1 −

(

yΛ
y

)5
, the profile reads

u′ =

(

u

RAdS

)2

f(y)

√

f(y)

(y−5
√

f(1) + a(1 − y−5))2
− 1 (8.11)

At u→ ∞ we want Nf D4-branes to be localized at x4 = 0 and Nf D4-branes at x4 = L.

These branes can’t go to the interior of the space because they don’t have where to

end inside the ”cigar”. Therefore they should smoothly connect at some point u = u0

(u0 ≤ uΛ) and therefore at zero temperature chiral symmetry is broken.

We can express L as a function of u0, uΛ and RAdS:

L =

∫ L

0

dx4 = 2

∫ ∞

u0

du

u′

= 2u0

∫ ∞

1

dy

(

RAdS

u

)2
1

f(y)

1
√

f(y)

(y−5
√
f(1)+a(1−y−5))2

− 1
(8.12)

Setting z ≡ y−5, we get

L =
2R2

AdS

5u0

∫ 1

0

dz
1

z
4

5 (1 − y5
Λz)

z(1 − y5
Λ) + a(1 − z)

√

1 − y5
Λz − (z(1 − y5

Λ) + a(1 − z))2
(8.13)

From here we see that small values of L correspond to large values of u0 and to yΛ << 1.
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In this limit L ∝
R2

AdS

u0
. The general dependence of L on u0 is more complicated.

3.4 Near extremal AdS6 model with flavor D4-D4 branes

at finite temperature

3.4.1 Bulk thermodynamics

We consider flavor branes as probes with Nf ≪ Nc and therefore we can analyze the ther-

modynamics of our model at finite temperature by considering only background geometry

and then add probe D4-branes to the dominant bulk background at each temperature.

In the gravity approximation (large Nc limit) we should look at Euclidean backgrounds,

which are asymptotically (8.4), but with Euclidean and periodic time with a periodicity

t = 1/T = β and with anti-periodic boundary conditions for the fermions along the time

direction in addition to the x4 direction. This background is just a Euclidian continua-

tion of the background (8.4) with the x4 compact direction with a periodicity 2πR (with

R related to uΛ by (8.5)) that shrinks to zero at u = u0 and with the time direction that

remains always finite with an arbitrary periodicity equal to β (see figure 3.1(a)).

But now we can consider another solution with the same asymptotics, which is given

by exchanging the behavior of the t and x4 circles (i.e. by moving f(u) in the metric

(8.4) from the dx2
4 term to the dt2 term). Then now the time direction shrinks to zero

size at u = uT (uT is related to β), while the x4 circle never shrinks (see figure 3.1(b)).

3.4.2 The bulk free energies of the low and high temperature

phases

In order to decide which background dominates at a given temperature we need to com-

pute their free energies. We look at the difference between the free energies, which is

proportional to the difference between the actions of the backgrounds times the temper-

ature (in the gravitational approximation), because it turns out to be finite despite that

classical actions might diverge. In our calculations we use the notations and the results

for the action computed in [43].
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The class of Euclidean metrics that we are looking on can be parameterized as

l−2
s ds2 = dτ 2 + e2λ(τ)dx2

|| + e2λ̃(τ)dx2
c (8.14)

where xc is either x4 or t (the one whose circle shrinks to zero size at the minimal value

of u at a certain temperature), x|| are the other four coordinates of R4,1 (one of which is

also compactified), τ is the radial direction and

e2λ =

(

u

RAdS

)2

e2λ̃ =

(

u

RAdS

)2(

1 −
(

uΛ

u

)5)

(8.15)

The functions λ and λ̃ depend only on the radial coordinate. The color D4-brane wrap

the circle xc, while the flavor D4-brane are points on the circle. The background also

includes a constant dilaton φ0 and a 6-form RR field strength. We define a deformed

dilaton ϕ and a new radial coordinate ρ as

ϕ = 2φ0 − 4λ− λ̃

dτ = −e−ϕdρ (8.16)

Since the background depends only on a radial direction, the sugra action reduces to the

following (0+1)-dimensional action:

S = V

∫

dρ
(

− 4(λ′)2 − (λ̃′)2 + (ϕ′)2 + 4e−2ϕ −Q2
ce

4λ+λ̃−ϕ)

= −V
∫ ∞

uΛ

du

[

(

− 4λ̇2 − ˙̃λ2 + ϕ̇2
)du

dρ
+

(

4e−4φ0 −Q2
ce

−2φ0

)

e8λ+2λ̃ dρ

du

]

(8.17)

where V is the volume of all other directions except ρ in string units and Qc is a constant

that corresponds to the contribution of the RR flux. After rewriting the action in terms of

integrals over u the minus sign arises because dρ/du is negative (dots denote derivatives

with respect to u). Here we wrote the solution of the low temperature phase, for the

high temperature phase one should replace uΛ with uT .
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The equations of motion associated with the action (8.17) are

λ′′ − 1

2
Q2
ce

2(4λ+λ̃−φ0) = 0 (8.18)

λ̃′′ − 1

2
Q2
ce

2(4λ+λ̃−φ0) = 0

The most general solution of this system is ( [43]):

λ = −1

5
ln(sinh(−5bρ)) + 4bρ (8.19)

λ̃ = −1

5
ln(sinh(−5bρ)) − bρ

where b = − 1√
10
Qce

−φ0 .

Substituting (8.15) into (8.17) we get

S = V

∫ ∞

uΛ

du

[(

20

u2

1

1 −
(

uΛ

u

)5

)

du

dρ

+

{

(

4e−4φ0 −Q2
ce

−2φ0
)

(

u

RAdS

)10(

1 −
(

uΛ

u

)5)}
dρ

du

]

(8.20)

Using the solutions of the equations of motion associated with the above action (8.19)

and (8.15)

λ̃− λ = 5bρ (8.21)

e2λ̃

e2λ
= 1 −

(

uΛ

u

)5

= e10bρ

we find that
dρ

du
=

1

2bu

(

uΛ

u

)5
1

1 −
(

uΛ

u

)5 (8.22)

Substituting the expression into the action we find that the divergence at large u is

independent of uΛ, so it makes sense to subtract the expressions with uΛ and with uT to

obtain a finite answer. The result for the difference between the action densities in the

low temperature phase and in the high temperature phase is given by (defining b̂ = b/u5
Λ
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which is constant independent of uΛ)

∆S

V3

≡ Slow − Shigh
V3

=
2πRβ

l2s

(

2b̂+
(

4e−2φ0 −Q2
c

)

e−2φ0
1

10b̂R10
AdS

)

(u5
T − u5

Λ) (8.23)

Using (8.5) and (8.31) we find

uΛ =
2R2

AdS

5R
and uT =

4πR2
AdS

5β
(8.24)

Therefore the action is proportional to

∆S ∝ N2
c

(

1

(β/2π)5
− 1

R5

)

(8.25)

Both backgrounds have equal free energy when both circles are equal, i.e. β = 2πR.

When temperature is less than Td = 1/2πR the background in which x4 circle shrinks to

zero size dominates and when temperature is greater than Td = 1/2πR the background

with t circle shrinking to zero dominates. There is a phase transition of first order here

since two different configurations are possible at the transition point. If we compute

the quark-antiquark potential (using the methods of [50–52]) , which is proportional to
√
gttgxx, in the two backgrounds, we find that in the low-temperature background it is

finite at u0 and linear, corresponding to a confined phase, and in the high-temperature

it decays, corresponding to a deconfined phase.

3.4.3 Low temperature phase

As described above the background corresponding to the low temperature phase is the

one with the x4 circle shrinking to zero at u = u0. The only difference from the zero

temperature case is that time direction is Euclidean and compactified with a circumfer-

ence β = 1/T . Hence, at low temperatures the dual gauge theory is in the confining

phase. When we add flavor branes and anti-brains to the background they have no other

possibility than to connect because x4 shrinks to zero size. Therefore chiral symmetry is

broken at least until the temperatures corresponding to deconfinement.
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The metric is

ds2
6 =

(

u

RAdS

)2

(dt2 + δijdx
idxj + f(u)dx2

4) +

(

RAdS

u

)2
du2

f(u)

f(u) = 1 −
(

uΛ

u

)5

x4 ∼ x4 + 2πR = x4 +
4πR2

AdS

5uΛ

and t ∼ t+ β (β arbitrary) (8.26)

Setting ã to zero, we find from (8.11)

u′ =

(

u

RAdS

)2

f(y)

√

y10
f(y)

f(1)
− 1 (8.27)

Substituting (8.27) into (8.7) and using the definitions y ≡ u
u0

, yΛ = uΛ

u0
, f(y) ≡ 1−

(

yΛ
y

)5

and z ≡ y−5, we get the following DBI action:

SDBI = T̂4e
−φ
∫

dx4

(

u

RAdS

)5
√

f(u) +

(

RAdS

u

)4
u′2

f(u)

=
2T̂4e

−φu4
0

5R3
AdS

∫ 1

0

dz
1

z
9

5

1
√

1 − y5
Λz − z2(1 − y5

Λ)
(8.28)

The relation between L and u0 is the same as at zero temperatures. For small L the

dependence of the action on L is:

SDBI ∝
T̂4e

−φ

R3
AdSL

4
(8.29)

3.4.4 Intermediate and high temperature phases

In the high temperature phase the background metric takes the form

ds2
6 =

(

u

RAdS

)2

(f(u)dt2 + δijdx
idxj + dx2

4) +

(

RAdS

u

)2
du2

f(u)

f(u) = 1 −
(

uT
u

)5

(8.30)
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Now the time circle shrinks to zero at the minimal value of u = uT and to avoid a

singularity there the time direction should be identified with the periodicity

t ∼ t+ β = t+
4πR2

AdS

5uT
(8.31)

On the other hand the periodicity of x4 is now arbitrary:

x4 ∼ x4 + 2πR (8.32)

D4-branes span the same coordinates as previously and are described by some profile

u(x4). The induced metric and the DBI action now takes the form

ds2
6 =

(

u

RAdS

)2

(f(u)dt2 + δijdx
idxj) +

(

u

RAdS

)2(

1 +

(

RAdS

u

)4
u′2

f(u)

)

dx2
4 (8.33)

We get the following action:

SD4 = T4

∫

d5xe−φ
√

−detĝ −
√

5a

2
T4

∫

P(C(5))

= T̂4e
−φ
∫

dx4

(

u

RAdS

)5[
√

f(u)

√

1 +

(

RAdS

u

)4
u′2

f(u)
− a

]

= 2T̂4e
−φ
[ ∫ ∞

u0

du

u′

(

u

RAdS

)5
√

f(u)

√

1 +

(

RAdS

u

)4
u′2

f(u)

− a

∫ ∞

u0

du

u′

(

u

RAdS

)5]

(8.34)

Conservation of the Hamiltonian of (8.34) implies that

(

u

RAdS

)5(
√

f(u)
√

1 +
(

RAdS

u

)4 u′2

f(u)

− a

)

= const (8.35)

There is a solution for a vanishing profile at some point u0 ≥ uT , where the velocity

u′(u)
∣

∣

u0
= 0 (see figures 3.2(a) and 3.2(b)). This is a solution for branes and anti-branes

connected at u = u0, where the velocity u′ should be zero. At low temperatures this

was the only possible configuration, but since in the high temperature phase the x4 circle

never shrinks to zero size we can consider a configuration of non-intersecting branes and
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Figure 3.2: The three possible configurations of the flavor D4-branes and antibranes
at intermediate and high temperatures: (a) a configuration of connected branes at the
minimum u = u0 with an asymptotic separation L at u → ∞ (intermediate tempera-
ture phase), (b) a configuration of connected branes in the case u0 = uT (intermediate
temperature phase), (c) parallel branes configuration (high temperature phase).

antibranes that end on the horizon of the black hole (see figure 3.2(c)). The branes and

antibranes stay disconnected in the u−x4 submanifold with constant values x4(u) = 0, L,

e.g chiral symmetry is restored. Since branes are now parallel to each other the velocity

of their profile u′ should be infinite at u0 (which now equals to uT ). Then there should

exist a solution of (8.35) also for the case u′ → ∞. But there is no such a solution here

because the term u5a cannot equal to a constant. A solution exists only if we set the CS

term to zero from the beginning (i.e. ã = 0). 1

Instead of the parallel brane configuration we could consider taking a configuration

of connected branes and allowing u0 < uT but restricting ourselves only to the region

u > uT and keep the CS term. If we had a configuration of branes connecting at some

point ū0 < uT with a certain length L at infinity and another configuration of branes

connecting at u0 > uT with the same length L at infinity then we could subtract the two

actions of this configuration in order to get a finite difference. But from the figure 3.3 we

see that yT = u/u0 can never be bigger than 1 and therefore we cannot have the same

length L for u0 and ū0. So we should just omit the CS term in our calculations.

1If leave ã 6= 0 we get an infinity in the difference between the free energies. A priory we do not expect

that a difference of two actions should be finite, but here it shows an additional anomalous behavior of

the CS term.
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Figure 3.3: Lu0 as a function of yT . The left graph is for the case ã = 0 and the right
one is for the case ã = 1.

Defining y ≡ u
u0

, yT = uT

u0
, f(y) ≡ 1 −

(

yT

y

)5
, the profile velocity now reads

u′ =

(

u

RAdS

)2
√

f(y)

√

y10
f(y)

f(1)
− 1 (8.36)

Then x4 as a function of u becomes

x4(u) =

∫ u

u0

dû
1

û′
=

∫ u

u0

dû
1

(

û
RAdS

)2√
1 − (uT

û
)5

√

(

û
u0

)5 1−(
uT
û

)5

1−u5
T

− 1

(8.37)

It is shown in figure 3.4. At the beginning when u ≈ u0 the profile of the branes growth

very rapidly and when u → ∞ the profile is almost straight. For u0 ≈ uT the profile is

drawn at figure 3.2(b).

By substituting the outcome of the equation of motion into the action, we get

ShighDBI =
2T̂4e

−φu4
0

R3
AdS

∫ ∞

1

dy
y3

√

1 − f(1)
f(y)y10

(8.38)

The velocity of the profile of a parallel branes configuration is always u′ → ∞ and
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Figure 3.4: Profile x4 as a function of u. The lower curve (green) is for uT = 2, u0 = 3.
The upper curve (blue) is for the case u0 ≈ uT = 2 (RAdS = 1).

therefore the action reads

ShighDBIu′→∞ = 2T̂4e
−φ
∫ ∞

uT

du

(

u

RAdS

)5(
RAdS

u

)2

=
2T̂4e

−φu4
0

R3
AdS

[ ∫ ∞

1

dyy3 +

∫ 1

yT

dyy3

]

(8.39)

To find whether a configuration with χSB or with a restored χS is preferred we can

compute the difference between the actions of the two configuration that is proportional

to free energy. Configuration that has a lower free energy is preferred.

∆S ≡ R3
AdS

2T̂4e−φu4
0

(ShighDBI − ShighDBIu′→∞)

=

∫ ∞

1

dyy3

[

1
√

1 − f(1)
f(y)y10

− 1

]

−
∫ 1

yT

dyy3

=
1

5

∫ 1

0

dz
1

z
9

5

[

√

1 − y5
T z

1 − y5
T z − z2(1 − y5

T )
− 1

]

− 1

4
(1 − y4

T ) (8.40)

where was introduced z = y−5 change of variables. ∆S as a function of yT is drawn in

figure 3.5. When yT > 0.8 ∆S is positive, i.e. ShighDBIu′→∞ has a lower free energy and

is preferred. In this phase D4-brane are disconnected and chiral symmetry is restored,

while when 0 < yT < 0.8 D4-branes are smoothly connected and chiral symmetry is
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Figure 3.5: ∆S as a function of yT , in units of 2T̂4e
−φu4

0/R
3
AdS in the case ã = 0.

broken.

We would like to express the critical point in terms of physical quantities. For a certain

value of yT we can compute an integral that relates the minimal point of the connected

branes configuration u0 to the asymptotic distance between branes and antibranes L.

L = 2

∫ ∞

u0

du

u′
=

2R2
AdS

u0

∫ ∞

1

dy
1

y2
√

f(y)

1
√

y10 f(y)
f(1)

− 1

=
2R2

AdS

5u0

√

1 − y5
T

∫ 1

0

dz
1

√

1 − y5
T z

z
1

5

√

1 − y5
T z − z2(1 − y5

T )
(8.41)

For small values of L u0 ∝ R2
AdS/L. At the transition temperature ycT = 0.8 the integral

(8.41) gives L = 0.53(R2
AdS/u0). From the equation (8.31) we find

TχSB =
5yTu0

4πR2
AdS

=
5yT0.53

4πL
=

0.169

L
(8.42)

while the deconfinement phase transition happens at the temperature

Td =
1

2πR
=

0.159

R
(8.43)

Both temperatures are equal when L = 1.06R. For L/R > 1.06 and T · R > Td · R
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Figure 3.6: The phase diagram of the AdS6 model with flavor D4-branes. The phase
structure depends only on the two dimensionless parameters TR and L/R. For L/R <
1.06 the deconfinement and chiral symmetry restoration transitions happens at different
temperatures, while for L/R > 1.06 they occur together .

the system is deconfined and chiral symmetry is restored, while for L/R < 1.06 and

temperatures bigger than the temperature of deconfinement the system is deconfined but

chiral symmetry restoration happens separately: at T ·R < TχSB ·R chiral symmetry is

still broken and at T ·R > TχSB ·R chiral symmetry is restored. The full phase diagram

of the theory is drawn in figure 3.6.

3.4.5 General model

From the similarity of the result of the previous section to the SS model we can derive

a general model, but it is not necessary that all three phases will be present. We indeed

find a different behavior of some metrics.

We consider a n-dimensional Wick rotated black hole background and insert into it

(n-2)-probe branes, that extend along all directions except x4. We take the following

68



general form of the metric at low temperatures:

ds2
n = H2dt

2 +
1

H1

du2 +H1dx
2
4 + ds2

k (8.44)

and then the metric at high temperatures becomes:

ds2
n = H1dt

2 +
1

H1

du2 +H2dx
2
4 + ds2

k (8.45)

where H1 is a singular function of u with a horizon at u = uH , H2 is a non-singular

function of u, x4 is compact with a periodic that depends on uH and ds2
k is any k-

dimensional metric of the rest of coordinates, which components can depend on u. The

condition of the singular H1 is necessary to have a horizon on which (n-2)-branes can end.

At low temperature the u − x4 submanifold is cigar-shaped, while at high temperature

the u− t submanifold is cigar-shaped and the x4 circle does not shrink to zero.

From (8.45) we find the induced metric on the (n-2)-probe brane

ds2
n = H1dt

2 + (H2 +
1

H1

u′2)dx2
4 + ds2

k (8.46)

with u′ = du/dx4.

The DBI action is given by (without the CS term)

SDBI = Tn

∫

dn−1xe−φ
√
g

√

H1(H2 +
1

H1

u′2) = T̂n

∫

dx4e
−φ√g

√

H1(H2 +
1

H1

u′2)

(8.47)

where T̂n includes the outcome integration over all coordinates apart from dx4, e
φ is a

dilaton and g is the determinant of the ds2
k metric. Then from the conservation of the

Hamiltonian we find that the equation of motion is

e−φ
√
g
√
H1H2

√

H2 + 1
H1
u′2

= const (8.48)

If we suppose that there is a solution with u′(u = u0) = 0, then the constant is equal to

e−φ0

√

g0H0
1H

0
2 and

u′ =
√

H1H2

√

e−2φgH1H2

e−2φ0g0H0
1H

0
2

− 1 (8.49)
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The case u′(u = 0) → ∞ is also a solution of the equation of motion and gives const = 0.

Inserting the expression for u′ into (8.47) we find

SDBI = 2T̂n

∫ ∞

u0

due−φ
√
g

1
√

1 − e−2φ0g0H0
1H

0
2

e−2φgH1H2

(8.50)

At u′ → ∞ the actions reads

Su
′→∞

DBI = 2T̂n

∫ ∞

u0

due−φ
√
g (8.51)

The action of the parallel brane configuration actually depends only on the xk coordinates

and the dilaton. The difference between the actions is

∆S = 2T̂n

∫ ∞

u0

due−φ
√
g





1
√

1 − e−2φ0g0H0
1H

0
2

e−2φgH1H2

− 1



−
∫ u0

uT

due−φ
√
g (8.52)

To evaluate it we need to insert the explicit expressions of the functions H1, H2, g and

the dilaton.

The existence of the solution with u′(u = u0) = 0 and u0 6= 0 at low temperatures

guarantees confinement, but to see whether we get chiral symmetry restoration or not

we need an explicit form of the functions φ, g,H1 and H2. Let us look at the same family

of metrics to which SS and AdS6 metrics belong. That is:

H1 =
( u

R

)m (

1 −
(uT
u

)n)

H2 =
( u

R

)m

e−φ = const1 · ul

g = const2 · uj (8.53)

const1 and const1 does not effect δS and therefore we them arbitrary. Substituting the

functions (8.53) into the action’s difference (8.52) and defining y = u/u0 , we get:

∆S ∝
∫ ∞

1

dyyl+
j
2





1
√

1 − y−(2l+j+2m) 1−yn
T

1−(yT /y)n

− 1



−
∫ 1

yT

dyyl+
j
2 (8.54)
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Figure 3.7: Models with values of n between 3 and 5, m between 3/2 and 2, and arbitrary
j and l should have intermediate and high temperature phases.

We did the numerical computations for different values of j, l,m, n (since we cannot

solve the first integral analytically). We checked that for n between 3 and 5, for m

between 3/2 and 2, and arbitrary j and l ∆S is negative and then positive as in the SS

and AdS6 models, as expected (see figure 3.7).

Also we can see whether we get a different phase structure for general critical and non-

critical versions of near extremal Dp-branes. The metric for the critical near extremal

Dp-branes is [53]:

ds2 =
u(7−p)/2

R2
Dp

(

−
(

1 − u7−p
T

u7−p

)

dt2 + dx2
4

)

+
R2
Dp

u(7−p)/2
1

1 − u7−p
T

u7−p

du2

+
u(7−p)/2

R2
Dp

δijdx
idxj +R2

Dpu
(p−3)/2dΩ2

8−p i, j = 1, ..., p− 1

e−φ =
1

(2π)2−pg2
YMR

3−p
Dp

u(7−p)(3−p)/4 R2
Dp = gYM

√
N (8.55)
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Figure 3.8: ∆S as a function of yT for the near extremal D6-branes in 10 dimensions.

Therefore all the powers depend only on p and we find:

m =
7 − p

2

n = 7 − p

l =
(7 − p)(3 − p)

4

j =
(7 − p)(p− 1) + (p− 3)

2
(8.56)

Since the solutions are in 10 dimensions, we insert D8-probe branes because if there are

directions along which probe branes do not extend, except the x4 direction, the massive

quarks appear and we will not get chiral symmetry. Drawing the ∆S (8.54) numerically

for different values of p we find that for p ≤ 5 we get the same behavior as in the SS model

(two phases - chiral symmetry breaking and restoration), but for p = 6 we get a positive

∆S that means that chiral symmetry restoration and deconfinement occur together (see

figure 3.8). For p > 6 we cannot get the solution of (8.54) numerically.

Near extremal solutions of Dp-branes in non-critical dimensions are given by [43]:
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ds2 =

(

u

RAdS

)2(

−
(

1 − up+1
T

up+1

)

dt2 + dx2
4

)

+

(

RAdS

u

)2
1

1 − up+1

T

up+1

du2

+

(

u

RAdS

)2

δijdx
idxj +R2

SqdΩ2
q i, j arbitrary but smaller than 7 − q

e−φ0 =

[

1

p+ 2 − q

(

(p+ 2 − q)(q − 1)

c

)q
2c

Q2

]−1/2

R2
AdS =

(p+ 1)(p+ 2 − q)

c

(8.57)

where
c

α′ =
10 − d

α′ (8.58)

is the non-criticality central charge term.

We see that again all the powers depend only on dimension of the branes p:

m = 2

n = p+ 1

l = 0

j = 6 (8.59)

The probe branes that we insert into the backgrounds are (d-2)-branes and antibranes

(d - is the dimension of a non-critical metric). For different values of n = p+1 we find that

∆S (8.54) always has the same behavior as in the AdS6 BH model, i.e. chiral symmetry

can be restored at a higher temperature then the temperature of deconfinement, but the

value of the ratio L/R will be different for different Dp-branes.

From the above analysis we see that the phase structure of a model depends on

the basic structure and dimensionality of its metric and it can be different for different

models.
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3.5 Spectrum of mesons

The mesons of our model are described by strings ending on the probe D4-branes. Low-

spin mesons are described via modes of the massless fields living on the D4-branes and

high-spin mesons are associated with string configurations that fall from the D4-branes

down to the wall at u = uΛ, stretch along the wall and then go back up again. The

mesonic spectrum in the low-temperature phase is unchanged as the temperature is

increased because in the confining phase the theory behaves effectively as a gas of non-

interacting glueballs and mesons [54,55]. However, the mesonic spectrum at intermediate

temperature might be not connected to the spectrum in the low-temperature regime since

the phase transition is first-order and such a jump should be expected. Now we turn our

attention to the meson spectrum at the intermediate and high temperature phases.

3.5.1 Low-spin mesons at intermediate temperature

Low-spin mesons correspond on the string theory side to fluctuations of the massless

fields on the probe branes. The fluctuations of the gauge fields on the branes give pseudo-

vector and scalar mesons and pions, and the fluctuations of the scalar field describing

the embedding of the branes give massive scalar mesons. Using the analysis of the

fluctuations performed in [49] we describe the modes coming from the components of the

gauge field living on the D4-branes.

The spectrum of low-spin mesons in the low-temperature phase is unmodified with

respect to zero temperature since the Euclidean metric is globally unmodified.

The spectrum in the intermediate temperature phase is discrete because the probe

does not intersect the horizon. Also computations in [45] for the SS model show that

given that the effective tension of strings near the brane decreases with the increase

of temperature, the masses of mesons decrease as the temperature is increased. This

behavior is also true for our model.

We start from the background metric describing the hot gluonic plasma (8.30).The
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induced metric on the D4-brane worldvolume at intermediate temperature reads

ds2
interm =

(

u

RAdS

)2
(

f(u)dt2 + δijdx
idxj

)

+

[

(

RAdS

u

)2
1

f(u)
+

(

dx4

du

)2 (
u

RAdS

)2
]

du2 (8.60)

We are interested in computing the spectrum of vector mesons, by considering small

fluctuations on the worldvolume gauge fields of the probe D4-brane. We expand the

gauge field as [40]

Aµ(x
µ, u) =

∑

n

B(n)
µ (xµ)ψ(n)(u) (8.61)

Au(x
µ, u) =

∑

n

ϕ(n)
µ (xµ)φ(n)(u) (8.62)

and therefore the field strength reads

Fµν =
∑

n

F (n)
µν (xρ)ψn(u) ,

Fµu =
∑

n

∂µϕ
(n) φn(u) −B(n)

µ ∂uψn(u)

= ∂µϕ
(0) φ0 +

∑

n≥1

(

∂µϕ
(n) −B(n)

µ

)

∂uψ(n) .

(8.63)

where the last line is obtained by taking φ(n) = m−1
n ∂uψ(n)(u). To simplify the consider-

ation, we furthermore go to the A0 = 0 gauge and consider only spatially homogeneous

modes, i.e. we consider the equation of motion for fields satisfying ∂iAj = 0. Then the
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probe brane action is

Ŝtrunc =

∫

d4xdu u4γ1/2 f(u)1/2

[

1

u2γ f(u)
(∂0ϕ

(0))2 φ(0)φ(0)

− 1

f(u)

(

RAdS

u

)4

∂0B
(m)
i ∂0B

i
(n) ψ(m)ψ(n) +

1

u2γ
B

(m)
i Bi

(n) ∂uψ(m)∂uψ(n)

]

,

with γ ≡ u8

u10f(u) − u10
0 f(u0)

(8.64)

After a partial integration with respect to the u-coordinate, the equation of motion for

the field B
(m)
i becomes

u2

γ1/2f(u)1/2
∂2

0B
(n)
i ψ(n) − ∂u

(

u2γ−1/2f(u)1/2 ∂uψ(n)

)

B
(n)
i = 0 (8.65)

This equation will reduce to the canonical form

∂2
0B

(n)
i = −m2

nB
(n)
i , (8.66)

if the modes ψ(n) satisfy the equation

−γ−1/2 f(u)1/2 ∂u
(

u2γ−1/2f(u)1/2∂uψ(n)

)

= R4
AdSm

2
n ψ(n) . (8.67)

This equation is very similar to the equation in the zero temperature case computed

in [49], the only difference is the appearance of the factor f(u)1/2 in the term on the

left-hand side. The modes should also satisfy the normalization conditions

∫ ∞

u0

du γ1/2f(u)−1/2 ψ(m)ψ(n) = δmn ,

∫ ∞

u0

du
u2

R4
AdS

γ−1/2f(u)−1/2 φ(0)φ(0) = 1 .

(8.68)

The zero mode φ(0) = u−2f(u)−1/2γ1/2 is normalizable with this norm (there is no problem

at the horizon because u0 > uT ), and therefore there is a massless pion π(0) present in

the intermediate-temperature phase. The fields π(0) are the Goldstone bosons associated

with the spontaneous breaking of the U(Nf )L × U(Nf )R global chiral symmetry to the
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diagonal U(Nf ).

In the limit of u0 ≫ uT the spectrum simplifies and one can easily determine the

scale of the meson masses. In this limit, which corresponds to a small separation distance

between the stacks of branes and anti-branes L ≪ R, the thermal factor f(u) → 1 and

in particular also f(u0) → 1.Therefore,

γ ≡ u8

u10f(u) − u10
0 f(u0)

→ 1

u2

1

1 − y−10
(8.69)

where the dimensionless quantity y ≡ u/u0. Then we can rewrite (8.67) in terms of y in

the following form

−γ−1/2(y)∂y
(

y2γ−1/2(y)∂yψ(n)

)

=
R4
AdS

u2
0

m2
n ψ(n) . (8.70)

Now since the left-hand side is expressed in terms of the dimensionless quantity y, the

right-hand side should also be dimensionless which implies that

m2
n ∼ u2

0

R4
AdS

(8.71)

From (8.41) we know that u0 ∼ 1/L. Therefore the mass of “short” mesons scales as

Mmeson ∼ 1

L
. (8.72)

The explicit mass spectrum of the vector mesons can be found by looking for normalizable

eigenfunctions of (8.67) and using numerical methods (e.g. a shooting technique), but the

qualitative behavior of the spectrum is that the masses of mesons decrease as temperature

increases. This behavior is a direct consequence of the fact that the constituent quark

mass is related to the distance of the tip of the probe brane to the horizon. If the

distance is increased, a meson of the same spin will correspond to an excitation of the

brane which is further away from the horizon and hence less affected by the temperature.

This behavior is common for all gravitational backgrounds that contain a horizon.
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3.5.2 Low-spin mesons at high temperature

In the high-temperature phase the profile of the left and right stacks of branes is char-

acterized by u′ ≡ du/dx4 → ∞ and the induced metric on the probe branes and probe

anti-branes takes the form

dŝ2
high =

(

u

RAdS

)2
[

−f(u)dt2 + δijdx
idxj

]

+

(

RAdS

u

)2
1

f(u)
du2 (8.73)

The differential equation for the modes is now

− f(u)1/2 ∂u
(

u2f(u)1/2∂uψ(n)

)

= R4
AdSm

2
n ψ(n) (8.74)

i.e. it is similar to the intermediate temperature phase case, but with γ = 1. Then the

normalization conditions are now
∫ ∞

u0

du f(u)−1/2 ψ(m)ψ(n) = δmn ,

∫ ∞

u0

du
u2

R4
AdS

f(u)−1/2 φ(0)φ(0) = 1 .

(8.75)

The mode, which would be given by φ(0) = u−2f(u)−1/2, is no longer normalizable.

Computation of its norm leads to the integral

∫ ∞

uT

duu2f(u)−1/2
∣

∣

∣
u−2f(u)−1/2

∣

∣

∣

2

, (8.76)

which, while convergent at the upper boundary, is divergent at the lower boundary be-

cause f(u) ∼ √
u− uT for u ∼ uT . In accordance with the fact that chiral symmetry is

restored in the high-temperature phase, we see that the Goldstone boson has disappeared.

In the high temperature phase the spectrum of vector mesons is continuous.

3.5.3 High-spin mesons at intermediate temperature

To describe higher-spin mesons we need to look at more general string configurations

that start and end on the probe brane. For large spin these strings can be described

semiclassically. The relevant string configuration can be decomposed into three parts:

a segment from the probe brane at u = u0 to the wall at u = uT , then a segment that
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Figure 3.9: A high-spin meson at intermediate temperatures represented as a semiclassical
string starting at the lowest point of the probe brane u = u0, going down to the wall
at u = uT , stretching horizontally in the space along the wall, and then going back up
vertically to the probe brane at u = u0.

stretches along the wall in the spacial direction, and then another vertical part stretching

from the wall back to the probe brane, as depicted at figure 3.9.

The relevant part of the background metric that represents this configuration is

ds2 =

(

u

RAdS

)2
(

−f(u) dt2 + dρ2 + ρ2 dϕ2
)

+

(

RAdS

u

)2
du2

f(u)
(8.77)

We go to the static gauge for the string action and make the following ansatz for the

rotating configuration,

t = τ , ρ = ρ(σ) , u = u(σ) , ϕ = ωτ (8.78)

This ansatz has the same form as in the zero-temperature case [56]. Hence, the only

effect of finite temperature will be in the change of the shape of u(σ) as the temperature

is increased.
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Figure 3.10: The boundary curve. Rotating strings have to lie above this curve in
order for their action to be real. The curves correspond to the following values of the
frequency ω (from right to left): 0.5, 1, 1.5 and 3. The horizon is located at uT = 2.

With this ansatz the metric now reads

ds2 =

(

u

RAdS

)2

(−f(u) + ρ2ω2)dτ 2 +

(

u

RAdS

)2(

ρ′2 +

(

RAdS

u

)4
u′2

f(u)

)

dσ2 (8.79)

and it leads to the following string (Polyakov) action

S =

∫

dτ dρ

√

(

u

RAdS

)4 (

ρ′2 +
u′2

f(u)

R4
AdS

u4

)

(f(u) − ρ2ω2) (8.80)

Positivity of the argument of the square root in (8.80) requires that f(u) > ρ2ω2. This

means that for a given angular frequency ω, the string solution u(ρ) has to lie above the

curve

u(ρ) ≥ uT
(1 − ρ2ω2)1/5

(8.81)

In figure 3.10 these curves are depicted for various values of ω. We see that any

string is allowed to touch the horizon uT for any angular frequency ω and as ω decreases

(i.e. the spin of the mesons increases) the string endpoints get more and more separated,

the U-shaped string penetrates deeper to the horizon, and it becomes more and more

rectangular. For a given ω, the maximal allowed extent of the string is determined by
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the intersection of the curve with u0, and is given by

ρmax =
1

ω

√

1 −
(

uT
u0

)5

(8.82)

The equation of motion following from the action (8.80) is given by

− 2
√
...

d

dσ

(

1
√
...

u′

f(u)
(f(u) − ρ2ω2)

)

+ f ′(u)

(

u′2ρ2ω2

f(u)2
+

u4

R4
AdS

(ρ′)2

)

+
4u3

R4
AdS

(

(ρ′)2f(u) − (ρ′)2ρ2ω2

)

= 0 (8.83)

where
√
... is the density of Nambu-Goto action (8.80).

The expressions for the energy and the angular momentum carried by the string are

given by

E =

∫

dσ
1

√
...

((

u

RAdS

)4

f(u)(ρ′)2 + u′2
)

(8.84)

J =

∫

dσ
1

√
...
ωρ2

((

u

RAdS

)4

ρ′2 +
u′2

f(u)

)

(8.85)

The analysis of meson spectrum in [45] has showed that the meson spectrum of the

SS model does not follow the well known Regge trajectories. For high-spin mesons at a

fixed temperature there is a maximum value of angular momentum beyond which mesons

cannot exist and have to dissociate. That is the temperature at which mesons melt is

spin dependent. As the temperature increases, the maximal value of the spin that a

meson can carry decreases. This behavior is also true for high-spin mesons in the AdS6

background. Also for high mesons of fixed angular momentum, as for low-spin mesons,

the energy decreases as a function of temperature.

3.5.4 Drag effects for quarks

In the deconfined phase the background contains a horizon and we can have a string start-

ing on a flavor D4-brane/antibrane and going into the horizon. This string corresponds

to a deconfined quark/anti-quark.
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Because a strictly vertical string moving rigidly through the background would not

have a real action (8.80), the string has to be bent when it is “pushed” through the

plasma. In addition the bent string does not end anymore orthogonally on the brane.

This means that one has to apply a force on the string endpoint, or in other words, one

has to “drag” the string in order to keep it moving [57–63]. A suitable ansatz to describe

the behavior of the string that moves with speed vx in the x direction is (in static gauge)

t = τ , u = σ , x = vxt+ ξ(u) (8.86)

Inserting (8.86) into the Nambu-Goto Lagrangian we find

S =

∫

d2σ
√

−det(Gµν∂αXµ∂βXν)

=

∫

dτ dρ

√

1 − v2
x

f(u)
+

(

u

RAdS

)4

f(u)ξ′2 (8.87)

The corresponding equation for ξ implies that the conjugate momentum is a constant:

πξ =
∂L
∂ξ′

= −
(

u

RAdS

)4
f(u)ξ′√−g (8.88)

where g is the determinant of the induced metric. Inverting this relation we obtain

ξ′ = πξ

(

RAdS

u

)4
1

f(u)

√

f(u) − v2
x

f(u) − π2
ξ (
RAdS

u
)4

(8.89)

We must require that ξ(u) is everywhere real, but the square root on the right hand

side is in general not everywhere real. The function f(u) interpolates between 1 at the

boundary of AdS6 to 0 at the horizon, so at some intermediate radius f(u)− v2
x switches

sign at some intermediate point uv, which is by definition such that u5
v = u5

T/(1 − v2
x).

The only way we can prevent ξ from becoming imaginary for u < uv is by choosing a

value of πξ such that the denominator also vanishes at uv:

π2
ξ = f(uv)

(

uv
RAdS

)4

=

(

uT
RAdS

)4
vx

(1 − v2
x)

4

5

(8.90)
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Plugging this back into (8.89) we find

ξ′ =
vR2

AdS

u4

u2
T

f(u)
(8.91)

Now we want to compute the σ component of the current associated with spacetime

translations along x

P u
x = −Gxνg

uα∂Xν = −f(u)ξ′

g

(

uT
RAdS

)4

(8.92)

where Gµν and gαβ denote respectively the spacetime and induced worldsheet metric.

Together with (8.87) and (8.91) it yields the drag force

dp

dt
=

√−gP u
x = −u

2
T

R2

v2
x

(1 − v2
x)

4

5

(8.93)

We see that there are two effects happening as one tries to move a single string in the hot

background: the string shape is modified in a way which depends on the temperature

and velocity, and in order to preserve the motion one needs to apply a force.

3.5.5 Drag effects for mesons

Now we are interested if there is a drag force on a rotating meson at finite temperature.

From the condition (8.81) we can see that a simple rotating motion does not experience a

drag effect because the rotating string is always sufficiently high above the curve beyond

which the action would turn to be imaginary. On the other hand the bending of the

rotating string does depend on the angular velocity and on the temperature.

We can also consider a linear motion of the meson in a direction orthogonal to the

plane of rotation. A suitable ansatz for this motion is

t = τ , ρ = σ , u = u(ρ) , ϕ = ωτ , y = vy τ (8.94)

In this case the string action becomes

S =

∫

dτ dρ

√

(

u

RAdS

)4 (

1 +
u′2

f(u)

R4
AdS

u4

)

(

f(u) − ρ2ω2 − v2
y

)

. (8.95)
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Figure 3.11: Analysis of the effect of a transverse velocity on the shape of spinning U-
shaped strings keeping the quark masses and spin fixed. The curves display results for
increasing values (from right to left) vy = 0, 0.4, 0.6, 0.8, 0.9, 0.98 and ω = 1. The horizon
is located at uT = 2.

The only modification with respect to the rotating meson is the addition of a term “−v2
y”

to the last factor under the square root. The condition for the action to be real is now

u ≥ uT
(1 − ρ2ω2 − v2

y)
1/5

. (8.96)

The curves are depicted in figure 3.11 for various values of vy. For any high-spin

meson at finite temperature one can find a generalized solution to the equation of motion

such that the spinning configuration lies entirely above the curves (3.11). Thus, the

mesons do not experience any drag effect that means that they do not experience any

energy loss when propagating through the quark-gluon plasma - no force is necessary to

keep them moving with a fixed velocity. In the dual language, this reflects the fact that if

the quark gluon plasma is not hot enough to dissociate mesons, then these color singlets

will not experience a drag force generated by a monopole interactions with the medium.

However, the shape of the string in the (ρ, u) plane can be modified as it starts moving.

3.6 Summary

In this chapter we were mainly interested in the difference in QCD models in critical

and non-critical backgrounds. We looked at the non-critical AdS6 black hole background
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with D4-probe branes and antibranes and found that since the CS does not contribute

to the model (with the CS term there is no solution of equations of motions at high

temperature), it has a similar behavior with the critical Sakai-Sugimoto model. But

neglecting the CS term altogether is a problem since it is needed to get the WZ term in

the Skyrme model [40].

We found that the difference in free energy between Euclidean background at low

an high temperatures scales as N2
c in the ’t Hooft large Nc limit, as expected. In our

model it is proportional to (2πT )5 − (1/R)5, while in the SS model it is proportional to

(2πT )6 − (1/R)6. Also in the SS model dilaton goes to infinity as u → ∞, where, in

principle, sugra approximation is not valid and one should go to the M-theory. In the

AdS6 case dilaton is constant and we should not worry about the behavior of the model

when u → ∞. On the other hand in the non-critical case there is a problem with high

curvature corrections of order α′. But we expect that for the symmetric case of AdS6

they will not contribute.

In our model we got the chiral phase transition at the ratio of the separation distance

between branes and antibranes at infinity and the radius of the x4 circle L/R = 1.06,

comparatively to the SS model L/R = 0.97. Spectrum of the low-spin mesons is dis-

crete at low temperatures and continuous at high temperatures and we can identify the

Goldstone pion associated with the spontaneous breaking of the U(Nf )L×U(Nf )R global

chiral symmetry to the diagonal U(Nf ). Quarks and high-spin mesons experience a drag

force at finite temperature.

In the section 4.5 we saw that the AdS6 and the SS model can be unified into a family

of metrics that have a similar phase structure.

85



Bibliography

Bubbling AdS5

[1] H. Lin, O. Lunin and J. Maldacena, “Bubbling AdS space and 1/2 BPS geometries,”

JHEP 0410, 025 (2004) [arXiv:hep-th/0409174].

[2] M. M. Caldarelli, “Chronology protection in AdS/CFT,” arXiv:hep-th/0602293.

[3] S. S. Gubser and J. J. Heckman, “Thermodynamics of R-charged black holes in

AdS(5) from effective strings,” JHEP 0411, 052 (2004) [arXiv:hep-th/0411001].

[4] N. V. Suryanarayana, “Half-BPS giants, free fermions and microstates of superstars,”

JHEP 0601, 082 (2006) [arXiv:hep-th/0411145].

[5] G. Mandal, “Fermions from half-BPS supergravity,” JHEP 0508, 052 (2005)

[arXiv:hep-th/0502104].

[6] L. Grant, L. Maoz, J. Marsano, K. Papadodimas and V. S. Rychkov, “Minisuperspace

quantization of ’bubbling AdS’ and free fermion droplets,” JHEP 0508, 025 (2005)

[arXiv:hep-th/0505079].

[7] A. Dhar, G. Mandal and M. Smedback, “From gravitons to giants,” JHEP 0603, 031

(2006) [arXiv:hep-th/0512312]; A. Dhar, G. Mandal and N. V. Suryanarayana, “Exact

operator bosonization of finite number of fermions in one space dimension,” JHEP

0601, 118 (2006) [arXiv:hep-th/0509164];Y. Takayama and K. Yoshida, “Bubbling

1/2 BPS geometries and Penrose limits,” Phys. Rev. D 72, 066014 (2005) [arXiv:hep-

th/0503057];L. Maoz and V. S. Rychkov, “Geometry quantization from supergrav-

ity: The case of ’bubbling AdS’,” JHEP 0508, 096 (2005) [arXiv:hep-th/0508059];

86



A. Ghodsi, A. E. Mosaffa, O. Saremi and M. M. Sheikh-Jabbari, “LLL vs. LLM:

Half BPS sector of N = 4 SYM equals to quantum Hall system,” Nucl. Phys. B 729,

467 (2005) [arXiv:hep-th/0505129]; A. E. Mosaffa and M. M. Sheikh-Jabbari, “On

classification of the bubbling geometries,” arXiv:hep-th/0602270; S. Giombi, M. Ku-

laxizi, R. Ricci and D. Trancanelli, “Half-BPS geometries and thermodynamics of free

fermions,” arXiv:hep-th/0512101; Y. Takayama and A. Tsuchiya, “Complex matrix

model and fermion phase space for bubbling AdS geometries,” JHEP 0510 (2005)

004 [arXiv:hep-th/0507070]; Z. W. Chong, H. Lu and C. N. Pope, “BPS geometries

and AdS bubbles,” Phys. Lett. B 614, 96 (2005) [arXiv:hep-th/0412221]; A. Donos,

A. Jevicki and J. P. Rodrigues, “Matrix model maps in AdS/CFT,” Phys. Rev. D 72,

125009 (2005) [arXiv:hep-th/0507124]; S. Yamaguchi, “Bubbling geometries for half

BPS Wilson lines,” [arXiv:hep-th/0601089]; L. Bonora, C. Maccaferri, R. J. Scherer

Santos and D. D. Tolla, “Bubbling AdS and vacuum string field theory,” arXiv:hep-

th/0602015;T. Yoneya, “Extended fermion representation of multi-charge 1/2-BPS

operators in AdS/CFT: Towards field theory of D-branes,” JHEP 0512, 028 (2005)

[arXiv:hep-th/0510114]

[8] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253

(1998) [arXiv:hep-th/9802150].

[9] J. McGreevy, L. Susskind and N. Toumbas, “Invasion of the giant gravitons from

anti-de Sitter space,” JHEP 0006, 008 (2000) [arXiv:hep-th/0003075].

[10] A. Hashimoto, S. Hirano and N. Itzhaki, “Large branes in AdS and their field theory

dual,” JHEP 0008 (2000) 051 [arXiv:hep-th/0008016].

[11] D. Berenstein, “A toy model for the AdS/CFT correspondence,” JHEP 0407 (2004)

018 [arXiv:hep-th/0403110].

[12] J. P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, “Supersymmetric AdS(5)

solutions of type IIB supergravity,” arXiv:hep-th/0510125.

87



[13] J. P. Gauntlett, J. B. Gutowski, C. M. Hull, S. Pakis and H. S. Reall, “All super-

symmetric solutions of minimal supergravity in five dimensions,” Class. Quant. Grav.

20, 4587 (2003) [arXiv:hep-th/0209114].

[14] J. B. Gutowski, D. Martelli and H. S. Reall, “All supersymmetric solutions of mini-

mal supergravity in six dimensions,” Class. Quant. Grav. 20, 5049 (2003) [arXiv:hep-

th/0306235].

[15] H. Lu, C. N. Pope and J. Rahmfeld, “A construction of Killing spinors on S**n,” J.

Math. Phys. 40, 4518 (1999) [arXiv:hep-th/9805151].

[16] N. Alonso-Alberca, E. Lozano-Tellechea and T. Ortin, “Geometric construction

of Killing spinors and supersymmetry algebras in homogeneous spacetimes,” Class.

Quant. Grav. 19, 6009 (2002) [arXiv:hep-th/0208158].

[17] M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, “A new maximally

supersymmetric background of IIB superstring theory,” JHEP 0201, 047 (2002), hep-

th/0110242.

[18] S. Mukhi and M. Smedback, “Bubbling orientifolds,” JHEP 0508, 005 (2005)

[arXiv:hep-th/0506059].

[19] R. C. Myers and O. Tafjord, “Superstars and giant gravitons,” JHEP 0111, 009

(2001) [arXiv:hep-th/0109127].

[20] L. F. Alday, J. de Boer and I. Messamah, “The gravitational description of coarse

grained microstates,” arXiv:hep-th/0607222.

[21] O. Lunin, S. D. Mathur and A. Saxena, “What is the gravity dual of a chiral pri-

mary?,” Nucl. Phys. B 655, 185 (2003) [arXiv:hep-th/0211292].

[22] O. Lunin and S. D. Mathur, “AdS/CFT duality and the black hole information

paradox,” Nucl. Phys. B 623, 342 (2002) [arXiv:hep-th/0109154].

[23] O. Lunin, J. Maldacena and L. Maoz, “Gravity solutions for the D1-D5 system with

angular momentum,” arXiv:hep-th/0212210.

88



[24] J. de Boer, “Six-dimensional supergravity on S**3 x AdS(3) and 2d conformal field

theory,” Nucl. Phys. B 548, 139 (1999) [arXiv:hep-th/9806104].

[25] J. de Boer, “Large N Elliptic Genus and AdS/CFT Correspondence,” JHEP 9905,

017 (1999) [arXiv:hep-th/9812240].

[26] E. Gava, A. B. Hammou, J. F. Morales and K. S. Narain, “AdS/CFT correspon-

dence and D1/D5 systems in theories with 16 supercharges,” JHEP 0103, 035 (2001)

[arXiv:hep-th/0102043].

[27] E. Gava, A. B. Hammou, J. F. Morales and K. S. Narain, “D1D5 systems and

AdS/CFT correspondences with 16 supercharges,” Fortsch. Phys. 50, 890 (2002)

[arXiv:hep-th/0201265].

[28] D. Martelli and J. F. Morales, “Bubbling AdS(3),” JHEP 0502 (2005) 048

[arXiv:hep-th/0412136].

[29] M. Boni and P. J. Silva, “Revisiting the D1/D5 system or bubbling in AdS(3),”

JHEP 0510, 070 (2005) [arXiv:hep-th/0506085].

[30] J. T. Liu, D. Vaman and W. Y. Wen, “Bubbling 1/4 BPS solutions in type IIB

and supergravity reductions on S**n Nucl. Phys. B 739, 285 (2006) [arXiv:hep-

th/0412043].

[31] J. T. Liu and D. Vaman, “Bubbling 1/2 BPS solutions of minimal six-dimensional

supergravity,” arXiv:hep-th/0412242.

[32] A. Donos and A. Jevicki, “Dynamics of chiral primaries in AdS(3) x S**3 x T**4,”

arXiv:hep-th/0512017.

[33] V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, “The library of Babel:

On the origin of gravitational thermodynamics,” JHEP 0512, 006 (2005) [arXiv:hep-

th/0508023].

[34] V. S. Rychkov, “D1-D5 black hole microstate counting from supergravity,” JHEP

0601, 063 (2006) [arXiv:hep-th/0512053].

89



[35] H. Elvang, R. Emparan, D. Mateos and H. S. Reall, “Supersymmetric black rings

and three-charge supertubes,” Phys. Rev. D 71, 024033 (2005) [arXiv:hep-th/0408120].

[36] L. F. Alday, J. de Boer and I. Messamah, “What is the dual of a dipole?,” arXiv:hep-

th/0511246.

[37] J. M. Maldacena, “The large N limit of superconformal field theories and supergrav-

ity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]

[arXiv:hep-th/9711200].

[38] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from

non-critical string theory,” Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109].

[39] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field the-

ories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111].

[40] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog.

Theor. Phys. 113, 843 (2005); hep-th/0412141.

[41] T. Sakai and S. Sugimoto, More on a holographic dual of QCD; hep-th/0507073.

[42] O. Aharony, J. Sonnenschein and S. Yankielowicz, “A holographic model of decon-

finement and chiral symmetry restoration,” arXiv:hep-th/0604161.

[43] S. Kuperstein and J. Sonnenschein, “Non-critical supergravity (d ¿ 1) and hologra-

phy,” JHEP 0407, 049 (2004) [arXiv:hep-th/0403254].

[44] S. Kuperstein and J. Sonnenschein, “Non-critical, near extremal AdS(6) background

as a holographic laboratory of four dimensional YM theory,” JHEP 0411, 026 (2004)

[arXiv:hep-th/0411009].

[45] K. Peeters, J. Sonnenschein and M. Zamaklar, “Holographic melting and related

properties of mesons in a quark gluon plasma,” arXiv:hep-th/0606195.

[46] A. Parnachev and D. A. Sahakyan, arXiv:hep-th/0604173.

[47] N. Horigome and Y. Tanii, arXiv:hep-th/0608198.

90



[48] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge

Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:hep-th/9803131].

[49] R. Casero, A. Paredes and J. Sonnenschein, “Fundamental matter, meson spec-

troscopy and non-critical string / gauge duality,” JHEP 0601, 127 (2006) [arXiv:hep-

th/0510110].

[50] J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998) [arXiv:hep-th/9803002].

[51] S. J. Rey and J. T. Yee, “Macroscopic strings as heavy quarks in large N gauge

theory and anti-de Eur. Phys. J. C 22, 379 (2001) [arXiv:hep-th/9803001].

[52] Y. Kinar, E. Schreiber and J. Sonnenschein, Nucl. Phys. B 566, 103 (2000)

[arXiv:hep-th/9811192].

[53] N. Itzhaki, J. M. Maldacena, J. Sonnenschein and S. Yankielowicz, “Supergravity

and the large N limit of theories with sixteen supercharges,” Phys. Rev. D 58, 046004

(1998) [arXiv:hep-th/9802042].

[54] F. Neri and A. Gocksch, “Chiral Symmetry Restoration In Large N QCD At Finite

Temperature,” Phys. Rev. D 28, 3147 (1983).

[55] R. D. Pisarski, “Finite Temperature QCD At Large N,” Phys. Rev. D 29, 1222

(1984).

[56] M. Kruczenski, L. A. P. Zayas, J. Sonnenschein and D. Vaman, “Regge trajecto-

ries for mesons in the holographic dual of large-N(c) QCD,” JHEP 0506, 046 (2005)

[arXiv:hep-th/0410035].

[57] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. G. Yaffe, “Energy loss of a

heavy quark moving through N = 4 supersymmetric Yang-Mills plasma,” JHEP 0607,

013 (2006) [arXiv:hep-th/0605158].

[58] J. Casalderrey-Solana and D. Teaney, “Heavy quark diffusion in strongly coupled N

= 4 Yang Mills,” arXiv:hep-ph/0605199.

[59] S. S. Gubser, “Drag force in AdS/CFT,” arXiv:hep-th/0605182.

91



[60] C. P. Herzog, “Energy loss of heavy quarks from asymptotically AdS geometries,”

arXiv:hep-th/0605191.

[61] E. Caceres and A. Guijosa, “Drag force in charged N = 4 SYM plasma,” arXiv:hep-

th/0605235.

[62] J. J. Friess, S. S. Gubser and G. Michalogiorgakis, “Dissipation from a heavy quark

moving through N = 4 super-Yang-Mills plasma,” arXiv:hep-th/0605292.

[63] S. J. Sin and I. Zahed, “Ampere’s law and energy loss in AdS/CFT duality,”

arXiv:hep-ph/0606049.

92


