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Based on the formalism of the Zk-graded deformed oscillator algebra, we systematically
construct, within the framework of supersymmetric quantum mechanics, general algebraic
properties of four known classes of shape invariant potentials that are extended from the
ordinary one step in the literature to arbitrary k steps.
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I. INTRODUCTION

Supersymmetry (SUSY) is the symmetry relating bosonic and fermionic degrees of
freedom. Historically, supersymmetric quantum mechanics (SUSY QM) was proposed as a
limiting theory to gain a better understanding of the dynamical SUSY breaking of quantum
field theories [1, 2]. It was soon recognized that SUSY QM could be a very interesting topic
in its own right, because, by the method of factorization [3], it enables us to build the SUSY
partner Hamiltonian of a given nonrelativistic one. When the method is repeatedly used,
we consequently construct an entire hierarchy of isospectral SUSY partner Hamiltonians.
For complete reviews on SUSY QM, please refer to [4–7] and the references therein.

To be specific, let us consider two Hamiltonians H(±)(x, a0) = − d2

dx2 + V (±)(x, a0),

which are said to be SUSY partners, if the corresponding potentials V (±)(x, a0) are related
to each other by

V (±)(x, a0) = W 2(x, a0)±W ′(x, a0) , (1)

whereW (x, a0) is the superpotential, W
′(x, a0) ≡ d

dxW (x, a0), and a0 is a set of parameters.

The SUSY partner Hamiltonians H(±)(x, a0) defined through Equation (1) are found to
be exactly isospectral, except for a zero-energy ground-state eigenfunction that can be
completely determined by the asymptotic behavior of the superpotentialW (x → ±∞, a0) ≡
w±. For this, we define the topological Witten index by ∆ = 1

2 [sgn(w+) − sgn(w−)], with
sgn(w±) being the sign of w±. Then, ∆ ̸= 0 indicates unbroken SUSY, thus the existence
of the zero-energy eigenstate; otherwise ∆ = 0 signifies broken SUSY and the nonexistence
of such an eigenstate [5].

One of the important conceptual breakthroughs in the study of SUSY QM is the
introduction of the shape invariance condition (in one step) [8], which generically speaking
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is a discrete reparameterization and gives rise to an integrability condition on the solvable
potentials [9–13]. It can be shown that when the shape invariance condition is fulfilled by
the pair of partner Hamiltonians H(±)(x, a0), the energy spectra and eigenfunctions are
completely determined by algebraic means [8, 14]. Let us mention here that the underlying
algebraic structure of shape invariance is actually a direct consequence of what is referred
to as the potential algebra [15, 16]; thus all shape invariant potentials (in one step) can be
studied by group theoretical methods [17, 18].

By ‘shape invariance’, we demand that the pair of partner potentials V (±)(x, a0)
in Equation (1) be similar in shape but differ only up to a change of parameters and
additive constants. For this purpose, let us consider the general case of the shape invariance
condition in arbitrary k steps that can be described by k arbitrary superpotentialsWs(x, a0),
where k is a positive integer and s = 0, 1, · · · , k−1. To preserve SUSY, the k superpotentials
are chosen to fulfill both the asymptotic behavior: sgn(w0+) = sgn(w1+) · · · = sgn(w(k−1)+)
and the Witten index requirements: ∆s ̸= 0, for s = 0, 1, · · · , k − 1. Mathematically, the
shape invariance condition in k steps reads [11]

W 2
0 (x, a0) +W ′

0(x, a0) = W 2
1 (x, a0)−W ′

1(x, a0) +R0(a0) ,

W 2
1 (x, a0) +W ′

1(x, a0) = W 2
2 (x, a0)−W ′

2(x, a0) +R1(a0) ,

· · · = · · ·
W 2

k−1(x, a0) +W ′
k−1(x, a0) = W 2

0 (x, a1)−W ′
0(x, a1) +Rk−1(a0) , (2)

where a1 = f(a0) is a function of a0 and k and the remainders Rs(a0) are arbitrary,
independent of x. Via Equation (2), it is straightforward to show that the energy eigenvalues

of the initial Hamiltonian H
(−)
0 (x, a0) = − d2

dx2 + V
(−)
0 (x, a0) is of the form

E
(−)
nk+s =

n−1∑
m=0

k−1∑
t=0

Rt(am) +
s−1∑
t=0

Rt(an) , (3)

where n = 0, 1, 2, · · · , s = 0, 1, · · · , k − 1, and the convention
∑−1

t=0 = 0 is used. Here, we
assume that the superpotentials Ws(x, a0) are constructed such that it is the Hamiltonian

H
(−)
0 (x, a0) that possesses the unique zero-energy ground state. In the literature, some

solvable potentials based on the shape invariance condition in two or higher multi-steps (2)
have been constructed [13, 14, 19–21].

With regard to the algebraic structures described by Equations (2) and (3), a simpli-
fied version of the potential algebra of the shape invariance condition in k steps has been
proposed, under certain circumstances. For k = 2, it was shown that the corresponding
simplified potential algebra is based on three angular-momentum-like generators [20, 22].
As for the case of arbitrary k steps, the simplified algebra can be realized by the gener-
alized deformed oscillator algebra, which has a built-in Zk-grading structure [23, 24]. In
addition, this Zk-graded deformed oscillator algebra automatically includes that of cyclic
shape invariant potentials of period k [13, 25, 26].

The purpose of the present article is to extend the major findings of reference [24].
In that paper, we showed that the general algebraic properties of translational shape in-
variant potentials in k steps can be completely determined, when the remainders Rs(am)



920 ALGEBRAIC PROPERTIES OF THE SHAPE INVARIANCE . . . VOL. 51

in Equation (2) are analytic functions of the parameter am that is related to the other
parameters by translation: am+1 = am + δ, in which δ is a constant. In this article, we
turn our attention to the other three known classes of shape invariant potentials (in one
step) in the SUSY literature, namely, (i) the scaling class, with the relationship between
parameters am+1 = qam, for 0 < q < 1, (ii) the ‘exotic’-I class, with am+1 = qa p

m, for
0 < q < 1 and p = 2, 3, ..., and (iii) the ‘exotic’-II class, the generalization of ‘exotic’-I class,
with am+1 = qam/(1 + ram), for 0 < q < 1 and ram ≪ 1. We shall show that the detailed
algebraic properties for these three classes of shape invariant potentials extended to arbi-
trary k steps can be systematically determined as well, by using the Zk-graded deformed
oscillator algebra.

The article is organized as follows. In Section II, for the purpose of completeness, we
briefly review on the equivalence between the simplified potential algebra of shape invariance
in k steps and the algebra of Zk-graded generalized deformed oscillators. In Section III,
based on the main results of translational shape invariant potentials, we present in detail
the general algebraic properties of the other three classes of shape invariant potentials in k
steps. Finally, Section IV contains a discussion of the present article.

II. Zk-GRADED SHAPE INVARIANCE CONDITION

In this section, we review how the simplified shape invariance condition in k steps
is realized by the Zk-graded generalized deformed oscillator algebra [23, 24]. Deformed
oscillators have been studied in many different deformation schemes [28–31]. The Zk-
graded generalized deformed oscillators are the ordinary ones, but having an extra built-in
Zk-grading symmetry [32, 33].

The novel version of the shape invariance condition in k steps that simplifies Equa-
tion (2) can be established as follows. We first identify in Equation (2) the parameters as
am ≡ α(N0 − m), for N0 and m arbitrary integers. Then, we impose extra relations on
the k superpotentials Ws(x,α(N0)) and the k remainders Rs(α(N0)), respectively, in the
forms

Ws(x,α(N0)) ≡ W
(
x,α

(
N0 −

s

k

))
, Rs(α(N0)) ≡ R

(
α

(
N0 −

s

k

))
, (4)

where the identification a s
k
= α(N0 − s

k ) is thus inferred. By using Equation (4), the k
relations of Equation (2) can be rewritten into a unified one, in terms of both the unified
superpotential W(x,α(N0)) and the unified remainder R(α(N0)), as

W2

(
x,α

(
N0 −

s

k

))
+W ′

(
x,α

(
N0 −

s

k

))
= W2

(
x,α

(
N0 −

s+ 1

k

))
−W ′

(
x,α

(
N0 −

s+ 1

k

))
+R

(
α

(
N0 −

s

k

))
. (5)

In this way, the k relations in Equation (2) can be readily reproduced from Equation (5) by
letting, one at a time, s = 0, 1, · · · , k−1. Equation (5) consequently represents the simplified



VOL. 51 W. -C. SU 921

version of the shape invariance condition in k steps, as told. Actually, this equation admits
an inherited Zk-grading algebra that can be further realized by the Zk-graded deformed
oscillator algebra.

To show this, let us first recall the relevant definition of the algebra of generalized
deformed oscillators, which has a built-in Zk-grading structure. It is defined by a nonlinear
algebra generated by the number operator N , the lowering operator A, the raising oper-
ator A†, and, most importantly, the k projection operators Πs (for s = 0, 1, · · · , k − 1).

Altogether, they fulfill the Hermiticity conditions (A)† = A†, N † = N , Π†
s = Πs, and the

following defining relations [32, 33]

[N ,A† ] =
1

k
A† , [N ,A ] = −1

k
A , [N ,Πs ] = 0 , (6)

A†A = F
(
α(N )

)
, AA† = F

(
α

(
N +

1

k

))
, (7)

k−1∑
s=0

Πs = I , ΠsΠt = δs,tΠs , A†Πs = Πs+1A† , AΠs = Πs−1A . (8)

Here, the convention is used: Πt = Πs, if t− s = 0 mod k. The Hermitian positive function
F(α(N )) in Equation (7) is usually called the structure function.

Next, let us build the corresponding set of operators {N ,Πs,A,A†} that is implicitly
presented in the simplified shape invariance condition (5). For short, the analogous number
operator N and the projection operators Πs are respectively constructed as

N ≡ 1

i

∂

∂ϕ
, Πs ≡

1

k

k−1∑
t=0

e2πit(N+s/k) . (9)

Further, the analogous ladder operators A and A† are built, using the unified superpotential
W(x, α(N )), by

A = e−iϕ/k

[
∂

∂x
+W(x,α(N ))

]
, A† =

[
− ∂

∂x
+W(x,α(N ))

]
eiϕ/k , (10)

where the configuration space of the parameter is ϕ ∈ [0, 2πk], since A and A† remain
invariant under the transformation: ϕ → ϕ+ 2πk.

Now, it is straightforward to verify that the set of operators {N ,Πs,A,A†} con-
structed in Equations (9) and (10) indeed satisfies all the required relations of Zk-graded
deformed oscillator algebra, provided that the following remainder-structure-function rela-
tion, via Equation (5), holds

F
(
α

(
N +

1

k

))
−F(α(N )) = R

(
α

(
N +

1

k

))
. (11)
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In other words, the identification (4) simplifies the original shape invariance condition in
k steps (2) to the relatively simple version (5), which turns out to be identical to the
well-established Zk-graded deformed oscillator algebra.

The Fock space for the Zk-graded deformed oscillator algebra is symbolically denoted
by the direct sum H =

∑k−1
s=0 ⊕Hs, consisting of k distinct Fock subspaces

Hs ≡
{ ∣∣∣∣N0 −

mk + s

k

⟩∣∣∣∣m = 0, 1, 2, · · ·
}

. (12)

As usual, the number eigenstates in the Fock space are simultaneous eigenstates of N and
Πs, fulfilling the respective eigenvalue equations (for s, t = 0, 1, · · · , k − 1)

N
∣∣∣∣N0 −

mk + s

k

⟩
=

(
N0 −

mk + s

k

)∣∣∣∣N0 −
mk + s

k

⟩
, (13)

Πt

∣∣∣∣N0 −
mk + s

k

⟩
= δt,s

∣∣∣∣N0 −
mk + s

k

⟩
. (14)

When acting on these number eigenstates, the ladder operators A and A† in Equa-
tion (10), as anticipated, change the eigenvalues of N by − 1

k and + 1
k , respectively,

A
∣∣∣∣N0 −

n

k

⟩
=

√
F
(
α

(
N0 −

n

k

)) ∣∣∣∣N0 −
n+ 1

k

⟩
, (15)

A†
∣∣∣∣N0 −

n

k

⟩
=

√
F
(
α

(
N0 −

n− 1

k

)) ∣∣∣∣N0 −
n− 1

k

⟩
, (16)

where n = 0, 1, 2, · · · . Further, if the spectrum exhibits a lowest-weight eigenstate: A
∣∣N0−

n0
k

⟩
= 0, for a given integer n0, then F

(
α(N0 − n0

k )
)
= 0. Otherwise, if it exhibits a

highest-weight eigenstate: A†∣∣N0 − n0
k

⟩
= 0, then F

(
α(N0 − n0−1

k )
)
= 0.

It is interesting to note that based on Equation (11), the energy spectrum of the

initial Hamiltonian H
(−)
0 (x,α(N0)) now can be expressed solely in terms of the structure

function F(α(N0 − n
k )) by

E(−)
n =

n−1∑
m=0

R
(
α

(
N0 −

m

k

))
= F

(
α(N0)

)
−F

(
α

(
N0 −

n

k

))
, (17)

where n = 0, 1, 2, · · ·. Equation (17) represents the energy spectrum of the simplified
shape invariance condition in k steps, in contrast to the originally more complicated energy
spectrum in Equation (3).

Two remarks are in order. (i) For the case k = 2, the simplified potential algebra is
known as the Calogero-Vasiliev oscillator algebra [34], in which the Z2-grading structure
is characterized by the Klein operator. It is also related to the R-deformed Heisenberg
algebra [29] that has found many interesting applications, recently [35]. (ii) The remainder
R(α(N0 − m

k )) in Equation (17) is the energy gap between two adjacent eigenstates. To
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prevent the energy levels from crossing, we must have R(α(N0 − m
k )) > 0, for positive

integer m. If R(α(N0 − m
k )) ≤ 0 happens, it simply means that the associated shape

invariant potential in k steps contains only a finite number of bound states, thus is of finite
depth.

III. SHAPE INVARIANT POTENTIALS IN k STEPS

In this section, the detailed algebraic properties of four known classes of shape in-
variant potentials (in one step) in the literature that retain SUSY will be extended to the
general case of k steps, which include the translational class, the scaling class, the ‘exotic’-I
class, and the ‘exotic’-II class.

To proceed, let us consider an arbitrary shape invariant potential in k steps, in which
the k unrelated remainders Rs(am) in Equation (2) admit the respective power series ex-
pansions (m = 0, 1, 2, · · · )

Rs(am) =
∞∑
i=0

αs,i (am)i , (18)

where αs,i (s = 0, 1, · · · , k− 1) are expansion coefficients. Next, according to Equation (4),
we can identify the k remainders Rs(am) to be the unified remainder R(am+ s

k
) at different

values of the parameter am+ s
k
. That is,

Rs(am) ≡ R
(
am+ s

k

)
=

∞∑
i=0

ωs,i

(
am+ s

k

)i
(19)

where ωs,i are another set of expansion coefficients that are introduced to characterize the
inherited Zk-grading structure of R(am+ s

k
). They are expressible in terms of αs,i, if the

function f(am) = am+1 that relates different shape invariant parameters is given.
Furthermore, if we denote n = mk+s in Equation (19), the unified remainder R

(
an

k

)
consequently admits the very similar expansion

R
(
an

k

)
=

k−1∑
s=0

[ ∞∑
i=0

ωs,i

(
an

k

)i
]
∆n,s , (20)

where the symbol ∆n,s is introduced for the purpose of singling out the unique term in the
index s summation, when letting n = mk + s. It is defined as the analogous Kronecker
delta for the cyclic group of order k:

∆n,s =

{
1 , for n = s mod k ,
0 , for n ̸= s mod k .

(21)

Finally, an equivalent operator expression of Equation (20) can be obtained, using
the number operator N and projection operators Πs, as

R
(
α
(
N
))

=

k−1∑
s=0

[ ∞∑
i=0

ωs,i

(
aN0−N

)i]
Πs . (22)
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It is easily seen that Equation (20) can be readily recovered by applying the operator
relation (22) directly on the number eigenstate

∣∣N0 − n
k ⟩.

III-1. The translational shape invariant potentials

We are at a position to present the detailed algebraic results for shape invariant
potentials in k steps. Let us first recall some of the main findings of [24]. So, we consider
the translational class of shape invariant potentials in k steps, in which the shape invariant
parameters are related to others by translation [9, 10]: am+1 = am+ δ. In the general case,
we have am+ s

k
= am + s

kδ = a0 + (m+ s
k )δ, where m = 0, 1, 2, · · · and s = 0, 1, · · · , k − 1.

Here, a0 and δ are constants.
In the translational class, Equations (19) therefore read as

R
(
am+ s

k

)
=

∞∑
i=0

ωs,i

(
am +

s

k
δ

)i

. (23)

Now, by comparing the power series expansions in am in both Equations (18) and (23), we
obtain

αs,i =
∞∑
j=i

(
j

i

)(
s

k
δ

)j−i

ωs,j , (24)

where
(
j
i

)
= j!/i!(j − i)! is the binomial coefficient.

In the same vein, if we denote n = mk + s, Equation (??) can be expressed in the
power series of n

k as

R
(
an

k

)
=

k−1∑
s=0

[ ∞∑
i=0

ωs,i

(
a0 +

n

k
δ

)i]
∆n,s =

k−1∑
s=0

[ ∞∑
i=0

εs,i

(
n

k

)i]
∆n,s . (25)

Here, the Kronecker delta ∆n,s singles out the term that in the index s summation satisfies
the condition n − s = 0 mod k. The expansion coefficients εs,i are then found to be
expressible as

εs,i = δ i
∞∑
j=i

(
j

i

)
(a0)

j−iωs,j = δ i
∞∑
j=i

(
j

i

)(
a0 −

s

k
δ

)j−i

αs,i , (26)

where the second equality is derived from the first one by inverting the system of linear
relations of Equation (24). Therefore, in the translational class the associated equivalent
operator relation (25) can be established, in terms of N and Πs, in the form as

R
(
α
(
N
))

=

k−1∑
s=0

[ ∞∑
i=0

εs,i
(
N0 −N

)i]
Πs . (27)

Clearly, Equation (25) is easily reproduced when Equation (27) acts on the number eigen-
state

∣∣N0 − n
k ⟩.
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Note that the remainder R
(
α
(
N )

)
shown in Equation (27) is expanded in the power

series of (N0−N ). We hence expect that the structure function F(α(N )) of the associated
Zk-graded deformed oscillator algebra can also be obtained by the same power series of
(N0 −N ). The expectation is correct. Recently, the detailed order-by-order derivations of
the structure function in powers of (N0−N ) were carried out by the author [24]. Hence, we
will not present the detailed calculations, but only quote the relevant facts of the article.

Given the unified remainder (27) of the translational shape invariant potentials in
k steps, we learned that the corresponding structure function F(α(N )) is given, via the
remainder-structure-function relation (11), by

F
(
an

k

)
= C −

k−1∑
s,t=0

[ ∞∑
i=0

εs+t,i

i+ 1
Bi+1

(
t+ n

k

)]
∆n,s , (28)

where n = 0, 1, 2, · · · , Bi+1(x) is the (i + 1)th Bernoulli function, the convention εs+t,i ≡
εs+t mod k,i is used, and C is a constant to render the structure function positive definite. As
a brief remark, the structure function F(α(N )) (28) and the set of operators {N ,Πs,A,A†}
in Equations (9) and (10) altogether thus define the simplified potential algebra of the
translational shape invariance condition in arbitrary k steps.

In addition, the energy spectrum of the initial Hamiltonian H
(−)
0 (x,α(N0)) in the

translational class can be determined, according to Equation (17),

E(−)
n =

k−1∑
t=0

∞∑
i=0

{ k−1∑
s=0

[
εs+t,i

i+ 1
Bi+1

(
t+ n

k

)]
∆n,s −

[
εt,i
i+ 1

Bi+1

(
t

k

)]}
, (29)

where n = 0, 1, 2, · · ·.
The eigenenergies for the ordinary translational shape invariant potentials in SUSY

QM can be readily obtained, that is, for the special case k = 1. When k = 1, there is no
grading structure in the associated potential algebra, so that the grading indices are set to
be s = t = 0. By denoting ε0,i = εi, we have

E(−)
n =

∞∑
i=0

εi
i+ 1

[
Bi+1(n)− 1

]
, (30)

which yields E
(−)
0 = 0, as is necessary by the requirement of unbroken SUSY. The energy

difference between two adjacent eigenstates is

R(an) = E
(−)
n+1 − E(−)

n =

∞∑
i=0

εi
i+ 1

[
Bi+1(n+ 1)−Bi+1(n)

]
=

∞∑
i=0

εi n
i. (31)

Consistency of Equations (31) and (25) (when letting k = 1 in the latter one) is therefore
manifest.

To further show the usefulness of Equation (28), we continue to consider a typical
SUSY QM system, in which the associated remainder function, i.e., the energy gap between
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two adjacent number eigenstates, takes the following exponential form

R
(
an

k

)
=

k−1∑
s=0

γs e
−n

k
σs ∆n,s =

k−1∑
s=0

γs

[ ∞∑
i=0

(−σs)
i

i!

(
n

k

)i]
∆n,s , (32)

where γs and σs are positive constants. The purpose of studying the remainder (32) is
twofold. The first is to demonstrate the closed-form algebraic properties of this particular
translational shape invariant potential in k steps. The second is to provide the key formulas
in determining the algebraic properties for the other three known classes of shape invariant
potentials in k steps.

When comparing (32) with (25), we obtain εs,i = γs(−σs)
i/i!. From Equation (28),

it in turns results in the following exact structure function

F
(
an

k

)
= C −

k−1∑
s,t=0

γs+t

[ ∞∑
i=0

(−σs+t)
i

(i+ 1)!
Bi+1

(
t+ n

k

)]
∆n,s ,

= C −
k−1∑
s,t=0

γs+t

[
e−( t+n

k
)σs+t

e−σs+t − 1
+

1

σs+t

]
∆n,s , (33)

where to go from the first line to the second one, we use B0(x) = 1 and a property of
the generating function that defines the Bernoulli functions [36]. Now, according to Equa-

tion (17), the energy spectrum of the initial HamiltonianH
(−)
0 (x,α(N0)), having the specific

remainder (32), is written by

E(−)
n =

k−1∑
t=0

{ k−1∑
s=0

γs+t

[
e−( t+n

k
)σs+t

e−σs+t − 1
+

1

σs+t

]
∆n,s − γt

[
e−

t
k
σt

e−σt − 1
+

1

σt

]}
, (34)

where n = 0, 1, 2, · · ·.
Correctness of the exact expression (34) can be easily checked for the ordinary k = 1

shape invariant potentials. When k = 1, the grading indices are taken as s = t = 0. If we
denote γ = γ0 and σ = σ0, Equation (34) then is reduced to the simple form

E(−)
n = γ

1− e−nσ

1− e−σ
, (35)

which yields E
(−)
0 = 0, as is necessary by the requirement of unbroken SUSY. Further, we

can compute the energy difference between two adjacent eigenstates from Equation (35).
We find

R(an) = E
(−)
n+1 − E(−)

n = γ e−nσ . (36)

Consistency of Equations (36) and (32) (when letting k = 1 in the latter one) is therefore

evident. Note that, in the limiting case σ → 0, Equation (35) becomes E
(−)
n = nγ, which

is nothing but the energy spectrum of simple harmonic oscillators.
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III-2. The scaling shape invariant potentials

We next present the algebraic properties of shape invariant potentials in k steps in the
scaling class, in which the shape invariant parameters are related to others by the scaling
transformation [9, 10]: am+1 = qam. For more general cases, we will have am+ s

k
= q

s
k am

= qm+ s
k a0. Here, m = 0, 1, 2, · · · , s = 0, 1, · · · , k − 1, a0 is a constant, and the scaling

parameter q is restricted to be in the interval 0 < q < 1.
From Equations (19), the unified remainder in the scaling class takes the form

R
(
am+ s

k

)
=

∞∑
i=0

ωs,i

(
q

s
k am

)i
. (37)

Comparing Equations (37) with (18), we obtain the relation between the expansion coeffi-
cients: αs,i = ωs,i q

i s
k . Likewise, if we denote n = mk + s, Equation (37) then becomes

R
(
an

k

)
=

k−1∑
s=0

[ ∞∑
i=0

εs,i q
in
k

]
∆n,s =

k−1∑
s=0

[ ∞∑
i=0

εs,i e
−n

k
σi

]
∆n,s , (38)

where we have denoted εs,i ≡ a i
0 ωs,i =

(
q−

s
k a0

)i
αs,i and σi = − ln q i. Obviously, the term

that will be singled out in the index s summation satisfies the condition n− s = 0 mod k.
The equivalent operator expression of Equation (38) can be established, in terms of the N
and Πs operators, as follows:

R
(
α
(
N
))

=
k−1∑
s=0

[ ∞∑
i=0

εs,i q
i(N0−N )

]
Πs . (39)

Therefore, Equation (38) can be recovered with ease by acting with the remainder operator
R
(
α
(
N )

)
(39) on the number eigenstate

∣∣N0 − n
k ⟩.

It is noted that the remainder R
(
an

k

)
in the second equality of Equation (38) takes

the standard exponential form, similar to that discussed in Equation (32). As a conse-
quence, the corresponding algebraic properties can be immediately determined. By using
Equation (33), we obtain the associated structure function F(α(N )) of the scaling shape
invariant potentials in k steps as

F
(
an

k

)
= C −

k−1∑
s,t=0

[ ∞∑
i=0

εs+t,i

(
e−( t+n

k
)σi

e−σi − 1
+

1

σi

)]
∆n,s ,

= C −
k−1∑
s,t=0

[ ∞∑
i=0

εs+t,i

(
q i ( t+n

k
)

q i − 1
− 1

ln q i

)]
∆n,s , (40)

where n = 0, 1, 2, · · · , the convention εs+t,i ≡ εs+t mod k,i is used, and C is a constant
to yield the structure function positive definite. It is mentioned that the term inside the
parenthesis on the second line reduces to t+n

k , in the limiting case i → 0.
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The structure function (40) together with the set of operators {N ,Πs,A,A†} in Equa-
tions (9) and (10) thus define the simplified algebra of the scaling shape invariance condition
in k steps. Now, according to Equation (17), the energy spectrum of the initial Hamiltonian

H
(−)
0 (x,α(N0)) in the scaling class will be (n = 0, 1, 2, · · · )

E(−)
n =

k−1∑
t=0

∞∑
i=0

{ k−1∑
s=0

εs+t,i

[
q i ( t+n

k
)

q i − 1
− 1

ln q i

]
∆n,s − εt,i

[
q i t

k

q i − 1
− 1

ln q i

]}
. (41)

Correctness of the exact energy expression (41) can be verified by comparing to that
of the scaling shape invariant potentials in one step. When letting k = 1, the grading
indices are taken to be s = t = 0. If we denote εi = ε0,i, then Equation (41) reduces to the
relatively simple form [9, 10]

E(−)
n =

∞∑
i=0

εi
q i n − 1

q i − 1
, (42)

which yields E
(−)
0 = 0, as is necessary by the requirement of unbroken SUSY. Finally, let

us compute the energy difference between two adjacent eigenstates for Equation (42). We
find that

R(an) = E
(−)
n+1 − E(−)

n =

∞∑
i=0

εi q
i n =

∞∑
i=0

ωi a
i
n , (43)

where εi = ωi a
i
0. Obviously, Equations (43) and (37) (by setting s = 0) are equivalent.

III-3. The ‘exotic’-I shape invariant potentials

The detailed algebraic properties of the ‘exotic’-I shape invariant potentials in k steps
will be determined. In this class, the shape invariant parameters are related to others by
the transformation [11]: am+1 = q a p

m, for m = 0, 1, 2, · · · , 0 < q < 1, and p = 2, 3, .... Note
that p ̸= 1.

Before going into the details, let us redefine the relevant parameters to simplify the
upcoming presentations. To that purpose, we denote q ≡ q̃ p−1 and bm ≡ q̃ am, so that the
relationship between the shape invariant parameters turns into bm+1 = b pm and bm = (b0)

pm .
In the general case of the shape invariance condition in k steps, we thus have bm+ s

k
=

(b0)
ps/kbm = (b0)

pm+s/k
, for s = 0, 1, · · · , k−1. In terms of the newly defined shape invariant

parameter bm, the unified remainder (19) in the ‘exotic’-I class would take the form

R
(
am+ s

k

)
=

∞∑
i=0

ωs,i

q̃ i

(
bm+ s

k

)i
=

∞∑
i=0

α̃s,i b
i
m , (44)

where we denote α̃s,i ≡ ωs,i(b
i
0)

ps/k/q̃ i. In addition, when comparing Equations (44) and
(18), we find that the relation between the coefficients is αs,i = q̃ i α̃s,i. In the same vein, if
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we write n = mk + s, Equation (44) then becomes

R
(
an

k

)
=

k−1∑
s=0

[ ∞∑
i=0

ωs,i

q̃ i
(b i0)

pn/k

]
∆n,s =

k−1∑
s=0

[ ∞∑
i,j=0

ωs,i

q̃ i

(ln b i0)
j

j!
e

n
k
ln p j

]
∆n,s . (45)

It is stressed that the term that survives in the index s summation above satisfies the
condition n− s = 0 mod k.

Now, by denoting the new parameters ε j
s,i ≡ ωs,i(ln b

i
0)

j/q̃ ij! and σj ≡ ln p j , we arrive
at the expression

R
(
an

k

)
=

k−1∑
s=0

[ ∞∑
i,j=0

ε j
s,i e

n
k
σj

]
∆n,s . (46)

Apparently, the remainder R
(
an

k

)
in Equation (46) again is of the standard exponential

form, similar to that in Equation (32). As in the preceding class, the associated algebraic
properties can be analogously determined. Besides, the equivalent operator expression
R
(
α
(
N )

)
of Equation (46) are expressible as follows

R
(
α
(
N
))

=

k−1∑
s=0

[ ∞∑
i,j=0

ε j
s,i p

j(N0−N )

]
Πs . (47)

Here, Equation (46) can be reproduced from Equation (47) when the latter one acts on the
number eigenstate

∣∣N0 − n
k ⟩.

The corresponding structure function F(α(N )) of the ‘exotic’-I shape invariant po-
tentials in k steps, which has the unified remainder of the form (47), is consequently deter-
mined, via Equation (33), as

F
(
an

k

)
= C −

k−1∑
s,t=0

[ ∞∑
i,j=0

ε j
s+t,i

(
e(

t+n
k

)σj

eσj − 1
+

1

σj

)]
∆n,s ,

= C −
k−1∑
s,t=0

[ ∞∑
i,j=0

ε j
s+t,i

(
p j( t+n

k
)

p j − 1
+

1

ln p j

)]
∆n,s , (48)

where n = 0, 1, 2, · · · , the convention ε j
s+t,i ≡ ε j

s+t mod k,i is used, and C is a constant
to yield the structure function positive definite. It is mentioned that the term inside the
parenthesis on the second line reduces to t+n

k , in the limit j → 0.
We mention that the structure function (48) and the operators {N ,Πs,A,A†} in

Equations (9) and (10) altogether define the simplified algebra of the ‘exotic’-I shape invari-
ance condition in arbitrary k steps. Now, according to Equation (17), the energy spectrum

of the initial Hamiltonian H
(−)
0 (x,α(N0)) in this class is given by (n = 0, 1, 2, · · · )

E(−)
n =

k−1∑
t=0

∞∑
i,j=0

{ k−1∑
s=0

ε j
s+t,i

[
p j( t+n

k
)

p j − 1
+

1

ln p j

]
∆n,s − ε j

t,i

[
p j t

k

p j − 1
+

1

ln p j

]}
. (49)
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Correctness of the exact energy expression (49) can be checked for the ordinary
‘exotic’-I shape invariant potentials. When letting k = 1, the grading indices are taken
to be s = t = 0. By denoting ε j

i = ε j
0,i in Equation (49), we obtain [11]

E(−)
n =

∞∑
i,j=0

ε j
i

p j n − 1

p j − 1
=

n−1∑
m=0

∞∑
i=0

ωi

q̃ i
(b i0)

pm , (50)

which yields E
(−)
0 = 0, as is a must for unbroken SUSY. Note that

∑−1
m=0 = 0 and ε j

i ≡
ωi(ln b

i
0)

j/q̃ ij!. Finally, let us compute the energy difference between two adjacent eigen-
states from Equation (50). It is found that

R(an) = E
(−)
n+1 − E(−)

n =

∞∑
i=0

ωi

q̃ i
(bn)

i =

∞∑
i=0

ωi

q i/p−1

(
q

1
p−1a0

)i pn

, (51)

where ωi = ω0,i. Consistency of Equations (51) and (44) (by setting s = 0) is manifest.

III-4. The ‘exotic’-II shape invariant potentials

In the literature, the fourth known class is the ‘exotic’-II shape invariant poten-
tials [11], in which the shape invariant parameters are related by the relation a1 =
qa0/(1 + ra0), where 0 < q < 1, a0 a constant, and ra0 ≪ 1, so that we can expand
the denominator (1 + ra0)

−1 in powers of a0. By recursively using this relation, we arrive
for the general am at

am =
qma0

1 + ra0

(
1−qm

1−q

) ≡ ρ qm

1 + δ qm
, (52)

where in the second equality the parameters ρ and δ are denoted, respectively, as

ρ =
(q − 1)a0
q − 1− ra0

, δ =
ra0

q − 1− ra0
. (53)

Note that |δ| < 1 for 0 < q < 1, such that the denominator of am in the second equality of
Equation (52) can be further expanded in powers of qm.

In the present ‘exotic’-II class, the unified remainder (19) of the shape invariance

condition in k steps still takes the standard form R
(
am+ s

k

)
=

∑∞
i=0 ωs,i

(
am+ s

k

)i
. Therefore,

if we write n = mk + s, this remainder becomes

R
(
an

k

)
=

k−1∑
s=0

[ ∞∑
i=0

ωs,iρ
i

∞∑
j=0

(
−i

j

)
δjq(i+j)n

k

]
∆n,s =

k−1∑
s=0

[ ∞∑
i,j=0

ε j
s,i e

n
k
σi+j

]
∆n,s . (54)

Here, in the first equality we have expanded the denominator (1 + δ qn/k)−i of (an
k
)i with

the help of the second expression of Equation (52) and
(−i
j

)
is the usual binomial coefficient.

While in the second equality we set the new parameters ε j
s,i ≡

(−i
j

)
ωs,iρ

iδj and σi+j ≡ ln q i+j
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to simplify the notations. It is once again noted that the term that survives in the index s
summation above satisfies the condition: n− s = 0 mod k.

The remainder R
(
an

k

)
in Equation (54) is of the expected exponential form, similar

to that in Equation (32). As a result, the associated algebraic properties can similarly be
determined. In addition, the equivalent operator expression R

(
α
(
N )

)
of Equation (54)

can be represented by

R
(
α
(
N
))

=
k−1∑
s=0

[ ∞∑
i,j=0

ε j
s,i q

(i+j)(N0−N )

]
Πs . (55)

Hence, Equation (54) can be easily reproduced from Equation (55).
For the unified remainder (55), we determine the structure function F(α(N )) of the

‘exotic’-II shape invariant potentials in k steps, via Equation (33), as

F
(
an

k

)
= C −

k−1∑
s,t=0

[ ∞∑
i,j=0

ε j
s+t,i

(
e(

t+n
k

)σi+j

eσi+j − 1
+

1

σi+j

)]
∆n,s ,

= C −
k−1∑
s,t=0

[ ∞∑
i,j=0

ε j
s+t,i

(
q(i+j)( t+n

k
)

q i+j − 1
+

1

ln q i+j

)]
∆n,s , (56)

where n = 0, 1, 2, · · · , the convention ε j
s+t,i ≡ ε j

s+t mod k,i is used, and C is a constant
to yield the structure function positive definite. It is mentioned that the term inside the
parenthesis on the second line reduces to t+n

k , in the limit i+ j → 0.
We mention again that the structure function (56) and the operators {N ,Πs,A,A†}

in Equations (9) and (10) altogether define the simplified algebra of the ‘exotic’-II shape
invariance condition in arbitrary k steps. According to Equation (17), the energy spectrum

of the initial Hamiltonian H
(−)
0 (x,α(N0)) in the present class will be (n = 0, 1, 2, · · · )

E(−)
n =

k−1∑
t=0

∞∑
i,j=0

{ k−1∑
s=0

ε j
s+t,i

[
q(i+j)( t+n

k
)

q i+j − 1
+

1

ln q i+j

]
∆n,s−ε j

t,i

[
q(i+j) t

k

q i+j − 1
+

1

ln q i+j

]}
. (57)

Correctness of the exact expression (57) can be checked for the ordinary ‘exotic’-II
shape invariant potentials. When letting k = 1, the grading indices are chosen as s = t = 0.
By denoting ε j

i = ε j
0,i in Equation (57) and letting ωi = ω0,i, we obtain [11]

E(−)
n =

∞∑
i,j=0

ε j
i

q(i+j)n − 1

q i+j − 1
=

n−1∑
m=0

[ ∞∑
i=0

ωiρ
i

∞∑
j=0

(
−i

j

)
δ jq(i+j)m

]

=

n−1∑
m=0

[ ∞∑
i=0

ωi

(
ρ qm

1 + δqm

)i ]
, (58)

which yields E
(−)
0 = 0, as is necessary for unbroken SUSY. Here, by definition

∑−1
m=0 = 0.
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Finally, we report the energy difference between two adjacent eigenstates. From equa-
tion (58), we obtain

R(an) = E
(−)
n+1 − E(−)

n =

∞∑
i=0

ωi

(
ρ qn

1 + δqn

)i

. (59)

Consistency of Equations (59) and (54) (by setting s = 0) is evident.

IV. CONCLUSIONS

In the literature of SUSY QM, it is known that the shape invariance condition (in one
step) leads immediately to all popular, analytically solvable potentials, which can be further
classified into four distinct classes, namely, the translational, the scaling, the ‘exotic’-I, and
the ‘exotic’-II classes, depending on how the shape invariant parameters are related. It
is also known that all the shape invariant potentials (in one step) possess the so-called
potential algebra; thus they can be studied by algebraic methods.

In this paper, we present the general algebraic properties for the four known classes
of shape invariant potentials that are extended from the ordinary one step to arbitrary
k steps, based on the formalism of the Zk-graded deformed oscillator algebra developed
in [24]. For each class, we first discuss the respective relationship between the neighboring
k-step shape invariant parameters, am+ s

k
. We also assume that the Zk-graded unified

remainder R
(
an

k

)
is analytic, admitting a power series expansion about an

k
. Then according

to the remainder-structure-function relation, we are able to construct the structure function
F(α(N )) in a systematic way, which together with the operators N , Πs, A, and A† define,
for each class, the simplified shape invariant potential algebra in k steps. Furthermore, the

energy spectrum E
(−)
n for the initial Hamiltonian H

(−)
0 (x,α(N0)) can be straightforwardly

determined. Finally, correctness of these obtained k-step results are verified by comparing
to those of the ordinary shape invariant potentials in one step.
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