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Preface to the CCAST-Worid Laboratory Series

The China Center of Advanced Science and Technology (CCAST)
was established in Beijing on Ociohar 17, 198€ to introduce
important frontier arsas of sciance to China, to foster their growth
vy providing o suitable environment, and io promoie free exchange of
scientific information between China anc oths nations,

A imgortant compeneni of CGAST's activities is the
crganization of domastic and intsrnational® symposium/workshops.
Each academic vear we hold about 15 domestic symuesium/work-
shops which last an average of one manth each. The subjects are
carefully chosen o cover advancad areas that are of particular
interesi to Chinese scientists. About 20-30 pariicipanis, from
senior scientisls to gracuate studenis, are selecied on a naticnwide
basis for cach program, During each workshop, these scientists
holdd daily seminars and work closely witn each other. )

- Sirce 1830, CCAST has also sponsored = vigorous program for
young Cninese scientists who have alreedy inade world-class
contributions and are currently doing rasearch zbroad. They return
to China to lecture at CCAST and to collaborate with their
colleagues at home. In this way, they can bring to China their own
expertise, and when they go back to their institutions abroad they
will be able to circulate in turn the knowiedge they have acquired in
China. , »

Chira is at a pivota! point in her scieniific déveioy.irraent. She
i graduall’ emerging as an irnporfaat and dynamic ferce in shaping
the advansd science and technclogy of the future. This series is
rart of this remarkable evolution. It records the effort, dedicatian,
and sharing of knowledge by the Chinese scientisits, at home and
abroad. '
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50, Introduction

Recently, much attention has been paid to the non-commutative differential cal-
culus on quantwn groups[1-5]. In this paper we will describe the exterior differential
calculus on the quantum group GLy(n). Quantumn group theories were developed and
several different approaches to construct quantum gronps were also introduced in pa-
pers [6-9]. In the first part of this paper, we will adopt Faddeev’s approach to give
the construction of the quantum group G'L,(n) and a concrete subalgebra of the dual
of the coordinate ring of GL,(n). The second part is mainly applied to discuss the
fizst order differential calculus on the quantum groap GL,(n), namely the construction
of the exterior differential operator ¢ sad the frst order differertial birvodule. In the
trird part we will demonstrate in detail that the first order ditferential caloulus g given in
section two is bicovariant. In the fourth purt we will describe how to got the quantum
de Rham complex of G'L,(n). A general iheory fov bicovariant differential calculus on

ompact matrix psendogroups was developed by Woronowicz {1]. And the discussions
of nonconimutative differential caleulus on move general quantum groups and quantum
spaces can be found in the papers [2]. In the third and fourth sections we mainly adopt
Woronowicz’s methods and some basic rasulte that are tme in Hopf algebras level for
general quartum groups. In the last part we shortly remark how the qx-nutum exterior
differential calculus on the quantum group GLgir) is induced to give the quantum de
Rham compléx on the quantum group 5 Lg(n).

This paper is-av extension cf [lU' fer nore general case G Lg(n), mos’r proofs in
[10] are still valid in this paper. In this paper quantum groups are anderstood as the
objects of the inverse category of the flopf algebras with autipode, which are neither
commutative, ncr co-commutative. As to Hopf algebras, please see [11]. For siraplicity,
summation convention is used in the paper. ’ - .

.By the method provided in this vaper, we can a0 give Licovariant differential
calculus on quantum groups of B, Cy, Dy series and other types[12].

£

§1. Quantumn group GL,(n)

In this section, we wiil cite some results on the quantum group GJL,(n) without
proof, and give some explanation to the symbols applied in this paper.

Let L :
' :L~ ’ ~ s
[”q E— ¢ e @ € -I \” Cii @ ey 4 € G‘* o ( 1.1)
i,j=:1 ) 2',;?' =1 : :
- i>j



where x = ¢ —¢7%, e;; (4,7 = 1,2, --,n) is the element matrix of order n, entries of
which are all zeros except that the one on i-th row j-th column is 1, and the symbol
® means the tensor product of matrices. One easily checks that the matrix Ry is a-
solution of the quantum Yan«-Baxtcr equation(QYBE)

RioRyaRo3 = RysRizRia, | (1.2)
with R;; as 73 x n® matrices defined via
Ri:=R,QF, Ru=(EQP)R2(E®P), Ros = E® R,

where E is the unit matrix of o1der n and P is the permutation matrix in €™ & C".
We can also write the matrix R, in the form of submatrices, i.e.,

Ry = (rijhi<ij<n ' (1.3)

with :
( X3, i > .’1:9

w7 = - i<j7 i ' (14)
1 B+ (g~ 1)es, i=j,

Take n? elements t;; (4,5 = 1,2,-+-,%) an arrange them into a matrix T =
(iu)1<z i<n. Let C[T] denote the free associative algebra with unit 1 generated by the
n? clements ti; (4,7 =1,2,- n), and let {R,T — Tﬂ,}i“ be the two-sided ideal
of C[T] generated by The rclatxonv BTy - D\ Ry, where Ty = T @ E, Ty =EOT.
Then the quotient .

run(M,(n\) = @[T]/{Jzﬂm ~ DT Ry} (1)

has the structure of a bialgebra with the C-linear structure maps, the comultiplication
A and the counit ¢, fixed by the following values for the generators:

AT =ToT, ) S (L.6)
e(T) = E. (1.7)

where the symbol O means At” = 4 @tyj. Both A and € are algebra homomorphisni.

And the mlllmphca, ion m on Fun(M,(n)) corresponds to the ordinary one of fum.tlons

i.e., :
m(z®y) = ay, Yo,y € Fun(M,(n)),

and the unit map ¢ is defined by

it O —s Fll]’l(ﬁfq('fl:)), ‘ \
A == N1,

When g = 1, Fun{M,(n)) coincides with the commutztive algebra Fun(M(n)) of co-
ordinate functions' on the matrix algebva M(n,C). So, we can regard Fun(M,(n)) as
the deformation of Fun(M(n)), or the algebra of coordinate functions on the quantum
matrix algebra My(r) of rank n associated with the matrix Rq

2




Write S, for the symmetric group on » letters and write I{(¢) for the length of

o € Sp. Namely, /(o) is the minimal number of the terms required to express o as o

product of the simple transposition (Z,74- 1). Yor the quantam raatrix algebra Mg(n),
the quantum determinant can be defined as:

DetgT = 5 (=) Ny, t20, - - thon- (1.8)

o t: Jn

The quantum determinant Las the following properties

A{Dei,T) = Det, T @ Dei, T, {1.9)
_ e{DetyT) = 1. (1.10)
Reroark 1. In what follows, we identify the elemeut & (4,7 = 1,2, --ym) aad

Det, T with their corresponding equivalent ciasses.
q S
PDefinition 1.1

Pun{G Ly(n)) = Fan(d,{a )i}/ {iDet, T — (DetyT)t, tDet, T - 1}, (i.11)

where { is a new generator and {tDet,, - {Det, T, tDet, T ~ 1} means the two-sided
ideal of Fun(2f,(n))[f] geuerated by the two relatioas u)ev.,} — (Det, Y, tDei, T — 1.

At this tirae, we naturally extend the structure maps m,i, A and € of the bialgebra
Fun( M,(n)) to the quotient Eun\(h o {(n)) and .u.-.q.uu

All) =131, ey=1 | C(112)

to make it zlso a bizlgebra. Furthermore, the antipede § on Fun{(GLy(n)) can be
wiiquely determined by the requirement thet T5(T) = E - 1 = S(T)T, its definition
on the generators t;; (i,4 = 1,2,---,n) and t is given by

»—\
,_

1

§(tis) = (~a)HtDetyTyiy irj = 1,2,-,m,
S(t) = Det, T, , ( 14)
where T;; denote the (n — 1) X (n — 1) generic m: atrix obtained by deleting row ¢ and

coluran j of the gener ated matrix T' = ()i <ij<n. After introducing the antipode we

obtain
Theorem 1.3 Fun(GL,(n)) is a Hopf algebras with respect to m, 4, A, ¢ and 5.

Fun*(GL \n)) denotes the dual of Fun(GL,(n)). We now give two sets of lincar -
fanctionals I (4,7 = 1,2,--+,n) and arrange them into two n X n matrices.

1
e . .
D= (5.’;‘5)1.@ ign
To describe I3 'm (1,j=1,2,--+,n) ex ]hl()ll] Ne ﬁrst define tuat the values of the linear
functionals 12-5- (i,7 = .,2.,- -+, m) on the generators ty; (4,7 = 1,%,--+, n) of Fan(G Ly{n);
are given by

E(T) = 33 ,iJ, 045 €L, o (1.15)
'li(l) = 61.J7 I' .7 - 17“7"'7“7 ) (11'3)
3




where . . .
‘ X€jis . 1< 7,

=0 Bt(g- Ve, Q= (1.17)
03 . 7> ] : .
ri =g B4 = Dei, 1=, . (1.18)
—X€ji, ‘ . "2' > ] .
If denote R = (7‘ )1<z,J<n, R = ('Tfj)lgi,jgm then Rt = PR,{P, R = R g whex@ P

is the permutatmn matrix, and can be written in the form of submatrices as_
’ - (])1.7)](1’3(” (‘“’>1<1 ]<7"
From the fact that 111@ matrix R, satisfies QYBE, it follows that
RY, R Ry, = Ry RGRY, - (119)
with Rj; as n® X n% matrices defined by » |
REH=RY*QE, R}, = (FE® P)RE(E® P), RE = E® RE,

For arbitrary element of Fan(G'Ly(n)) the definition of- li is given by the following
induction,

(mv/) = l E (2)IE (J) Yz, 1 y C l'un(GLq(ﬂ) ‘ (120)

Now whm we need to do is to give lhc value of l‘l; (4,5 = 1, 2 -,n) on the
generator ¢ of Fun(G'Ly(n)). For this we rewrite (1.15), (1.16) and (1 20) in the: form
of submatrices as follows

< LA, >= (E(T)) Jigijen = MY, | . ) (’1,.’2_1).'

<L 1>=E, : - : o (122)
< LE ay>= (lI\J:J))K,J«n =< 1‘t x >< L* . - (1.23)

Then the action of l;{; (i,lj =1,2,---,n)on the gcnemtor tis
< I (E)igisen =< L5 DetyT>70 0 (129)

In fact, we have .
o < L+,t,',,‘ >= ApTij,

< Lt DetT> < Lt ,Ht“> Mgl

: \ v i1
Thus ' - o
< LFt>= A7"NE , . (1.25)

holds. Similarly, we have _ , o . . .
< L7,t>= AlqE. S (126)




We can check that the action of the linear functionals l‘t (4,7 = 1,2,---,n) given
in above way on the two- sided ideal generated by the rela,tlons R,T1Ty — T2T1 R4t
Det,T'—(Det,T)t, tDetyT—1 is zero. This shows I = (6,5 = 1,2,---,n) is well defined on
the Hopf algebra Fun(GL (n)) and then the two oetS of functionals li (3,7 =1,2,---,n)
“belong to Fun*(GL,(n)) (also see Proposition 1.2 in [10]) Furthermore, w1th the
comultiplication A of Fun(GL,(n)), the multiplication.m* among /5 (z,] =1,2,--+,n)
can be introduced. Suppose £, 7n are two polynomials. ofl . We deﬁne

m*(€®n)(z) = (En)(z) = (E®n)Az, Vo€ Fan(GLy(n)), - (127)

and introduce two new linear functionals I* by the following formulas

<IET >=I5(T) = (il - LN 7 (1:28)
<Pt >=15() = (il Im0) ™ T, (129)
<iFis>=rF1)=1, . (1.30)

< F zy >= F(ay) = IT(2)*(y), Vz,y € Fun(GLy(n)). (1.31)
It is also easy to see that v o .
" E({RgTiTy — ToTiRy, tDet, T — (DetyT)i, tDet,T — 1}) = 0.

Funo(G'Lq( n)) denotes the associative suLalgebw of Fun*(GLy(nr)) generated by IE
(i,j = 1,2, -+,n) and {* via the multiplication m* in (1.27). Obviously, the unit of
the algebra Funu(GL (n)) is ¢, i.e. the counit of T*‘un(G'Lq(n)) However, it should be
~ pointed out that the 2(n® + 1) elements 121 (i,5 =1,2,-+-,n) and {* are not free gener-
ators, which are suberdinate to the communication relatlons given by the following two
propositions proofs of which are due to (1.19) and definition of L* (also see Proposition
1.4 in [10]).

Proposition 1.1

RYLELE = LFLERY, - (1.32)
R¥L¥L; = Ly IiRT, | - (1.33)

where [¥ = [* @ E, L = E @ L*.
Proposition 1.2

) li'ﬂzgr = _ (1.34)
(ii) [+Li L:I:l+ - L:i: L:l:l— . , (].35).
(iii) 1T = I5 t, . (1.36)
(iv) if=0,i>5 1;=0, i<y : (1.37)
The homomorphisms A*, €, 5 on Fung(G'Ly(n)) are defined as
A*(Li) . L:I: ® L:l:, _ A*(li) = £ ® l:i:,
e*(L*) = o e*(I*) =1,

' s*\Li)—( ~qY " E(Detg-1 Lihgiigns s*’(z-*-’)-_z;blz;ﬂ2 I




whera L7 is the submatrix of LE define d}u .é‘“;j in (1.13}. We can check the compat-
ibility of the maps Z\.", £, 5* and the relations in Propositions 1.1 and 1.2.” Namely,

the actions of A*, &* ard §* on the Idatmnn (1.32)-(1.37) are all zeros (as Proposition
1.5 and 1.6 of [101). We can also see

S*LEVLE = LES*(i¥) =€ E. | (1.38)

Finally, we have
Thecrem 1.2

Pand (G Lo(n)) is a Hopf subalgebra of Fun™(GL(n)) with respect
e A:;z 6* Yik
3 bl 9 &/ .

62. The first order differensial caleulus on G [/Jn)

Assume A is an associative algebra with unit. The firet order diffe
on A, which is denoted by (I', ), consists of a bi-module I' of .4 ond o lincar operator
¢ satislying '

(i) Leibaitz rele

antial calculus

&{my) = (§2)y -+ x6u, Ya,y € A,

2.1)
(11) for arbitrary elemnent p in T, there ‘dwf“w exist some elements wg, v € A
(k==1,2,---,N)in A such that
—— N N
p= by , (2.2)

Now we regard Fun(GLgi~)) as A, md for simplicity, give it a spacial symbol °.
To counstruct the one order differeutis] caioilus on quantum group & Lq(#:), what one
first has to do is to deter Inmf a 2%-bimodule wic-h is denoted by (!, For this e nd, we
introduce the convolution “+” on 0%, For f € Fun*(G2 (. 1), the convolution “*” from:
QY to 09 is defined by

+(2) = (O NNz, 5 € Pun(GL(r DR (2.3)
where id is the 1denm\' opérator ou (1. Furthernore, we introduce two C, ~ fune-
tionals on QY a3 follows: e

() V= }f(‘:’w(l}»)"l. = dpe). Gi= 1R, (24]
(i) Gy =50 )lJl, i g el = 1,2,- o, (2.5)

Yor the operators *, Vi;, &1, we have




Proposition 2.1 ~ Tor Va;, ye N i ik l= 17,2, .-+, n the formulas

(i) V(1) =0, 8iu(1) = by, , : (2.6)
(ll) A*Vij =Vuw® 0ﬁvij +e® Vij, .

A0kt = Bijuw ® Ouort, ‘ (2.7)
(iil) Vijr (2y) = (Vuw * 2)(Ouuij * y) + T(V'J *Y),

Ok * (2y) = (Oijuv * ©)(Ouvkt * Y) - (2.8)

hold.
Proof: Now we prove the first equation of (2.7). A dlrcctly calculation shows

A"‘Vij %A*(u (I ))Axl l lée®e
S""(l )lzv ® S*(lw)l - —~6Ue ®¢€
= (Vw + +0uye) O 9’*(lw)l ~16e®¢
=V ® 9W +1e® (5m.S*(l,u)l,,J )
=Vu® ouvu + 5 ® VU

Next we prove the first equation of (2.8). Let Az = 21,4 ®Z2,0; DAY = W1 ﬁ® Y2,8- Since

Vijs(z-y) =0d® V.,-j)A(my)
= (id ® V,-j)Aa;A'y
= T1,041,8Vij(T2,002,8)
= ZT1,0W1 ,ﬁA*Vij(:cZ,a ® ;7/2,/9),

applying the ﬁrqt equation of (2.7), we have

V,J * (my) = ozyl,ﬁ(vu'u('v2 a)gumj(J2 ﬁ) + f(rz,ﬁ)vﬂ(ylﬁ))
= 21,0 Vo (€2,0)¥1,60u0ij (V2 8) + 21,46(22, a)yl,ﬁvm(JM)
(Vuv * T)(ouvzj * 7/) + E(VU * y)

As for the remained formulae, we leave them to readers.
- From (1.38) and (1.7) it follows that

< .S*(L")L—,T >z< e-E,T>= (6ij5(T))1_<_i,j5n = FE,2,
where E, 2 is the unit matrix of order n?. On the other hand, due to (1.6) one has
< §(L7)L™,T >=< §*(L7), T >< L=, T >=< §*(L7),T > AT R

So we obtain
< S*(L7),T >= A_Ry,

i.e. ’ ' ‘
S*(l;—])(T) = 4\_7‘5‘7'. . . (29)



- Now we apply the matrices V(T) and

’“Combmmg (1. 4) (1.15), (1.17) with (2.9), and lettmg r = A;A_, we can get, ifi=j,
(SARIENT) = SURTIE(T) |

=7 Zk« T,Lr“ + ek
= TX Zl < Ckk + !'(E + (q - 1))6",
and if 7 # 7, _
(5 )T = rxejs-
Thus

( Teji, | i 9!' j, ‘ : .
V{' T = J » ) . ’ .
i(T) { %[(7‘ ~1)E, +7(¢? = Dey; + rx? Secierl, =7 (2.10)

Similarly, it follows from (1.25) and (1.26) that
| 1

1 .
Vii(t) = 2.11
| i(1) X j | ,( )
If we arrange V(i) as a matrix of n X n blocks,
V(T) = (Vii(T))1<isi<ns

where the submatrices are

Vii(T) = (Viji(t!.:l))lg"c,lgm 1<4,j<n.

Then » ;
V(T) = (5N~ e B(T))
L /%(< SYL7),T >< L*,T > ~Ez2)
| = i—(r.RqR"" —Ep) |
- = %(TRQPRQP‘-.- Ez). | - (212)
And |

) 1 1
" (Vii(t)higijcn = ;E( ‘

7.nq2

g 7 — L) to construct another matrix. Let

M’/\) = (M:((f_ll))_,:[)1<ku,j<n = (Vij(th) + M Vi ()1 <k Lirign: (2.14)

whele Aisa complex parameter. Sometimes we also write the matrix M (M as M(\) =
( )] <kli5<n- '

—1)13; | (2.13) .-




Proposition 2.2 If r¢® 3# 1, for fixed ¢ and 7 there always exists A,

matrix M(A) is mwmb-u
Procf: If i3 7, then one bas

nlk--1)41 T R
.‘"/1""(‘1-_1))_” = —Y-Xﬁk-,j,.;._z = P8k ini-
/

. the.

The above equation shows that thare is only one non-zero elemeant r in emry TOW Or

column of M(A) except the rows (r{k—1)-+k) and columns n{i—1)+i (4, k = |

e, m).

Hence, to determine whether or not the matrix M{\) is invertible we n(,ed only to

consider the matrix N(A) of order n,

Z\r(/\) == (M:((:_ll)_*‘_t,‘ )1\&. 1.<n7
P ,ﬂ((," 11))++,k Viilter) + 2 a anz - 1).

In fact, the expression of the matrix N(\) is

b ¢ a - @ \\
a a
NI = Il e ¢ b a
SRS :
¢ ¢o¢ b

where . .
w=r(x*+1) -1 —}- \(-—l-’; - 1),
b=rg* =14 Msamr ),
c=7 -1+ /‘(';,-,q—? - 1

Straightlorward calculation gives

N (,’) - a)n»—l q2n -1 .2"1.-2 —-1.
DeiN(/\) > (b—([z —i —q (b - (l)— A..i.._
pul o gldn . \
= —— | b - (q?‘”'2 - 1)1
xet gt 1 )

So, when r7g? £ 1, for fixed q and 7 we have A such that DetN (M#9

Now we are going to construct a Q% himodule Q. Define di;; and dt the one order
differcatials of the generators ¢;; (i,7 = 1,2,+--,2) and ¢ of Q% And let Q! be the left
0%-module generated by the elements w* (k,1 = 1,2,-++,n ), satisfying the fo'lowing

conditions:

u(tzm, tn 4= '“tU )LJ
Det,Tdt = V(1)

The right multiplication in the left module 0! is defined hy

W g = (B )™, Ve € 00,

9

N
IS
R
D >

R

(2.17)



so that ! is a bunodule of 00, Due to the arguinent in the last section that Oik1 is a
functional on QO the right multiplication is well dcﬁned Namely,

Wi g = (zd‘@ Hz-jkl)Axw

is independent of the choxce of the representation element z. I'urthermore, by Propo- :
sition 2.1 this right raultiplication is associable, i.e.

w(ey) = (WWa)y, Va,ye QO
And it is clear .
w9 .1 =l .
So ! is a Q°-bimodule.
Definition 2.1 The differential operation d from Q° to O is defined by

dz =V ,]*(a,)w” o - (2.18)

Theorem 2.1 {Q!,d} constructed above is the ﬁrst order differential calculus on
0o,

Proof: We need only to check (2.1) and (" 2) hold. Combining (2.8)in Propos1t1011
2.1 with (2.17) one directly verifies d is a differential operator satis stying Leibnitz rule
(2.1). To verify {Q',d} satisfies (2 2) we need to prove Wi (i,5 = 1,2,--+,n), the

generators of Q1 | can be represented bv the form 2 Zrth Ti, Y € Qo Dy (2.18)
k=1

?

' ,(2 15) and (2.16), we have

dtpy = (id ® V,J/Atuw 2
dt = (id ® V,J)Afw”

Usmg the Proposition 2.2 we can find A mch that the matrix M(A) is nonsmbuleu So
from

» S(tkm)dt i + AﬁlePthdt ( 7:5(tkt) + /\5;1V,J(t))w '
one obtains N ‘ : .
Wi = M“l(/\)ZE'L 11))*;_31[<(t,\m)dtm, + A Dety Tdt], (2.19)

which 1mp11es that for {0, d}, (2.2) holds.

It should be point out that the expression of w% in (2. 19) is mdependcnt of the.
parameter A. This can he proved by a simple ar gument in linear algebra.
By (2. 17), we also have the cross relatlon among dt;;, dt and t;5, t as follows;

dT -z = (Vi * T)w¥z :
= (Vij * T)Biju * ()M~ I(A):Eif_ll))j_lﬁ(S(tM)dt,ﬁ + Aap(Det, T)dt), 290
dt-z = (Vixthiz (2:20)
= (v,,*t)a,,k,*( )M I(A)"‘k*l)w(sam)(u ,,+ X&aﬁ(])et T)dt),

n{o—
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where z = ty, or t (u,v = 1,2,-- -,n')..
Remark 2. The case of r”¢? = 1 will be discussed in §5.

‘Propo'sitioxi 2.3 LetL= S*(L;)L+. We have
RLiR¥L, = LoRL RY

"hereLy =L®I, L;=IQ®L.
Proof: By Proposition 1.1 we easily obtain

LRt 5*(L;) = §*(L7)RYLT,
RS*(L7)§*(Ly) = §*(L3)S™(LT)ER,
RYILYL = L LT R,

S*(L7)RLY = LFRS*(LT).

Noticing Ly = §*(L7)L} and Ly = §*(L3)L], we have

RL] R+L2 = RS*(LI)L—I’-R'I'S*(LZ— )L.—;
= RS"(L7)S*(L3)RY LY Ly
= 5*(L7)8*(Ly)RL LT RY
= §*(L7)LI RS*(L7) LT R*

= L2RL1R+.
" Let - :
: R’#y”n,uu =< 0iju‘u7 rrmkS(Tl"l) >,
kl,mn

™ ) =x< an,TkiS(sz) >
By Proposition 2.3, we obtain o

Theorem 2.2 For R, F defined in the above two formulae, there exist two sets
of equations which are equivalent with each other:

() ViVi- ViV;R} = V.. ¥,
Vibmi = 0miV;RY,
Rﬁgkualu = oimajan,n, o o
’ ngejuokv + 0iu‘7'u = Vm 9er:ﬁP + gi'n qua
w RMY — meFU 'R‘;c]l’

uk e ! —k " wj C
ij cw . RimpiwRkl :
RgRyu Ry = Ry RogRy,,

Ry FL, + Fra Ry Ry = Fl, Rk R + RY, PP

mnT Uy

Here, for simplicity, we use one index instead of two in above equations, for example ¢
stands for 7/, etc. ' :



~ Proof: Here we only prove the first equations of (i) and (ii), the proofs of remain
equa,tlons are qular and can be found in [5]. By Proposition 2.3, we have

L c’ch’ dl‘de'qul Ky = ch alLaalR all, klbLbb'
Leo < 8*(lgy)stew > Laar < Ly tyy >=< S* (lka) tor > La.a’ < 'kutlb > Lbb’ :
LcerLgarOgurint (terpr) = LigarLipy Ogariie ( tcb)
Lo Lagr0dar ks (L )0kkruut (S (o)) = Laar LibprOaariks (Eeb ) Pckrnint (S (lb'w))
cc’de'()dd’uu (t ! b g(fb'w)) = IJaa’Ilbbfaaa fuu! (tcbs(tb’w)) ’
Lo Ly 834,65 = Laa:Lbb,R‘}ﬂ’Z,

LeoLggr = Lo Tap RIS, .
(XVeor + becr€)(XVaar + baar€) = (XVaar & 8uar€)(XVeb + Soir€)REG gy

nmm

Since . ,'
. 60.0.' gg;’j.li: = 5aa’0a.a'dd'(tcbs(tb’c’)
= (XVaar + 8qa€)(tcs S (orer)
- = Fzg:dd' + 6dd’6bc5b’c’.a
and
R = Gy Ooaraar (b S (threr)
- = bpdbarardeer,

. 1 7 .

5aa165QfR2'§;£3' = écrc’éddf’
we have . ' .

, S .
Ve Vg — Vaa’vbb’Rpc o = Vo T . .

Therefore the first equation of (ifis proved, and by appwmg both - mdes of it to
tuyS(tyrw), we have on the lefi side . .

(Vcc’vdd’ = Vaa'vbb' gg;li)g:)(tuvs(tv'u’))

(Ve @ Vagr = Voo ® Vbb’Rgg'%:)(A(t w9 (L u')))

(Vct”' @ Vdd'. ~ Ve ® va’Rggﬁj)((tuws(fw'u’)) & (twuS (tyrar)))
wacc'Fww'dd' - Fuu ua'Fww’ob’Rcc’dd’ '

Il

‘and on the right side

N i E ! wv' e’ '
Vec'(tuvs(t"'u’))Fgg’dcﬂ = ’Fuu”ee’Fcc’d:l”

ie..
’ ww' oo’ ’ a'bb

) ) Fuu’ o £ ww'dd! ™ uu’au'I‘ ux.n'bb’Rc('dcl’ == Fuu ce’Fcc'dd’
Theretore, the first equation of (ii) is true '

In Theorem 2.2, the first set of equa,tlonq is related to the Lie bracket of the gener- .
ators of Lie algebra, and the second set is a deformation of the Jacobian 1dent1ty of the
structure constants of the classical Lie group GL( n)
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§3. Bicovariant differential calculus on Gqu‘(n})‘

Definition 3.1 Suppose (I, 0)is the one order differential calculus on ?Iopf @lgebra.
A. Yor arbitrary ),y € A (k=1,2,---, N) satisfying zx0y = 0, if Amk(zd@)é)A'yk.:
0, then we call (T, 6) left-covariant; If Axz,(6 ® id)Ayx = 0, then we call (T, §) right-

covariant; If (T, §) is not only left- covanant but also right-covariant, then we call (T, 6)
blcovarlant

'I‘hoorem 3.1 The differential calculus (Q!,d) on GLq(n) glven in ‘§2 is 1eft-
covariant. :

Proof: According to the definition of left- uowrla,nt we need only to prove that
for arbitrary =;,y, € QO (k = 1,2, N), if zpdyy = 0, thon Azp(id® d)Ay, = 0.
Suppose Ay == y§ 3 ® ‘J(w)( Then

: A:ck(zd® Ay, = Au(?d ® ul ® Vi;)(id® A)AJLW J
, , ﬁr,,(zd ® id & Vi; ) (A ® id)Aypw

= Z Azg(id @ id.® V;])((/-\’Ul ) @ J,z,a)‘ 2
k=1 :
N'

Au(AA:iZ Vi vy )'d
k..

k iF
‘ , Zwa(y‘“vm( 2
B
= AmkA(Vt] * Yk Jw!
= A(zp(Vij + yg) ).
Since 0 = z,dy;, = Tx(Vij * yp)wi ) we have )
ep(Vij*ye) =0, Vi, j=1,2,-,n ‘ R
Thus - - ' o
, Azp(id ® d)Ayr = 0,
. Therefore, Theorem 3.i holds.

Now we introduce the vwcept of ad-invariant. First let two linear mappings 7,8 :

2°® Q% — Q° ® ° be definel Ly the following formulas: for Vz,y € Q°,
rz®y) = R CERL TN (3.1)
(x®y) =mPirg2)®Ay), : - (32)

where m® is the multiplication on 9°® 9, i.e
I

1739((:1: ®Y)Q(2Q w)) = zzQ vw.

It can be proved that r, s are bijections, and ‘(see (1)

rizgy) =m® (28 1)® (S ® id)Ay). 6
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Definition 3.2 We call a linear subspace B of Q° ad-invariant if
ad(B) C B® Q°

where the linear mapping ad : Q0 — Q0 @ Q9 is defined by ‘
ad(z) = s(r" (1@ z)). . (3.4)

Proposition 3.1 Let H = kere N(N;j=1kerV;;). Then M is a right ideal of Q°.

Proof: Assume z € H, i.e. the equations
e(z) =0, Vi(z)=0, i,j=1,2,---,n
~ hold. For Vy € Q° using (2.7) of Proposition 2.1, we have

tJ(“'y) =A"(Vi)(z ® ?/)
= Vi (2)0u0ij (y) + (=) Vii(y)
=0

and .. . - .
e(zy) = e(x)e(y) = 0.
So zy € H. :
Now take such a parameter A that the matrix M (M) is invertible a,nd denote the
dual basis of Vi by
S = M~L(\)H HUTES ,\6Ut),

i.e. zJ(.S'M) = 6;x6;;. For the opelatm ad we have
Proposition 3.2 The formula

Vulc’(tijtkl)suu’ ® S(_tck)s(tai)tjbtld = ad(vuu'(tabzcd)suu')‘ (35)

" holds. »
Proof: Due to Proposition 2. 1 and the d@hmtlon of the opemtm ad the nght side
of (3.5) is

0V e M NN (o -+ Norl)]
= Vayw(tast cd) M~ ( w/(tkz @ S(tuk)lint + Ayt @ 1)
= [wa'(tab)oww uu’(tcd) + abvuu’(tcd)]]u 1(’\)33’
(tkl ® S(tvk )fl'u' /\61;1;’7: ® 1)
= [wa'(tab)oww’uu’(['cd) + 6abA/I()‘)m,, - Aaabgcdvuu'(t)] N
‘ l(r\)W, (Bt ® S(tur ) + Ayt @ 1)
= .[wa’(fab)oww’uu (’cd) Aaabocdvuu’(t)]M - ’\ uu’ ‘
(tkl ® S(tvk)tlu - /\6vu’t ® 1) + 6ab(,l~l ® S(tc, )tld + /\6cdl @ 1)
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Ou the other hand, the left side of (3.5) is

Vuu'(tntkl)suu.’ ® S(tcl )g(tm) Jbtld
= [Vaw (85)0wwru (Bet) + 655 Vo (t11)] Suwr ® S(tck)s(tm)tjbtld
: = ww'(tn) ww’ uu'(tkl)suu ® S(tck)d(tm)t]btld + 6abvuu (tkl)Suu’ ® S(t*k)tld
= Iy + 1,

. Il = wa’(tij)Oww’uu’(tkl)su_uf & S(tck)s(tui)tjbtlda
. ) I2- = 6abvuu((tkl)suu'-® S(tck )tld- ’

We also have :

o : ' wcu'(tm )'-’ (taz)tjb
[S*(l )luw'(fzj) - oww'e(tw )] S (tuz)tjb
TS( az)lawt vk hm w'j t]b 6wu’6ab1
77‘w,R,,,,ukRu,c bs(t]u’) - ww’éabl
(STt (tab) — 8356 (tap) fwi S (tjw)
Vz)(tao)tuns(tjw’)

.
i

i.e. . :
Vot (4i5)S (2ai Ve = Viz (RabYawi S (ot )- - (3.6)
Here ‘

(sz,vk)1\1 ke <n = Tuwwy
(Ruk wJ)1<MJ<"l = r;i-u

Applying (3.6) to I, we have

: ]1 = Vij(ta_b)()ww’uu.’(tkl)suu.’ X S(ﬁc.’c)l'wis(tjw')t!d'
Since
: 'oww uu'(tkl) (tck)twt S(th )tld

= T(Ruk wmlS (tck)tun)(-Rw ' uIIS( ]w’)tld)
7'(6 aS(ttk)Rak wﬂthéﬁm)(s(tjw’ §maRw ‘o ﬁléﬁu't‘d)
(6o S (T)rawtwi B)em(S (i ) Erd 565w T)ma .
H(E®S(T) By T8 Dusin(ST) & B+ 1t¥ - EO D
T(S(T)Z-RTI ,uu,:m(S(T)l P tI?)jm,'u,’d

( R S( [‘)2)1Lc.1rn(T2R+S( )l)jm.uid ‘
TR/ seyiw uks(twm)R wlyldtmw’s(,tlu')
Oijki(ted)bur S (L),

in which we apply QYBE and

b

i

S(T) =S(TRE)=S(F)QE =8(Th,
S(Tz) = S(EQT) = EQ S(I) = §(T)z,
we obt.aiﬁ ' o
. I = t] (tab)eukl(tca,tguu’ ® tuk' (tlu’) ) (3.7‘) .



.By (3.6), we have A v
(vwwl(t,,) + A&,ﬁwwlc 1S (tai)t sy = (V,J(tab) + N8abbi;Co Vi S (L),
where 6;;Co = V;;(t), i.e.
MY 8 (1:)t56 = M(/\)“btw,S(‘tjw:).

Therefore, one obtains

THAES (tai)ti = MTHOVE ik S (thur),
or ’
M—l(’\):#’ tthS(tlu’) = —I(A)ww's(twv)tu'w'- ) (38)

Thus the equation (3.8) is applied to rewrite I as

Il = Vn(tab)oukl(tcd)M 1(/\):,“1' (tuu’ + Aé, w’t) ® tuk S(tlu )
= vt](tab)oukl(tcd)]w I(A)(bw/(tw' + Aauu’i) ® S(tw'v)tu "w!
= Viw (tab)Ouwwruat (bed) M ™ (A (11 + Aat) ® S(tur )t
= vww'(tab)gwu Ty’ (tcd)]u 1(/\)531(7:“ ® S(fuk)tlu’ + Ad 'u’t ® 1)

Simila.rly, I, can be rewritten as

I = 5ab(Vuu (tkz) + AtV (8) = /\51cz\7uu (f))
MHAYE (gt 4 Abyyrt) ® S (tek ia
= 5ab(tk1 + Abrat) @ S(ter)tia
~A8ap611V (‘t) I\/I_I(A)xg‘,’(tvvl 4 /\50ult‘) ® S(tek )tld
= bap(tit ® S(tek)tia + Aot ® 1)
o =Abapbe cd Vi (D) M~ 1(/\)“’,( v F Abyyrt) ® 1.

By (3.8), we have
V()M A) 8%, @ 1

v’
= uuwCoM~ I(A)ztu,tvu, ®]_
o= uCoM™ ()‘)u:f’ toy! ®tuk‘g(tlu;)
Vi) M 7 (A)Shrtow ® S(tuww)turur

= V()M (Nt ® St )t (39

i

Therefore.,

. L= 6up(tr ® S(tek)tia + Abeal © 1)
: —Aabbed Vo (B)M 1) (11 @ S(tU; )t,,,: + ,\6 vt ® 1)

We complete the proof of the l’ropo<1t1on 3.2

Theorem 3.2 The differential calculus (9, d) on GL ¢(n) given in §2 is rlght-
covariant.

16




In Theorem 1.8 of [1}, S.L. Woronowicz provided a theorem to decide whether a
differential calculus.is bicovariant. The theorem can also be said as “Let (T',6) be a
left-covariant first order differential calculus. Then (T,d) is bicovariant if and only if
H is ad-invariant.” Based on this theorem, in order to prove the differential calculus
on 9° we have provided is bicovariant, it is sufficient to verify. H is ad-invariant.

Proposition 3.3 Let = kere N (N?,.;kerV;;). Then ¥ is ad-mvarlant

Proof: It is easy to check that

tz]tkl u'u(vzjtkl)suv - t]Ul € H
uv(t)suu e (11 € H ‘

where : .
Cijit = €(tijter — Vuoltijte)Suv)s
C= £(t - Vuv(t)su-u)-

Deunote by H the right ideal generated by t;;tx — Vuu(tijtr)Suw — Cijud (3,7, k,1 =
1 2,-+-,n)and t— Vm,(t)S,wC 1, and denote the set of the gener ators by A. Obvxously,
HC 'H

- Now we define an equivalent relat:ou in Q°, for £, € Qo, we say § and 7 are
aquivalent or £ ~ 7 if § — € H.

An arbitrary element p of H can be represented by a polynomial of #;; (3, j =
1,2,---,n) and t. By the definitions of the generators in A, we known that any two
order polynomial of #;; (z j=1,2,---,n) and one order polynomial of ¢ is equivalent to
a one order pelynomial of Sy (k,l: 1,2,---,n), 50 p is equivalent to ag Sk, ay € C,
ie., '

0 =e(p) = e(arSn), .
= Vii(p) = Vij(anSui), 1,5 =1,2,--,n

Since Su (kyl = 1,2,--+,n) is the dual basis of Vii (4,5 = 1,2,-++,n), ay = 0, i.c.

" p € H. So we have proved H C H, therefore H = 71.

Now we prove A is ad-invariant, i.e. add C A ® Q°. By the deﬁmtmn of ad,

ad(ti;) =ty ® S(ta)ti;, . (3.10)
ad(taptea) = tijtes ® S(ter) S (tai)tjplia, (3.11)
ad(t) = t® 1. . | (3.12)

By the Proposition 3.2, we have

Cijtl @ S(tek)S(ai)tntia
= €(tijtei = Vuu(tijter)Suv)L & S(tck) S (Fai)ljptia
= 8ij0kl @ S(tek)S (tai)tjvtia — (¢ ® id)ad(V s (tasted)Sunw)
8abbcal ® 1 — (Vo (Lapted)Suw )L ® 1 o ;
= Cupeal @1 . | N € B )
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4 ~ Therefore, by-the Proposition 3.2 and (3.11),

a(](tabtcd e Vuu’(tabtcd)suu' - abcd]-)

ttjtkl ® S(tck)s(ta:)t]btld - ad(vuu’(tabtcd)guu ) Cadel, ®1
(ft]tl..l uu'(tz]tkl)suu’ - Ct]kll) ® S(tck)s(tm) Jbtld

€ A®Q° o

holds. By (3.9) we have

* Similarly,

ad(*tﬂ-—*Vufu:'(*tf)ﬁ';‘gr:*éflﬁ)f -
ad(t — 8y CoM = (A2 (£t + Abyurt) — C1)

iI®1 - 6uu’COM I(A)uul(tkl ® S(tur )t + Abyyt ® 1) - 1 ®1.
1®1 - Vyu(t)CoM~ L) (g @ 1+ Myt @ 1) — C’l ®1

(t - uu’(t)‘suu’ - Cl) ® 1.

Therefore we have proved
| | adACA@Q.
Let & (i =1,2,---,n%+1) be the n* + 1 generators in A. Take £ € A. For V7 € 99,

one has ‘ ' ' s .

AL =6,® 80, Ay=mp0nms

A(én) = (- ® ('677)2 r=E16am,p® E2.0Mp.
Then

ad(§) =s(r"'(18¢)) ‘

‘ s(mP(1®1)R(§® ul)Af))
3(5(€1,0) ®2,0)
m®(1 ® S(‘gl,a) ® AfZ,a)
(1® 5(fl,a))A§2,a-

Il !I li

ad(€n) = [1® S(En,)A((EN)ar)
[1® 5(&1,am,8))A(E2,0m2,8)
E ® S("h ﬁ)‘sl(gl a)]A F’,a)A("D,ﬁ)

18 9(n1,ﬁ))ftfl(§)A(ﬂz 8)-

-Since adf € A ® °, one obtains

: nt41 » . . . .
ad(@)= Y &®wi;, 2:€Q0 i=1,2,---,nt+1.
. t=1 .
Thus - ' -
: ad(€n) = (1@ S(m,6))(& ® 2:)A(112,8)
= (& ® S(n1,8)2:)A(12,8)-

Therefore ad(fn) € H @ N°. By the linear property of ad, we know

ad(H)CH ® o,
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i.e. H is ad-invariant.
Therefore, by Theorem 1.8 in [1], we havc proved the dlfferentlal calculus given in
§2 is bicovariant. .

§4. Quantum de Rham complex on GLq(h)

Let T’ be a .4-bimodule consisting of all dlfferentlal forms of one order on an as-
sociative algebra A with unit. Let I‘®“ be the n-fold tensor p1oduct of I. If Ais
commutative, for example the algebra consisting of all C*° funct;ons on a smooth man-
ifold, then the de Rham complex on A can be defined as follows.

N =T®/N, T® = @2, %, ' (4.1)

where I® = A, T®! = I', and N is the two-suicd ideal of T'® genemted by the kernel of
1—0, in which 1 is the identity operator on T®4 T and o is the automorphism given by
the permutation on 82, As done in commutative geometry, in order to construct the
high order differential calculus on the quantum group GLg(n), we should first decide
a bimodule automorphism ¢ of I' @ 4 I'. For that reason we first introduce the concept
of left-invariant and right-invariant 1-form.
Definition 4.1 Let Aq : Ql — Q0 Q Q! be a hnear mappmg .;atlsfymg
(i) Vze Q0 wel,
Aqg(aw) = A(m)An(w),
Aa(we) = Aa(@)A(@),

(ii) (A®id)Aq = (1d® Aq)Aq,
(iii) (e @ id)Aq = id.
’I‘hen we call Agq the left action on Q. If an element we sa.txsfymg Ag(w) = 10w,
then we call w the left-invariant differential 1-form.
Definition 4.2 Let oA : Q! — Ql ® Q0 be a linear mapping satisfying:
(i) V:LEQOLJEQ‘ o
aA(zw) = A(z)alA(w),
QA(w'l) aA(w)A(x),

(i) (id® A)aA = (QA ® id)qA,

(iii) (id®e)aA = '

Then we call A the rlght actlon on Q. If an elcment w € Ql sa,tlsfvmg QA(u) =w®l,
then we call w the right-invariant- differential 1-form. -

In general, the differential calculus on a Hopf algebra wluch only satisfies the con-
ditions (2.1) and (2.2) can not always be provided with a left(right) action. But if the
differential calculus is left(nght) covariant, the left(right) action on differential forms
can be defined. ,
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Proposition 4.1 For Vw € O, w = zidyy, the left action oﬁ w is defined as
AQ( crdyy,) Ax)c(z'd ® d)Ayy.
and the right action on w'as |
QA(a:kdyk) = Az(d ® id)Ayy.

For the proof of this proposition, pl\.abe sec the Proposition 1.2 and 1.3 ir [1]..
By this proposition, we have

Aq(DetTdt) = A(Det,T)(id ® d)At,
aA(Det,Tdt) = A(Det,T)(d ® id)Al.

Since
ADet,1'= Det, T @ Det,T, At =t @1,
we have
Ag(Det,Tdt) =1 ® (Det1' )dt _ . (4.2)
aA(Det,Tdt) = (Det,T)dt Q 1. o - (4.3)
Noticing ‘ ‘
AS(tik) = S(tme) @ S(tem), 4,k =1,2,---, 7, {4.4)
we have ‘
Lo(S(tix)dte) =1® St )dtyg, - (4.5)

QA(;S'%)d‘t"k‘)‘z—S—l(tk;)dt:jk ® 1. ‘ (4.6)

Combining (4.2), (4.3), (4.5) with (4. 6), we obtain the following proposition.
- Proposition 4.2

(i) DetyTdt is left-i 111var1ant and right-invariant i-form,
(i) S'(i,k)dt“, (4,4=1,2,-. -, n) are left-invariant 1-forms,
(1) S~ (thi)dt ks (1,4 = 1 2,+++,n) are right-invariant 1-forms.

By the proposition,

W = MY (b by +/\(—-—— - 1)0,,091 Tdt] @

is left-invariant. It is easy to see -

v imlz'sv_l(tl'nz) = 5kl1- I . (4.8) .
By (4.8), vie can rewrite (4.7) as

i3 hd 7] 1 1 v~ N . o . .
W = M™YA)ES (k) tt S (b )dbu + ,\(;5? ~ 1)éypDet, Tdt), (4.9)
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Denote .

_ o ' 1 | |
Nuv = S l(tw‘u)dtuw + A(W - 1)6uvD€thdt (410)
We have - : ‘ - o
. w = ()‘) S(tku)tvlnuu ' R (4 11)
By Proposition 4.2, 1, is nght invariant 1-form, and (4.10) shows 7y, (u,v =
1,2,---,n) are also a group of right-invariant generators of 0.

Now we define the bi-module automorphism o : 91 Rqo 21 —> Q! ®QO o by
(X @ ) = XL © ™ (4.12)
here X\ € 0O, It is easy to check o satisfies the braid relation,
(id® Uj(a R id)(id® o) = (o ® id){(id ® a)(‘a ® id).
Obviously, YR ww (i,5,k1=1,2, n)‘ is a group of generators of Q! ®qo Q. By

(4.10),
. a(w”@wkl) = a(w"@.M 1()\)’" S(tau)tuﬁ"]uu)

4.13
= M 0 O (St irpDrr @ 1D
Applying (4.10) to (4.13), we obtain
U(wij ®wkt) = M~ 1(’\)aﬁazjuv(s(tau)twﬂ)g(tm)t'fw
A5 (tmr Yt + .x(.—l- —1)6, Det, Tdt] ® ™
= M~ l(’\)aﬁomuv(S(tau)twﬂ)[s(tw)dtvw
+,\( oy 1)é, Det Tdt] @ w*? ‘
= 1(/\) O,JW(S(ta,,)twﬁ)]l/I()\)““’ WMt QWY (4.14)
Let
. O’(Ldv ®wkl) - R:%tl,luu mn ® wuv’
RN, = etauv(tmks(tln))-
Proposition 4.3 RiM = Rk
Proof: From (1.14), it follows that
R:fal;zluv = A’I—I(A) 0uuv(s(tau)twﬁ)M()‘)mn
= Oijun (M~ 1(/\)0,@5 (tau)twﬁM Aizn
: App]ymg (3. 8) to above equaA ion, one obtains
RiM, = Oijw(M {(N5e S Gar)tis MM\
= otjuz;(tmks(tl1z)) . . )
= R % (4.15)
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Proposmon 44 LetR = (R'ofé‘LA) = (r)1<apcntr @ = 2°(i — 1) + n2(] - 1>) +
n(k—1)+1,b=n3(a - 1)+ n2(f - 1)+ n(g — 1) + A. Then the minimal polynomial -
of R is (§ - 1)(€ + ¢*)(€ + ¢72).

Proof: By (2.8) in Proposition 2.1,

Rigun = biim(tarS(tip))
= A* 0!]#/\(tak &® S(tl/.?))
= oz_zab(tak)eab;m(s(tlﬁ))
= S*(lat) ® l1b(Atak)S*(lua) ® l (AS(tlﬁ))
= 5*(1m)(iac)l (tck)S*(lua)(S(tdﬂ))l (S (t1a))-

By definition of lj.’;- (4,5 =1,2,--,n),

S*(l;i)(tac) = A_ R, Jicy ]b( Ck) RJC,I)I\’ ‘(4.16)
Sa)(SWas)) = AR 5, (S (ha) = ATH RN
~ These formulae give
ikl e -
Rgﬂ;u\ ‘=. R;-c,kaa%‘ic(Rl-)bl,]/\d(Rq I)H»dyaﬁ .
= .Rc_j,kb(-RZ;)ic,auz(‘I’).Rq_1JP)bl,)\d(-l'l‘-"t1 )c:clluﬁ
= (PR )jket(REP)icaa( PR Yar (PR )L B (4.17)

where 1 is the transposition of the matrix, and #; is the pelmucaLJon of the fust and
the third indexes. Write

(PRt )Jk ch = (PRtl )cb’ (Rt P)u: - (Rt P)am
PR Muaa= (PR (PREY, = (PERY g

Then (4.17) can be rewritten as

Riow = (B(PRO)ES)(RLPYS6558)

(6 (PR ) (S (PRI )3463)

(E® PR ®E)-(R:PQ E® E) ,
(E®E®PR;')- (E® PRI ® E)™)0M.. (4.18)

Let My = R‘P QEQRE,My=FEQE® PR; L, Obv10usly, R and Mj; M, have the
same minimal polynonual

(€-1)(¢+ qz)\E- +q7%).
Therefore, we obtain

‘(E‘Ild - R)(R‘ +bq2<En4)(R 1+ q—2 Tt ) = 0,

where E, 4 is the unit matrix of order n?.




Now' we mtmduce the- qu‘mfum de Rham mmplex on quantum gloup G’Lq(n)

Denote o
Q®—eo 200®, Q00 QO %t ——s

Deﬁmtlon 4.3 The quantum de Rham complex on (; q(n) 1s deﬁned as
QN = Q®/{ken(] -a)} o (4.19)

where {ker(1— a)} is the two-sided ideal on Q@' gencrated by l{er(l -0); and ker(1—0) =
{{R+ ¢*E )R+ q'zf‘/n4)]f;if"\w’3 ®w“ Q;, /B,p,A = l ? .,n}. The production in
QA is denoted by A. , :

Theorem 4.1 There exists a umque lmedr mappm;J

d: QN —- Q’\,

so that :
(i) dis the denvatmn of mdu one, i.e. it maps differential fmms of oxder n to ones
of order n -+ 1,
(ii) The definition of d on Q° is given by (2.18),
(iii) d(é An) = dEAD+ (- 1)""!’5F A dn, where degé = n.if { i3 2 dxﬁernntxal forn of
- order n, ‘
(iv) d* = 0. -
The proof of Theorem 4.1 is similar to that of Theorem 4.1 in [1].
In fa,cf we can wute (4 19) as

QM = Fan(G L)), WAL R (420)
where relation [1 is glven by v »
wig - (0, Kl * m)w 2= byt (4.21)
and the relation Iy is given by o 4 L AR
[(R+ 2 E )R+ ¢ 2 Epa )Jfﬂ@“w” Nl B, A= 1,2, (4.22)

Addltlonally, we can also ob’raan the Ma,u’or Cartam equatlon by Theorem 4.1 aand
(2.19). : ST

§5. N Oncommutatlve dlﬂ'erentlal calcu]us on quantum
' group 5L, (n)

Quantum group S'Lq(n) can bo 001 amod by taknw‘ th(, quoUent a]gebra.

Fan( M(n))/{[)etq_ - 1}

’ ‘ 23



“In fact, as for the Ilopf algebra Fun(G’L,,( n)), its generator ¢ now equivalents to the
unit 1, i.e. :

1. o (5.1)

Thus, the algebra,‘of coordinate functions Fun(SL,(n)) is equivalent to Fun(G‘Lq(vaz))z
[{Det,T — 1}. Namely,

1z

I

Fun($Ly(n)) = Fun(M(n))/{Det, T - 1} = Fun(GLy(n))/{Det,T ~1} . (5.2)

"To insure the linear functionals l;‘; (3,5 = 1,---n) and I* given in §1 are well defined
on Fun(S§Le(n)), from (1.25) and ( 1.26), we know that the following conditions must
be satisfied, : | 3

| f Alg=Atg=1. - o (5.3)
Therefore, ‘ ‘
- Vi(t) = Vﬁ(l): 0, ' _ : (5.4)

and by (1.15) (1.17) and (1.18) we have It = [~ = ¢. Or we can say, after the condition .
(5.2) is introduced, all of the equations in §1 still hold, and those related to1 and {*
become trivial. Obviously, Fun(SL,(n)) and the corresponding algebra Fung(SZ,(n))
are Hopf algebras. ' - .

Now we discuss how to obtain the differential calculus on SL,(n) and its quantum
de Rham complex from that of GL,(n). - : -

Matrix M(X) plays a very important role in the discussicns of the differential cal-
" culus on GLy(n). For quantum group SLq(n), we have ornily two ‘extra conditions
" DetyT" =t =1and \%q = A"¢ = 1. Thus, ' 2 o ‘

M(X) = (Af:((;ﬁ-‘l)z:}l)lSk.l,‘i,jgn»: (Vi hgkigen. (5.5)

And the determinant of N()) is

. — P\ =2 . .
v DetN(/\) = gl._._f_)u__(l _ r?’u-'—l - ot + 7_271, + T,nz«}jnwd - 4,,‘:12-:“'1‘), ) (56)

2.
Xn.rn =T

where 7"¢? = 1. Therefore, except for finjte isolated values of ¢, the matrix M())
is iavertible. When /() is invertible, we can add the conditioes Det,T = 1 and
tq = AZ¢ =1 to the differential calculus of G Lg(n) to obtain that of SL,(n). The

values of ¢ that M(X) is not invertible are the 6th unit roots when 7 = 2, when n 3> 3,

the discussions will be a bit more coniplicated, we will discuss the difterontial caleulus
of §Ly(n) at the extra values of ¢ clsewhere. ‘
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Abstract

This note sketches the finite-dimensional representations
of quantum group §L,(2,C), in particular, its compact real
form SU,(2), discusses the Fourier transform and the inver-
sion formula on S§U,(2), and generalizes to the case of its
completion C(5U,(2)).

Since the theory of quantum groups was introduced systematically by Drinfeld
[1], Fadeev et al. [3], Woronowicz [8] and others from different approaches, it has N
obtained remarkable advances both in physical and in mathematical aspects. Based
on quantization, quantum groups are considered as the noncommutative deformation
-of functions on Lie groups, so they inherit some properties of the functions on groups
in the noncommutative context. For example, the well-known Peter-Weyl theorem
) on compact groups has its counterpart in the case of compact quantuin groups, such
as SU,L(2) [5][81 It seems that many results in harmonic analysis on groups can be
extended to "compact” (or &nopcompact”) quantum groups. First, for SUy(2) there
are Fourier transform, I‘oun r expansion (inversion formula), which can be expressed
explicitly in terms of ma.tn elements of its irreducible representations. Of course,
SU,(2) is a (Hopf) a,lgebrcm f\ elements are finitely generated, and the equalities and

. rela.tions appeared here are‘all algebraic. How to introdice the concept of limit (norm,

topology) to the quantum’ grou')s is an interesting topic, and it is important for devel-
oping research on harmounic analysis on guantum groups and quantum homogeneous

1Supported by National Natural Science Foundation of China.




spaces, some examples can be found in [6] [7] [8]. The aim of this note is to generalize
the result on Fourier transformation to C(SU. (2)) which is the completion of 5U, 2(2)
in the norm of C*-algebra.

1. Quantum group SL,(2,C) and its ﬁnité-diménsional representzitions

As usual quantum group §L,(2,C) (or algebra of regular (or smooth) functions
on it, or its coordinate ring A(SL4(2, C’)), we do not make difference between them in
this note) means a noncommutative Hopf algebra generated by z,u,v,y over complex :
number field C:

A(SLy(2,C)) = Clz,u,v,y]/ ~
where ~ is the ideal generated by the following relations

uT = qTU, VT = qTV, Yyu = quy, Yyu = quYy,

wo =vu, zY-—q luv=yz-—quu=1

for ¢ € C\0 and comultiplication A, counit € and antipode s are defined on'generators

by
r u r u i mu\‘
a(3y)=(5s)e(ih):
vy vy, vy )

LU 10 \
& = N
v oy 0 1 } .
s T (l' - ':{i" —qUu .
N —-gq7'v 2

respectively. Let us describe some of its algebraic structule Elrst as a vector space,
A(SL, (2 C’)) has. a basis consnsted of ' :

wu’ ko advky! (i,j’,k‘ZO‘, I>O)
On the other hand, there is a direct sum decomposition of vector spaces [5]:
A(SLy(2,0)) = Dmmez Almon]
where
A[m n] = {a € A(SLe(2,C))|Lxc(a) =1t ® a, Rh (a) =a ® tn}
- L}\ = (7r,®zd),o A, (zd@w)oA

7 is & canonical epimorphism of A(SLq(2,C)) into its quantud su'bg'rou-p:‘ A(.K ) =
C[t,t"I] defined by : 7.

| ‘ T u it 0 ' . -
| o ’?(v 'y)=(0 t"1>" A =t®1, e(t) = 1, s{t) =17
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" Here A[0,0] = C[¢] (¢ = —q luv), 2 polynomial ring of ¢, is an algebra of bi-
-invariants in A(SLy(2, C)) For m = nmod 2, A[m,n] is a free left (or right) C[(]-
module of dimension 6ne, otherwise A[m,n] = 0. For brevity, we also write A, A(G)
for A(SLy(2,C)). Let’s consider the (co- )1ep1esentatlon of SLy(2, C’) ie., A(G’) ,
comodule. Taking two C-vector spaces of A(G)

VE = @ieiCe, ViR = ®seiCn)
- where index set [} = {~1, =l + 1, ...,l},l € N/2 (N:set of natural nhmbers)

1/2 ‘ ' 1z :
o] e o] 2] e

2 | g2

where

(Q; t])n((l, (I)m—n

. m~1 ‘ .
[ 177: ] o -('I,Q)m___‘, (a;9)m = H (1 - aq®).
q

Obvmusly, Vi and V, are left and right A-submodules respectively, which are ¢ a,lledb _
the spin | representations of SLy(2, C). Then we can write down

A=Y wl e, ier,

. ‘JEI: ’

- and from the structure of comodule, it follows

Aw(l) L w(” ® w(l) s(w(’)) = §;;
kel

. which can be written in the matrix form: ,
,AW, =Wi@W, W)=1, W= (wi)ijern-.

(l) is called the matrix element of the representatlon and

(I) € A[—2i, -2j].
In the same time, there is also an cquality
Anm Z 77”) ® w
el ‘

We have . ' :
Proposition. (5] For any I € N/2, A- comodule VL(resp VR) is irreducible,

and any finite-dimensional irreducible left- (resp. right-) comodule is isomorphic to
Vi#(resp.V{) for some I € N/2. : :
Theorem.[5][8] A(SL,(2,C)) has a direct. sum decomposmon into A-bicomodules -

A(SLy(2,C)) = Brenyz Wi
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‘ and ‘ . :
| A[-2i,-25] = Breivys v} -

" The matrix element u/(;)' of the representation of quantum group.§L4(2, C’) can be
explicitly expressed by the little q-Jacobi polynommls in ¢, hence a new interpretation
" of g-special functions in the representation theory of quantum groups is obtained
(4](5][7]. Quantum group SL,(2,C) Las another important property, i.e., it possesses
bi-invariant linear functional (or the Haar measure as in the classical case) A linear
functional h: A — C is called bi-invariant if it satisfies

(-id® h)oA(e)=1eh(a), (h®id)o A(a) = h(d) *l, Va E,‘A.

It is nnique, if taking normalization h(1) = 1. Such a functional h takes values as
follows: .

h(a) # 0 VYa € A[0,0],

h(a) =0 oiherwzse,

A = (1= @)/(1- ) ne N,
h(s(a)) = h(a) Va € A.

In particular,
Al = h(l) -1, hwd) e Clel,
hw) =0 for (i,5) # (0,0).

.h has an explicit expre.ssinn' in t terms of q-integral: for f = f(g ) € C[(]

h(f) = / f<c>d2< = (-4 Zq%f(q%), ol <1
k=0 .
and for |g| > 1 there is also a cooresponding formula. ‘

2. Quantum group § Uq(2) and the Fourier transform on it -

According to Fa,deev et al. [3], the real form of quantum group SLq(2 C)is a
Hopf algebra which possesses the *-structure, that means, on SL,(2, C) is deﬁned an
operation (mvolutlon) ¥1 A — A satisfying:

(Aa)* = Xe*, (aby::b”ﬁ =id,
Aox=(x®+)0A, ¢(a*)=e(a), (*03)2 id.

The1e are three real forms for §Ly(2,C’), called SU, (2), SUq(l 1) and SLq(2 R), and
tlle -operatlon is deﬁned as

> v\ _ [ oy —qu y o qu y q“‘v

vy ) T\ —¢w oz )\ ¢ z qu oz )
respectively, and the value of q is: q reai for SU,(2) and SU,(1,1), and |q| =1 for
SL,(2, R) Due to the property of *.operation, we have
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Prbposition. The spin 1 representation of SLg(2,C), as restricted on the "real”
quantum groups mentioned above, gives rise to the finite- dimentional irreducible
representation for them, respectively.” But in these three cases, such a restriction
provides a unitary representation only for $U,(2). Here the meaning of the unitarity
of a representation may be stated in an obvious way, that is,

WWr = W, =1

where W) = (’ll)g)){’jé[‘, W = (wg'?m)i,je;h, I is the J; X I unit matrix, in other
words, W7 is a unitary matrix: W = W} = s(W)).

As for the infinite-dimentional representation of quantum groups, since the concept
of limit/convergence/topology should be introduced, so we don’t discuss it here. Really,
§L4(2,C) has infinite dimensional representation (infinite-dimensional comodule) and
its restriction to SU,(1,1) gives rise to the unitary representation of the latter, sce
[6] for detail. Woronowicz has introduced SU,(2) from the angle of C*-algebra and
obtained many important results. SU,(2) is an analogue of compact group, it can be
‘endowed with a metric in terms of bi-invariant functional h.

Proposition.[5] '[he Hermitian forms <, >g and <, >, on A(S5U,(2)) dehncd by

< a,b>p=h(ab*), - <a,b>p=h(a"b)

are positive definite.
- Hence, we can define the norm ||a||} =< «,a >p= h(aa*), SUL(2) is uumed into a
metric/topological space. We have the following Peter-Weyl theorem [5],18].
Theorem. The #-Hopf algebra A(S0,(2)) has an orthogonal decomposition

A(STUL(2)) = ®IGN/2 Wi

with respect to <,>gr (o7 <,>L), and the matrix elements w( ) satisfy the followmg
relations:

< w?)’w(m) >p=< wl(;), (m) Sp=0 for (I,i,7)# (m,s 1)
< w; ),w(l) >p= q2(l-z)(1 @)/(1- q2(21+1))

< 1US), ,w(l) >pe= q2(l+_,)(1 (]2)/(1 21+1))-
Here, the quantum Schur lemma is avzulable for the irreduciblé commodules. Since
wg-) can be expressed by g-Jacobi polynomials, P-W theorem produces the orthogo-

nality relations of them. From P-W theorem we can establish the Fourier transform

on SU,(2) ~
F i A= A(SUy(2)) = A= GrenypMat(L, C).

For f € A(8Uy(2)), define the matrix-valued Fourier coefficients i = (ﬁ(})),‘-’jeh €
Mai(I},C) as follows: : ST

FO = w(f. W), FH = Frienyes
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where W is the representation matrix of SU,(2) in V,L . : .
‘Theorem. (Fourier Inversion Formula) The Fourier transform 7 : A — A is.a
C-isomorphism. The inversion formula is given by :

= T =) T AR

lEN/2 v]erl

3. Fourier transform on quantum group C(5U,(2))

According to Woronowicz, C(SU,(2)), the algebra of continuous functions on
'SUq(2), is the completion of A(SU, (2)) under the norm |||l of C*- algebra, which
he called the compact matrix pseudogroup. Norm |||« is defined by

llall« = sup || (a)]],
w€ell

where II is the set of all representations of C*-algegra SU,(2), and [[7(e)|| is the norm
of operator. From the theory of C*-algebras [2], C(SU,(2)) is the C*-algebra of type
1, the comultiplication on A(SU,(2)) can be extended continuously to C(SU,(2)):’

Az C(8U4(2)) — C(SU4(2)) ® C(5U,(2))

and C(SU,4(2)) is turned into the C*-bialgebra.
‘Proposition. The bi-invariant linear funct,lonal h on A( SU (")) is continuously -
extended to C(SU,(2)). :
From [2], since h(aa* ) >0,Va € A(G'Uq(2)), and h(aa* =0 1ff a = 0, then there
exist some *-representation 7, acting on the Hilbert space V with inner product (, v,
and a fixed vector £ € V, such that

ha) = (r(a)e, v Va € A(SUL(2)).

Therefore ,
|h(a)] < |(x()&,E)v] < [im(INENY, < NallllENT, -

and since ||al|. is continuous with respect to a € C(SU,(2)), then h‘(a) is continuously
extended to C(SU,(2)) and is still the Haar measure.

Corollary. For f € C(INC(5Y, (2)) 0< |q| <1 thc Haar measure h has an
' expressmn e .

L MH=0- Z)Zq"’f(qz")

k=0
It is obvious that for « € A(S Uq( 2)),

~h(aa®) < ||m(a)n(a” )'Illfllv < lallz ||€|Iv

If A(SU,(2)) is endowed with the norm ||| : |lall7 =< a,a >R— hiaa™), thcn Il can
be extended to a norm of ( (9U4(2)). Of course, the inner plOdllf‘t <, >p is extended,
too.
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INOW ilere are two NOTIS : |||« and|j||, ol ({5 Ugl2)), The Telation between them
is included in the following ‘ ' ’

Proposition. [la||x < cillalls, Va € C(SU,(2)).

This means the norm ||||, (hence its induced topology) is stmnger than ||||5. At
this point we can establish the }"ounel transform and inversion formula for C(5U,(2)),
although formally they are the same as that for A(SU,y(2)), but now they are really
related to the infinite summatjon. ’

Proposition. The set wg), i,j € I;,1 € N/2 forms a complete and orthogonal ba-
sis of C(SU,(2)) with respect to the Haar measure h, and any element a € C(SU,(2))

has the unique expression of a series in w(J)
We need only to prove the fact: if 3,5 4 g) 0~ = 0, then all c(l) = 0. In fact,
<, >R is continuous with respect to |||, it follows
0 =<0, wgt ) >R
=< ) Z i,7 l] 17 ’U’EJT)
=T SJ < w(’) w(m)
— q~(l—])(l —q )/(1 2(2141 )c(m)
then c(m) 0 Vm,s,t. _
'I‘hc Fourier transform on C'(SU,(2)) is defined as
F:C(SU,(2)) = C = @renzMat(L;, C)
. FU) = (FOhenp
where »
JO = h( £ W,) ) = h(f.s(W)),
i:(;.,
7 = h(f.5(w)).
Due to the above Proposition, as f is e,\pleescd in a series of w(J) the coeflicients are

determined in a unique way, hence the Fourier inversion formula holds.
Theorem. For (C(S5U4(2)), ||ll+), holds the expansion

f= Z Z[(qzl-n 1) /(q - q-1)]q2]’ﬂ) @

leN/2ijel;

The R.ILS. is called the Fourier series of f. Thus, it comergw to f in the norm
||”. Moreover,F is an isometry between C’(,SU (2)) and C, that means, we have

' - _ ) A
< f9>r="3 (@ - 2N/ (g- ¢V Z ¢ < ?‘,’,gf}

At last, let’s introduce the convolution in C’(SU (2)). For a , € A(SU4(2)),b €
- C(SU, (2)) we can define another multiplication @, called convolution, as follows

. a@b:(zd@pa (Ab)

e




where pa is alinear functional on C(85U,(2)) defined by
pule) = h(a-s(e)), € C(SUL2))

As well as
& bO a = (4, ® id)(AD),
where
pi(z) = h{z.s7(a)).
It is easy to verify that convolution @ satisfies the law of associativity, if the
operation is reasonable. The following is an analogue of the convolution theorem for

classical Fourier transform:
Theorem. If a or b belongs to A(SU (2)) then

FaGb) = }(a) F(b)

where the R.H.S. is the multiplication of matrices on C.

Using Fourier expansion ard definitions, it is not difficult to venfy the theorem.
From the finiteness of the Fourier coefficients for SU,(2) and the mvu‘qlon formula,
we have

Corollary. A(SU,(2)) is an two-sided ideal of C( 5’0,,(2)) with respect fo the
convolution.

- This note is completed dunng the Workshop on Quantum Groups and Low-Dimen-
sional Field Theory organized by the CCAST. The author would like to express his
gratitude to the host for providing this good oppor tunity for academic exchange and
excellent conditions for research work, and to Profs. Shikun W/mg and Ke Wu for
beneficial discussions. :
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§0. Introduction AT

Quantum groups and quantum Lje algebras as deformed Lie groups and Lie algebras
have been studied extensively following the pioneer papers of Drinfeld, Jimbo, Faddeev
et allll. It is also very interesting to study the quantum groups from geometrical point
of viewld, i.e. to find its relation with non-commutative geometry[®), Although the
bicovariant differential calculi on quantum groups have been provided by Woronowicz!l,
their concrete constructions still attract much attention. So several groups have been
working on this question on different subjects, for example, the differential calculi’
on quantum planesl®), on quantum groupsl®” s as well as on quantum groups with
multi-deformed parameters!), one can also find many reuultu in the review paper of
~ Zuminof9], :

The construction of quantum Lorentz proup was first given in {1 1] by Podlés and
Woronowicz, and then discussed by Drabant et al.'3, Carow-Watarura et al.13] and
others!'l. Following the works of (11,12}, the main purpose of this letter isto discuss the -
bicovariant differential calculus on quantum Lorentz group based on the method gi ven
in [7,8,9]. The results we obtained include the bicovariant first order and high order
differential calculus on quantum Lorentz group, the quantum Maurer-Cartan formulae,
i.e. the deformed de Rham conplex on quantum Lorentz group as following sequonu‘
of bnuodulcs of quantuin Lorentz group

0— 0L 4 2.4, (0.1)

Summation convention will be used in tL]s pup(‘

§1. Quantum Lorentz group: 9%

It is well known that the quantum matrix group S L,(2) is generated by four ele-
ments which can be written into a 2 x 2 matux T = (ti;)ij=1,2 and also satisfy the
, followmg relations,

RNOZT, = ToThR, Det,,T = 1y1tq2 — qlialyy = 1, 3 (11)
where ' ' ‘ ' '
a 0 00
- ._1/2_ 01 0 Q oy 1 ‘
. R=y¢ 0 A1 0] }/\<—qu -,qefl‘%-
0 0 0 ¢

For quantum Lorentz group S514(2,C), we need to introduce oy (4,5 = 1,2) ), the con-
Jjugates of elements 1;; (z,J = 1,2), and gencrators #;; (i,5 = 1,2) as

= (tu)'d =12, I = (8(84)%,
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_or

- where § is the antipode. With a few calculation, we have

o RTle = 7\"21’;112, Dcth t itaz — qiialsr = 1,

(RO T, = BTy(RY),  Det,T = tijty; — gtistsr=1. - (1L.2)
“'The commutation relat"ions:betWeeﬁ "t-' 'a'n'dltw 'a’,r'e d’eﬁned as[”} o ’
B RTsz T1T1R S )
“_‘Then we can snuplelv rewrite (1 1) (1 2), (1 3) as |

r .\ -

R i "R“ . ((.R+) l);.]h 7'?,” _R”, ’,.___ ((,R+) l)k” 3 J;I\ l— 1,2,

 where
'R=(Rcd)ubcd_12,12’ S

' amd other eleme.nts of R are zeros. It can bv ChECned that ’R, satisfies the Y'mg-B(ther

equation.
Definition 1.1

Fun(§Ly(2,C)) := Cltij, 15]/{RTT; = LR, DetyT = 1, Det,T = 1}.

' §Ly(2,C) can be understood as the direct sum of two copies of §Ly(2)l111%, so the
comultiplication A, the counite € and the antipode § on SLy(2,C) can be naturally
induced {rom those operators on SL,(2). Therefore, Fun(SLq(2,C))is a Hopf algebra.
For simplicity we denote Fun(S$L,(2,C)) by Q0 as the ﬁlst bxmodule of the de Rham
" complex in (0.1). -

Now we can 1ntroduce two sels of lmear functlorlals on 90 by

’ ‘< L) e (" L'f)f

where L:E = ( )‘,]-—1 2, L* = (l"')m—l 2.
Deﬁnltlon 1.2 .

<Pt >= (RE)S, a,bed=1,213

where R* = PRP, R~ = R~! and P is the permutation matrix{!'Z,
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Deﬁtutlon 1.2 can b<, c..].SO write down as

<l,J,tkl> (R") i.e. <L+ T >= R+

Jl’

< l,J,tk, >= (R*)% ie. < LT, T>=R*,
<l~ b >= (R~ )J,, Cie. < LY, T>=R-,
< z_, g >= (R™ );’;, ie. <It,T>=kR",
< l,],tu >=(R™ )J,, ie. <L7,T>=FR",
< l,;,t“ >= (R )71, ie. < E—,T >= Rt
< l;3,tkl >= (R~ J,, ie. <L, T>=R",
<zt >= (R, ie. <IL-,T>= R+,

where 4,7, k,{ = 1,2. Irom the above, we see I and IT have the same defuutlon 50 we-
may assume I;; l-q :
By general theory of quantum groups, we know

RYLELE = LECERY,  RYLIL; = £;CHR. (1.3)
(1.5) can also be written as v

R¥LELE = LFLERT, RYL¥L§ = L¥LER*,

R- LiLi' =I;I¥R-,  RTIfIf= iif,l R,

R+L+L“ = Ly Ly R, R¥LFI; = I3 LIB :

RL*L“~-I LP“ RL+L;_L iR,

Denotel‘FunO(SLq@ C)) the associate .),lgebla generated by Li and L:': (i, =1,2).
The comultiplication A*, the counite e* and the antipode $* can also be defined on it.
It is clear that I uno(SLq(2 C)) is a Hopf subalgebra of Fun*(SL,(2,C)), the dua.l of
Qo.

The main results in this section have already appeared in [12], here we use a different
convention used in this letter.

82. The ﬁrsf. order differential calculus: \Ql

Assume A is an associative algebra with unit. The first order differential calculus
on A, which is denoted by (T, 6) consists of a bi-module I of A and a hnea,r operator
6 satisfying :

(i) Leibnitz rule ' »

' 6(zy) = (8x)y + zby, Vz,y € A,
(ii) for a.rbxtrary element p in I, there always exist some elements 2,y € A

(k=1,2,---,N) such that
N

p= Z $k5yk-
k=1
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Now we introduce the convolution “+” on 0. For f € Fun*(5 Ly(2,C)), the con-
volutxon “y flom 10 to QO is defined by

f *(z) = (id® f)Ae, z € Fun(G’ o(n)), , (2:1)

where id is the identity operator on QO Furthermore, we mtroduce two sets of func-
tionals on Q0 as follows:

- o
Va i= (8" (Ig)lh — Save);
Oubed = S*(lc—a)l;;i,
where a,b,¢,d = 1,2,1,2. ‘ o :
Proposition 2.1  For Vz,y € Q°, a,b,¢,d,¢, f = 1,2,1,2, we have

(1) Vflb(l) = 07 oabcd(l) = 60.0651:!5
(i) A*Vap = Vs Q@ Ocpap + € @ Vab,
A*0ubed = Oapes ® Oegeds
(iii) Vab * (2y) = (Vg * 2)(Oegab * y) + 2(Vap * y)
Babed * (29) = (abos * ©)(0esed * ¥)-
The proof of Proposmon 2.1 can be found in [8]. Let 0! be the left module generated
by eight generators w', w¥, (i,§ = 1,2), and define the right mu]tlphcatmn on Q! by

W& = (Ogpea » 2, Vo €Q°, a,be,d=1,212

Therefore, (! becomes a Q°-bimodule.
Deiinition 2.1

do = (Vg # 2w, Vze0%ab= 1,2,1,2 ’ - (2.2)
It is easy to check
d(zy) = (dz)y +'a:dy,- Ve, y € Q0

. To prove (Q!, d) is a differential calculus on Q°, we must show that each of W, w,
(¢,7 = 1,2) can be represented by '

N .
> wedyk, Tk Yk € Q.
k=1

‘We have for i, 5,k lLu,v=1,2,

Vi) = 38 (zm)t = 8¢ (4D
%[\ S (l )7’&11 >< lu-)’t r> 6‘Jék']'
'i'[( ["*)“1 i (R'I )w 6,1 rcl]
0
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Similarly, we have Vi (ta) = 0. Therefore, we have for 7,7, k,u,v = 1,2,

S(Zik)dtkj = vuu(tij)wi‘fi’
S(tg)dizg = Vas(l)w™.

Now we can treat the representation of w' and uﬁ, (4,7 = 1,2) seperately, therefore
we have : ' .

Cwh= [qa(tzzdlu = ¢ tadlyy) — (¢° - g — 1)(f‘qt21dt12 + tindtan)}/ (¢ - 1),
w° = g(—qiadiy + tdiyy), . | .
~1t12dts,),

€ €
[ N}
It
o
~
gl
[.~]
B
I3
o~
—
| &
|
<_Q

! = [P(taadtsy — 7 taadtar) + ¥ (—qtardiry + ti1dta)) /(P - 1),
w? = [(tmdtrs — ¢ Mtrgdiar) + o(—gtyrdts; + tridizn))/ (¢ — 1),
w? = —q7Y(~qlardtys + tyydizp),
w? = —q~W(tg3dtss — ¢ iggdt;), v
W =6+ ¢ - Dtmdint — ¢ gtz + (~gtardtis + titdiz)] /(4 - 1).

By result of [8], the differential calculus brovided abmfe on quantum Lorentz group
is bicovariant. ' o
Let £L=8*(L7)LY,ie. L = S*(L)LH, L = S*(L™) LT,
(1)
we have _ _ o » , ‘
‘ R£17€+£2 = L‘.z'f\?,ﬁ]??,_'-. _‘ (23)
~ We can also write (2.3) as '
RLiBYLy = LRI RY,  (R¥)'LyR*E, = Dy(R)1L, RV,
. v RLlR-LQ = LQRLlR-, (R+)‘1I41R-Lg = 112(R+)_1L1R—. -
Sincé | R .
Lij = (OVij +dije), . Ly = AV + bge),

by the results of [7], we have the commutation relations of derivatives Vb (a,b =
1,2,1,2) on quantur Lorentz group. 4 '

15,1 ol ’ - ’ L
+ Vet Vg — V/aafvbl5’Rg$gg’ = vee’Fzé’dd'a (2_4)
. where , ;bl
) aa : .
Ree oy =< 0aa'dd"TCb’_5(jb'c.' ) >,

PR =A< Ve, TeaS(Taret) >, )
a,a',b,, ¢, d, d'e,e! =1,2,1,2, and Ris a 256 x 256 matrix*satiéfying Y-B equation.

(2.4) give the commnutation relations of Vo3 (a,b = 1,2,1,2) which are shown in Table
1. .
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Table 1

(l) V2Vi - ¢*V1Va = (g% - ROALY
V3Vi— ¢ 2V V3 = (¢7% — 1)V,
V4Vi—ViV4 =0,
V3V~ VaVa+ (1- ¢ 2)VyVy = (1 - ¢~ 2)V1V; = (1 - 2)(Vl - V),
VaVo = VoVi+ (g2 - 1)V1Vy = (1 - ¢~ ?)V,,
ViVa=VaVitg "1~ ¢7?)ViVa = —¢7(1 - ¢7*)Vs,

(i) ViVi- ViVs+ (@~ 1)V5V; = (" - 1)V
V5Vi~ViVs - (¢* = 1)V;V; = (¢2 —1)\7';,

VZV1 V1V4 . . o
VaVs~ V3Vs + (- DV1Vi - (¢ = 1)V5V3 = =(¢ = 1)(V1 = Va)
ViV - 'I 2V3Vi=(¢7% - 1)Vs, s

V4V3 q V3V (‘] ~-1)Vs,

(i) ViVi= ViVi+ ¢3¢ - 1)V;Vs, .
ViVa = —(¢? = 1)V1V; + V3V + (¢* - V4V, - ’

ViV3 = V3Vj,
V1V4 = —(_[ - 1)V3V2 + V.;Vl,
V3V =V,1Vs,

V§V2 = q‘2V2V§,

V3Vs = ‘IzVSVf’

,v"jvfl = V4V§7 :

V3V1 == V1V3 (q fond 1)V";V1 + (0 bl 1)V3V4,

V5Va = (q - 1)V1V1 (q - l‘V]Vl + q V2V3
+(q —1)(1 = ¢~?)V3V;3 - (g% — 1)VaVi + (¢ - 1)V4V4,

V.jvd =q" V3V%

V3V4 = (1 - _2)V3V1 - (] - q_z)V5V4 + V4V3,

V V] V1V4 (q - 1)V3V2, »

ViVa = (l - —2)V1V2 + VoV —-(1 -~ (] z)v Vs,

ViV3 = V3Vjy, |

V3iVy = (1 - Z)VSV? + V4Vj.

.

For sxmphcny, in Table 1 and following two mb]es we write “1,2,3,4,1,2,3,4” 1nstcad
of “11,12,21,22,11,12,21,22” respectively.
By result of [7], we also have the deformed Jacobian identities satified hy Vg and
Babea together with (2.4) '
. "Vaa'ebb’c ! = be’dd'vee’Ra,a, 1oels ‘ ,
Reelffloee cc’aff’dd’ = Oy ce’obb’ f’Rcc'db{l )
Fdd'eelodd'bb’aee et + gaa’bo' V‘.c’ = Vdd’aaa.’ce.' Rbb'rc’ + oaa'dd’ be’cc'
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§3. High order differential calculus: O/ |

As Woronowitz pointed out in [4], the ‘ug,h 01der differential calculus Q" is con-
structed as follows

QM= Q%/N, QF =Q®’“/Nk,

where

Q% = @208, Q% = gk_ a®", Q®° .00, QO = Q!

N and Nj are the two-sided ideal generated by ker(l — o) in O® and Q®F respectively, .

o is an automorphism on Q' ® Q!, compatible with left and right group actions, and
also satisfies the braid relation.

By the result of [8], the autorrorphism o on Q' ® Q! can be constructed as

ol o '
U(Xaa’bb’waa ®wbb ) = aa’bb'Rc-ldd/( wee ®C~‘dd }7
VX € QO, a,a',b,b'=1,2,1,2.

Therefore, we obtain *, the external algebra of quantum Lorentz group and QF,
the bunoduleq in (0.1) of de Rham complex of quantum Lorentz group. By some
calculations, we obtain the minimal polynomla] of R as following,
(= 1)(t+ 1)t + )t + 672,
so that N is generated by following elements
(R+ )R+ ¢*)(R+ g5 (' ® Wi, a,a b8 ¢, ¢ d,d =1,2,1,2.

Therefore, we obtain an equivalent relation on Q! @ (! which are shown in Table 2.
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"Table 2

(i) w2/\w2=w3Aw3:w4Aa;‘*=0,

WAL= Wl AWl WiAW? = —w? AW,
wiAw? = w3 AWl

WIAW = - W Aw? —- g72(g72 - Dw? Awt,
W AW = 2w Awd 4 (¢72 = 1w AWt

W AW = —wt Awt (72— 1Dw? AWS,

W' Aw! = (1 - ¢ Hw? Awd,

(i) - w_ Al =P Aw? = wdAwd =0,
W AW = 0wl AWl , w*":'/\wi=—wi/\w§,
w /\w§=—-w /\w3 . '
wWwinw! = ~w! /.\w‘_l (4% - l)w_/\cur,
w Aw? = —g2w? A wh = ¢*(¢* - w! /\u ,
w—/\w‘i’z —¢ 23 Aw? + (g% - Dw! AP,

winw? = (g2 - Dw? Aw?,

(i) w'Aw! = —w! AWl 4 (1= g7 Dw? Awd,
wlAw? = —w? AW, i
wi/\ws':—u.a/\wi—(q - ! Aw? +(1 g2 )wt A w3,
Wl AWt = —wt Aw! — (1 — ¢~2)w? /\w, ' o
WAL = —wl Aw? — (¢ -~ Dl Aw! + (1 - 72w AW,
WIAWE = —2wl AWl

WAL = (¢f - D! Awl = (1 - g2t AWl = (1= ¢ %) (g —l)w A w3
o —q“2w3/\w +(q"2 Dw? AWl +q7%(¢? —1)w Awt,
W AW = (¢ - 1w Aw! 4 (7% - 1)w? Aw? —wt A w2,

W Aw! = —wl Awd,

WAL = —g~202 AW,

WA w? = —qlwd A W3,

W AWt = —wt AWS,

wiAw! = AWl + (2 - 1wl AWd,
wiAw? = —w? AWl

wiAw? = (¢ - Lw! AW =P /\w +(q“2—1)w A w3,
Wirnw! =1 - ¢ Awd—wt Al

43



We can also obtain quantum Maurer-Cartan formulae which are shown in Table 3.

Table 3

dwt = g=1w? A W3,

dw? = ¢ 1wt Aw? + g~3w? Awh,
dw® = —qu' A w3 — ¢~ 13 A Wt
dwt = —q71w? A W3,

dw! = —qw? A WB, }
di? = ~3wl Aw? — qu? Awh,

dwd = gl Aw? + g~ 1wd A Wl

Cdw? = quw? AWB.

1

Based on the quantum Maurer-Cartan formulae, it is possible to construct the de
Rham coliomology on quantum Lorentz gronp which will appear in a seperate paper.

Remark After the present paper was finished, we received a very nice preprint
titled “Vector Fields on Complex Quantum Groups” by C. Chryssomalakos, B. Dra-
bant, M. Schlieker, W. Weich and B. Zumino. Although the vector fields related to
bicovariant differential calculus on quantum groups including quantum Lorentz group
is discussed in this paper, the main results of cur present paper on quantum de Rham
complex of quantum Lorentz group are still useful. :
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~ eight generators for the quantum Lorentz group on the bispinor space.
In the limit ¢ —» 1, these generators reduce to those of the left and
the right SL(2,C) plus two corresponding Casimirs.

!Work supported in part by the National Natural Science Foundation of China and the Doctoral
Programme Foundation Institution of High Education. o :
2Communication address. .

46




| I Intro duction

The xmportance of the idea of the quantum groups [1] is now more and more

extenswely tnderstood by most of physicists. This is due to its close connection to
the Ya,ng~Baxfer cquation [2] which plays a deep role in' various physical ‘problems.

In our opinion, as for the classical group, for more direct physical application, the
view considering the quantum group as the “quantum” symrmetry of some basic
physical objects, or “quantum” space, is more attractive.

. The noncommutative differential calculus over the quantum group itself and
the generators of the quantum group have been established by Woronowicz [1]. A

general construction of quantum group as linear transformations upon the quan-

tum plane has been suggested’ by Manin([3]. And ‘the covariant differential calculus
on the quantum plane was devoloped by Wess and Zurmino [4] and generalized to
the more. general quantum spaces mcludxng t,hc quantum orthogonal plane and
symplectic plane[5], and more recvntly, to the quantum Minkowski space([6].

In this paper we would like to give the e,xphc1t cova,ua,nt form of the generators
'of quantum groups SL,(2,C) and S 0,(3,1) on these quantum spaces. The main
tools are the consistent covariant differential calculus on these spaces[4,5] and
the projection operator method developed in Ref[5-7]. We start with the linear
representation of the SLy(2,c) on the spinor space in Section II. With the help of
" the differential calculuson the spinor space, we construct the differential realization
of the covariant generators explicitly in Section ITI, just as the ones for the ordinary
SL(2, c) group. We have a set of four generators satisfying the relations similar to
those given by Woronowicz (8] in considering the 4 Dy calculus on quantum group
SL,(2,C) itself and by Wu & Zhang recently [12] in developlng RTF method [1]
to discuss the differential calculus on quantum matrix groups. In ¢ — 1 limit
three of them reduce to the generators of classical SL(2,C) and the fourth is
connected’ with the Casimir oper ator(total angular momentum)[()] Then we turn
to discuss the counterpart set of genera.to;s in conjugate spinor (dottcd spinor)
space in Section IV. Combining these two sets we get the total eight generators

- of quantum Lorentz group SO,(3,1) in the bispinor space. The action of these

encrators on the spinors as well as the 4-vectors is presented in Section V.
g .
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II. Quanﬁum_ Spinors and R Matfix

We start from two-dimensional g-spinor u® = (u!,u?) = (u,v) with its components
obeying the g-deformed commutation relation

UV = q VU . ' (21)

This relation is preserved under the transformation of the g-spinor (Thg summation
over the repeated indeces is understood throughout this paper)

u.“ — ' = ]\/I"'ﬁuﬂ , M = (Z . z> - . (22)

if M is a GL,(2) matrix with its entries satisfying the definition relations

ab=gba ac=gqca ad—da=(qg—q")bc

‘ 2.3
bc=cb bd=gqdb cd=gqdc ( )

and commutlng with the components of the spinor, i.e., au = ua etc. The relatlons

" (2.1) and (2.3) can be put into the following form " o
B 49

R B 5JM7 IAJ &5 = M~ IMBﬁIR 151 V(RIZJ\IlMg ]V.[l.]VIgng) (24:b)

by introducing the numerical R1 2 matnx assouated with GL,(2)

e .
B(g) = (RoPy) = 1 "1‘1—1 (1) (2.5) -
which satisfies the Yang-Baxter e(iuatiém (in fhe )bra.id form)
RuRngu 5N S | (2.6a)
and the reduction relation ) _ |
(B-qB+qhH=0. (26b)’ |
The left-acting as well as the ughf -acting eigenvalue equatlon can be written as :
B() s tn(a) = ¢ fm(q)“f’ . (g5 s(q)® =~ <q)“ﬂ (27a)
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T(Q)ap R(¢)* 5 = g t"‘(q)qs ; “(q\aﬁR(Q)“ﬁ = —q7'5(q)ys . (2T0)
 Now since the matrm Ris symmetru, the romponents of t™(q) and 5(¢) may be
taken the bame as those of their left-acting counterparts tm(q) and s(q), namelv

e 10} 0 =g\ .,_
q@” = (5 o), ta(q)"”=<'_q—1/z ) e,

. (2.8)
ws {0 0 o 0 ¢V . ‘
(9™ = (0, _‘1), s(q)*? = (,_ 2 o ) EATVA :
where ﬂ1e g-number is defined as [n] = f’q——ﬂ— The ¢- cmalogue of the Levi- ClVltd.
symbols €(q)as and e(q)"’ﬁ are related to the singlet eigenvectors .
(Qop = ~[2"5(0)up , e(0)™ = [2%s(a)" (2.90)-
and are normalized in the way such that i
.E(Q)orﬂe(th =6s", ‘E(Q)éﬁe(Q)ﬂw = 60[_‘? o (2.90)
while . | | | o
Q)" Doy = —€7(9)% , (@) e(@)s = —€(2)%s (2.9¢)
Whéfe . , : .
£(Q)aﬁ =f<q (2_1) = q2’c(a)5fﬁ ' (2_9(1)‘
with the “charge” of indices a defined as ((1) =1/2, ¢(2) = --1/2.

As is used in Ref[ﬁ], tm(g) and q(q) are grouped together to form the matrix-
valued four vectors

tu(g) = (to(g), @) ,_ to(q)“” =g¢s(@*; - (210a)

#o) = (), (), P(gdap =47 5(0)as - ~(2100)

It is easy to check that ¢,(q) and t“( q) sa.txsfy the following or thonomahty condition
tH(q)“ﬁ P’(q)o,@ =6, - | / h (2 1]a)

the completeness relation

t,(a)* t“(a)ys =5 8= = E ﬁws o (2119)

3The conv entlon we adopted here is dltferent from that in Ref[6] by exchangmg + and -.
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and the symmetric relations | o ‘
En(Des = tn(0™ Vo0 s 5m(@ag = ~Fm(47 )par - (2.11¢)

from which follow the important relations | |
R(q)" 5 tu(q)° = q tu(q71)P* t"“(qjﬁs R as = a7 P pa . (212)
The projection;operators .for the triplet and the singlet can be defined ds .

QD(q)* 15 = tm(q)*PT™(q).s , QW(q)* 45 = 5(q)*5(q)s (2.13a)

respectively, with the properties

QYQY) = gl Q(l) +Q® =F, - (2.13b)
R matrix and cther relevant matnces can be cxpre:,scd as the linear combmamon
of Q’s, i.e., |
R(g) = 2QP(q) + 1QW(q) = 4Q® - ¢ QW . (2-14).
Conversely, the projectors can be re-expressed in terms of R: '
"R-\E oW = R~ E .
)\2 A ’ ’ ’ Al /\2

From these relations and the Yang-Baxter relation (2 4b) and the Yang-Baxter
equatmn (2 6a) we sce immediately that

QO = (2.15)

Q]_'ng.A'Iz = Afl.Mgngg) , ' (2160) .
Q'(liZ)R?fiRlZ = R23R12Qg2 ) RlszngiQ) = Q%)RmRz:; . » (216b)

The preservation of the ¢- commutatlon relation (2.1) comes from the fact that

€(q)ap and €(q)*? are the elgenvectors of M@ M w1th Det M being the associated
eigenvalue:

" M, MPse(q)" = Det,M ¢(q)** e(q)aﬁM"‘_,,Mﬁ,g: Det, M e(q)ys  (2.17)

where Det M = ad— qbc is the center of algebra generated by a, b, ¢ and d. For M
with Det, J\([ =1wesay M isan SL,(2,C) matrlx In this case we see 1mmed1ately
from (2. 17) that

M. e(q) s M () s = % o (2.184)
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Q)Mo e(q) M = 8P ~ (2.18p)
This implics that | | | .
o ) Mgy =M (219)
. ‘ e(q)pal\l“qe(q)'y‘s;z (M‘)’lﬁ‘s , 0 (2.190)
-where M* is the matrix transpose of M. Now since €(q)pa(= —€(g7 )ap # —€(0)ap)
is not ordinary antisymmetric with respect to a and 8, (M~1)! # (M*)='. This
fact tells us that starting from the basic spinor u®, we can build two different types
of lower index spinors. The one'is ‘

ot = 1P €(q)pa — 4 MY, (2.20a)
and the other ' o
. Ug = E(q)al.? uf — (Mt)_la’y Uny (220b)
So two types of invariants can be 'formed | | |
ot U = MY, Mo P = pu (2.21a)
u® ug —s uf Mip* (M), 7 uy =l ug. (2.21b)
«u and ug defined in (2.20) are the same covariant spinor in different form. They
are related by 4u = —ug £P,. The (left) derivative spinor
. a ' . N
b= 5z ) (O ) =6
should transform as o . _
B — (MY)™17 8, . | (2.224)

If we introduce the right derivative o0, (uP ,0) = 67, then it should transform as
w0 — 0 M, | - (2.22b)
The correctness of these definitions can be seen from
8,5 = O uP — (MY)1,7 8, uf MYP = (M) 6 MtP =6,°
6%y = (uf ,8) — MPsub O M, = MPs 88, M7, = 8 .

Therefore the derivative spinors with upper index, which transform just ‘as the
basic spinor u* does, are a ’

() Oz M, Feq = M. (229)
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The components of the derivative .spinor O, obey a g-commutation relation
similar to (2.1) R
‘ 82(91 =4q 6102 (224(1)

whi@h can be re-written as '
Op O = q_l 05 0, R(q)'ysag. : (2.24h)

For consistent differential calculus, we also need the relations between coordinates
and derivatives. The result was first given by Wess and Zumino[4]:

Oy uP = 8.7 +q71 B ()P " uP By . _ (2.25)

Of the two possible choises we choose C' = ¢~ R™! for definiteness. It can be easily
checked that the relations (2.4a), (2.24b) and (2.25) are covariant with respect to
the transformation in (2.2) and (2.22)

The conjugate spinor @s = (u®)* transforms[6] according to the hermitian
conjugate (complex transpose) of the quantuin matrix M: -

Uy —> Uy .l\/f'i'ﬁ& . : (2.26a)
Then raising the dotted index, we see |
u = U e(q)ﬂ“ — M4, u'y ‘ (2 '26b)‘

from a similar relatmn for M as in (‘) 18). Qua,ntum matrix ]\/I (M F)~1 satisfies
the Yang-Baxter relation similar to (2.4b),

R WYy B3, = N9 g0 3P 5 57, - (227a4)
and an additional relation[9] with M: | k
B R R o
The dotted derivative spinor .
_& 9 cv -
a "8_1‘;: 3 ((9 U:ﬁ) -— 5 ﬂ

transforms just as 4% does in (2.26a). Now by consldenng g real and taking the
complex conjugate of Eq(2.1) or (2.4a) one obtain that

ds s = 0 T T Cds s = g~ Vi s RV
Wy Uy =q Ui Uy or WUyls=q U4 uy R4




Other commutation relations can be obtained ‘byv a similar Wess-Zunmino method
- 5" #_q—le’Bﬁg 5;" & , 0% gy = 5&5; +- q_]R—l(q)déiﬁdl @t ¢ (2.28b)

In the following discussion we need the relatlons in uppcr index form: we llbt
them together as follows

wuf = ¢ 'R s uub, 9°8° = ¢'RPs 0705 (2.29q)
8% uf =e(q)*f + ¢ 2R 5 u" & ; (2.290)
g ab = R E, B = R 5 (2.30a)
@l =e(g)* + ¢?RE.; @ & < (2.300)

In discussing the bispinor comprising both u® and 4, we also need the cross
- commutation relations between undotted quantity. with dotted one:

u""'" = R""lm a@? uﬁ s ‘ - (2.31a)
8% ¢ = q—lRad ﬁ aﬁ ' u® &% q lRaa aﬁ (2.311))
0" 9% = Rty 5 0° (231c)

The consistency of all these relations can be dnect]y checked by con31der1ng the
triplet product of oper at01s chosen f10n1 (u®, 87, u% aﬁ ) and altenng the order in
two different ways.

Startmg from the given 4 x 4 R matrix (2.5) we can obtain different higher
dimensional R matrices by using different “fusicn”: for example

ROPH o = R oy R gsi(= PpaRyzRas Pis)  (2.320)
is the R matrix correspo.riciing to the quantum group SO,(4), |
: ,Ra,enfp, o = q'lRﬁ“’bcRaba'e;'R°6c'6'R"l(Q)blc'ﬂw'(= q  Roa Rya Ry It (2;321’)
is the R matrix for the quanturn Lorentz group SO,(3,1) [6,10],
3' v(=a R23R12334R23) (2.32¢)

v

Raﬁn’,ﬁl g = q-2Rﬁ'v Rab 'b’Rc s R
represents a reducible R matrix[7,11], and

af v

IR 0131,7;6/ = R(q) R((I)abrb/R—l(Q) clé‘lR_l(q)bﬁl,yl = R)dezR R23 (232d)

53



is another reducible R matrix. The reduction comes from the repeated use of

(2.16b) giving o
le Ry Rip Ray Ry = IVZ;;, Ris Rsa Raa Q&) .
QS) Ry Ry Ry Rys = Rys Ryy Rag R23 Q4) - (2.33)
| 12 Ras Ry, B3 R3} = Rys Rip B3} Rz QY]
Then by multiplying t*4g, #4, 37" and t]%, Eq(2.32¢) leads to

RILI/NA = t”((I)aﬂ 7 (Q)qs Raﬁ L tn(Q)a‘ﬁ' tx(q)vls’ o
. . i} 5 (2.34)
— RO\) 00 ) Rm()m €D Ronko D R'm.n

Here R™y; is a R matrix associated with $0,(3), corresponding quantum matrix
being[11] :

_ D™y = 17"(q)qq M s M st1,(q)PC . : (2.35)
The same procedure gives S

e I ,
IR . = B8l Ry ag) ity
0

IR o @ lRmu

where |R" . is the R matnx between the triplet (1,0) and quartet (1,1). Similarly,
from Eq(2.32b) we obtain

L R = (Qes P(0)es RPL s t,{(q)o"ﬂl t,\(q)"l'sl . (2.37)

which is indeed the R matrix for quanturm Lorentz group with its singlet eigenvec-
tor - : ' '

| (2.36)

G = (94~ ,gas,goo,g_+) =(-¢%-1,1,—-¢q) = (2.38)
bemg identified as the g¢- deformcd Lorentz metric[6]. ‘ |

I11. S’Lq(Q,C) Generators on Spinor Space

Now we are ready to construct the set of generators on the spinor space. As for
crdinary angular momentum operators in the classical spinor space[9], we consider
-the combination operators

By B = gy F(q,ﬁv 8, o (3.1)
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‘Then by using the relations (2.29) we obtain througha straightforward but tedious
derivation - : "

LB [N q--lkaé,fv:’pw@ L8 ¥ (3 25
= q BY(q)% g €(q) R-l(q)v&' - Ra’6’ L& +¢(q)? L

where R*# 15 s is the R matrix dehned in Eq(2. 3‘%) wlnch can be transferred

to R* . as in Eq(2.35). As is discussed in Ref[6], the 16 x 16 R matrix R* ., has

three distinctive eigenvalues: the smgle one /\o(q) = ¢7°, the smfold one A\(q) =
gt a,nd ninefold one Ag) =q.

- [
E(Q)NJ{RM'I&)\ = AO((])"-_’(Q)K.,\ ) ',;"MVNA'U(Q)FW\ = /\O(JQ)U(Q)IW ) .
‘ﬂms(q) w”éyym\ = ’\i(Q)ﬂnzs(Q)nA ) .'R‘“’N,\Ums(fJ)"’\ = Al(‘!)"’*ms(qyw ) 4 (3.3)
TR = Ma(@T(Drs R ams(@) = Ma(@omal0)

where for i(q), m = +,3,— and 3 = =+, for w{q) (m,n)= (2,0), (1, %1), (0,%2),
(0,0),(1,%1) and (2,0). These eigenveciors are normalized in such a way that

((’)#/ uls(q)#u = bm[ O 8

v =1, |
@ (q)w v(Q)" = v(q)w ugs(g)* =0 : (3.4)
and so forth. To write down the explicit form of R, we order the Lorentz index
i = (+,3,0,—) and define a “charge” for each index: ¢(+) = +1, ¢(~) = -1,
¢(3)=¢(0)=0. Then R* , is “charge” conservative c(p)+c(v) = c(x) +e(X) =m,
and breaks into the block diagonal form according to the total ¢ charge m.

R(g) =S 0 5 o5 @ 5P @ 5P (3.5)

where S () is a d x d matrix with total “charge” m. The followmg standard order
for the indeces pau (1, v) or (k, ) is adopted tl‘noughout this paper:

() = (++) for m=2,

(e, v) = (+3,+0, 3+, 0+) for m=1,
(1, v) = (-, 33 30,03,00,—4) for m =0, ‘ (3.6)
(;v) = (3—,0—,~3,-0) for m=1, :

(p,v) = (——-) _for m = 2.
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Then the‘singlvet'eigenvector(with total “charge” .’iero) '
(0w = (=4 1,-1,0,0,1,-9)2™" . 6

is proportional to the Lorenfz metric g(q)w And the sextet eigenvectors are |

chosen as
Q= (—¢7 g7 0, -2
Q) = (-7 ¢, 07217
@H(q)uw = (Lg— ¢4 ¢~ —q,0,-1))[2] 7,
@ () = (Lg— ¢ —¢,¢7%,0,— 12 5
@t (Q)u = (—q‘l, ~q,q,¢7)[2]™",

- \q)/w '_( q ) aq Q)[ ]—1

(3.8)

a
Then by changi 1ng the bispinor index ( o ,B) into 4-vector 1ndex p and defining
= 1*(q)ap L A €2 9);
we obtain ‘
LrLY — q‘bl’fZ.".”n;lﬁ"L’\ = o Ip
= (2" *urs (@) + - (@)L + [2] 2(q q 1)'v(q)“”L
which can be rewritten in the form
QI LY (1 + ¢7) = (2L o
@ (Qu I L1+ ¢7?) = 2L, S (3,
a) LA - 47) = 22 — 4O |

(3.10)

Or more explicitly -

[L%,I™ =0,
q(L® - L")L+ — LR - L°) = q[2]'/2L* |
gL~ (I3 — L°) — ¢ (L - L)L = q[2]1/2L" . (3.12)

L*L~ — LI + (¢ - ¢)IAIR - L°) = ¢[2]'/°L*
g 'LYL™ - L3L3f 4 LOLO — qL_L+ - q=2>[2]1/2L0 .

56




" This set of relations are similar to those given in [8] from the 4 D, differential
calculus on quantum group SU,(2) itsclf [8). So the operators L* defined in (3.1)

and (3.9) are indeed the derwa,tlve realiz a.,ion of the SL,(2,C) generators on the

spinor space. : : Co T

In the limit ¢ — 1, it is 'easily scen that
LY ~u'®y, L™ ~u?0, |

I~ (W0 —w8)/VE, L0~ (u'd+u?)/VE.  (3.13)

This means that L™ are the generators of SL(2,C) and L° an operator related to _
the Casimir operator LZ. ,

IV. Generators on Conjugate Space

On the conjugate spinor space the correbpondmg generators can be defined i in a
similar way. Consider

Lo — gé % , (4.1)~
‘then we see ‘ e
Edﬁz'rﬁ q-—IROﬂnf’ - Ld-’/;'f-‘/&"
pris | | (4.2)
=q R~ l(q)“” sV - ‘(q)“'u g1 R""s' L+ e(q)f YL
In deriving (4:2) use has been made of the xelatlons in the upper index form (‘7 30)
which are completely qmnlar to the relations with undottec_l indices, (2.29) Then

by introducing '
I = () L | (39

we have relations similar to those in (3.10) -
L LeLr—g IR’“’ A LFLA = fov L

e (@)
= 22 (s (@) + (@)L + [2Vg = ol E°



| ~where we have used the relation (3.12). Then it follows that

9,27 =0, |

o(L¥ = E)L* — g LH(EP — L) = q[2]°L*

¢L7(L® = L) — g™ (L? = L)L~ = ¢[2]"/2L" (4.5)
L+E- — I-I* 4 (g — ¢-) I3 — 1) = ql2]/2L7 ,

—q'LYL~ — LR34 LOL° — gL~ L+ = ¢*[2]V/2L° .

Now by making use of the relations between one undotted object with dotted
one (2. 31), we see 1mm<,d1ately that

. aaﬁuaaﬁ = u® q lRﬁad,ﬁ’ﬁdlaﬂ!S[Z}/
= th Rﬁ a'p’ R o &’ T u"' Rﬁl'éﬁ'u,@n 56, 0 ! . (46)
= q_2 Rﬁda‘lpl Radldual Rﬁ’pﬁlﬁﬂ jza’ﬁlﬁ'u“u ﬁ&” 5B.H u“llaﬁ'( .

This gives ) : :
Iaﬁ Laﬁ R(Q)&ﬁ' aHIJII o' B! La“ﬁ’ La”ﬁ’ (4'7)

which means that L*# is R commuting with L%, Here R is the R matrix given in
Eq(2.32c), which can be transferred to the vector index form as in (2.34)

R“‘;m\ — ROOOO @"_Rmooll ® I"{Onko @ Rmnkl ) A (48)

with R%y, = 1, R™y = ™, RO, = 6"k, and R™, being an S50,(3) R matrix.

§ 0 1 ((A—gD8 —g8 ¢ o
(R™u) =¢* @ (1‘ 0) ® ( '—3:219. (1) | g ) @ (1 0\ eq (4"9)
CKl: 44+ +3 3+ +—. 83  —4 8- -8 —-—

‘where § stands for (f — ¢~%. This leads to
[L°,i%) =[2* I°) = [L°, L™ =0 (4.10a)
and

LmIn = Rmey, LRI : (4.100)
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The latter relation 'can Be written out more explicitlyb as follows
LtLt = quﬂ‘"L*” ,
L¥YL3 = 3L+ |
LYL= = g2~ L+,
LPL* = L+L° + 6 I3L+
LPL8 = [3L% — ¢~ '6L~ L+ , o (4.11)
L =18,
| Z'ff" = q“zf{"-L“ ~ ¢ WL + (1 — ¢ 2)0L- L+,
L-L®=I3L 0L I?,
L =@ LI,
The relations (3.2), (4.2) and (4.6), or equivalently (3.12), (4.5), (4;1'0) and (4.11)
complete our cross commutation relations for quantum Lorentz algebra. Among -

total eight generators (L*, L¥), two of them; L° and L° , are centers which must
be added to complete the algebra. S '

In the limit ¢ — 1, two of these relutions bocome the definiton of L® and L,
which are decoupling from the other six generators and these six generators fall
into two commuting sets of angular momentum operators. This is just the case

for classical Lorentz algebra. ' '

V. The Action of Generators

Now we are in the position to give the explicit results when the generators are
acting upon the spinors and 4-vectors. The cross commutation relations given in
Section II are enough to give all the following results. ' '

~ The action of generators on the basic spinor u” gives

| (WP = u® ¢(g)* + q‘SRﬁy,Y,ﬁ,RMl;a, uf (u® aﬁ') - (5.1)
This yields | - v |
L0 u” = —g 2] V2% 4 ¢~ IO, (5.2a)
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L™y = T™(@)air v ()P + ¢ 2R™ 5 uf I!

where R(q)"™™s is the R matrix between spin 1 and spin 1/2 . If we set -

R(a)™ = R(a)™s

then

R(9)™s =

1 —-w
0 ¢!
q

(5.2b)

(5.3)'

~where w = (¢! - q)q‘1/2[2]‘/2, and the indeces pair (m,v) or (I,8) is ordered '.
(+,1),.(+,2), (3, 1), (3,2), (-, 1) and (—,2). Then (5.2b).can be written out more

explicitly
Lty = g7t L+
LHy? = ¢=1/21 _ (q— q-l)q-s/z[z]l/zulL:} + q—3u2L_+,.'
L3ul = q[2]71/2! 4 =241 13, ' :
L = =g ] (g = g )L AL,
CLmul = qM2%2 ¢, |

L-u? = g~ Y2~ .

(5.20)

* The similar results can be obtained when the generators are acting upon the

conjugate spinor ;. Indeed we have

(N = q R B () w0y .

This gives =
. ‘LO'&"Y = ﬁ"vLo )

anﬂ.ﬁ, — R—l(q)m";"‘{/‘ﬂé_Ll .
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(5.5a)
(5.5b)




Hére R- 1(q)"“;,,, 15 ‘theiinverse of the R matnx appearmg in (o 2b)'.

becomes - . s
U < L++(q "l)q‘”[‘ll‘,’zﬂéﬂ%{

Ltii, = q i1 L
Luy = a1L3 ~(g—¢ '-"-)ql(z[zjl/zﬂé_L-,
Py =w®, |
Lra =gl
L az = q’lﬁzL_ .
S1m11ar1 y we havc e |

(u°66)u’y = q R 1 ’Q)’% R (Q)Mﬁ ’ub(“a (9[,"')

This gives
Bt = £

f Moy }v-i-l(a)mq'lub LI

And (5.5b)

(5.5¢)
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(5.7a)
(5.7b)

where B (q)"”,,, is another R matrix between spin 1 and Gpm 1/ 2with R~ (‘1 )m'y

=R1(q) - Then (5 7:») becomes T

L+ 11~—q u‘]+

.f/+ u2=q?f-2~f4+ ’

L3 ! = —wq w?Lt -F w'L®
V’Z:"u“‘—:uzLa“ o

,L‘ u! = wy. u2L3+q u! L™,

L- u2 =gt w? L"
"“When L% is acting upon a;, we’hav’é'
" This gives

L° Gy = —q [2]72as + ¢7% us L,
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. (,aa 5ﬂ) Uy = Tk 5ﬁ»'y + ‘I‘l 1(‘1)”} R—l({l)6 a4 u,, (u aﬁ') .

~(5.7¢)

(5.5)

(5.90a)



L™ iy =~ PQay + ROl (69
where R"l(q)m[;:,; is the same matrix a.ppéa,rin'g in (5.5b). Then it follows that

Lt 45 = ¢y + ¢~ uL+--wq g, L3,
+

lwll

@y = q~layLt |

3

[wall

@i = ¢ 2]V + 7?8 L% + weT gz Lo
_ : ) (5.9¢)
L3 Uy = —q [2]_1“&' + q"z‘ii.éL:3 5 '
i'fi g lu L'

L- Uy = ql./?ﬂi + ¢ 3, L

Then when we consider the coordinates 4-vector as product of a basic spinor
u” with a conjugate spinor w, transformed in the same way as @4:

X7 = 1,02 ~ ud, (5.10)
We can easily obtain that
(w208 ()
. ~ “ '] ’ - ‘ [ - .o (5'11)
= uau_),:lﬁ((,[)ﬂ’y + q-zRﬁﬂ,\//ﬁ/Ra" 5a,uﬁtﬁ$u“"0ﬁnR"l(q)"“'au,-y,R"‘ (Q)" ﬁﬂn,-y . ‘
It follows that -
Lta¥ = C*(q) wz® +q " R(g)" 2" L7,
C(0)", = P(Q)ape(0)* T (@)wto (@)™ . - (512)
where R* _, is reducible
R™\ —ROOOGE\R"‘ o R%, SR Kl

and o
' C(q)oua' = C(q)uoa' = -q_1[21_1/25u0- ?

C(a)"s = ~al2) (e, (513

: /
Clomy = Bt w (g™
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where 0‘(q2)m" and u,(g?)™" ‘are respectively fhe singlet and tnplet elgenvectors
[11] of the R"”‘ Then Lq(5 12) is equlvdlent to

L’z 0 —q- [2] 1/2‘ .0 + quwoLO ,
[0 — _q'—1[2]—1/'2wm + q_?'wOLm' | g

. . (5.14)
LOxn — _q—l'[2]—},12w7?, + q—anLU , » o ’

Lmgn = —q [2]—1/2g(q2)mnx0 + L’}%;]ﬁus(q?‘)mnws + q—2R@nkl‘kaI )

Similarly we have
L& o Wy = gR™! by o B sul wi{e(g ba 6ﬂl '
=4 ()" e RN B;{e(g)” (5.15)
L R R @ B
from wh1ch we obtaln a thlOUb derivation that

I# o = =C(q™"), 2° + ¢~ R (@) ma” I, ~ (5.16)

where [:R—l(q)’“’ o is the & matrix in (2.32d) which is reducible in the sense
R (@) = 1R (@) 0@ R (@™n |
IR () %0 =6, | o (5.17)
R @)™ = #(@)n B (0)s R0 ta(0) -

The latter IR~ (q)"“’,d, rep1esent1ng the scattermg between the tuplet (m,l=+,3,—)
-and the quartet (v, & =+,3,0,~), can be constructed by R(q) appearing in (5.7b)
and R(q) appearing in (5.2b) £

IR (@™o = (¢~ 1+ ¢72)6™ ,
v -1 p ‘ y———— .
R (@)™ = (¢ — ¢V + ¢ TP
IR (@)™ = (¢ — ¢)@VE@ F g 2u(g")™
‘ S e R N
< mn do-! 1 » (dgq 1
(&"=10 (4" e (—d 3¢ - g d) o (" )
1 Cd 0

kl: ++ +3 3+ += 33—+ " 3- -3 —--
(5.18)
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withd =¢q— ¢!
B e e s

in this equation. Therefore, Eq(5.16) gives

2 L F
-quO,

: _Z;"ff 20 = q[:z]-l/‘zxm + q—2{(q2 -1 q._2}$0 Em

‘.Lm

+dg /g7 + Q'Tzl;tm(q:*)kz gk L'},
,Ln — Q~1[2]A-1/2g(q2)mn

In the limit q — 1, we obtain from (5.14) and (5.19) that

[L*, 2] =0,

(5.19)
R PSFE Tt
~/FFE (e T - g R (@) et
(I*,2%] =0,
[L+,2%] = —Jzat,
z0), [Lt,z7)= ﬁ(m“’ .+ z),
[L?,2%] = J5a*,
[?3’ o= ‘%wo (5.20) -
[L?27) = -J527, ; k
+2°) ' (L=, a* ='__1_(1d — 29),

[L+,x3] e A
NG
Lt 2~] = \_}5(9.3 _
[2%,2%] = dza,
[L3,.’zt3] — __71_5?0’
[:L37‘T—] = ——\}'-;flf—,
[Lv-’ ] _715(3’3
Te% = e

[L7,z7] =0,

[Lm’ ] ‘_xm/\/é

[L™, 2% = x"‘»/\/é. )

It 1mp11es that Jm =L (Lm+Lm) are the rotation generators while K™ = T(L"‘ -
L™) the boost genemtors In the present stage we have not consider ed the reality
of the coor dinate vector o:" If will be discussed in a. separate paper.’ ‘

Notc Adde(l

.. After completing this manuscript we saw a paper by W.B. Schmidke et al

(Z.Phys. C 52(1991)471) in which the ansatz-consistency method is used to give,
the generators of the quantum Lorentz group acting upon spinors vand 4-vectors
similar to those in Section V. We believe that their results will be equivalent to
ours if they used an ansatz corresponding to the 4 D, differential calculus rather

than the 3 D calculus they adopted. This is also the reason why their results were
less compact and less explicitly covariant.
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'ABSTRACT

The quantum Minkowski spacé-timne has real structure and this
seems to be contradictive to the differential calculus in it. Dual
differentiations are introduced to solve the problem here. And this
duality can be eztended to differential calculus in any C*-algebra.
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The standard model of elementary particles has, as known, both greai success and
obvious imperfection, among which the Higgs mechanism responsible for the breakdown
of unified gauge symmetry of clectroweak interaction is the most puzzling ﬁ,a,ture Several
ideas based on the non-commutative goometry have been proposed [1-4] to account for the
‘appearance of the non-vanishing vacuum expectation value of Higgs scalar fields without
contradiction to the gauge invariance of the theory. In fact these efforts are extensions of
the active research in mathematical physics on quantum groups, Hopf algebra, quantum
space, Yang-Baxter equations and non-commutative geometry in the recent decade [5-10].

As known the Lorentz invariance describes the fundamental structure of space-time,
the Minkowski space, in the world at our reach and the conventional relativistic quanturn
field theory constructed in this space is the foundation of current theorles for particles and
their interactions. But it is not clear that whether the relativistic quantum field theory is
applicable when the scale of physics was down to the sub-microscopic one [11]. In other
words should we assume new structure of space-time for the sub-microscopic world? In-
the view of quantum field theory space-time ”coordinate” are but a set of parameters
characterizing the degrees of freedom of the fields, which in special relativity forms a
manifold. Mathematics, however, supporis physics with more spaces than manifold. Could
physics survive in, say, algebraic space-time? More concretely, as well known, the Lorentz
group SO(3,1) is locally isomorphic to the group SL(2,C); and the'latter has its quantum
counterpart SL,(2,C). Therefore it is 1nte1\,:>tmfr to consider SL,(2,C) as a new syminetry
of space-time. ' ‘

Motivated by this idea, research on quant\ifn space-time is carrying on. The structure
of deformed Lorentz group and algebra have been described [11--16,21,22]. From the mathe-

matical point of view the quantum group SL,(2, C) is interesting because it is non-corpact .
and yet no general theory for non-compact quantum group is available. P. Podle$ and W,
L. Woronowicz [11] introduced SL,(2,C), which ihey called quantum Lorentz group di-
rectly, by the cartesian product of quantum group SU,(2)(~ S0,(3)) and its Pontryagin
dual. But from the physical point of view the non-compaciness may be less important.
U. Carow-Watamura et al. [12,13] constructed the quantum space-time by means of a
method analogous to the the twister theory, which is more physical. W. B. Schmidke et
al. [15] did it similarly. And many authors in different instituticns {12,13,21,22] worked
out the differential calculus in quantum Minkowski space-time. At this point, however,
there is still a very important problem to be solved. That is the contradiction between the
*-conjugation operation and the exterior differentiation operation in this "real” quantum
space.

At first & method to construct differential calculus in quantum space was suggested
by J. Wess and B. Zumino [17]. They introduced the Cartan exterior differentiation d
satisfying the following axioms, '

4 =0, 4 (‘Ca}rtan rule)
d(fg) = (df)g + (-1)P'D f(dg), (Leibniz rule)

where P(f) is the order of element f in the algebra, and defined the partial dlﬁerentla tion

(1)
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9, by ‘

d=¢"9,, (summed over u) (2)
in which ‘

& = da, (3)
a* is the "coordinate” of the space. Then the calculus is determined by requirement
of consistency. The differential caleulus in quantum Minkowski space, according to this
method, is [21,22] |

( (,PA)‘Wm\mmml\ = O’

(Ps) erb"é* =0,

(P aarer =0,

aHEY = qR’“’ N x’\, . (4)
Ouz” = 6 + qRY* 222, |

8,6" = g (R 162Dy,

3.0,(Pa)*ss = 0,

“where Py(i = 1, A, S) are the projective operators for singlet, antisyminetric and symmet-

ric multiplets, respectively, and R is the R matrix of the vector representation of quantum
group SL,(2,C) (see Appendix for det tails). The explicit commutation relations for coor-
dinate z*, under some proper choice of basis (p=0,-,3,-), are

a2t —ata® = 203 — 2320 = 2%~ — z72% = 0,

b g3t 0+
grtz’ — ¢ latet = walzt,

gz — ¢ 'z 2 = w2z,
gt — ezt = w(a® — 29)2°.
in which
w=g-q".

This differential calculus is covariant under the quantum Lotentz transformation
e L, - (6)
where the quanturn Lorentz matrix L+, qahsﬁ(,c the Yang-Baxter relation
RizL1Ly = L Ly Ry, . (7)
~ and the 7%, matrix itself satisfies the Yang-Baxter equation |
R1zRasRaz = RagRiaRoas. (8)

Ftuthc.rmore U. Carow-Watamura et al. [18] pointed that when there exists a metric
in the quantum space, the algebra in the space becomes Birman-Wenzl-Murakami algebra
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(19,20}, in which the R matrix has three different eigenvalues and hence aatmﬁcs a cubic
algebraic equation, and this is just the case of quantum Mmkowskl space. In the above
basis the invariant metric of quantum 1 Minkowsli space is

1 0 0 o0 |
0 —-¢' 0 0
that is, , |
J =gtz
=102 — gzte~ — e — g et - (10)

= invariant center of the algebra.

By means of the metric the subscript of partial differentiation can be transformed to
superscript, ‘

.au — gul/a”’ ‘ (11)
where g# is thc inverse of g,, satistying
g‘mg,\u = guAgA“ = 657 v (12)
and in fact : ‘
' gyu = Guv- : . (13)

Then the 19;.31} three commutation relations in Eq.(4) reduce to’
| ot = g 4 g(RT "D,
e = IR NED, (14)
(Pa) 2070 = 0,
because g and R obey the relations
g;A.pﬁUK (R l)uu or. '
gHo(RTN) o = R 300"
gupﬁp'\un = ('ﬁﬁ'l)‘\puvgﬂm
gun(ﬁ"l)p'\m = ﬁl\p;wgpw

- (15)
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Therefore we are ab'lé to erte the sct of commutation relations in compact tensor form as
(Pa)iazyg = 0,
(Ps)12és& = 0,
(Pibabe =0, |
1€ = qR126 12, (16}
Bizs = (G2 + (R 122102,
Ontr = ¢ Ryabsd,

‘ ("PA)IZBI Oy =0,

" where

p=("), €=(), 2=(0"), G =(s"),

and the covariance of these commutation relations under quantum Lorentz transformation
becomes apparent because the transformation is o

( gie g ok
e =1, { e b, an)
ar j L o '
and we have Eq.(7) and relation
LILHLV/\‘(]N.,\ - g/_u/. ' : (18)
Novs the problem is that in the quantum group $L,(2, C') and its representation spaces

regarded as C*- algebras, the *-conjugation has been introduced, which obeys the funda-

mental axiorns ‘ ’
(f =" (idempbtence) (19)
(fg)* =g*f*, (algebraic antihomomorphism)

- for any elements f and g in the algebra, and quantum Minkowski space is a "real” repre-

sentation of the quantum group SL,(2,C). This means that although the coordinate z*

itself is not real, i. e. '

. (=) 7é at,
there still exists a relation for @# and its conjug;atioﬁ,
(z#)* = C*,2", : o (20)°
where the matrix € = (C*,) obeys : :
' ' =1, ' (21)
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and this conjugation relation keeps invariant under quantum Lorentz transformation, be-
cause we have for quantum Lorentz matrix L#,,

(L*)" = C*, Ln\(w,\ L . '(22)_

We call Eq. (?0) and (22) the reality (‘OIIdlthIl of coordinates z and quantum L01e11tz
matrix L, respectively. The explicit form of the conjugation matrix C is

10.0 0 R
0 O 0 (I—l - o €
S, = 3 = Uy 1y90, 23 .
0 g0 0
that is Co . : _
(O =20 (@) =g, (@)= (@) =gt (20)

Therefore in quantum space two kinds of fundamental operations, d and *, have been
defined. But it is not difficult to sec that they must be non-commutative, i.e.

(Af) £d(f)
because the Leibniz rule for exterior differentiation and the algebraic anti-homomorphism

for #-conjugation contradict to their commutativity, and indecd the commutation relations
Eq.(16) are not consistent if the commutativity holds.

The solution to this contradiction is to introduce the dual ( or, in some sense, conju- . .

gation ) of the differentiation d. Let us redenote the previous differential as left one, ‘_

df =df, o . (25)
which obeys the rules
ek | (26).
. d(fg) = (df)g + (~1)"Df(dg),
‘and define its dual as right differential d which obeys
' -2 0
4= (21)
(fg)d= f(gd) + (-1} (fd)g, |
and simultaneously assume they coopérate with *-conjugation according to the rule
{ (df) = (f)a, o8
(fa) =d(f)- |
For mmed apphcatlon of the two d 1fferent1at1ons we assume o
(dpa=aa) =dfc_l=' 0. - - (29
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Now it is easy to prove that the fundamer!t al (ovnecturf‘b Eqs (19,26,27,28,29) are consis-
- tent. . S

The diﬁ'erentiations d and d should be inva,riant operations under transformation,

el

d =d, o
- (30)
d =d3 )
. therefore if we write K __' - .
d=£*9,, u = .
{ - ‘ﬁ (31)
f =Bunt,  wr=ad .
the partial di_ﬁ'erentiations 5,, and 5,; will iransform differently, |
— - ~
3 ‘33” 'L—] v ,
| 0u=0. (L7 (32)
0u=9u (L-—l)u“’ |
‘in which L™! is the usual inverse matrix of L,
. (L_l)"nL‘;q-' - LuN(L—l )nu = 6,‘:, ) (33)
but L1 is the opposite-ordered inverse matrix of L, , L
(LY, L o= LA (BT = 5" D )

L 1 ig different from L-! because we are now working in non-commutative geometry. Also
raising of the subscripts of @ and J are different,

9 = 7* B,
—p

0 = dv gl’lf’

( notice that G F Yo s but. they both transform like vectors,

.. —_n . — . .
{ g-u } = L“V { é‘u } . ‘ (36)

Quite parallel to the case of left differentiation, we have for the ught differentiation the
- following calculus,

(35)

((Ps)izmnz =0,
(Pihzmne = 0,
mz, = q‘fé«ma:lﬂé, :
Ty 9y= (G2 +¢(R™),; 81 72,
T 52= 0" Rz 51 N2,
L (P2 5152-':'0, |

(37)
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where O
n="), 9=(9)

As to the mixed commutation rclations, by requirement of comsistency and conjecture
Eq.(29) we have '

(Emy = m&s,
(Pshabins = 0,
(Pi)izbame =0,
0102= q7Y(R™")12 0102, ‘
51 N = q(ﬁ“l)izm 52, |
L 151 52= q('frl)lz 51 €.

From Eq.(20) and (28) we see that £* and n* are not themselves real but dual with one

another, ,
£y = O,
(¢4 = Cur (59)
() =Cr.¢,
and 5# and 5“ are similar, :
— —v .
a * C”u a , .
{ (0—H) —+V (40)
(8 )* = C,'Lu Ja . '

It is now worth collecting the commutation relations in Eqs.(16,37,38) for coordinate, left -

73




L

and right differentials as well as left and right ﬁartial differentiations in one set. That is
[ (Pa)az1z; =0,

(7:’.5‘)12?:152 = (7:'5)1-2711772 == (PS)12£1772 =0,

(Pi)12babe = <P1)12ﬂ1712 = (Pihzéinz = 0,

€1m2 = méba,

212 = ‘1721251502,

Ny = 97%12931’72, :

51 Ly = (L?—i)l2 + q('ﬁ«'l)lzafl 52,

{5 52* G Y+ q(ﬁ"l)lz 51 z2, : (41)
ER & = ¢ "Rzl B,

m 52= ¢ "Rz a N2,

81 m = Q('ﬁf'l)lth B2,

&1 0= (R )z 81 &,

(Paha 9102= 0,

(Pahz 9105=0;

) t 5152= q—l(ﬁ—1)12 5152 .

And it is easy to check this set of relations is self-consistent under *-"conj.uga.tion opera-
tion Eqs.(20,39,40), because we have relations for conjugation matrix, metric, projective
operators and R matrix as follows,

C[JRCV [ - (uu,
{ g g (42)
guucyncuz\ = Gs
- and
C”TCVP(‘Pi)mm\ = (Pi) (rC7cC%, " i=1A4,S8 ‘ (43)

and Eq(43) holds also for the matrices R, R~! and E, the 16 x 16 unit matrix.

In conclusion, the differential caleulus defined in quantum Minkowski space-time should
satisfy three conditions. First, it is covariant under quantum Lorentz transformation. Sec-
ond, the commutation relations are consistent. Third, it is compatible with the reality
of the space. And the introduction of dual differentials is a necessary step to meet those
requirements. More generally this duality can be extendéd to differential calculus in any
non-commutative C*-algebra. :
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Appendix

Here we collect some basic definitions of guantum group SL,(2,C) and quantum
Minkowski space.

The decomposition of the R matrix into projective operators for quantum group

SL(I(G-A, ./) 18 . .
B=qPs - q P, , (44)

whcre (P4)®,, is the anti- -symmetric (smglet) one and (Ps)?.q is the bymlnetrlc (triplet)
one, and a,b,¢,d = 1,2. They satisfy the conditions :

Pj:PA’ P.g‘::PS’
PaPs =0, . . (45)
Py+ Pg=1. ~ I:4x 4 unit matrix '

These operators are constructed from the eigenvectors of R inatrix {21], which are

( _ i 0 _q—1/2
0 . __4ab __ ¢ 1/2 ¢
: tao-to-—[zl./(qm 0 ,

7 00
+ oo pub
F e =10 ( 0 1 )’
T -1/2 0 ?1‘/2
tda = {ob, — [9]-1/2
b =13 = [2] (q—l/'l A

; -1 0
- —qab
\t ab_t'—(OAO)’

(a,b=1,2; 2] =¢+¢~!), and saﬁsfy

{ Rabcdtcdo = _q-vlta,bo’
Rabcdt'cdm: qt®,., m=+,3,—

(46)

(47)

io ,bRab .= ___q—lt_ ocd .
{ et (48)

E ™Ry = gf g, m=+,3,—
and i u- R o
{ 7 (49)
tob e, = 5288, -
where p,» = 0,+4,3,~. Then o
{ (Pa)beq =120 0y, _ (50)
(Ps)®y =1,E ™. (summed over m)
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For bi-spinor representation of SL,(2,C') the R matrix is [19] ‘
ﬁaéb&cm e R""c; Rééf_d,( R—l VY e, | (51)
or, in compact tensor notation, | . |
Rz)(a4) = g~ Rpa R Rau B33 . S (52)
Its projective operators are ' A
(P1)az)@ey = Ros(Paha(Pa)aRzs,
(P 4)2)z4) = Ros[(Pa)1a(Ps)ss + (Psha(P. 4)aa) Bzs (53)
(Ps)azyey = Ros(Ps)12(Ps)aalizs s

where Py, P4, Ps are the singlet, anti-symmetric (hexet) and symmetric (nonet) projec-
tive operators, respectively. '

Then by virtue of the eigenveciors of R matrix we can transit to the vector represen-
tation. Taking , :

I(On.b =1 Oab, :
v - ' (54)
I{mdb = qt maba m =+, 3, -
and their inverse matrices .
I{—l )ab —_ tab .
( e 0 (55)
(I{—-l)abm — q—ltabm, m =+, 3’ —
we put R . - ' ' . o
’ijm\ _ I{yaéI{ubbRaabbcédd_(K--l)ccn(I{~1)da,\.’ (56)
and similarly ' - S
(p,,)uum\ = I"ua&I{ubé(Pi)a&bbcéd‘i(K—l)ccn(I{—j)ddA’ (57)
where 7 = 1, A, S. Those projective operators satisfy the conditions
(fp‘_)Z =Pt'1 i = I)AHS' .
PP;=0,  i#j=14,5 (58)
P1+ Pa+ Ps = E, E : 16 x 16 unit matrix "
and the decomposition of R matrix is
R =qPs—q 'Pa+q Py, o (59)
~ therefore it satisfies the equation
R—q)R+¢)R-g=0. (60)
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Especially the singlet pfojective operator P is
- (P] )u,ulw\ ::Y[Q]—leil/gn/\», .

where ¢, and g"” are metric and its inverse, respectively.

The Lorentz transformation matrix is
L#, = K" M2 M (K1),
where M, € SLy(2,C),
Tl : : .Z\T[= (MT).'J)
and they obey the commutation relations
J}IQMJWQ = 1\/[1]"[2}?]2’
RlzJ\/Ile = A’-{IM2R12a
‘ R121M1M2 = .Aflyﬂf?u

(62)

(63)

' (64)
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Abstréct ,

We present a generalized J aynes-Cuminings model with intensity-
dependent coupling interacting wiiﬁh quantum ‘group-theoretic coherent stat’e.
The deformed multiboson operators are used to give the Holsteih-Primélcoﬁ'
realization of the SU(1,1) (illé.IItU_Ill group. And the field operators of the JC
Hamiltonian are identified as the clements Aof thé S Uq(kl, 1) quanturn g1'<.511p.
The SU,(2) and SU,(1,1) quantum group-theoretic coherent states are intro-
duced and the squeezing properties of\these quantum group-theoreﬁc coher-
ent states are investigated. The revivals of radiation squeezing are obtained

for any values of initial squeezing.
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I. INTRODUCTION

The Jaynes-Cummings model (JCM) [1] gives an idealized description of the inter-
action of matter with eiectx'oma.glletic radiation by a simple Hamiltonian of a two-level
atom coupled to a single bosonic mode. The time-cvolution of the variances of the
field quadratures for a squeezed vacuum state, described as an S U(1,1) coherent state,
interacting with a two-photon genei"'a,lization of thé JCM has been studied recently [2].
The revivals of radiation squeezing [3] have been found for any values of initial squeez-
ing. Because the dynamics predicted by the JCM has been supported by the Rydberg
maser experiments (4], thefe are intensive inteyests in the theorctical generalizations of
the JCM [2,5,6]. It is of interest to mention that the recent developments of multibo-
son Holstein-Primakoff (HP) squeezed states [7] and quantum group symmetry [8—13]
provide us a possibility to construct a more gencral JCM.

. In this paper we prescnt a generalized JCM with inte;lsity—deper.ldent coupling in-
teracting with quantum group-théoretic coherent state. We take the JC Hamiltonian
with intensity-dependent coxipling constant. The field operators of this Hamiltonian
are identified as the elements of SU,(1,1) quantﬁm group in HP fealization. We rely
on quantum group-theorétic approach to define a new set 6f highly nontrivial general-
ized squeezed states which in suitable limits reproduce both the usual squeezed states
and the HP squeezed states. From the quantum group-theoretic point of view these
generalized squcezed states are connected with both SU,(2) and SU,(1,1) in their HP
lrealiza,tions. We study the time evolution of the field quadratures and show the revivals
of squeezing in such a generalized JCM for any values of the initial squeezing. - |
" This paper is orga.nized as following: In Sectioh II, we present a generalized real-
ization of quantum Weyl-Heisenberg algebra. The deformed multiboson operators are
introduced. In Section III the generalized JCM is discussed. Section IV is devoted
‘to the definition and analysis of SU,(2) quantum group-theoretic coherent states. In

Section V the time evolution of the generalized JCM with intensity-depend’enﬁcoupling



interacting with the SU,(2) coherent states is shown. Section VI contains the definition
~and analysis of SU,(1,1) quantum group-theomtic coherent states. In Section VII we
present the time evolution of the generf‘ﬂizéd ‘JCM with intensity-dependent coupling
interacting with the SU(1, 1‘) coherent states. A summary and some further discussion

are given in Section VIIIL

II. DEFORMED MULTIBOSON OPERATORS AND
QUANTUM WEYL-HEISENBERG ALGEBRA

The ¢-deformed oscillator are intensively investigated in the field of quantum group
recently [14,10,11]. Its annihilation and creation operators ag, afl are connected with
the annihilation and création operators a, o' of the usual harmonic oscillator in the

following way

e NI .
Qg = \,/[]V T_:—:—}]_a’ a;‘ = a+\/[—N_:l}-;-1l ' . (1)

mq — a;"'q
where N == a*a and [z] = — -
q—q-

g € R). The deformed oscillator satisfies the quantum Weyl-Heisenberg algebra H,(4)

( throughout this paper we limit us in the case of

laaf] = [N +1]- V],
[Na] = —a,, [N,a}]=a}.

‘The quantum Weyl-Heisenberg group is the simplest quantum group and it plays

(2)

~important rule in the study of the quanturn group theory and its appliéations. Now, we
give a more general realization of the quantum Weyl-Héisenberg group, the deformed
k-boson realization. It should be shown that the above given realization of the quantum |
Weyl-Heisenberg algebra is a special case (k = 1) of the general form. First of all, we

introduce the non-linear transformations
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1

= (Bt () @
o = ()2

Nug = Al pAka) »

where k is positive 1nteger, [n]! = [n)fn—1]---[2][1] and < = > is defined as the gremfest
integer less than or equal to z, functions of the number operator N = - ala are only
evaluated on eigenstates of N, and assume the value of the functions of the respective
_eigenvalues. It is not difficult to check that the above defined the deformed k-boson

operators A, and A(, ) Satisfy the quanturn Weyl- Heisenberg group H, (4)

o) = [(]-[().
[<‘%>’A¥'~w)] = AIk,qp ' @

N
[(F) Awa] = 0

The Hopf operations: co-mulhpln*atxon, anhpodc and counit can be defined e*{pllcﬂ:ly
The non-linear transformations {Fyy,  is integer}, Fuy : ol — Fy(a}) = A(k'q)' form
a semigroup. If we envisage a situation in which we wish to compute general moments

" of quantities such as

Xkt ,g) = \“/1_5 (A(k',q) + A{k',q)) v Pwg = \—}5 (A(k',q)-— Azrk',q)) ’ (5)
in eigenstates of the number operator Nik,q), associated with generalized k' and k de-
formed bdsons, respectively, then we are lead to consider the expectation |
< Lml(A(L, q))”(A(k:,q))"]km’ >, where k, k', uv’, v, m, m' are positive integers. Itis a

straightforward excise to evaluate this expectation
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——n
~
o
s
L)
RS
1<
I~
[
i

([ : |
< km|(4},, )) (A(,cf q)) em! >= 1 = AN T 517:,,m’+t‘7v (€)
e K;f_’_’.‘_ N u>|! K’m __v>Jg

k, 4L k,

X
where we have defined ¢ = -I;:(u —v). It should be aoticed that when v = v, then t = ()
and the expectation (6) always has nonzero values (for m = m/ ). When u # v, (6)
vanishes unless ¢ is an integer. The expectation (6) depends only on %’ and k through

Y L o
their ratior = "I:' Here 1 is the positive rational fraction of the fractional transformatior:
Fi;y. We may equate < I»m|(A(k, o) (A g1) [krn’ > formaily to an expectation involving

fractional particles

< km!(A{,c,'q))"(A(k,'q):)"ﬁkm' >=< ml( A](‘r,ﬁ))u("é*(r.q))”m' > . (7).

Notice the properties of the nonlinear transformation Firy

Foy(af) = af (8)
and
Flwy © Fny(al) = Fuay(al) T (9)

if we define the inverse transformation F(L)l as

Fy © Fom(af) = af = Fay(al) | - (10

we may equate F(j)l = F;}?). Similarly we ha,ve

Fayo Fiy = Fluy = Fry (1
N
where r = = is a positive rational number. Now we have extended the qv‘mlgmup of

fos
v

the nonlinear traanorma’uon Fixy to an Abelian group {Fuy : rational k& > 0‘
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III. THE GENERALIZED JAYNES-CUMMINGS MODEL

The Ha,mlltomd,n of the eystem is of the form

H = hwo® + iQata + ¢ ( "‘A(k,q)‘/ + o ” A(k q)) . (12)

We begin by separate the Hamﬂtonmn into two commutatwe parts

H=H+H, - | 1

where

H, = HhQala+ kQo? ,

T o PO o S T

with AQ = w — Q. The HP realization of the SU,(1,1) quantum algebra are identified

[l

H,

as

P = \[KJZ >]A(k g, KD = A(k‘q)v[[@j, fre <JZ > +% (1)

with the commutation relations

[I{(‘ﬁ),Kﬁ’] el lK( D ’] [21(( ’] . (16)

And then the interacting Hamiltonian can be rewritten as

Hy = hAQo* +g (I{S}’a- +EPqt) . (17)

Hence the development operator factors

- U(t,0) = exp(—iHt/h)

(19)
= exp(—iHyt/hy-exp (—iHzt/R) . ‘
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The first part is easily diagonalized
Uy = exp(—-iHit/h)

o[ exp (i /zA j

The second one equals

Uy = exp(—iHyt/h)

(19)

sink \/ A2 "lz)f\i 2 + (21_\(2\ ) )

(%)

K>

ws( \/A KRB 4 (;m)”) —iA~

\/Azz"z’.rc‘z’ + (3a0)”

N
sin (i/ peEDEE 1 (1a0))

~iAK e : / h coq(\/,\zz«:i DD 4 (1a0) ) ‘
/A%Iu'K; + (3a0) )
j |
( sin t\/zw" Dl 4 (1a0) ) |
~ilAQ- A ANV 0
N ' \/A"’K(’ Ix( + (;AQ))’ . '
: smk VNJ«’( g ( -As’z)fl)
1o 0 iLAQ :
with A = % In the case of resonance, i.e., AL = 0 ‘
e sin (t\/;vzr‘ D pcls ’\ .
cos ( 23 el ,)} _iA 1,(2)
oo - \IA?A( ’K(” 21y
S|n (ﬁ \/A“I\'('J.K( )) O ey -
inK et cos \t\/AZI(.(;?).I{£5))
\ e E® - :

IV. SU,(2) QUANTUM GROUP-THEORETIC COHERENT STATES

85




The HP relations form a realization of the q;lantum algebra SU,(2) "

(o N\1}
K0 = Ao (2)]'

AT' % .
K9 = [20"—- (ﬂ] Agka) » | (22)
0 = (1)

The generators K and K satisfy the well known quantum algebra relations

K9, k9 = 2k, (K, KP) = £k . (23)

The (20 + 1)-dimensicnal representations of the quantum algebra S U,(2) is spanned by

the states [0 >, |k >, -+, |20k >, where the normalized bosonic states |n > is defined
as ‘
/ f
ln > 1 (a)*|0 > (24)
n>= -—=(a .
Vol : »

The set of coherent states for a quantum algebra G' can be defined using a unitary
irreducible representation of the quantum algebra, choosing a fixed vector |w > in the
representation space, and acting on it by the whole algebra. It turns out that the
- coherent states are labeled by means of the left (;osets of the quantum algebra G' with
respect to the subalgebra leaving |w > invariant up to a phase factor. For the quantum
algebra SU,(2) the coherent states within the (20 + 1) dimensional representation is

given by the formula

loy b, € >= %exp (exjo>, | (25)

where £ € C and D is the renormalization coefficient. Expanding the exponential we

obtained
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’*ﬂ

e
o 6,6 > = -.--}_;5:( :‘.))10:> .;

(26)

This is the general expression for the quantum group-theoretic coherent. states of SU,(2).

The inner product for the coherent state is

1 & e 2o
<o,k ok, & >= 5 1}6 "TFZ;:—U—‘ i

It follows that

1

20 l).l [:,0]'[”1

L (n)"’ {20 — 1)1

D =

Ml required moments may be obcanmd from evaluation of thn expechation

<o, k’é.l'(A(;'c’,q)) \A(k',q)) ok, & >

1 20 Fmgem!

= 'B;l- E 1’;———- < km| kA q)) (- lk”a)) [km' >

[ZU]E[m]! [2a]1[m ! \#
“(;

20 — m]! [20 — m/]!

IR (G 1 (65}

T

X ( [20]1fm + 1] [20]}fm)]! ) i

"\ [20 ~m — 1 [20 - m]!

To evaluate AX(p oy, AP we use the expressions
(k'\9)> (%) P

a7

D 2 G il [EEm

(29)




2=_[ +1]

[<u>]+<A(k'q)A<k'v>> |<4 .(A' 0>l
+Rﬁ(<(Awa >"Cﬂvqn )*

(@)’ = BEEUZME ()
~Re (<(A(k'.q)) >‘ (A(k',.,)) ) - i

where all expectations are taken with respect to the quantum group-theoretic coherent

states of SU,(2), |0, k, & >.

(AX(k',q))

(30)

From the general form of expectations we can write down the necessary moments

for evaluating of the variances AX( ) and AP g easily

I

1% kP ([ [20]fm ) [20]m] | F
3l |

= (m4-7r)m! \ [20 — m —7]! 20 — m]!

x\/[<%+1>] (if r = integer < 20) ,

= 0 (otherwise);

4 ‘ 1 Z [€]*™ [20)![m]! [/m
Al A = L m
< A > D? mz;.-o (m!)? (20 —m]! [< r >] ’

1
< A(k,,q) >

1 g 'Yl [24]". [20]!

<(A2k'.9))2> = Bz'gzr Z

)<\/[<IT2 + 2>] [<7 + 1>] (if 2r = integer < 20) ,

= 0 (otherwise) .
| (31)

V. TIME EVOLUTION OF THE GENERALIZED JCM
. INTERACTING WITH SU,(2) COHERENT STATE

We assume the initial state of the field to be an SU,(2) quantum group-theoretic

coherent state. If the atom is supposed to be in the ground state |— > at the initial

= (m+2r)im! k{2a —-m=—2r+ 1m + 2r]t 20 — m + 1]![m]!

o)



moment (t = 0), thea the initial state vector [1h(t == 0) > of the system can be written

as

Wt =0)> = |ok¢> @|- > _
1 2er ,.' [)G],[l] : (3:‘)
== T I -kl >
D = I ([2’7 1! I ’.‘k . .

From the time evolution operator U given in Fqgs. (19) and (20}, we can write down the
state vector |¢(2) >

W) > = %iexp(~~i ( —.l+kl>Qt\‘ -5—‘( 129 ]-_[—T\)
1=0 J .

2 J 120

5 —~iAli]

2
‘ = sin ( \/\Zrl ) ) 4 k(1= 1) >
A2+ (a0) A

o TN lan
| cos t\/z\z[l]2 + («1~A’Q) + === sin i\/A’W + ("AQ |
| ' 2 \/A~[ly Laq)’ }

(33)
To see how the system under consideration evolves we L@k‘ll[«lt( first of all the ato'uu
populatm'x inversion

4 2 e fagli
< o.z(t) > — 1 1'&' [ U] ll]

( A2 2 ; A ‘ ‘ 7 |
huti e Ui 7 sin® v\/!“f{l]? + (%AQ> ) I+, k(1 1) >
A+ (3ag)’ N

o oo G ) e e o)

/A [N2 + ( 1a0)"

X

(34)

In the case of resonance, i.2., w = Q
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<> DZZE.'; LA st @

‘The time evolution of the general expectation is of the form

((Ahea®)" (Awa®)")

; l 2t € 2o]tfm + 1] {2;]![‘11;]‘! 3
- DQ'g 2 (m + t)!m! ([20 —m—t]l {20 — m]!)

m=0

(e

A2[177; +‘ t}[m) sin (t\/ Am +I"t]2' +(;1,;A$2)2)sm (t\/ J\.'f?’[m]2 +.(%AQ)2)
\/Az[m +12 4+ (-{;AQ)Z\ﬂ\.?[_m]? + (2a0)’

bes

(e )
N o
x | cos (t\/A2[Tn+t]2+(2éS2)) 1AQ ) Sm(t\/A2[m+t]2+(%AQ)2))

\/Az[m +1)° + (’AQ

x [cos (t\/A2[1n]2+ (%AQ) ) P\ sin ( \/Az[mjz} (%,_\9)2))) .

, \/Az[m]2+(%L\vQ) v
SR (36)

-

In the case of resonance, i.e., w = §2, we have



((A(k'q)\t)) ( ‘(k'q)(t)) > | B o
= *——E"zi:t Hil (lzaliln‘z"+"t]! {é&]![ﬁi]'!>~%‘

(m + vt)!m! [20 —m '—‘ t]' (20 —m]!)

m=0

L e

(K [_t i}:&_%vﬂ)2w*(tf\[m+t])cos<tA[m1>) N

From the above evolution formulas, we can easily obtain the evolutions of necessary

moments for evaluating of the variances AJY(k)'q) and AP )

o SET P (Rolfmetrlt Rolimp \E
<A{’°"‘1)(t)> - D‘E > ([20‘ —m = r)! [20 — m]')

it (m 4+ 7)ml]

T L
. #«

x '(_— ( [(’;"“ L 1>]) sin(z;\[m + r]) sin (tA[m])

- 1 (38)
+ (K-’? + 1>DE cos (tA[m +r}) COS(tA[m]))
- (if r = integer < 20) , .
= 0 (otherwise) ;
| <.4{k,'q)(t)A(k'.q)(itv)> | = 7 i :,I;; [[:: ].'_[7::3]'1 ,
e s ()
Loy e A (39)
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‘ . W - o
( 1z 2’-’2' S 14 0iln +2r)! [20][m]! \ ¥
Ai’ s 1 2> - 2r i l 1

<( (k v‘.’)( )) Dﬁé (m + Z] )'1,]' ([40 ... 17; _— 2,»]'['20. — 1n]!

5 ( \[< 12:_1; 2\] [(-——- + 1>D sm(tA[n’+])sm (tA[m])

+([< 1\]< >] co;(t\[mw])oos(mlm}))

(1f 2r = mtcber < 20),

= 0 {otherwise).
(40)

VI SU,(1,1) QU aNTUM uROI P-THE OR,ET'[’C' C‘OH‘EE”&ENT STATES

Using the deformed k-boson operators, we can realize the quantum group S L .(1,1)

by the following HP relaticns

o TN E
K¢ = [Zcr 1 Qr>] 4{;,,.,\,

KO = agyler-1+(5)] (413
K = ”+<7>

The operators I&( ) and K:;”) satisfy the commutation relations of quantum group
SU,(1,1)
(K, K = £k, (K K("’] = —[2K{) . (42)

The rcpresentation of the SUy(1,1) quantum n.'lgebra. is spz-mned by the states |0 >, |k >
, |2k >, -+ . Note that the representation labeled by o are now infinite dimensional.

" The quantum group-theoretic coherent states of SUH(1,1) are defined as
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loy ko >= -Q-exp (aIi,_(f)) 0>, (43) o
where « € C and @ is the renormalization coefficient. Expanding the exponential we

obtained

o k> = 53 "‘—(K‘”)) |0 >

- ol ([20 +1— 1)1 R
- 527(“‘[‘%‘—7}—) >

Thxs is the general expression for the SU,(1, 1) quantum group-theoretic coherent states.

(44)

The inner product, for the coherent state is

laf? (20 + 1 — 1]I[1)! y
OF oot (45)

<o,k,alok,a >= — Z

It follows that

Q = ! . (46)

Z |l [20 + 1 - 1]1[1]!
s ? 2011 0
All required moments may be obtained from evaluation of the general‘_expectation

< ?‘, k, | (-AEkf,q))u (A(kr,q))v loyk,a >

m!im/!

= 65' i M</»ml( (k,q)) (A(LI,,)) Iknl’>

([20 +m —1]Y[m)! [20 +m' — 1]'[m’]'>
[20 —1]! 20 —1]

= Las laftm : ijt>]'[<?>]' )

R e T (D)

({2a+m+t'_'1]![m+t]z[za +m-1]z[m]1)%
T Re~1 . [Zo—If -

()
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From the general form of expectations we can obtain the moments which is necessary

to evaluate the variances AX(w,q) and LXP(k)'q)

S 1 oo |a|'ém [20+m+r—1]![m+7']![2&+m—1]![m]!, :
t L
<Ay > = Q“¥2;0n+rﬂm}( [20 - 1]! 20 - 1]!

X KT- + 1>] - (f r= integer) ;
r . N
=0 (othcrwise) ;

4 1 & |al™ [20 +m - 1]'[772]' [< >]
1 A , ~, — .
<Awalen > = 2 e e o) r/1

1 _, & |a|?™ [20 + m + 2r — 1)/[m + 2r]! [20 + m — 1]![m]'\?
t 2 — e R2T
(Awa)” > = Qza :":"’0 (m + 2r)Im! ( 20 —1])! (20 —1)!

\<\/K—T£— + 2>] [<7~:i + 1>] (if 2r = integer) ,

= 0 (otherwise).
(48)

VII. TIME EVOLUTION OF THE GENE‘RALIZED JCM
INTERACTING WITH SU,(1,1) COHERENT STATES

As in the case of SU,(2), we assume the initial state of the field to be an § U,(1,1)
quantum group-theoretic cohe_rent state. If the atom is supposed to be in the ground
state |~ > at the initial moment (¢ = 0), then the initial state vector |1(¢ = 0) > of the

system can be written as

l(t =0) > =|mka>®k>

- 20+ 1. 1)) o
- L(Lﬁbﬁﬁu>yﬁM>.

From the time evolutlon operator U given in Eqs (19) and (20), we can write down the

(49)

state vector |¢(t) > ‘ s
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) ' ([‘)a + 1 —-_l]l[l]') :

13
() > = = Sexp(—i{—=+ ki) Q1
é(®) q,‘:;,“p( ( g k)L 2o 1}t
( y B A maummrat
Ny _siu(vlu{n' (%A‘Q)A)»H,k(l-» 10> :
VA + (329) R |

+ |cos (t\/A‘[l]2 AQ‘_) - Pl = Sl ( \/A [l 2+ '\ AD) ) [= ki >
\/A?flj + ‘AQ)

To sce how the systemn under consideration evolves we cal(‘ulatu first of all the atomic

(50)

population inversion

3

1. v }(J:I?’ r20 el ll'll]'

< a*{t) >
7 ‘ ) -.:l'l (l')2 [ZG - 1|'
—AZI]? / TSN
X | = int (a2l 4 (540) ) [ ki -1
S (Az[llz (IAQ) ( iy (2 ’ /' I, 72
N D o o -
‘ a 1 nooooo 1 o —-—"_ﬁ"'?_i'?f: o
4 oS (t\ A® {l] 4 (2 AQD T —— AQ - - sin (tv[,\z (%AQ) ) I kT
, , /'\"[lj ’ASZ) -
L : ‘ N GIY)
Iu the case of resonance, i.e., w = v o
(52)

] m
Y ~ e < faf? [20 + 1= 1]t .
<o ()) = Ej}' -)_/ (11‘2 ~ I-‘.:‘-{;_:lﬁz*—— ¢OS ol\f{ll) .
As in the case of SU{2), to show the time evolutions of tne squeezing lnupemea of the in-
teracting system, we should calculate the expormtmm < A(L, ‘,)(t) >, < A(L, 2D Aw g(1) >

and < (A(k. y(2)}? >. The time evolution of the general expectation is of the form




(@) (Awa®)")

_ _1_ & [ee}? 20 + m4t - 1}Y{m +.t]!'-[§a +m— 1]![‘m]! ¥
- Q z=: (m +lt)‘m' ( 20 — 1)! [200=1] >

( (e )
Ue=eges-n
] A%[m + t][m] sin ( 1A% + t] + (360) ) sin ( \/X‘[;J;W)

| A YAtm + 4 + (340)° \/Az[‘n.%]” +( AQ)Z |
()
Km+t_-u>] K___v>] | :
e

\/A3[1n+t] +( Q\

1

2

x | cos (t\/Az[m]2 + (—;—AQ) ) + 780 = sm A?[m] + AQ ))
) e (a0

(53)

In the case of resonance, i.e., w = §2, we have

96 -



(4l ®)” (4wa®)")

1 5 & Je|*™ ([2& +m +tk—-"1’]![m +1)![20 + m —~ 1]![,,71]1) ¥
Q m=0 (m + t)l"n [20’ — 1]' . [20‘ — ]_]l

ey

I o
- L L sin (¢A[m + t]) sin (¢A[m])
(==l (-0l

r

[ ERRE) Y

[< mAT u>]! Km >]' c.og (tA[mv‘—I- t]) cos (tA[m))

— =
T T

(54)
From the. above evolution formula, we can easily obtain the evolutions of necessdry

moments for evaluating of the variances AX gy and AP g

& e ([2o4+mA4r- ifm 47! [20 4+ m — 1]'[m]'
<A(kl I')(t)> : 17?:‘() (0 + r)Im! k 20 1)1 [20 —1]! )

- x (- ([<f”—:—1 + 1>D ’ in (iA[m + 1)) sin (tA[m])

+ ([(Z:‘—l 4+ 1>D ¢ cos (tA[m +r)) cos (tA[m])) |

(if r = integer) ,

= 0 (otherwise) ;

o (m!)? [20 - 1]!

(= [(P )i tm + [(77)] o (tA[mn)

(56) .

<A{k;.q)(t)A(k’,q)(t)> = Q2 Z lae>™ [26 4 1 — 1)![m]!

o7




N _ L& aPm ([Roeme 2 ot 200 2o m - 1)l
<( l(n’q)(t))> = 5 S lal ([J{m+ r— 1[m -+ 2r}! [20 + m ][m])

= (4] . =
@ = (m+20)hm! 20 -1 20 1)

(-t et o) s st

i . | ) + (KZﬁ + 1>] [(2 .i_ 2/D oS (fA[m + r])cos (fA[m}\)

Gf 2r = inte’ger) y

= 0 (otherwise) .
(57)

VIIL CON CLUSIONS AND REMARKS

' In this paper we have present a generalized JCM with intensity-dependent cou-
pling interacting with quantum group-theorstic coherent state. We have taken the JC
Hamiltonian with intensity-dependent coupling constant. The field operators of this
Hamiltonian were identified as the elements of SU,(1,1) quantum group in HP real-
ization. We rely on quantum group-theoretic approach defined a new set of highly

— nontrivial generalized squeezed states. From the quantum group-theoretic point of view
these generalized squeezed states are connected with both SU »(2) and SU,(1,1) in their
HP realizations. To sec clearly the squeezing properties. of these generalized equu,.zcd
states, we can investigate the limiting form of some resulis presented in the previcus
sections. For the SU,(2) case, in the limit in which ¢ — co such t.hat p = /20% remain

finite, we have

X9 - Vo aA(k, R B> crA(k, 0 . (58)

and the SU,(2) coherent states reduce to the genéralibzed' Biedenharn-Macfarlane coher-

ent states (BMCS) [14,15). This result is well known in the case k =1 corresponding to

o



the standard generalized Holstein-Primakoff coherent states reducing to the standard
.. ‘ 1 .. .
BMCS. Retaining terms up to order —, we can obtain in the special case ¢ = 1 and
‘ o :

k=1,

‘ | o
(A.X)Z = -,
i to (59)
: 2 L — p_
o (AP)_2+40.
In the case ¢ =1 and k = 2,
1 .
(AX)? o~ 5t 20 + V2Fy(p?)
1 1 ,
~5 {575 (B + () = p*Fi(p%) + 5% )
(APY = Liop_ER(Y |

2
+= (2\/- (Fa(p®) + Fy(p?) — ‘Fl(p"‘)) ) ;
where F,(z) = :ﬁe"’i z \/‘)l |

iz !
For the SU,(1,1) case, we may get two interesting limits: (1) o — 0 w1bh < l(k oAk q)>

finite. (2) o finite with <A(k, q)A(k,,,)> — 00. The limit of the first kind, if taken in such
a way that p = |a|v/20 remain finite, results in

Na, L a >—s é—c" "‘"’IO >,

which is again thc genelahzed BMCS. The zesalto for (AX )2 and (AP)? both for ko= 1

and k=2 (q= 1) can be obtained from the expressions g1ven in Eqs (59) and (60) by

reyerhmg the sign of the coefﬁcle_nts of %. The limit of the second kind requires that

a — 1. For k = 2 we obtain in the limit |
P % (a)? |

0 that |0' k a > becomes a partxcular deformed oscillator squeezed state (18] Wc have

studied the tlme evolutlon of the field quadratm es and the atomic popula,tmn inversion.
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Iii the case ¢ = 1 (SU,(1,1)), the expression for the atomic population inversion exhibits
the exact periodicity. When ¢ # 1 the periodic revivals of the gencralized J CM are

destroyed increasingly for large values of the deformation parameter ¢.
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I. Introduction

‘ Recently, much attention has been paid to the studies of called quantum group
in both aspec‘u’é of physics and mathematics. Quantum groups [1] are the dual
category of Hopf algebra which is neither commutative nor co-commutative. Most
of the well studied concrete examples of quantum groups are deformations of the
universal enveloping algebra of semisimple Lie algebra[2-5]. These mathematical
siructure, algebraic structure, arise in quantum inverse scattering theory[6] and
statistical mechanics{7]. They may be thought of as matrix group in which the
elements themselves are not cummutative but obeying a set of bilinear product

relations[4,8).

Dozens of works arc devoted Lo the study of U,(S1(2)) cte.[9] via the called q-
deformation of bosonic realization, which is a g-analogue of Schwinger techinique in
quantum mechanics[10]. It is known in the work of Manin[i1] and Vvomnowicz[lz}
and a further development of Wess and Zumino[13] that quantum groups provide
a concrete example of non-commutative differential geometry. A;"‘mnedion be-

. - ' > work of
tween quantwmn group and Lie-admissible Q-algebra was realized in the W ork

J anﬁssis[M] .

. N - - s, &

As one of the attempts to explore the pliysical significant of quantum groups,

. . . . . . S e D e is given
q-extension of one-dimensional harmonic oscillator in Schroédinger picture 1s g

in the work of Minahan[15]. We try te establish a deformation of quantum me-

. : : , . C ot e BniE ease. @ antum
chanics so that the standard quanium mechanics is its limit case, and qua

. . . . . » the meaning
group symmetry is contained in it. To do so is not only to explore the m 8

, | 1t to provide possibili-
of quantum group in the contenis of quantum mechanics, but to provide pos

. . ' ) X T -tions[16] as well.
ties of nonperturbation explanations of some perturbation corrections[16] as

, 1 e mext section, we briefl
Present paper reports one step toward the above goal. In next section, Y
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illustrate some notations and derive some useful formulae of q;diffcx'cntial czm.lcﬁf
lus. In section 3, we discuss Hermitian conjugation and establish a deformation
of one-dimensional stationary Schrodinger equation. In section 4, we di's?:uss the
Harmonic Oscillators. The energy spectrum and eigenfunctions are obtained to
depend on a function, which involves concrete deformations. In section 5, we dis-
cuss deformations of coherent states, especiully discuss a g-coherent states and the
(-coherent states representation, an analogue of Bargn‘lan space representation.

Finally, we give some couclusions and discussion.

I1. The g-differential integral calculus

ey

The lattice formulation of quantum field theories allows the nonperturbation
caleulation of bound state mass aid decdy amplitude. In the usual lattice approach -
to Schrédinger equation ei Lhc:.r using, ﬁn‘ité difference[17] or using finite-element[18]
method, the lattice spacing is the sune cxylervywhcre, i.c. the coordinates (;f lattice
points are arithmetic sequence.” However, it is known that eigenfunctions of bound
state always descend properly as the coordinate goes to infinite such that they
are square integrable. i.e. L2-functions in mathematical terminology. By means
of the basic idea of Lebesgue integral, we may consider a lattice with a constani
lattice spacing no more. The lattice spacing should increases as the coordinates of
lattice points does. 'Evidently; the simplest case is such a case that the coordinates
of lattice points take as geometric sequence. .T vhis can bhe regarded as a lattice

deformation from arithmetic lattice to geometric one (g-lattice) i.e.
‘ : . . ' . [ Y o .
(tn=na+az;|neZ}— {z, =q"z, |n€Z} - (21)
. . e " o L )
which is realized by exponential map z, = ¢ ( ¢ := e®? ).

On the basis of the above consideration, we will reintroduce the following
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definitions and formulations. For z € R, let F denotes the set of all complex

functions on R, i.e.

F = {f| f(z) € C} = Fun(R,C)
composition is defined by

(f o g)(z) = f(x)g(x) VI gEF.
Now we introduce a dilation operator §

g:F — F
defined by
(@)(e) = flgz) fEF
obviously (§)™! = (q:“). Then a g-difference can be defined by
dof =4f — g f

And g-difference quotient operatcr is givcn by

~ n_l

_ d, __4g- d
dyidr (¢ —~g¢7')idr

or explicitly
dyf(z) _ flgz) — flg7"®)
dgx (¢—aq M)z

which is invariant under ¢ — ¢7?

b

(2.4a)

(2.41})

and recovers the usual definition of function

derivation when ¢ — 1. The g-analogue of Lebnitz rule is casily obtained from

definition (2.4)
——(foq) oqg (@ o «'*g

d
= --—"i 0§y +(df)e —g-
(q ’B
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Iflet f(z) = ¢, (2.5) gives ‘an operator 1*e,u.txorx
T - e =g ' ‘ (2.6)

similarly we have another useful operator relation

d, . d, ' '
s e P _.“"'(A Py () (G
ql[ T 4 d,T ! ) (

X
~1
N

One may. define o og-integral as the iaverss of q-diffevence quotient, denoted by

[ feiye = B+ € 28)

d,F(z)

‘where - T f(z). Then one can show that the sunmation along a q-lattice
da , '

can be calculated from a g-analogue of Newton-Lebnitz formula,

ry

b
K- = [ @Y = Fe) - P (20)

- Sag

where x5 == ¢/2, ;== ¢'z (if 2,z; < 0, the sununation should be divid‘ed into two
parts, i.e. z; to 0 and 0 to 2). Evident lv the following, identity hcl ds

r*l <

) . ‘
,w ﬂw%wﬂﬁquﬂ@%x (2.10)

The inverse of Ja,cko(:n‘n.flg] q-integeal {2.4) was frst used to study the relation
between rational conformal feid theories dnd ouaatum groups in [23]. Iu [21} one

can lmd some discussions abous g-infegration rules.

o

I1I. Hermitian conjugation and g-Schrodinger squation

111 tl‘ls secsiont, we will fry to establish ¢ A-.S-“xrorh nger equaiion in coordinates
3 J 1 .

»

representation. We dbﬁllb inner product
+oo

<t | @ o= j/ Bla) p(e)de ‘ (3.1}

-0

197-




We consider the case that wave functions are continuous at origin and vanished at

infinite i.e.

(804 = $(0) |
o (3.2)
(o) = 0 |
Using (2.5) and (2.10), we obtain from
[ ey oty =0
-0 dyx 7
that :
~—1_‘£1_f____ 9__c_ll«‘ 3.3
[(¢4) dq-f] = (qq)dqm' (3.3)
Similarly we have from (2.10) that |
gt =1 (3.4)
~ Then we obtain from (3.3), (3.4) and (2.6) that
( dy )= — dy | (3.5)

s

dz

Thus a deformation of time-independent Schrédinger cquation with positive defi-
nite energy spectrum can be defined by the following Hamiltonian

2

d .
H, = _dq;2 + V() | - (36)

Where V(x) stands for potential. Obviously, it recovers the standard quantum

mechanics when ¢ — 1.
IV. Harmonic oscillator

Let us consider a harmonic oscillator, its potential is V(z) = «?, then Hamil-
tonian reads

H =.——dl---{--:l:2 ‘ (4.1)
9= 22 :
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It can be written as .

H, = -2~—(a;"aq+c.'.qa: o (420)
where
dq
a, =1+ ﬂ
d,, e . .
= (a,,)T = - ; . - (4.20)

(
It is casy to check that @, aad et are energy ,decrca.se and increase operator. no
more i.e. [ Hy,a, ] # —a,. However, we can introduce a new Hermitian operator

N, such that
[ Ngya, ] = —aq,
[Nyl 1= a,'li'. , - (4.3)

of cause the latter is an immediate consequence of the former of (4.3) due to

N,}\ = Ny. Obviously | Nq,H ] = 0, then an e1g,enstate of N, is aluo an eigenstate

of H,. If we assume | u.q,a;‘ =X, from Jacob1 identity

[ [ q aq]’ a: ]'I"[ [aqa a;;- ]s -Nq ]"l' [ [a':, Nq ]> aq] =0 ’
we hévé ' . 7
[ {a,, a; l, Ng]=0 — (4.4)
This shows that X = u(N,) fe X mé,y be any functicn of Ny, then
lag ¢t J=pNy) . - (4.5)

In order to recover standard quantum meckanics, the function must go to unit as
the deformation parameter ¢ goes to 1. It is known that p(N;) =[N, +1]=[ N, ]

where [ z | := (¢ — ¢~% — ¢71) is the case indicated by Biedenharn in the
q q-—-9q : ,
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study of quantum group|9]. For a given function p, chosen in accordance with

experiment results, the Hamiltonian (42) becomes

1 SR
H,=afa, + §/A(N.,) _ (4.6)

Commﬁtator relations (4.3) and (4.5) is the defining relations of a deformed
“Heisenberg-W'eyl algebra. From those defining relations, one can find that ¢} and.
a,-are creation and annihilation operators of eigenvalues of Ny, a quantum number
operator. i.e. |

Njn>=n|n>

aji n >= (Z ;,L(i))l/zl n+1>

Con=-1

agl n >= (> ;J(z N n-1> (4.7)
1_0

Then ecigenvalues of Hanultcmrm (4.8) is easily calculated

n--1

F(vz)f?p(z)+ ONE (48)

1=0

The whole eigenstates { | n > | n =0, 1, 2,--+ oo} span a Fork space. In
terms of vacuum state | 0 > (i.e. ground state) the normalized eigenstates in Fork

representation are expressed as

' , a"’)"

| [ M (X0 k() ) 112
Then the elgenfuncrmns in coordinate representaticn can be derived from (4.9)

(4.9)

ln):

without much difficulty. First we consider the vacuum state | 0 > which satisfies

13

Using the expression of a, in coordinate representation (4.2b), we have the follow-

ing g-differential equation
(z + o )1/)0 (4.11)
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where iy =<z | 0 > Solving (4.11), We ‘mvo the eibf\nfung tion of gxound st.xtc

WPolz) = (_‘,,‘.)1/4 €rPy ‘( /[ 3)] _ ’ (1.12)
— " |
‘where exp,z 1= Y —— -k Then we obtain ewenfun(,hons of excited states
n=0
a(x) = <zln> 4 o
- _l ’ [>)
- l — ( T — (__q__ n,('rl)q‘( 2:2/[9] ‘\4.10)

[ VI (5120 ) d,r

V. Coherent states

We now obscrve the spectrum problem of g-annihilation operator a,. The cigen-
states of a,

a,| a>=ala> ' o (6.

is a deformation of usual coherent states{22]. In Fork representation, (5.1) is easily

solved by using (4.7)

[»%] T

«
Cla>= [Clp,c—-lal)]l'zf T >
S M 160 ) 1T
=[eZp, (—=]e)®) ]1/201'})“( aa+)| 0> ; o (5.2)
Where a takes dny value in complex plane and eZp,x stands for a deformed ex-
ponential function. , ”
T
PR o S
eIp, a 1= -
S ali))

Ob\'lousl ve wh]ch is just exp uppo.lrer‘ in section 4 when ,u(z\ = l i+1)=[41].
For p(i ) 1, it i3 the usual exponential hmct.xon and then (u.‘?,) recovers the usual

coberent states in quantum mechanics

As .we have known the expression of cohcrent states in Fork representation

we

and the transformation function (4.13) from Fork space to coordinate space,
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can easily obtain its expression in coordinate representation i.e. wave functions of
eigenstates of a,

0 oo ‘
pa(z) =3 <z |n><nla>

n=0

=l ea(~la) P2eip, [ ale — 700 cona(=22/12)  (6)

The probability distribution of a deformed cohcrent state in Fork representation |
is -
(Jaf)"
321 (Tizo 1(2))

this is a deformation of Poison distribution. The deformed coherent states is also

|<nja>|=eips|all (5.4)

not orthogonal to each other due to
< B a>=[eip,(~|al)eip,(~|6]) '/ *eip,ap® (5.5)

The completeness relation for the deformed coherent states is shown to hold only

in the case p(z) =[ e +1 ] — [z ], i.e. q-coherent states (see Appendix).
d?la , .
/|a > < 01|—7;-'=1 for wz)=[z+1]—-[z] (5.6)

This is an interesting consequence. In this case, (4.7) becomes

Nyn > = Nyjn >
afln > = ([n+1] W2 n > (5.7)
agln > = ([n])?n >

On the basis of the comnpleteness relation (5.6), we can expand a n-quantum state
in terms of g-coherent states

| | o
| n >=/Ia >< aln > ==

d*a

= _/['Cqu("hflz) ]l/?( [1;1]7: 7 e > (5.8)

s
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where & stands for a*. Substituting (5.9) into (5.8), we obtain that

+ =n

afa™ = a"t!
a,6" = [ n Ja" | (5.9)

Then we immediately have an expression of creation and annihilation operator in

coherent states representation. i.e.

=]
=

il

o3l

=3
S

(5.10)

o
<
i
y
=
o]l

Any state of a harmonic oscillator must possess the following expansion. in
g-Fork space , R
) ‘ o : o
v >=> ciln > o o (811

n=o

where. 3 |ca|* = 1. In order to expand the arbitrary state in terms of q-coherent
states, we must use the completeness relation which has been used in deriving (5.9).
Substltutlng (5.8) into (5 11) we obtmn the followmg expanslon in q-coherent
representa,tlon _ . ‘

¥ >= /Lcn S eapy(— la. ) ]2 | «>  (512)

| %"k )1/ ;
Obvxouslv the amphtud(, dlstubuhon functlon in tlns rcpxcqentatlon is not an
entire functlon | . ,
<alb s=x@lem-an) 1 (519)

where X(a) is an (anti- )dna,lvtlca,l function on the complcx a-plane and is defined

by the cx’p‘msmn coeﬂiuent:a { (’,,} of the state | Y >in Fork spuce, 1.e,

x(8) = ?-“uc"('*l'—y‘—/—i' o (5a4)
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There is appzu'ently a one-to-one cerrespondence between the entire function
(5.15) and the state iz Fork space (5.12). The Hilbert space cf such functions x(4)
is the known Bargimau space[24], in which the innor product of two vectors ¢ a.nd
x is defined by

s (l2cx .
: < wlyx >= _/l (@) I'x{@)ezps(—|af®)-i- | (5.15)

This definition can be easily derived via ¢-coberent state ;'epresenta.‘.ion ie. by

using {5.12) and (5.14).

VIi. Conclusion and discussion

Tn above we have attempied to establish a deformation of quantum mechanies.
‘We considered in fact a discrete guantum "xﬂ(—:Chzi.‘riics in one dimension, in which
the intervals are not uniform. Instead, the intervals are divided by a geometric
sequents. The Hermitian conjugation of q-differeatial operator ( strictly speak
quotient of g-difference) are discussion and thexa On(,-(ll mensional poutwo definite

stationary Schrédinger f‘quo,txon is set up.

For the case of Harmonic oscillator, we have sclved the energy spectrum and
the eigenfunctions by means of operator method. Owning to the constraints of -
Jacobi identity, the oscillator algebra may contain an arbitrary function of q-
quanium number operator N, only. In order to recover usual qna,ntum mechanics
this function 1s only obliged to unit when the deformation paramcter goes to unit.
So the eigenvalues and eigenfunctions of the Hamiltonian cortain an deformation

function, which can be chosen according to experiment results.

I'urthennme, we d1<:r'uﬂ<(.d the cohuen( otc‘ es for the deformed Heisenberg-
Weyl olg;ebm (,elt'unl\' the detolmed cohe rnnt states also contain the deforma-

sion funiction. However the (ohme 1t states satisfy the compleseness relation only
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for a special deformation function. This is just the case of the known g-analogue
of Heisenberg-Weyl algebra, a Hopf algebra. Othér potential cases and .th;*ee di-
mensional casc is now in discussion. Different from the honcmﬁmutative geéméiry
approach to deformations of quantum mechanics[25], it is also worthwhile to notice

the connections between quantum group and discrete quantum mechanics.
Appendix

From the definition (2.4}, one can easily find

d, -1
i BN TR Tl a
’-@-’U [n)z (a)
d, - )
—-exP,T = ETPT - (b))
d,z
ga™ = q"z" (e)
[n]m =[mn]/[m] ' , < (d)
d(l .'m . m~1 (‘iqm ) e
T ™) = [nlan = 5 ) (e)

The following formula of integration by part is a direct consequence of (2.5)
[ T ' : ~
/ (4£)dag = fglz! J/ (@7'9)def ()
B . o Ty :

The g-analogue of T-functior. is defined by

&
0

Ty(p) i= [ o# ™ eap,(~2)dyo

9] r+ ‘ |
x l—] / wxz’"]ca:p,,(—:c"))dq:c S (9)
9 oo J S ; : N E

&

Using (a-d), one can show that

Lo(p+1) =[pITy(p)
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MatD=[n] - @

The completeness relation (5.7) is shown in the following

/|a ><:a|d3a‘

lOf >< o I . o , ‘ ; 27 .
d e . 2 n+m.+l/ 1 - i(n—-m)¢
mzn ( uz ’[m]' )1/2 VQIalp’Upl}( lal)lal Al ‘ ¢P
=x) |n ><ni=n ‘ ' (i)
n
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ABSTRACT

After a brief review .of CZ type deformﬁtion of virasoro algebra, I want to

search out the Hopf algebra structure in CZ algebra, unfortunately I find out that
| there is no usual Hopf algebra structure in CZ algebra, in this sense, CZ algebra
is not a quantum group. I discuss also the CILPP type deformation of virasoro
algebra, this deformation is equivalent to CZ algebra under special cases. I 'givé
also some comments on HMNS type deformation of the virasoro algebra in the

last section of the paper.
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1. Jutroduction

In recent two years, the quantum group theory becomes one of the most inter-
esting subjects both in theoretic physics and matliematics. Originally, quantum
group emerged in the context of the quantum Yang-Baxter equation as well as the
quantum inverse scattcring method [1-2], later on, it is widely used in physics, for
example, it is proved that quantum group has deep relation with rational conformal
field theory [3-5] as well as integral physics modeis [6]. General speak, quantum
group is the q deformation ( or q anclogue ) of Lie algebra, this deformation keep
the' Hopf algebra structure, when ¢ — 1, the deformed algebra (quantum group)
reduce to the original Lic algebra. So, in some sense, we can say that to study a

quantum group ic to study the Hop! algebra in it.

As we know that virasoro algebra is a infinite dimensional Lie algebra, it plays &
important role in conformal field theory. Recently, many paper have been devoted
to discuss the q deformations of virasoro algebra [7-13], thove are many different
deformations. But, as I know, thcre are only three different kind of deformations.
They are Curtright and Zachose’s deformation ( we call it CZ algebra )[7], and
Chaichian, Isaev, Lukierski, P(:)pOWi(:Z and Presnajder’s deformation (we call it
CILPP deformation)[11], as well as Hivo-oka, Matsui, Naito and Saito’ deformation
( we call it HMNS deformation )[13]. In the first two type deformations, the |
authors did not give the Hopf algebra structure in the deformed algebra. In the
third type deformation, althoﬁgh the authors found out the Hopf algebra structure,
but we can sec from the discussion in the last section of the paper that HMNS
deformation can hardly be counsidered as a deformation of virasoro algebra in
common sense, in fact. it is a new infiniie dimsional guantum algebra whick is
infinite times great than the vira.soro( algebra. CILPP deformation of virasoro
algebra is equivalent to CZ algebra under some special cases, but in the general
cases, the CILPP deformation changes the structure constant of virasoro algebra

into operator, so [ doubt that whether it can be treated as a deformation of

virasoro algebra. So, up to now, a hopeful candidate for the q deformation of



virasoro algebra is CZ algebra. But, as I said above, we do not find out the Hopf

algebra structure in CZ algebra, this is the main topics will bc discussed in thls

pd.p(‘f

In the sections 2 and 3 of the paper, I recall the CZ algebra and CILPP
deformations respectively; in section 4, I discuss the probl¢m~ of Hopf algebra
structure in CZ algebra, there are some comments given in the last section of the

paper.
2. CZ Algebra and It’s Central Extension

The q deformation of virasoro algebra has been first proposed by Curtright

and Zachos. The original deformed algebra ( CZ algebra ) has the form:

[Ln,Lm](qm-—n'qn—m) = ['n, - Tn]Ln.*.m. (2.1)
where
[A, B](p,q) = PAB — ¢BA, : o (2.2)
1o i 2.3
[2] = (2.3)

and CZ’s operators realization of L,’s are give by' _
Ln=2"(¢"" = 1)/(g — q7") = 27"¢"°[20). (29

The (p,q)-commutators, unlike the usual commutators, satisfy the following de-

formed relations:

[4, B](,, o) = —[B, Al(g:n)> (2.5)a
[A+ B,Clipg = [A, Clpa) + [B.’ C](P:‘J)’ o , | (2'.’5)” |
~ [4B,Clpg = A[B,Cli + A, Clia) B, (2.5)
[4,[B,C],,. o l)] = -2) +[B,[C, Al (4,4 1)](;1- B)
+[C, [A,B] (s H( 2,0 = 0. (2.5)q
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' . t L : & . i
The last relation above is the deformed Jacobi relation, in CZ algebra which
has the form: o )

[Ln, [Lm, L[]'(ql—m',qm—l)](qm-H—2n’q2n—m—l) ,+ cycl.perm.s. =0. (2.6’)

The Lh.s. of (2.6) trivilly vanishes vs.'ithout any constraint to L} s. If L,’s satisfy
the CZ algebraic relation (2.1), then the deformed Jacobi identity (2.6) becomes

[m = l)[Ln, Lnyi](gmet-2n g2n-m-1) + cycl.perms. = 0. | (2.7)
If we note the identity: | | |
(" + ¢ ™)m - |[n = m = 1] + cycl.perms. = 0, | (2.8)
the relation (2.7) becomes
| [m - l][Ln,L,,L_,;I](qmu,q-.m_:) + c?cl.pewﬁs. =0. (2.9)

This is just the braid Jacobi constraint condition given by Sato et.al [8]. Combi-

nation of (2.6) and (2.9), we get
(g™ + ™)Ly [Lmny Li] (gr=m gm=t)] (g1 m=n gn-m~t) + cycl.perms. =0.  (2.10)
~ Now let us discuss the central extension of CZ algebra. We assume that the
central extension of CZ algebra has the following form
[Lny Lin)(gm=n gn-my = [n — m] Ly + C(n,m). (2.11)

We assume also that formula (2.10) is valid in the central extension case, then the

- substitution of (2.11) t0'(2.10) we get
(¢" +q7")Ln, [m = | Lyt 4+ C(m, 1)) (g4 m-n gn-m—t) + cycl.perms. = 0. (2.12) .
(2.12) gives

(4" + gL, C(m, ) gttmen grommty + cyelperms. =0, (213)
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and
im = (g™ + 9~ ™) (n,m + {) + cycl.perms. = 0. (2.14)
Considering the constraings

O(n,0) = (1, ~1) = 0, (2.15)

we can uniquely solve out C(n,m) from (2.13) and (2.14)

(:'(72., m) == ¢ c(ny m)bmgnos (2.16)
where
C=1+{g-q¢ L), , ' (2.17),
T 1 LR !
4,(71..>m) Sy Ezt:*; b Bl . (2.17)
and
[e} = [z)le —1]--- 1], e= (" +¢ HC(2,-2) (2.18)
So the CZ algebra with central extension has the form
[Il'n, z‘/»,ll](qm-~-vr,qu--vrl) = [')l -— ’n‘;-]l’..-'n.f m
. , o o) eln1inlin -1 : : )
-{(1 +{q—q '1)140)"-[~—]— . __L_____._].';_.l:'_-___-_l Sum-pn - : (.319)

[2n] (31!
3. The CILPP Deformation of Virasoro Algebra

The CILFP deformation related to the conformal dimension [11). Under a con-
formal transformation, a primary field ¢(z) with conformal dimension A becomes.
’ ] i ) P\ <)
_ IRV ' fa 1
¢(z) = (f{2))26(f(2))- (3.1)
If
f(2) =z + €(2), : (3.2)

then

S(z) = e(2)172 0 (2 9). {3.3)
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Now let ¢ = 2™, then (3.3) becomes

ad(z) = (24 A(n+1)2")¢(2)

1 = (O+Am+)-n)z)  (34)
= l,,¢(z), ‘ ) ,
I, = (20 + A(n + 1) = n)z". (3.5)

It is easy to check that I, satisfy the relation of centraless virasoro algebra, namely:

(s l] = (R = M)lmgm- (3.6)

Similar to (3.3), we can define the deformation of 6¢(z) as

8°(6(2)) = (e(2))' "2 Dy(e(2)2 b(2)), (3.7)

where 5 o
D=L L (38)
z g-g¢ |

Let also €(z) = z"*1, the equation (3.7) becomes
836(z) = L (0)#(2)

= [28+ A(n + 1) = n)z"(2), (3.9)

and

L®) = (20 + A(n+1) —n]z". ; (3.10)

Formula (3.10) is just the operator realization of virasoro algebra given by CILPP,

this realization depends on the conformal dimension A.

‘Now let us discuss the CILPP realization. The (p,q) commutators of L{*)’s are

given by
1 " n m N
L, L) = (@ (=g ™" —wa™) — ¢ N (zq" — yg™)Lintn,  (3.11)
. where N satisfies
[N] = L{P. (3.12)
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If the equation (3.11) hold, x and y must satisfy

A(n—m)+m A(me=n)=-1a ~A(mtn)+m _ qL\(m+n)—-m

z(q +q ~q

= y(qA(n-m)—n + qA(m-n)-i-n - q-A(m+n)+n _ qA(1n+n)—11). (313)

We can see that when A = 0,1, the equation (3:13) holds for any values of x and -
¥, but then A # 0.1, the equation (3.13) holds only for the following values of X
and y

r = [n(A - 1)][Am], A (3.14),

y = [m(A - 1)][An]. (1

When A = 0,1, becau.,e there are no constraints on x and y, we can chose suitable
values of x and y so that the structure constants in (3.11) become [m-n]. But for
A # 0,1, x and y are give by equations (3.14), there is no feedom for chosmg, other .
values of x and ¥, this makes the structure constants of L{*) become operators,
this, indeed, contradict to the virasoro algebra. For the case A # 0,1, (3.11) ca.n.

. be written as

(L), L sy = [m = n]Lf,?,).n, (315
where |
qm—n — q'n-—"l !
s _ 3.16),
F(X(am)g = ) — ¢ (K (nm)g" — ™)’ ( : )
and
X(nm) = (2 = Vl[2m) (3.16)s

(&~ D)][An] |
Though the structure constants become classical numbers, the deformation param- .
eters Sy, change into operators, this can hardly be considered as a deformatlon
of the algebra.

From the discussion above we see that the meaningful cases of CILPP defor-
mation corespond to A =0, 1. In this case, because there are no constraints on x

and y, so we can chose zq™" — y¢~™ = 0, and :L= 1, then (3.11) becomes

[LS;A), LS;?)](I.q'"“;') = [m — "’]‘I—NA+ML( +nu(A =0,1). . (8.17)
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If we redefine

Lo=q"Li® (a=0.1), (3.18)
then we have : ot , ‘
[L1L,Lm‘(q"~m’qm—") == ["l' - n]Lm+:;-. o (319)

Thvs is equivalent to CZ algeb"a
4. Is There Any Hopf Algebra Structure in CZ Algebra?

In this section, I will discuss the problera of Whether existing hopf algcbra

structure in CZ algebra.

The hopf algebra is a associated algebra \Mth unity. Let 4 be the hopf alge bm,
then there must cxist thrvo opo-'\tu s in A: ,oproduct A, dntlpodo ¥, cmd counity

¢. They are defined as :
A A- AQA, :
g A A _ (4.1)
e: A—- C.

where C is a complex ficld. The three operations satlsfy the following axiomes.
ForV: a,b€ A we have ‘
i) (d@L)Aa) = (A Rid)A(a),
i) 1 m(id ®@ vIA(0) = m(7 ®1d)A(a) = e(a) - 1, (4.2)
i) :  (e®id)A(a) = (id Q €)A(a) = a.
Where m is '
m:  AQA-- A (4.3)

For example m(a ® b) = a - b.

If CZ algebra has the hopf algebra structure, then we can define 4, v, €

operations which satisfy (4.2), and the coproduct keep the relation (2.1), namely:

[/l Ln, \Lm](qm-n qn—m) = [n - If&JAL r-+-1 o (‘1‘&)

If we want to search wether & algebra hes the hopf algebra structure, it is
important for us to scarch out a coproduct opcmtmn which keeps the original

algebraic relations. usnally, (4.2) can be satisfied easily.
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At followmg, I want to discuss wcther CZ algebra has the hopf algebr a str uc-

ture Fust of all I want to search out a coproduct which satisfies equation (4.4).

I assume that the coproduct for gencrators of CZ algebra has the following

general form:
ALy = f(n,q)® L, + L, ®g(n,q) (4.5)
where f(n,q) and g§(n, q) satlsfy

[£(n,9), f(m, @) = [4(n, 9), 6(m, ¢)] = 0. 46

The correspondent antipode and counity are given by

v(f(nq)) = f(n,q),
7(&(”)‘1)) = g—i(naq)) - .
AA/(L,"') = _f—an.(“]-—l? . (4.7)
e(f(n,q)) = e(§(n,q)) =1, o
e(L ) = 0.

It is easy to check that the A, v, ¢ dcﬁued by (4.5) and (4.7) satisfy the hopf alg,cb1 a.
relations in (4.2). The main task following is searchmg f(n, q) and §(n,q). that
satisfy the equation (4.4).

Insérting (4.5) into (4.4) we obtain
Lh.s. = q""f(n,q)f(m,q) ® LoLy — ¢"™ f(m,q)F(11,q) ® L, L,

+¢" " f(7,9) L ® Luji(m, q) = ¢ L f(n,9) ® §(m, q) L
+¢" " Lnf(m, 9) @ §(n, @)L —~ "™ f(m, 0)Ln ® Ly i(n,0)

Lol @ 40, 5(m,0) = " LD @ 40, )i, 1), (48)s

rhs. = [n - m]{f(m +1,q) ® Lutm + Lusm ® §(n +m, )} (4.8),

: From (4.8) and (4.6) we find that f(n,q) and §(n,q) must satisfy the followmg

relations.

f(n, q)f(m, q) f(m +n.q),

A / =J 4.9),
- §(n,q)g(m,q) = §(m+n,q), (4.9)
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and

-~

f(n"q)Lm V= q—2‘mI{nmme(naQ)v e | ‘ (4 Q)
L,,,ﬁ(m.,q) = QZ"K,;,‘,g}(m,q)Ln, ’ A%

where K! s are constants that depend on the m,n, and satisfy

K KoL =1, O (4.10)

From (4.9),, we find that f(n,q) and §(n, q) savtisfy“the same equations, so we

oniy discuss f(n,q) in the following, discussion for §(n, ) is just the same.
From (4.9),,, we have
7 7 o (4.9 2 |
f(ny, ) f(n2, @)L, =" f(n1 4+ n2,¢) L
(4'9) -—aln > 7 3
= ’ q 2 Am—!-nz,mme(nl - na, 9)7
on the other hand o ' | :

; ¢ 1.9 P -\
Fr, ) f(nay @ Lm 2 ¢ Ky, Ky L f (1, ) F (12, 0)
4.9} . o
( =} q"‘tmI{n.g,mIin; ,ernf(n] + na, Q)

Compare the two equations above we obtain

I{nz,m ‘ I{n, m = zm-K'nl +ng,m. (411)
The solution to.(4.11) is v
I{n.m = qot(ln).n+2m. s ’ (412)
From (4.10) we know that |
Knm=Kmn. T (418)
(4.12) and (4.13) give : | o »
‘ a(m) = am + 2, ‘_ Lo ' (4.14)'

where « is a constant. So the explicit form of I, m is

I(n = qa.rn-n+2(n+m), (415) )
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and the explicit form of ('_4.9);_,‘ is

F(0, )L = *"™ L f(n,q). (4.36)

Multiplying both side of CZ algebra relation {2.1) with f(1,q) from righ t, one
gets

(qm—"Lan - qn_ vabrIL'n).f(ls q) = [?l o T’z]Lm+ﬂf(l’ q) ' : (4'17)

Using (4.16), we can take f(l,q)‘ in (4.17) formn right to the left, then multiplying
f=1(1,q) to both side on the left, we obtain

[Ln, L,,,,](,)m—n‘qu—m) = q2’[n - TTL]L-m.’.n. i ’ (418)

The surplus factor ¢ appeafs, which contradict to the CZ algebraic relation (2.1).
In other words, f (n,q) which satisfies (4.16) does not exist, namely, the coproduct

given by (4.5) does not exist.
If we chose
AL, = f(0,0) @ L + L @ i(n,0) + BA(n, N1 S 1. (4.20)

I find thai any choice of 8(n,q) can not cancel the contradiction said above. So

* there is no usual hopf algebra structure ((4.5) and (il.'?)) ‘n CZ algebra.
5. Conclusion Remark

To my knowledge, there are three kinds of deformations of virasoro algebra. -
They are CZ deformation, CILPP deformation and HMNS deformation. From the
discussion in section 3, we know that the meaningful cases of CILPP deformation
is A = 0,1, for general A cases, because it ch-a‘ngc the structure constants of the
virasoro algebra, so it can not be treated as the deformation of virasoro algebra.
The main problem in HMNS deformation is that one genevator L, changes into
infinité generators under the deformation. Usually deformation does not change

the nunber of generators of original algebra. Although HMNS found out the hopf
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algebra structure in their deformed algebra, the hopf algebra structure in correct

g-deformation of virasoro algebra is still absent

After all, I thiﬁ.k CZ algebra a best ca;ndidate for the q-deformation of the vi-
rasoro algebra by now. Unfortunately I find that there is no usually hopf algebra
structure in CZ algebra. Does CZ algebra is unique deformed virasoro algebra
which without hopf algebra structure? Or are there any other reasonable defor-
mation of virasoro algebra which have the hopf algebra structure? These are all
open problems. '
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1. Introduction

‘ Thc quantum Yang-Baxter equation(QYBE) was discovered by Yang [1] and
Ba,kter [2]. The solutions of QYBE have been classified as rational, trigonometric
and elliptic according to their dependence of specbral parameters [3,4]. A host of
- investigation revealed that QYBE has played an important role in quantum ficld
thcdries [6-7] and integrable statistical models [8-11]. Much attention was recently
paid to the systems on a finite interval wtth mdependenl boundary conditions on

each end proposed by :l\lvamcm [12], \lezmr‘escu and \Iopomechl( [13]. For a

given trigenometric soluhon of QYBE basod on the classical Lie dlgcbla exceph

Ayn(n > 1), it has been shown that the systern with special boundary condition has
the quantum group symmmv‘y []2,13] The tr 1g,onorncu1*c solution of the QYBE is
a limit case of elhptu caqe Vlmmal models in coufounal field theory are closely
related with the crltmal St&t(’b of the ¢lliptic. RSOS. [8]. The trigonometric limit of
the Boltzmann weights for the clliptic case are identical with the fusion and braid-
ing matrices in the minimal conformal field theory, which are the Racah coefficients
of quantum group [5-7]. The Belavm’q Zn symmetric solution of QYBE is related
with An 1 algebra, which may be us«*d to study the systems with D,,(An 1) sym-
metry. Th]S mteres-imo 1elatxon ’nOflV:l,ff‘b us fo stuiy the Belavin An symmetric

model with nontrlvlc.,l buundm‘v lOlldlthIl

The syﬁunetry of the solution of QYBE plays a key role in procedure of study-
ing the systems on finite interval with independent boundary condition on each
end by means of the method proposed by-Sklyanian [12]. Elnd developed by Mez-

incescu and Nepomechie [13]. The Z, elliptic ‘s'ol‘ution of QYBE associated with
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the Belavin Z, x Z, symmetric model, which is the generva]izat’ion of the Baxter’s
‘eight-vertex model. Some symmeturies of the model was revealed in réf;[14]. The
structure consf;ants, both for the classical and for the quantum a,lgebraé, and fuéion
representation in this model were discussed [15). Hou et al [16] had shown fhat
there exists the quantum symmetric alchra in the Z, elliptic solution of QYBE
under the trigonometric limit. The trigonometric solution of QYBE based on the
algebra A,(n > 1) does not satisfy the restrictive conditions suggested in [12] and

[23].

The purpose of this paper is to show some new symmetries and useful properties
of the Z, elliptic solution of QYBE, which can be used to investigate the Belavin

Zy X Z, symmetric model with nontrivial boundary condition.-

2. Belavin Z, x Z, symmetric model.

' The Belavin Z,, x Z,, symxnetnc model is the elhptlc function solutlon of QYBE

There exist two equwalent forms of its expression [10,14]

R(u) = exp{—iru}- Z We (u)I @I

= Z S(u)”E,,:@ Ziits

ity .

(1)

where, superscnpt h stands for the Hermitian conjugatxon E‘,J and I = h*1 gz

are n X n matrices with. the matrix elements
(Eij)n = bkibji, » R (2)

(h)is = 8lhanyy gk = wh6ij, - ®
w is equal to exp(ir) and a= (al, az),a; =0,1,--+,n—1. The coefﬁcxent 9‘(u)

in Eq.(1) is ca,lled the Boltymann weight and can be parametrised in terms of
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Jacobi theta function

S(ullff = St
| TR
o ‘ 0 [ by }(u-{- w,nT)
5,(;?;]:,) -7 - exp{—imu} T 2 i
| By iyl
o . 1 (wynt)-0| . (u,nr)
2 2
Ta+3 oo .
e _(1)9 l (u’n‘r) .
- i |
nE
In— 0 ’ \0 n‘r)
3

In another expression form, W,(u) in (1) reads’

o “ 1
'0'[: :]I(u—l-—r)
Wa(u) = --= n:i-l
) (’7[ n 2 (,El_)_ T)
e+

The definition of Jacobi theta finction is'givell' by

9’[ Z } (u~) -3

R matrix (1) satisfies the QYBE

i

Rya(u — v)ng(u)Rgg(v); = Ry3(v)Ry3(u)Ryg(u - u)

Iniroducing an operator

L(U)= E IVQ(“)Iastii s

wE z,?.

we can rewrite the QYBE as

" Ryp(u - v) L (u)LA(v) = liz'(v)Ll‘(u)'fé-l?(u - v:). |
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(@)

(6)
(7)
(8)
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> The relation (9) is equivalent to -
Z w(ﬁx—'n)(-vz—og);,v iy (%3 V) Seg—ry Sy = 0; . ' (10)
vEZ3 . . o

here
Wapy(u,v) = W,_o(u — V)Wasg-y(u)Wy(v) — Wt = )W, (w)Warp_y(v). (11)

In order to simplify the equation ( 10)4, one can introduce the formal solu'ti'on of

"Vaﬁ“/
: R C_’“._I_%
Wepy(u,0) = Caps(u,v)d j}(u,f)a[;, N (u+v+’f:’, )
T R .
L’L_}_%' )
0[ " (v,7). ‘ ' '
§2+l

It can be shown that the constant Caﬁ.y(u v) is mcle,pendent of thc spectral
parameters u and v [15). Hence, Eq. (10) can be rewritten as the following algebraxc
relation ' v

L 2 CapySaspySy =0. for o, f € 22 (13)
=

Since Eq.(13) can be reduced to the klyamn a.lgebxa when n = 2, it is regarded

as the generalization of the Sklyanin algebl a.

3. The symmetries and the properties of the Belavm Zn X Zn
‘ symmetrlc model. |

Rlchey and Tracy [14] had discussed the symmetries based on the invariances
of the model. These symmetries are not enough to construct the exactly solvable
statistical model with nontrivial boundary conditions. We must investigate new

- Symmetries and some useful properties of R matrix of the model.
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By directly calculating, one can show the relations R(0)A' ® BR(0) = n*(B ® A)
and R?(0) = n?, in which A and B are two arbitrary n X n matrices. From these

relstions, we have the following consequence:

Proposition 1. The value of R(u) at u=0 is in proportion to the permutation
‘ operator .

R(0) =nP | S (14)
" Proposition 2.
Py Ryp(u) P = R?éha(“) . , (15)

where, h; represents the hermitian conjugation of the i-th vector space and Py(a® -

b)=>0Qa.

This property of the R matrix is obvious. It means that the Z, elliptic solution

of QYBE possess the PT invariance
Proposition 3. The matrix R(u) has the unitary property
Rip(u)RMP2(<u)'= N(u,r)id | (16)

here, id stands for the identical r;pefator and

.](u%w,'ﬁ)() [
92[ ](w,T) L

Proof. According to the definition of R(u), the left hand side of Eq.(16) is read

o= N

Jeuron

O DO

N(?.L,T)i = n? | (17)

Nl o=

143



as

Ry(w)RY™ (~w) = T Wa()Wy(—u)Lih © I
(‘X.ﬁ

— }: I'Va(u)wlﬁ('—'u)fa_ﬁ ® [(I:_ﬂwmx?g—oaﬁ; o | ‘
a0 ' (18)

_ ] |

= 5| B WerotwWatcwam s o 2
aC22 | feZ?

Because of Z, symmetry it is sufficient to consider Sgb + defined by (4), for a,b €

Z,, or §%* as we shall henceforth abbreviate. From (1) and (2), we have

, 01 o
Weap(u,m) = = 37 §7wb, : (19).
n ez, -
Thus, (18) can be rewritten as - \
| | 1 | - s N N
ng(u)Rﬂh’(—U) — . Z oM { L S_('V—")"b'l(u,w,T) . Go—b~b " (—u,w,T)}.
N¥€EL BeZ}]
(20)
Let
Poor(uy == }j ‘5“(""“')"5"’(1:, w,T) - S’"b'""_”'(“u, w,T). - (21)
BeZi

Now, we want tc determine the explicit expression of ¢,,(u), which can be ob-
tained by exploring the properties of its zeros. By means of the transformation
properties of the theta function, ore can show that

Sa'b(u + &7+ €y, w,7) = exp{—i2m€ir — 27 € (v + e e %)}

(22)
w2 §N G (0, w, 7). |
SN ut b4 G w, Ty = emp{~i27.—§lu}w"525""£"b(1"w"'r) )
| n

Combining (22) and (23) with (21), we get the transformation relations of Poor(W) “

‘Pva’(u -+ 1) = w"’([),,ai('u,) ' (24)
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oo (U +n7) = exp{—127(n*T + 2nu} P, (u) (25) |

It is an clementary complex analysis argument that if fis entire, not identically =

_zero, and satisfies
£z + ) = eap{~2mil Ay + Ae2)}S(2);

f(z +1) = exp{—-2miB} f(2).

Then necessarily A, is a positive integer, and f has zeros in A, with
1
Z 4ero = §A2 + Bt - A (mOd AT) y

where, A, = {{,7 + €261, & € £} the lattice generated by 1 and 7. We apply this

to ¢oor(u) to conclude that there are 2n zeros in A,, with sum .

> zero = nu - nr — o't (mod A,,) . (26) -

In order to determine pqq/(u) , we must find the locations of the 2n zeros. It is

from the $**(0,w,7) = 0 for b # 0 and the relation (22) that
SUh(kr,w,7) ~ S*HK0) =0 for k#—b(n).  (27)

This means that @, (kT) (k = 0,---,n — 1) is identically equal to zero unless
o' = 0. By using of (25), one can write @goi(u) at u = —w + k7 as
| Pog!(—w + kr). = exp{—i2rkir — 2x(kT — w)}
> Sa—a'-b,b+k(_w’w,T)Sa-b.—b-a'-k'(wiw"T) (28)
- N

Recall the §%*(u) is zero at u = (a— b)r — w. Thus the first factor in each term in

the sum of (28) is zero if b+ k = o — o’ — b. The b satisfies this condition, which
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is read as
( 3(a0 =k —a')mod n), for o —o' —k=cven, and n = odd or even

slo—a' — k(mod n)], for o —o' —k = even, and n = even
b= : . ‘

into—k—g'), for o — o' —k=odd, and n = odd,

| no solutions, - - for o — o' —k = odd, and n = even.

(29)
The b's values of the remaining notizero terms in the sum are expressed by {b €
Z2b# o—0'—k) = Uf(\b,-, ~0¢'—b;+0), where ¢ = [g—] ifnisoddor2b=o—0o'+k
has no solutions or x = [%1 —1if 2bb= o—o - k. Thus the sum in (28) can be

rewritten

¢

Z Sa—a"_b,b-}-k(___w, w, T)Sa—b,—-b-—:rl_k(u)’ w, T) .
b .

= E Sa_a'—bi,l‘li.k(f"“}, u)’ 7_)Sq' —.b"_h—a}lt—k(lu, 'u',’ T)
i ‘ .

+ Z Ghtbie—o'—b; (—w,w, T)‘gkﬂ'-a’+l=.‘.b.'—a (w,w, 7).

o (30)
Noting the fact that
S“'b(——w,w,r) == —-SL""‘(‘-—w,z.u,T)
and
S w,w,T) = S0 (w0, ),
we obtain that v
| Cool(—w+kv)=0, k=0,1," ,n-1 ‘ (31)

From the equations (27) and (31), we immediately see that 4,9,@(15) has the 2n

zeros with the sum n(n — 1) = nu if o' # 0. Comparing it with (26), we conclude
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that

Cor(u) =0  k=0,1,---,n—1L (32)

that is
Paat(U) = b6 0p00(u) = 8510 z Sa-"'b(u, w, T)Sa—b,—-b(__u’ w, ) (33) :
beZ,

In Qrder to calculate @49, we introduce a function

"baa’(u) = ¢00(u) - Sod'o(uv)

Because @,0(u) and ¢,+(u) have the same transformation properties, 1,,+(u) has 2n
zeros with ¥ zero = 0 mod A,,. On other hand, at u = k7, ¥,./(¢) is equal to zero.
By using of (31), one can see that z/)”r(»u.‘) has 2n zefos with the sum —nu mod A,,,.
This results in that ¥,0:(2) is independent of o. From the definition of ¢,o(u), it

is obvious that ¢, has the following transformation properties'

Poo(u+1) = @oo(u),
‘ V (34)
@oo(u +27) = exp{—i2n(4r + 4u)}p,o(u).
Hence, there are four zeros of ¢,o(u) with Y zero == 0 mod A,,. Two zeros are
determined by Eq.(31), which are —w and —w + 7. By using of the properties of
S“’b(u,w, T), one can show that u = w + 7 is the zero of p,o(u). The condition
S zero = 0 results in that the rest zero is w. It is now straightforward to prove
that N(u,w,7) has the same transformation properties and zero set as @qo(u).
By applying the elementary arguments of the entire function, we know that the
difference between @,o(u) and N(u,w, ) is a scalar factor, which does not depend

on the spectral parameter u. The factor is obtained by comparing »q0(0) with

N(0,w, 7). The result is 1. Now, (16) follows immediately.
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Proposition 4. The R matrix satisfies the crossing unitary symmetry

[R?'}(“)R'f? —u - nw)]hl = M(u,w,7)id, o (35)
where,
1 I o :
0 : ] (u,7)8 [ j } (—u — nw, )
M(u,w,7) = nexp{irnw}-— 2 }5 (36)

1

The broof of proposition 4 is very similar to that of proposition 3. We shall

M= N

(w,7)

omit some analogous to above but rather long calculation.

: . i 14
Proof. Recalling the definition and some algebra properties of the R matrix, we
can write the left hand side of (35) as

rh.s. of (35) =3 5 Wi (0)Wy(—u — nw)I, ® I*. (37)
B ' ‘

. v
Substituting (19) into (37), we find that
Fy(u) = 3 Waiq(W)Wh(—u — nw)
B ,
1 (38)
n

Z SA-m ;“(u)S"ﬁ""’(——u — nw)w” ",
. ﬁ] 14 ' ! ' . .

The following conclusion can be obtained by applying the some formulas in Ref.[14]

and performing the same procedure in the proof 'of propositibn 3, which is
Fy(u) = JVI(u,Qu,T)ﬁy, 06z 0- - | | | (39)

Inserting (39) into (I;’»T), we get (35).
A ’direct corollary of proposition 4 is i;éad‘a,ﬁs

RM(w)RM2(-u —nw) = M(u,w,7)id. o - .(40)
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4. Remarks.

~ Sklyanin’s method [12] and its generalization can be used not only to solve the
exa_ct.ly solvable models on a finite interval with independent boundary conditions
on each end, but also to construct the statistical systems with the quantum group
symmetry. It plays an important role in Sklyanin’s formalism that the solution R
of QYBE satisfies the symmetri¢ properties. Sklyanin assumes

PraRyp(u)Pra = Ria(u),
Riy(u) = Ryy(w), |
(41)
Rya(u)Riz(—u) = p{u)id, :

Riy(u) Ry (s — 2m) = p()id,

- where t; denotes transposition in the ith vector space. The p(u) and pu) are
some scalar functions. Mezincescu and Nepomechie [13] extend Sklyanin’s formal-
ism to the case of a ‘non-symunetric’ R matrix, which satisfies the less restrictive

conditions

.Pu]?n(u )I’m = Rif.‘,"(u),
R, ca!
Ria(u) =V Rfjp(—~v -}V ,
(42)
Rua(u)Rig*(~u) = pu)id, |
Ry(u) M RE(-u -2 M =p(u+ n)id,
here V=V ® 1 and the forth relation can be derived from the second and third
relations. Comparing the proposition:‘s shown by us with (41) and (42), we can see
that the Z, symmetric elliptic solul:idn of QYBE does not satisfy (41) and (42).
Hence, the symmetries (15), (16) and (35) can be regarded as the starting point
to construct the exactly solvable Belavin's model with nontrivial boundary terms

to solve it by meens of the quantum inverse scattering method. It is emphasized
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that for the case of the trigonometric limit the Hamiltonian of this system should
- have the quantuni group symmetry of U;(An-1). The detail is reported elsewhere

17].
Acknowledgement

We would like to thank Profs. B.Y. Hou K.J. Shi, K. Wu dnd P. Wa,ng, for
valuable dlscussmns It is a pleasure to acknowledge thc hospltaht} of CCAST(
World Laboratory ).

References

1. C.N. Yang, Pllys; Rev. Lett. ].9(1967)1312.,.. ,

W

‘R.J. Baxter, Ann. Phys. 70(1972)193. .

3. P.P. Kulish, N.Yu. Reshetikhin and E.K. Sklyanin, Lett. Math. Phys. 3
(1981) 393. '

4. E. Date, M. J1mbo, A, Kumbu, T. Miwa and M. Okado, Nucl. Ph}s B290
(1981)231 '

(81

. B.Y. Hou, D.P. Lie and R.H. Yue, Phys. Lett. B229(1989)45,

6. G. Felder, J. Frohlich and G. Keller, Comm. Math. Phys. 124(1989)71.7.
7. B.Y. Hou, K.J. Shi, P. Wang and R,H Yue, Nucl. Phys. ‘B345(1990)659.’ : .
8. GE Andrews, R.J. Baxter and P.J. Forester, J. Stat. Phys. 35(1984)193.

9. E.K. Sklyanin, Funct. Anal. Appl. 16(1982)263; 17(1983)273.

155




N

10.

11.

13.

14.

16.

17.

'A.A. Belavin, Nucl. Phys. B180(1980)109.

LV. Cheredinik, Funct. Anal. Appl. 17(1983)77; Theor. Math. Phys.
61(1984)911. |

E.K. Sklyanin, J. Phys. A21(1988)2375.

L. Mezincescu and R.L Nepomechie, J. Phys. A24(1991)L17; Mod. Phys.
Lett. A6(1991)2497.

M P Richey and C.A. Tracy, J. Stat. Phys. 42(1986)311.

. B.Y. Hou and H. Wei, J. Math. Phys. 30(1989)2750.

B.Y. Hou, K.J. Shi and Z.X. Yang, preprint IMP-NWU-91.

R.H. Yue and Y.X. Chen, CCAST-92-12.



R S T LR : - JASTITP-92:21

' CCAST-92-12
ERE © ZIMP-92-06
it i ~ March 1992

Integrable an Z,,‘-Belévifrli model with nontrivial |
‘boundary terms!

" Rui-Hong Yuef§ and Yi-Xin Chen +f

tCCAST (World Laboratory)
£.0.Box 8730, Beijing 100080, China

§institute of Theoretical Physics, Academia Sinica
P.0.Box 2735, Beijing 100080, China 2

finstitute of Modern Physics, Zhejiang University
Hangzhou 310027, China®

Abstract

‘The open chain corresponding to the Belavin model is constructed by

generalizing Sklyanin’s formalism to the case of the R matriz with Z,
symmetry.

1Work supported in part by the National Natural Science Foundation of China and CCAST (Werld
Laboratory). '

2Mailing address.
3Permanent address.

157




Tt is well kﬁown that the quantum Yang-Baxter equation(QYBE) plays a key
réfé m the éx@ctly solvable statistical models and the integrable field theory. Re-
cently, the exact solutions of the QYBE ﬁaVe been studied fruitly [1-5]. One
way to study exactly solvable statistical systems is the quantum inverse scattering

' method (QISM) which was initiated by Faddeev and Takhtajan [6]. Sklyanin [7)
hédi éolved the open spin-% Hn; m'ovdel.b}; genefalizing QISM to the systems with
independent boundary conditicns on eaéh end. This model with proper bound-
ary conditions has the quantum group symmetry of SU,(2) [8]. Therefore, the
sklyanin’s method can be used to find the new exactly solvable statistical mod-
els with quantumn group symmetries. In Sklyahin’s paper [7], he lﬂSS“"‘eS that R

matrices possess the following properties

PiaRyy(w) Py = Rya(u), _ 89
Riy(u) = Ri(u), . @

Ris() Buol—u) = p(w)id, | 3)

Riy(u)RE(u - 2n) = p(u)id, (4)

where t; denotes transposition in the ith §ector space and id an identical operator.
The p(u) and () are some scalar functions. Unfortunately, most of the solutions
of QYBE do not satisfy the Sklyanin’s assumption. Mezincéscu and Nepomechie [9)]
extended Sklyanin’s formalism to the systems with the PT symmetric R matrices.

The restrictive conditions of this generalization are read as

PiaRua(u) Py = R (u), S ®
Rul) =V B(-u-n)V | (6)
Ryp(w)Ry? (—u) = p(u)id, : M
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Rb(u) M Riy(—u —20) B = plu + n)id, (8)
where 1} stands for V@1 ,-V is a matrix determined by the R matrix avnd"M = VV.
The condition (8) can be derived from (6) and (7). However, the R matrix based on
Al for n > 1 does not have the crossing symmetry (7). The spin open chains, which

correspond to such R matrices not be treated directly by using of the Skiyanin’s

formalism and its generalization.

Because the Z, symmetric solution of the QYBE is related with algebra A]_,,
to exploit the symmetric properties of the Belavin Z, X Z, symmetric model is
helpful for solving the above open problem. We have recently shown [11] that the-

Belavin solution R of QYBE satisfies the following symmetries

Plzﬂlé(u)Plz = R%hz (“)) ' (9) ‘
Ria(u)R}y" (—u) = p(u)id, (10)
R ()R (~u — nw) = p(u,w)id. (11)

The superscript h; denotes the hermitian conjugation in the i-th vector space and
w is a new variable defined by 7 = %+ 1+ Z. It is obvious that the relations (9-11)

are not equivalent with the Sklyanin’s assumption and its generalization (5-8).

Ir;»this letter, we extend their formalisms to the case of the R matrix satisfying
(9-11) to find the Hamiltonian of the Belavin 1ﬁ_bde_1 with independent boundary
conditions. Recently, Hou et al had shown [12] that the quantum group .S'L.q(n)
can be considered as a limit of the quantum symmetric algebra in the Z, >< Z,
Belavin model, which is the generalized Sklyanin algebra [13]. Hence, the formal-
ism developed in this paper can be ﬁsed to construct the Hamilonian of spin chain

with quantum group SL.(n) symmetry.
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First of all, let us recall the fundrﬁentals of the Z, x Z, Belavin model [2] and

the major results in the our paper [11].

The Boltzmann weight of the Z,, x Z, Belavin model can be written as

Ri(w) = Y W (u)IOI®, (12)
«€Z2 )

where I{) acts on the subspace of the j-th site, I, = h*'g™?, h and g are the n x n

matrices with elements
hij =6 oa s, »  9ik =W ik (13)

w is equal to ezp{¥¥*}. The Boltzmann coordinate W,(u) can be expressed in
1 n P

terms of the Jacobi theta function of rational characteristics (} + 2, + )

n'2
oo(u) ¥ i exp{inT(m -+ Ly q«l)? + 2x(m + L +- ﬂ)(u + ! + —‘2)} (14)
= ’ —1n=-;o:) 2 l n A 2 n 2 n ) .
Wa(u) is read as _ _ ‘
ae(u +1)oo(n) '
W,(u) = L 15
() oa(m)ao(u +n) (15)
The Boltzmanun weights satisfy the QYBE
Ryp(u — v)Rys(u)Rya(v) = Rza(f’)Rlé(“)R12(“ -v). - (16)

The R matrix of the Belavin model satisfies the symmetries (9-11), in which the

explicit expressions of the scalar functious are
9[ ](u+'w,r)9 [

2 B

¢ [ ] (w,7)

U] Lo T L

] (""u + w, T)
y 17)

0 o= o -

plu) = n

Wi g
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and

1 1
0 f ] (u, )6 [ : } (—u — nw,T)
plu,w) = nexp{irnw) 24 . 2 , (18)
6, [ : ] (w,7)
2
1
where 6 [ f ] (z,7) = 0o(2).
In the operator representation, we can rewritten the QYBE (16) as
1 2 2 1 \
Ri(u=v)L(w) L(v) = L(v)L (u)Raz(u~v), (19)
by introducing an operator
Lu) = Y Wa(w)la® Se. (20)

a622
i

From Eq.(19), one can show that the quantum operator S, is the operator of the -

generalized Sklyanin algebra [13].

In order to construct the Hamiltonian with the independent boundary condi-
tions, we have to extend the Sklyanin formalism to the case of R matrix satisfying
the restrictive condkitions (9-11). We introduce two generalized algeBras 7} and
T_, which are defined by the following relations

Run(u-) T (un) i3 (uy) - (u2)

2 1 (21)
= T_ (uz)Ris(u4) T- (w1)Ry3" (u-),

and
Rm(-“—) (ul)Rl”hz(— up — nw) Ty (uz)
| (22)
= T (u) Ry — o0) T R (),
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where we have used the notation uy = u; & u,. These algebras, especially 7_, z-J,re.
the fundamental of our construction. Our goal is to find the solution of Egs.(21)
and (22) for the R matrix given by .(12) uﬁd (15). The Cherednik’s work [14] gives
an important hint to solve the problem. Define a matrix K(u) as

K(u) = L. Y Waa(w)w?**? L. - (23)

' a€Z2 ‘

The matrix K(u) satisfies the normalized condition K2(0) = 1. ‘By using of the
properties of Ja.cbbi theta funétion, one can "sl}ow that K:_(;l) = K(u)K(0) is a

" representation of the algebra 7_ and the mapping
¢ 1 K_(u) — Ky(u) = Kh(=u - =)  (24)

is isomorphic. The proof of the above conclusions is a direct but rather tedious
calculation which we omit. It is pointed out that the existence of K(u) means that
- of the solution of Eqs.(2~1)’ and (22). If there exist the not equivalent solutions,

they correspond to the spin chains with the different boundary terms.

As usual, the monodromy matrix T'(u) is given by

T(u) = La(u) - Ly(u), | - (25)
where , , ‘ ,
Li(w)= S Wa(u).SY (26)
0€Z2 )

and the superscript j denotes the quantum space acted by operator S,. By directly

calculating, we find that
T_(uv) = T(u)K_(w)T*(w). (27)

" In the quantum inverse scattering method, the Hamiltonian of a system can be

given by means of the transfer matrix. For the case of the open chain, we define

162



the transfer matrix as
t(u) = TrK4(u)T-(u). - (28)
| By a suitable generalization‘of Sklyanin’s arguments [7], it now follows that the -

t(u) forms a commutative famely

(), )] =0. )

The quantum space, acted by the operator S\ is isomorphic to the auxiliary space
and, furthermore, the operator L;(u) coincides with the matrix R(u) on the direct

product space of the quantum and auxiliary spaces, i.e.
Lj(u) = Ro;(u). - (30$)

We know from the proposition 1 in [11] that if R;;(«) is normalized, the value of it
at u = 0 is the permutation operator. Differéntiating t(u) with respect to u, one

can find the Hamiltonian of the open chain

0
= 1.4 Tro Ky (0)Hon
= .. ¢ 2 , 1
H ‘j=ZIHJ,J+l+2k_ + TT}C*\.(O) (3 )
where
Hjje = Pijpa R (w)lu=o- _ (32)

Substituting (12), (23) and Ki(u) into (31), we obtain the Hamiltonian of the

Belavin model with independent boundary conditions

H = nfl 3 W0 SWSUHD
J'=11'v.ﬁGZ?. ‘ (33)
nw
+- ' nw : . (nga("‘"—)Wé(O)
2 Wo(=%3) mﬁ%zﬁ 2 :

0240 (mod n)w2q1a2+’rlﬁz+'¥2ﬁ1 S’(Yn))‘

In conclusion, we have generalized Sklyanin’s formalism for constructing inte-

grable open chains to the case of R matrix satisfying (9-11). As a direct application
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of our extension, we have constricted the Hamiltonian of the open chain corre-

* sponding to the Belavin model.
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QUANTUM DEFORMATION OF KDV HIERARCHIES AND
THEIR INFINITELY MANY CONSERVATION LAWS

De-Hai ZHANG
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ABSTRACT

A reasonable g-deformed differential is defined. A set of operation rules are
constructed for the q-deformed pseudo differential operators. The complete pro-
cedure of constructing the q-deformed KdV hierarchies is given. As an important
example, we obtain the detailed structure and the infinite conservation laws of the
simplest (3,2) system, i.e. the q-deformed KdV equations.
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1.Iutroduction

, Recently, 1+1 dimensional Korteweg-de Vries (KdV) hierarchy [ arouses

the strong interests of the theoretical physicists . A lot of researches demonstrate
that the IKdV hietarchy is closely related to the following popular topics:
1) The matrix models [ and the non-perturbative treatment of 2 dimensional field
theories Pl, 2) The theories of 2 dimensional gravity coupled to matter systems M
3) The 2 dimensional topological field theories ¥}, 4) The conformal field theory 6!
and W algebras [/l The basic equations governing non-perturbative 2 dimensional
gravity coupled to minimal! models are the differential equations of KdV hierar-
chy. The partition function and the correlation tunctions of the 2 dimensional
topological gravity coupled to minimal models are guessed to be described by the
KdV hierarchy. The KdV hierarchy shows the miraculous power and mysterious
relations in treatment of different mathematics and physics objects.

In the other hand, the interests of the quantum deformation (so-called
g-deformation) of Lie algebra (quantum group) has been growing in the physical
and mathernatical regions ). The idea of quantum Lie algebras originated from
the study of the solution of the quantum Yang-Baxter equation for the integrable -
lattice models . The representation theory of the ¢-deformed simple Lie algebras
has been investigating widely ['%, One of the methods well worth paying attention
to in study of quantum group is the g-harmonic oscillator realization of quantum
groups (1Y, Several authors have extended the definition of q-differentiation [12)13],

The success of quantum groups stimulates people to look for new objects
which can performed the analogous so-called g-deformation. For example, the
g-deformed Virasoro algebra has been studied in refs. {14] and [15]. Chaichian,
Popowicz and Presnajder even researched the q-deformed KdV system 1181, How-
ever, it is hard to say that all of these attempts has been accomplished perfectly.

For a long time past it is quite meaningful to discover a new kind of inte-
grable systems. In this paper we shall do a new investigation about the q-deformed
KdV hierarchies by defining the suitable g-differentiation. Through building & set
of complete operations of the g-deformed pseudo differential operator and using

-the Lax pair, we present the constructing program of the q-deformed KdV hierar- .
chies and obtain the g-deforined generalization of the ordinary KdV equation. It
is believable that the q-deformed KdV hierarchies we gained is a new kind of the
integrable system. ‘
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2. The g-deformed formal pseudo differential operator

At the first we introduce two operators, Q and Q, which are defined as
Qf(2) = f(zq), o f (2.1)

Of(x) = a2f(s), @
where 0 = 'a% and q is called a deformed parameter. For avoiding complexity q is
limited to be a real parameter which is not =1. One can prove that Q is equal to Q.

In order to get this conclusion one rewrite the operator () as a formal differential
operator with infinite order of the ordinary differential operator g,

Qfe) = f(s —2) = 3 (a0 f(2), (23)
n=0 """
therefore - . ; |
Q=3 S(-reer, (2.4)
n=0 1 -
“where , , :
e=1-gq. ' (2.5)

One can also rewrite the operator () as an infinite order differential operator-

~

Q= exp[zaln(l —€) = é -7%(-1)" (i i—em) (z0)". - (2.6)

Considering the commutator

1

- (02] =1, (27

one gets the relations between 2"9" and (29)",

220% = (20)% — 28, _ .
220° = (28)° ~ 3(20)?2 + 229, (2.8)
240" = (20)* - 6(20)° + 11(20)? — 629, -

and so on. Expanding Q of the formula (2.6) by e powers and using the relations

(2.8), one observes that the operator Q is indeed same with the operator @,

G=q. O (29)
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After owning the infinite order: differential operator Q (or Q w1thoutk
distinction), we deﬁne the q-deformed differential oper ator "7

= Zl—_l-ﬁ;(l - Q7%

which is also a formal differential operator with infinite order. It is easy to see
that D tends to & when q tends to 1, '

| (2.10)

limD = 0. (@)

q—1

The commutative relation between @ and D is described by the g-deformed com-
mutator .

where : '
' [A4,B], = AB —rBA. (213)

When r=1 one omits this 1 and denotes it simply as
- [A,B] = AB — BA, (2.14a)
and when r=-1 it becomes the ordinary anticommutator
{A,B)=AB+BA. . (2.14b)
According to the definition (2.10) of D, one can prove the g-deformed Leibniz rule
D(f(2)9(2)) = (Df(2))g(2) + (Q7*£(2))(Dyg(2)), - (218)
~ which can be expressed in an operator form

Dof=f0 —z)b + FO9), ’ (2.16)

Here o represents a fact that the D before o must acts on the other functxons
behind f (z) In the above formulas one introduces the following symbol

f(n,m)(z) — (Danf(Z)), o ' (2 17)
where D and Q in the bmcket do not act on the functlons behind f(2). For
example, one has 2 = 1. Using the formula (2.16) one gets the q-deformed

commutator between the g-deformed differential operator D and the coordma,te
variable z, :
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[13 z]q—2 =1. (218)
It is critical important to note that any q-deformed algebra must satisfy the q-
deformed Jacobi 1dent1ty[“] ‘ C e

[4,(B, Clo)o; + 0B, [C, Ay, l;1 + [C[A, Bloye] = 0. - (219)

By inserting ¢ = ¢7?, ¢ = 1 and taking A, B, C as D, D, 2 obeyed the relatlon
(2.18), one can check that the g-deformed Jacobi 1dent1ty (2.19) is indeed satis-
fied. This fact demonstrates the consistency of the definition of the ¢-deformed
differential operator .. Applying the g-deformed Leibniz rule (2.16) to high order
case of the q-deformed differential operator, one obtains

(N f( ) [ n ] ‘,1'2m(n—m)f(m,Zm-:an)(z)En—m; (220)
vn.--O m .
where o il 4
: n ‘ [t
[ m J - [m]'[n —m]!’ (2.21)
[m]! = [m]_[m -1]--- [2][1},' B . (2.22)
[m] = ‘1":_‘1(1_2 = ' |m), o (2.23)
and
O} = 0! = 1. (2.24)
In (2.23),the symbol v . , . ,
Im] =(¢™ —¢™)(g—q¢ ") ' (2.25)

ig just the ordinary q-deformed one used often in references. One can generalize
(2.20) to the case of negative n,

m=0 m

-n g f(z) — E(_l)m [ n+m-—1 :' Q-m(nni-l)f(nt,Zm-l-?n)(z)_D—n—ﬁ' (226)
Specially for the case of n=-1,one has

H-1 of f(°7)l:"'1' _zf(14)]j-z+!—cf(26)ﬁ—3 | (227)

It is necessary to note that the g-deformed differential operators d1ﬁ'er from the
ordinary difference operators. Although the g-deformed differential opemtor is
likely a differenice operator at the level of the first oxcler form, the qe(ond orde1
q-deformed dlﬁ'erentlal operator
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. _ 2 =2 2 -4

Brf(n) = L =+ a)f(a ) g f(z¢™")

: (1= q2)222

differs from a two order difference operator, due to its equal-ratio distances be-
tween points and its non-standard coefficients. Up to now we have described all
of operations needed for construction of the g-deformed KdV hierarchies.

\

The g-deformed KdV hierarchy is described in terms of the q-deformed
pseudo differential operator which is a formal expressuon

K= E kDR, . (2.28)
n=—oco
where the coefficients are functions kn(2z) in a variable z and D is defined as (2.10).
The multiplicative rule of two q-deformed pseudo differential operators has been
given by formulas (2.20) and (2.26) . One further introduces the decomposition

M ' ' R
Ky =Y kD", | (2.29)
7 n=0 : )
= kD", : (2.30)
résk = k.1, | (2.31)

where “r&s” stands for the q-deformed residue.

3.The g-deformed KdV hierarchy and the g-deformed KdV equation

The N** ¢-deformed KdV hierarchy consists of an infinite set of commutlng
q-deformed differential equations for the coefficients V,(2,t,) (n=0,1,---,N —

1) of a q-deformed differential operator L of order N that has been put in the
.canonical form

’ o . ) N-1 }
L=D"4+ Y v,D". o (8.1)

. n=0 . )

- In the algebra of q—deformecl pseudo differential operators L has an unique NN th

root LYY and in the La-- representation 9 the p** flow of the N g-deformed

KdV hierarchy (called the (p, N) system) is given by
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6
6t

where t, are called time parameters. Since L commutes with LV, one has .

=N, (3.2)

[, L]-= (L, -L"/N]. | R .('3.:3)‘

But since from the lL.h.s. above the commutator can have only positive powers of
D, and since from the r.h. s. above the highest order term is only up to one of
DN -1, the expression(3.3) is only the N —1 order g-deformed differential opera-
“tor thhout negative powers of D. When expanded in powers of D this operator
equation (3.2) gives rise to a single q-deformed differential equation for each of the
coefficients V,,. It should be expected that the g-deformed KdV hierarchies are the
completely integrable systems which have the infinitely many conservation laws.

The simplest system of the (p, N) g-deformed KdV hierarchies must be
the (3,2) system which is called g-deformed KdV equations. Let us give this system
in order to illustrate the above procedure. This model is obtained by taking L to
be the two order g-deformed differential operator

K = D 4+ Vi(2,t)D + Vi(z,t). (3.4)
The formal expansion of L'/? in powers of D is given by

K =D 4 Z w_,D™™. ‘ (3.5)

=0

Since one needs only the first five coefficients of W_,, in the later q-deformed KdV
equations, one gives them in terms of V; and V; order by order,

Wo=(14+Q7) W = (-1 KO, (3.6)
e’
Wo=-(1+Q )7 (~Vo+ Wa 7 +W5), - (8.7)
Woa=—(1+ Q"z)‘l(WgWé‘”’ + o 4 W'o»v‘v_l), o ,;(3'.,8_») |
W = —(1+ Q‘”) (=g W WM + WO W + Wy W )
+ W“°’ + WOW_z), ) | ~(39)

Wes = —(1+ Q™) (¢ W_, W — ¢ 22AW_ W + W_aw™?
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~g2Wo WO o, W, WS Wﬁk"’ +WoWis).  (5.10)

The first formula of (3. ()) is regarded as one of the methods to calculate operator
(1 + Q7%)7'. The g-deformed differential operator needed in the (3,2) « systemn is
L_,, Due to the identity (3.3), one needs only the first two terms of the q-deformed
- pseudo differential operator L3/ g

E¥* =U_ D 4 U_,D 4, (3.11)

where the coefficients U_; and U_, are given by following expressions,

Uoy = Wog — ¢ *W_, V0 4 w_, v, 0 + w_, w2, (3.12)

Uy =W, —!_ q‘GI’V.-lVl(Z'G)» _ q—z[zlm;_zvl(l,fi) + W/_SVI(O,G) .
~g W VY 4 W v, - (3.13)

Now we can obtain the q-deformed KdV equa,tlonb by using equations (3.2), (3.3)
and (3.11), ‘

v » o |
5 = UaT v, (314)
%2 =z (U(U-"'l) ~U_)+ W (U-(O.—"z) ~U_y)

~UL (VO — 1) 4 AU (3.15)
Through the equations (3.12-13) and (3.6-10) the 1ight sides of *lr'e equations {3.14-
15) can be expressed in terms of pure V; and V; finally. Because the q-deformed
differential operators are not the ordinary difference operators, the g-deformed

KdV equations are not the ordinary differencing of the or dlnd.x y KdV equation. It
is a new kmd of integrable systems.

4.The e:’cpahding expression of the g-deformed differential operators

Usually we know well the ordinary differential operators and are not fa-
miliar with the g-deformed differential operators . In this section our main task
is to express the various kinds of q-deformed operators in terms of the ordinary
differential operatom From the detinition (2.1) of @, we have '

o

me(Z) = f(z +- (qm - l)z) = Z ;;j(qm - 1)"2”'311_/"(2), (4.1) '

n=0
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_therefore we obtain

[o0)

1 .
Qm = Z n]( mo__ 1)nznan‘ ]

n—O

As for the operator D, accordmg to (2.10), one gets

L 1
‘-Dm=( 1"'Q_2)> ’
=07
which can be deformed in the followmg way,

(1‘—q—2)"‘z"L Z( 1y [ ] ’“”‘fi Q-4

7

. (‘ZTFU" [ o o) _’2;;“ - 1)n> Lomor

=0

— 0 n ( 1)k+n[k+nz]l manbm ()
fé(;’)(k+m)'(n )k ]) o, (m 2 0)

and finally one obtains

n==0
Here we introduce the ordinary Gamma function

k=

Tn+1)= nF(n),

I'(n+1)=nl, (n>0)

F(—n) - )

»(n 2 0)

and the q-deformed Gamma iunctlon
 B(n+1) = i),
fn+) =), (n=0)
f(on) = CH o), az0)

[n]!
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F(ZF k+m-l-1)(n—k:)'[k]‘>z .

(4.2)
(43)

(4.4)
(4.5)
(4.6)

(47)

(4.8)

(9

(4.10)

. (411)

(4.12)

1)

(4.14)



where the I'(0) is infinity which is a formal symbol and the 1'(0) is to be determined.
Defining :

~

—~

0)

r,= 0y’

|

(4.15)

=

one has

,f"(—n-{-l) (n—1)!

I(-n+1) [n-—l]'

The above formulae get ready for extending the expansion (4.8) to the case of
negative powers of the ¢-deformed differential operator We find

(—1.)'=+"1”‘(k —m+ 1)
I'(k —m+ 1)(n — k)![k]!

g OL L (n > 1) (4 16)

zﬁan—m (4.17)

1n o, M1\ (—1)k+r(m — k — 1)! —(m-—k)(m—k-l),I‘qzn e
(Z Z+ZZ)( ),[r(n—k-—l]!(r(zl—k)![k]!] g

n=0 k=0 n=m k-O

k+n [’" m] nan—m

* 2 2 BB
A task is to determine the quantity I',. Let us to inspect a simple case
f: 1__'_ w1 - (419)
n=o (n -+ 1)!
where .
=gl (420
After moving a differential operator from right end to left end, we obtain
. .
—_— 9"’ : (4.21)
D= a(gann- 7 +ao> | |
where
n+k .
G (4.22)
o n+k+ 1’
and’ |
(=Df* _In(l+w) O (423)
o = Z k+1 — w (423)
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It is easy to get the inverse of D from (4.21)

-1 o B
(1 30 G ng n) a5'a . (4.24)
n'(to
lomparing the above result with the general expansion (4.18) one finds
I, =a;'= L- q—z, : (425)
! 0 2lng o

After getting an expansion expression in terms of the ordinary differential opera-
tors, one can take the ordinary residue - '

resB=b.; ' (4.26)

for an ordinary formal pseudo differential operator

S 0,0 (4.27)

n=—oo
According this definition of the crdinary residue and the results of (4.18), one can
obtain

m —1( l)m—l -1 —(nt—P)(7n—k 1)1“

res(ffm) ?:0 [k]![m — k- 1]!

qzm 1 (428)

5.The infinite conservation laws

The one of the most important properties of some integrable systems is that
they possess the infinite conservation laws. We shall prove that the g-deformed
KdV hierarchies have the infinite conservation laws in this section. Our method
comes from one of Drinfeld and Sokolov. Since the cases are very similar each
other, reader can refer [20] for detail. We can prove that the flows determined by
the Lax equations commute with one another. If

dL ,
[zl L), ‘ (5.1)
where L is a g-deformed diﬁ"erentlal operator (3.1), then one has
| -‘-]-’-L’"/’ - {4, L") (5.2»)
dt ' SR

Let us to consxder the <=quat10n<3
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0L

—a_t- = [M-H L])
M=3"¢L'*,
‘and
oL .
‘ E' - [M+’ L]a
M = Z 6,-L’./k.
It is can be verified that
0L _ 0L
otor ~ 9rot

which demonstrates the consistency of the q-deformed KdV hierarchies.

¢ (5.3)

(5.4)

(5.5)

Drinfeld and Sokolov have pointed out that for P, @ being formal
ordinary pseudo differential operators the res[P, Q] is a total derivative of some
differential polynomial in the coefficients of P and Q. In our case the polynomial
will be infinite order. In order to understand this conclusion it is suffices to consider

the case where

" P=ad™, Q=00
One then gets

res[P,Q] = ¢,
where

m(m — 1)~ (1 = )(-=1) ™t . .
= L DD e,

n=0

a¥) = (8'a).

’ Taking the ordinary residue on both sides of equation (5.2) one obtains

d . of
ltre.sL = res[A,L""] = Ep

Integrating it and choosing suitable boundary condition one has

d of
| —!t/dzm.sL __/azd; = 0.

177

(5.6)

(5.7)

69

(5.9)

(5.10)

(5.11)




Therefore we see that for any integer r , the residue .

H,/k ;,1‘63Lr/k : ' (512)

is a density of conservation law for the Lax equation. Of course, nontrivial con-
servation laws ’ '

Cipp = /dzfesL’/k ’ (5.13)

correspond only to numbers r not a multiple of k. If one knows the expansion
expression of the flows in terms of the q-deformed differential operators

.
L= 3 abn, (5.14)
» n=—o00 . ‘ T
one can obtain the density of the conservation law in terms of the coefficients of
their expansion expression '

' D60 fn—1 -_l)n——i—l —(;z--i)(n~i41)r S AR
Hr ¢ = Lr/k = ( a - r4n n—l' ' 5.15
,/-L resl Z (go il =i - 1) | Grt z ' ( )

n=1"
An important example is;for the q-deformed differential operator of two order

L=K=D"+WD4W. | (34

The nontrivial densities of conservation laws are supposed to be

KP = RDT 4§D+ O (5.17)

We shall determine the recursion formulas of tlie q-deformed Qelfand-Dikii Poten-
tial R; and S). From the obvious identity

[K'-% K] =0, (5.18)

one gets
(K7F K = (K KR | (5.19)
= (R = R)D + (IR + {7 — 51 + ViR — V). (5.20)
On the other hand one has ‘ : S

) ‘1_ gl X B R .
K7 = %{Kﬁr 'K+ %{K'_ 'K} (5.21)

Doing
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L
2

-1 1. -t . i - .
(K3 I = S (K K K + SIS KY K], (5:22)

we obtain

Rip1 = (Q—d _ 1)--1 {(1 - qzlz])Rl(o,-A]Vl(l,o)
+ROVOD L Ry - RO — RO,
57V - 57 - s, (5.23)

St = (@' = ) H{~FRIRATY + R VP - BTV,
+R‘(o,-~;)vo(1,o) _~R§o,_4)vl(2',2) + q2[2]R,(1"'2)(V0 _ Vl(l,—z))
—REVED 4 ROV, — RV~ ROV,
—ROIVEDY, _ 509 4 509y, _ 5, - SHONY, (5.24)

which are just the recursion formulas of R; end 5.

6.The first order formalism of g-deformed KdV equation

~ The form (3.14-15) of the ¢-deformed I(dV equations is difficult fo be under-
stood. In order to compare it with the ordinary KXdV equation, we must inspect
the difference between the ordinary KdV cquation and its q-deformed version when
the deformed parameter ¢ tends to 1. Letting ¢ = 1 — ¢, up to the second order of
infinitesimal parameter ¢, one has from (4.2)

2 S
| Q" =1—enzd+ -f—z—(n(n —~1)28 + n?2%0%) + O(%), : (6.1) -
and from (4.8) up to the first order }

D™ =™ 4 e(mz0™t! -;-m(m —1)8™) + O(e*). - . (68.2)

Then one obtains

_ ]5""Q_"‘ =0™ + e (-;-m(m —2n — 1) + (m -- n)z@"""") + O(e?). o (6.3)

The first eq_ua.tion (3.14) of the q-deformed KdV equations becomes
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M

S ot . |
therefore one learns that V; is the quantity of one order of e. Using (6.3) one can
simplify the relations (3.6-10) and (3.12-13) up to the first order of e,

(Q™* = 1DU.; =4ezU", (6.4)

Wo = ;Vl + O(e?), (6.5)
S S A e
W—l = 51/0 _ ZI/I - 562% + O(e ), ///// e 4
. W/{_/,
' ‘ 1 iy :
Woa= —gV= JUlh+ gW + 1V 4 qealy 2250, (B)
. ) ,.«4""" .
1 1., 3 1 1w
Weg = __§V02 + gVo” + '8"V0V1' + Zvlvol BT AL
FV - - e O, (6:8)
1
W_, = g%Vo’ — W+ OCe), | (6.9)
and ‘
Uot = SV + 2V = 2y = Seaviovy - o
'_ —%GVE,” - %ezVO'" + O(€?), | . (6"10) |
' 1 o |
Ua = ”'g'Vo'VJ —gho +06), - (611)

Substituting these quantities into the g-deformed KdV equations, we obtain their
first order form

Vi = per(OVoV + Vi) - (6.13)

Vo = 1'(6‘/ V! gy :}_V/V/ _ §-V v — Evlmr
0= 7%V, + 0)f401 4701 T g
. 3 . .
e VoV + eV — eV 4 Sy,  (6.14)

where V = %_‘t’,

Now we expand V5 and V4 in ¢
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Vo=Xo+eXs, Vi=eXi
The equation (6.13-14) becomes '

- i(x(;" + 6XoX2), - (619)
X, = -—z(X"' +6XoX2), (6.16)
and | |
X, = -(X”’ +6XoX! + 6X) xz) X’X’ —XOX{’ - %X;"'
FXY = X4 ng{f - 2Ky, (617)

The above second equation is total differential X; == ZzXo, its solution is X1 =
22Xo+ f(2). For conveuience we only consider the case of f(z) = 0, we have finally

X, = —(X;” + 6XoX, + 6X.X;) — —(X’” 1 3X0 X)), - (6.18)

The equation (6.15) is just the ordinary KdV equation. The first order q-deformed
modification X, can be solved from (6.18) and X is given by 22X,.

7.The conservation quantities of the first order q-KdV equation’

Up to the first order : .
Py=1-+e | (7.1)
and

resL'/F = (14 €)apy1 — 2czar+2 +0(e?), ‘(7.2)

therefore the densities of conservatxon laws is

Hi_ypp = resL-1/2 = 1+ e)R —vzezS, + O(€?). , (7.3)

Let us to expand them in the g-deformed infinitesimal parameter ¢. Let |

Ry = ri 4 ep + O(€?), ' (7.4)
S) = h + €g1 + 0(62). - (75)
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From the recursion relation (5.23) of R; one has for the zero order of ¢

1 .
hy = —§1f,', ; (7.6)
and for the first order

1
g1 = =55} — 2 Xoru. (7.7)

From the recursion relation (5 24) of S; one has for the zero order

1 . | e
*T[.Xé, i (78)

1
Y, — " iz
Tl = Zr, + mXo + 5

and for thé first order ‘

1
pl+1 = (221X} + piXo + X, + Pl - 7130)

-}—n(zX"—{—;X’ - 1):;) 11)\' (19

Ta.kmg T’u =1, po = 0 one glves the first three rank n,sults

r1 = - Xo, S (7.10)
m=—ixe—axia iy, ’(7 11
F¢ S 2" 4] 22 -0 2“/ -2y . 3 . . )
3,0, 1oy . ‘
Te = -é,/\o + '8—.)&6, o (111)
R T 3 5.0 1 .
p2 = —ymm(, + Xon 4,&0 + s - g X0 - 72 X5, (7.12)
5 2. 5 5 : :
- _X/ —] ‘i XIIII R .
o= X g o ke + X+ XS (7.13)
15 5 5 X
15 15 5
=X )(u X" XX, — ___X/? .X’ !
Tg 3X° "’wYA TR TR
L om 9 " _ 1 7(5)
55X = XY - X (7.14)

We see the r; is mst Lhe ordmalv Gelfaad-Dan potentials. At the first order
approximation, : o

| —2ez8) = ezR;,v (7.15)
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therefore

Hl 12=(1+¢)R, -|- ezR, Ri+e(zRy).

(7.16)

We learn the H;_,,, dlffers from R; only by a total differential. From (7.3) we have

Hi_yjz =11+ e(r1 + pi + 21)).
For the first three rank we obtain

Hyp = ';"Vo - %ezVo’ + 0(62)’

3
Hyy = §V°2 +

3 3

8 8

_i 12 i " 9 3
Hgy 3?V + V(ﬂ +32V0 +16V

; 25 5
ZV02V0' + -8'ZV0’V0” + —V03 E%V” + —6
25 1
+3‘;le + %-Vo/m + 3221/0(5)) + O( 2)

Using the definition of variation

6H i( (aH )‘"’,

fper A v

—e(iﬁ

_]_'1/0/';__6‘/02 "61/0”—"'6 VO 8 -VOIII_I_O( 2)

szVo"'

(7.17)
s

(7.19)

(7.20)

'(7 21)

. one can directly verify that the first three rank results satisfied the above relation

6H, 1 ;
_"tl'lz =(l -+ 5)(H1_1/2 -+ EZR?).

_ 6V

Due to
© Hisyp = Ri+ e(2Ry)

th

= 6Hiy; _ R

Vo &V,
From (3.15),(3.11) and (5.17) one has
| av ! ’ /- "
Ty = 4e25; + (2 - 2¢)(R; +e(2R +32R 2))

= 2(1 - 26)((1 + €)R2 + ZGZR’Z)’

‘one can rewrite the motion equation as
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%? = ( 5(15/ [:(I—Ze)Hs/z]) fo(ef?. |  (7.25)

The conservatlon quant1t1es are

‘ C[ 1/2 —/dEHI 1/2 = /d.’ER[ (7.26)
" The first three ones are
1 - - . L s . . . .

= [abron oo

" 3
C3/2 = ‘/d.'E.gVOz, (7.28)
05/2 = dmg—s(—-‘/o + 2% (1 - E)) (729)

8.Remarks

The g-deformed KdV equations (3.14-15) are in fact the non-linear integrable
evolution equations with infinite order of ordinary. differential. By comparing the
. ordinary KdV equation (6.15) one finds the complex;ty of the g-deformed KdV
equations increases largely. To look for their solutions may need to develop a set
 of new methods. Our investigation is only preliminary and alot of new interesting
problems are awaiting to be studied. Since the wide researching subjects connect
" with the ordinary KdV hierarchy or with the quantum deformation , we expect
that the q-deformed KdV hierarchy should possess wide applications.

This work was supported in part by the Foundation of National Educa-
tion Committee of China and in part by the National Natural Science Foundation

of China.
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Abstract

Th\, (p, ¢) noncritical strings are shown to be cquwalent to the tw1st,ed :
SL(2, R)zq:_z/ SL(2,R)e_, gauged WZNW model. The underlying N =

2 superconformal symmetries are shown exphcltly. -
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The recent -years have seen much progress in understanding coupling 2D
gravity to minimal matter, the so called non-critical strings[1,2]. In paraliel
the" matrlx models[3 4] have been found $o be useful tools in dlscrefumg the
2D random surfaces and making some calculations in the continuum limit ac-
cessible. About the same time, topological field theories have been introduced
in describing the 2D gravity (the so called topological gravity) [5]. It is under-
stood[6], in faCf tha,t the (p+.1)- mat1 ix modol is eqmva,lent to the topological
gravity coupled to the p -mlmma,l topolog,lcal matter, a theory obtcuncd by
twisting[7] the N= 2 minimal superconformal field theory of central extension
c= ?f 2 [8,9]. The non-critical strings are obtained by some suitable pertur-
bations of the topologlcal conformal field theones[l()] The perturbed minimal
topologmal matter theories couple,d to the, 2D topological gravity at the mul-
ticritical points are believed to be equivalent to the (p, ¢) minimal conformal

field theory coupled to the conformal factor of the 2D metric, which can be

rephrased as a Liouville field theory[11]. -

In this letter, we shall give an alternative way of descubmg the non-critical
strings. Indeed, we shall show that the (p, @) minimal model coupled to the
Liouville field theory is equivalent to the twisted G/G topologlcal WZNW model
with G = SL(2, R) and level k == = — 2. The latter can also be described as a
kind of twisted N =2 superconfon;]ml field theory. It is reasonable to generalize
our results to the case of W]Q ininixﬁal matter coupled to the Wy gravity with
G = SL(N). )

There are at 1cast twé advantdgés in oﬂr fbrrhaliérh.‘ First, the non-critical
strings are represcntcd in a fully covariant form in terms of tensored WZNW

models of different levels. The conesl)ondmg Kac-Moody algebra and BRST
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symmetry may be used to determine the physical space and to calculate the
p11y31ca1 correlation functions. Second, our forma,hsm can also be rephrased as
the topologlcal minimal matter coupled to the topological gravity. Therefore
there is a hidden N = 2 supercdnformal symmetry which can be used to de-
ter.mine the selection rules, etc.. More detailed calculations to substaﬁtiate our

arguments will be presented elsewhere[12].

To couple the minimal conformal field theory to 2D gravity, we choose the

conformal gauge and consider the following path integral

W = [(dénddrdbde] exp{=Su(¢w) = Sul) = S0}, ()
where b, ¢ are the usual reparametrization ghosts of spin 2 L’and' -1, ¢1, fhé
Liouville field, ¢ the matter part of the theory with cpr = 1— (p 6p(;1) (P’ Q)

1, p, ¢ € Z*. Here we shall assume a translationally invariant measure [ddr],

“see ref.[2].

For convenience, we could enlarge our field space and. consider both ¢ and

o as the residual components of the hamiltonian reduction of the SL(2,R)

. WZNW model [13] - | |
/ [dnm] exp{—sy(m)} =f [dgdAdA] c-‘:xp{—Sk(g)+ 11; / Tr (A(j_ W K
FAT - ) + RAgAg ™),
/ [d1] exp{—SL(4)} —/ [dhdBdBlexp {—Sy(h) + 1= / T (B(J - N

+B(J - #) + EBhBR™Y)}, .
. (2)
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wheré g, h € SL(2, R), A (B) and A(E’) a1e valued on the Borel subalgebf'as

01| . 00
. and 7~ =
ooJ « [10

, T€SP., {1,V ji, ¥ the constant

generated by 7+ = | -

matrices, and

—kon-nt,

~p
[

J = f'k.ag'g—la .
i o (3)

J = k‘g"]'-ég,. S J=kA BN
Si(g) is the WZNW action of level k.~ =
Sk(g) = —‘k‘Tr/ g718g - g0 4 / Te (7'dg A ~"dg A g~"dg)
, 8r Jr S 7 127 IMaM=x I
g e
The ¢, part can be defined similarly but with level Z:

The conformal invariance requires a modified energy momentum tensor

Ja.' Je

T AREE-— RN - 7]3, o
M Fta ¢
g ©
T, = = —8J3.
‘ 42 0

Now, consider only. the ma,tt‘e;r part -
Wi = / [dgdAdA] exp{?Sk(g,’A, A)}. o (6)
Here ‘ l T | | . |
Sk(g, 4, A) = Si(g) ~ % / Tr (A(J — p) + A(J —v) + kAgAg™t)

is invariant under. the following gauge transformation

A - A + XY, . (1)
A = fi—l—(r);\T s -
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where
(8)
i‘\ — CAT",
To eliminate the gauge freedom, we choose the gauge
A=A=0, )

and introduce a pair of ghosts £, 7 of spin 1 and 0 resp. to compensate the

change of measure [dAdA]. We arrive at the following path integral

War o /[dgd{dn] exp{—Si(9) + / Ré — /(ﬁgn + 5_017)}_. ' (10) ‘
where ¢ = J3(z), R the 2D ba,ckground scalar curvature and the term / Ré
arises because of the shift in the energy mormentum tensor.

Similar procedure can be applied to the Liouville part, and we denote the
corresponding ghost as (€, 7), again with spin 1 and 0 resp.,

Wi, = /[dhclfdﬁ] exp{—S;(h) + / R$ — /(Eéﬁ + c.c.)}. (11)
where 8¢ = J3. |

Now combining the matter, the Liouville and the reparametrization 1ghost

parts all together, we have the following v_pa;th integral

W o= / (dgdhdé dndEdidbde] exp{—Sk(g) — Si(h) |
, (12)
+ / R(d + ) — /(6517 + €Bij + bdc + c.¢.)}.

The total energy momentum tensor including the ghost part is

'V th = T]\,{ + TL + Tgh, (13)
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with central extension

otot — <_3L_ — 6k — 2) + (};% — 6k — 2) —26. - (14)

The condition that the total central extension vanish gives the following

constraint!

b= —k—4. (15)

Eq.(12) looks very similar to the G/G gauged WZNW models with G =
SL(2,R) [14]. In fact, the main point of our paper is that eq.(12) is a tWiSthd
version of the G/Gy, theory[15]. Recall that the G /G gauged WZNW model is
defined as

/ [dgd AdA] exp{—Si(g) + L% / Tr (JA— JA +kgdg™ A — kAg)}, (16)
which is invariant under the following gauge transformation
g — pgpt,
A — pAp '+ 0p-p7t, (17) |
A — pApTY 4+ popT
where p, g € SL(2,R), A, A € sl,.

We could parametrize A and 4 as

A=h"1.8h, A=h"".0h, | (18)
! Another solution k = -—m — 2 is discarded as it is inconsistent with the classical limit
k — 00,k — —c0.
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and the change of measure from [dAdA] to [dhdh] introduces a fermionic deter-
minant involving t‘he ghosts ¢, and the antighosts b*, where a = 1,- -, dimG.

* It is possible to rewrite eq.(16) as following (see ref.[14]),
We = / [dgdhdhdb®de®] exp{—Si(g) — S_pa(hh1) — / (0°8c® + c.c)}.  (19)

Finally we fix the gauge at h=1 and the vacuum to vacuum amplitude now

looks like

We / [dgdhdb*de®] exp{—Si(g) — S-k-a(h) - / (°0e° +c.c)),  (20)

where b* and ¢* have spins 1 and 0 respectively.

To go from eq.(20) to eq.(12) requires sorhe kind of twisting which we now
proceed. In G/G gauged WZNW model, there are three sectors of the Kac-
Moody algebras, J*, J° and J she which are defined as

J* = kbg-g7t,

~

Ja

i

kdh - b, - (21)
Jgh,a —_ Z'fa,bcbbcc.

The levels of these Kac-Moody algebras are k, —k — 4 and 4 resp.. The

requirement that our formalism is independent of the gauge choice means that
Jtota — Je + ja + Jgh,a = 0. ‘ ‘ (22)
Similarly, the total energy momentum tensor is the sum

o) = T+ F@) TG, (29)
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where

Jja ja
k-2’

JeJe
k42

T(z) = T(z) = T9h(z) = 2bdc + Bbe. (24).

It is easy to verify that the total central extension of the energy momentum

tensor is zero.

Now consider an improved energy momentum tensor 7™ twisted by J**%(z)

component |
Timpr(z) —_ Ttot(z) _ aJtot'S(z), ‘ _(25)

Correspondingly, the path integral eq.(20) requires a dilaton background
Wagined = (oJ R, (26)

where Pt = ¢ + ¢ + ¢, Ggtet = Jot3, Under such a twisting, the total
central extension is still zero but the central extensions of the different sectors
do change. Another point is that any Virasoro primary field of non-zero Jé“’a
charge requires a modification in the conformal dirﬁension. Specifically, A —
A + 33, 72 being the the eigenvalue of Jébt's. In particular, the ghosts and

antighosts ¢, b* have different spins before and after twisting (see the table

below).

ghost field ¢t & ¢ bt ¥ b7

spinA 0 0 0O 1 1 1
isospinj® 1 0 -1 1 0 -1
A+ 1 0 -1 2 1 0

Table. The conformal dimensions of (anti-)ghost

fields before and after twisting.
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Now we recognize that b*, ¢~ have the same spins as the reparametrization
ghosts b, ¢ in eq.(12), while b°, ¢® and ¢*, b~ have the same spins as the ghosts
£, 1, &, 7 in eq.(12). Trading the ghost dilaton expectation value for the change
of the ghost spins, we have established the equivalence of the ghost parts in

eq.(20) and eq.(12). For the non-ghost sectors, the equivalence is nmmifest.

Thus we arrive at the main result of our paper, namely, ‘ghc (p, ¢) minimal
model coupled to the 2D gravity is equivalent to the twisted SL(2,R)/SL(2, R)i
gauged WZNW theory with k = 2o

q S :
Notice that the constraint, eq.(22), is of first class. Hence we can define the
- BRST operator | )
G == (Ju. -{' ja + _2_Jgh,a)ca, »
' v v (27)
Q = $6(), @ =0
Both the total energy momentum tensor T(z) and the BRST current G are Q
commutators |
Tfoz(z) — {Q, G}, - ____._(Ju _ j'a.)ba’» )
| (28)
G(z) = {Q, Jy=a},  JIn=2 =%,
Now we have established that G/G model is a topological conformal field

theory. Since Ji3 is a @ commutator, the twisted G / G modecls are still topo-

logical conformal field theories. This can be seen as we choose the following




substitutions
T (z) — Tmrr(z) = T'o!(z) — 8Jt43(z) ='{Q, G — 96°}(z),

G(z) — G™(z) = G(Z) - 363/(2),

(29)

G(z) — G™(z) = G(2),
IN=2(2) — ;_J"""”(Z)N=2.= In=a(z) - Jm's(z)-

As usual, the above N = 2 algebra has the structure of the tensor product
of the “parafermion” algebra and the U(1) current algebra[9]. The U (1) part is

just the ghost current

JN=2(Z) = Jgh(z) = Caba’ (30)
‘with the anomalous background chargevclc; = 3.

The “parafermion” part Y(z) is the tensor product of WZNW models of

different sectors

¥(z) € SL(2, R); ® SL(2,R)_4_s ® SL(2,R)s. (31)
Undgr the N = 2 twisting procedure, the U(1) current becomes anomalous

' 1 1
: TU(l)(z) = E‘Igh(z)*]gh(z) + EaJyh(z)’

| (32)
coay = =8,
and i N
JaJe JaJa Jgh,a]g @
T,,,(z) = - + -
E+2 &k
+ +2 .6 (33)

o . 3k 3(k+4)
YT k2T Tkt

+2=28.
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Since T%* = Ty) + Ty, we have ¢'* = 0 as desired. .

The physical states in the twisted G/G models are identified as tlﬁe Q -
cohomology representatives. As our first remark, notice that since J**? is a Q
commutator, the @ -cohomology representatives in the twisted G/G theories
are the same as in the untwisted ones. Thus it sufﬁceé to consider the standard
G/G theory as long as we are interested in the physical subspace of the theoryl.
Recently, the G/G models have also been studied by some other groups[15],
albeit from the point of view different from ours. Our second remark is that
in our theories, k = P_ 2 could be fractional where there exists the so-called
admissible representations[16] of the Kac-Moody current é.lgebra,z. However,
the role of the admissible level k Kac-Moody algebra in the topological field
theory has not been paid much attention to in the literature. Accor‘clin‘g‘t.o
~ the authors of ref.[10], there are “critical” points in the space of tdpological'
field theories where there exist N = 2 superconformal symmetry. vAty these
critical points, the corresponding theories are called topological conformal field
-theories, which are obtained by twisting the N = 2 mir;imal models of centfa.l

I~

ex.tension c= E%’.'k € Z*. In this paper we‘ have shown that it is possible to
extend their results to the case of fractional k. The inclusion of the fractional
levels k in the G/ Gy, theory is crucial in our understanding of the space of the
topological field theories. It means that there are new “critical” points in such
a space, besides those found in ref.[10]. At these critical poiﬁts, the topological

field theories become twisted N = 2 SCFT’s and the corresponding theories

are precisely non-critical strings. It is desirable to find the Landau-Ginsburg

2This is very similar to the case of (p, ¢) minimal conformal field theory with p — ¢ = %1
asa unitary series. Here, however, in topological field thecries, a fractional level k does not

necessarily mean the non-unitarity.
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description for such models. We leave such analyses for our future work{12].
Here, however, we shall point out another underlying N = 2 structure in our

theory, which is different from the one given in eqs.(27-29).

To see this new N = 2 structure, let us first find out the physical states in
the ghost number zero sector of the G,/G), theory. In this sector, we have the

constraint

Je4 Je 0, n=0,

(34)

A+A = 0,
where A (A) are the conformal dimensions of the primary fields in the J° (.J?)
sector. Writing those primary fields as ¢' and 57 resp., the constraint eq.(3.4)

‘means that [ = [,

&' can be expressed as

Lol /Z¢ ! 35°
¢ - Purae\' ¥ (35)
where :ma is the primary ficld of the parafermionic current . For the J¢

algebra we choose the free field representation[13],

J- = B,
J3 = ,
, (36)
J+ = -

! 2
§o= SV

Combining the two sectors togetllex-, we have the folloWing physical state

’

198



where

k+2, . [k
P L P
2 2
(38)

[k k+2
o e ol
¢y and ¢, are orthonormal.
Consider now the energy momentum tensor for the ¢ and ¢ part
1 1 1
Ty, = =040 = — iy | ——=0?
e 500 </>+26<,03<p 0 2(k+2)3(,0
(39)

_ 1 o —F s ik _ e,
= 269013901-!— 4(k+2)3 901+25<P25902 23 P2-

1 [k .
T1 = —8(,013301 + —'——,—02901, '

If we define

1 1
I; = 53%3%—5329’2,

wefindcy =1~ and ¢, = 4.

3
k+2 . _
Now we see that the parafermion part of SL(2, R); and the scalar field ©1

#

form the topological matter theory

Ty =-Tpa.r¢; + Tla (41)

while 8, v, 2 and the ghosts b*, ¢* form the topological gravity theory‘"af-
ter twisting,. Thué, as a final remark we shall emphasize that thél non-critical
: Strings can also be regarded as the toéological 1nq.tters' coupled to the topolog-
ical gravity. The topological matter is described by twisting the second N = 2.
structure with fractional k = P_y [17). We notice that in the special cases
of q = 1,k = p— 2, this equivilence has also been studied by the authors of
Aref.v[18] via a different approach. ‘ |
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Notice that
1). In the topological matter sector, there are primary fields which correspond
to the admissible représentatio'ns of the SL(2, R) current algebra at the level
k= g — 2, while the tbpélogical gravity sector contains only one primary field.

ii). Under J*"? twisting, Th(z) is invariant, and

T =T — Ty =Ty + Ty + Tyn = Loy + To + Tons - (42)
we have
;Tﬁﬂ = T/31’7 + 8([37) :
Coy = Coy =2
(43)

: 1 , 3
T, = 569026902 — z§8zgo2,
¢, = 28.

'We find that the spins of the fields and the central charges in the T sector dre _
in agreement with Verlindes’ description of the topological gravity [10]. In fact,
as we can sec now from egs.(42-43), the topological gravity can be described
as the twisted Go/Go theory, which consists of the k = —4 current algebra and
the ghoét fields. ‘Thve k= —4 current algebra is given by eq.(36) with k£ = 0 and
® = P2

Finally, we would like to brieﬂy summarize the main points contained in our
paper. By consideriné the path integral formalism of the G /Gy gauged’WZNW _
| theory and the representations of the corresponding chiral algebra, we found the

following relations concerning the physical subspaces of the underlying theories

1. (p,q) non-critical string ~ twisted Gx/Gk.
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Twisted G/Gr ~ Gi/Gy.

o

3. Gi/Gy ~ Twisted N =2 SCFT ~ @ WZNW’'s ® twisted U().

4. Twisted Gi/G) = topological matter ® topological gravity.

(S5

Topological matter ® topological gravity ~ twisted N = 2 superconformal

field theory of ¢ = ;::i—‘l_c—;)-lk.:g_z ® Go/Go.
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ABSTRACT

‘ The BRST quantization of Chern-Simons field theory 1s perfmmed With aid of
the nilpotency property of BRST charge, the physical state condition Qs |phys >=0
is reduced to the Gauss law constraints associated with the case that Wilson loops
are present or mot. Further the physicel stotes are shown to satisfy Knizhnik-
Zamoledchikov equation and hence the equivalence betwcen camonical a,nd BRST

quantization approuches are exhibited.
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During the past several years, the quantization of Chern-Simons field theory
‘has been greatly studied in different ways[1-5]. On one hand, Witten performed
canonical quantization of Chern-Simons field theory[1], he found that the Hilbert
space of the theory can be identical to the space of conformal block of WZW
model. On this basis, he evaluated the expectation value of Wilson loop operators
and reproduced the celebrated Jones polynomial. On the other hand, Guadagnini
etal took the quantization of Chern-Simons theory in a alternative way|[2]. They
performed BRST gauge fixing of the theory and computed expectation value of
Wilson loops to second order with aid of perturbation theory, and obtained the
same result as Witten’s. This fact suggest the problem that whether these two
different quantization approaches are equivalent, for just as what Witten did,
first impose the constraints, the topology of classical physical phase space may
become very complicated, in general geometric quantization must be resorted to
deal with this circumstance. Whilist that first quantize the system and then
consider the constraints is another completely different story. Hence for a general
constrained system, it is very difficult to prove the equivalence between these
two quantization schemes. Fortunately for Chern-Simons field theory, Witten has
already pointed out that the Hilbert space obtained by first imposing constraints
and then quantizing the system can be identical to the space of conformal blocks,
this rtatement was verified by many authors[6][7][8] and make it possible for us to
prove the equivalence between these two quantization schemes. The aim of this
paper is just give a explicit exhibition of the affirmative answer.

The action for Chern-Simons field theory takes the follo'wing;; form
Ses = '—/ (ANdA + %AI\A/\A), (1)

wbere A=A5T*dx* with T° the generators in some representatlon of gauge group
G, kis chosen to be an interger in order to make the system possess gauge in-
variance under the action of an arbitrary gauge group. Without loss of generality,
we choose G =SU(N) and there exsits normalization Tr(T°1*)=16. Choosing
Lorentz gauge condition 9,A”*=0 and performing the BRST gauge fixing, we obtain
the following effective action

Sets = Sest [ 1Tr8p[C(8, 4" + B)]
= EeleA0,4 - 4 + ifried s A 4 ®

A A/.u (9,,}3“ + ik Da‘Z 10 CaDpCa]

81
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The BRST transformations for every fields are read as following
8pA% = eD,C* , 63B° =0,

! 3
530“ — _egfabccbcc , 5BCa — 6 Ba

Evidently, they are nilpotent: é5%=0, Now the classical conﬁgura.tionkspéce is
enlarged by the introduction of new fields—ghost field C, antighost field C' and
multiplier field B, their canonical conjugate momenta. defined by Hq)—-gé;, d =
(4, B,C,C) can be obtained:

M5, = £A3, 13 = — £ 4%,

(4)

G = ‘—'_DOC"1 nac == _C -
These fields and their canonical conjugate momenta satisfy Poisson bracket (for
bosonic fields) or antibracket (for fermionic ones) relation

[H (X t),q)J(th)]:f:PB = _26,116(3)(7{ - Y)’

[T (x, t),l’I (v,)lers = [®r(x,1),25(y,t)lxr = 0.

The BRST charge corresponding to the invariance under BRST transformation
eq.(3) can be computed

®)

QB = dem[BLreijDicaAJa_ - _‘lifabcc'—vacbcé - %B"’DOC"] v (6) '
= [dPz[-£CFg - Lfoelle CCe + £ BeTIg).
By a direct calculation, it is easy to prove that

| [QB)(I)]:E:P.B = %6B(I)7(I) = (AlaBaoa é))

%(QB,QB]-{-,P.B» = Q=0

The following is performing quantization. According to the general procedure for .
quantization, the classical observables are replaced by operators and Poisson (anti-
)brackets by (antl-)commutatlon Lie brackets. Especially the polarization must be
specified, here we choose &= =(4, B,C, é ) to play the role of canonical coordinates
and the Hilbert space is composed of square integrable functional in term of &.
Since there exists no anomaly in Chern-Simons field theory, the BRST charge Qs
are well defined and the BRST algebra relat:ons :

(7).

2105, Q5] = @3 =0 N €
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are still satisfied (the problem of operator ordering is ignored here and in what
follows). It is well known that the state space at present possesses indefinite metric
due to the introduction of non-physical fields. According to the general principle
of BRST quantization, the physical states satisfy that

Qslphys >=0. ' (9)

Notice that the above cond1t1011 determines physical states up to a zero-norm state
due to the nilpotency property of BRST charge operator @5, that is; |phys >
—s|phys > +|X >,|X >= Qplphys >. Obviously the zero-norm states have
the property that they are normal to all physical states including themselves,
< X|phys >=< X;|X; >=0. Hence they make no contribution to the o'bserv"ables
and they are in essential unphysical. The genuine physical state space should
contains no such states. Kugo and Ojima, making ise of the quartet representation
of BRST algebra provided by the Hilbert space, found that non-physical states
always appear as the zero-norm state combination[9], hence non-physical states
" are confined and the genuine physical state sector can be reached. Here we adopt
the viewpoint of physical operator proposed by Marnelius[10]. Physical operators
are defined to be those transform a physical state into another one, according to
their action on the physical states, physical operators can be divided into two
types: A-type and B-type ones. A A-type physical operator is a genuine physical
operator and it transforms a genuine physical operator into the other one, i.e.
AlPh?jS >=|phys >'. A B- -type opemtor take the following form '

B =[C,Qsls - (10

where €' a nonphysical operator. Evidently A B-type operator transforms a phys-
ical state into a zero-norm state and it can be regarded as the generator of a new
type of gauge transformation for its action on a physical operator @

B-type operators form a ideal in the operator algebra[10], the product of an ar-

bitrary operator K (physical or non-physical) with a B- type operator is also the
generator of gauge transformation for the fact '

[(I{B),,@]i_ Fis(®) K B); - (12)
Followed BRST cha,rge eq.(6), it can be proved that | |
B = Qs i) = — &y - LI, |
B} = [Qp 3] =0, (13

B: = [QB, AM]— M,,C?,
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where M,,=-= i [Fm, “11" ] Note that the matrix A =(M,) is nonblngula,r for
the reason that ——Fm and J,A* constitute a pair of second-class constraint, in
classical sense - the Poisson brackct between them doésn’t vanish. It is worthy
to stress the point that during above process we have used on-shell condition.
The nonsingularity of M states that C"'=(.M "l)“bﬁ;u, are also generators of gauge
transformation.

-From eqs.(6) and (13), one can see that the three parts consisting of BRST
charge Qp are all gauge transformation generators, but the second and third terms
suit for non-physical ficlds. As for the first part, one can see that there exists
no coupling between the unphysical gauge transiormation generators o and the
physical ones £ Fl“z, so if there exist no Wilson loop operator- in the universe, the

~ physical state c011d1tmn QBIPhJs >=0 reduces to that

é%F,_“.Aphy‘s >=0. o (14)

In the case that Wilson loop operators are present, since they are not local
operators, they locate in a finite region of space time, they only produce the
excitation from the vacuum to vacuum. If one want consider their effect, one must
choose a proper time at which Wlison loop operators excite the vacuum, and the
generated state can be illustrately represented by a punctured surface, which is
obtained geometrically by the intersection of links, on which Wilson loop operators'
are defined, with surface ¥ determined by some time t. Under above polarization
choice, the gauge invariant state functional at some time ¢ takes the following form

\1',,,.,,3 IDX exp(ift o oo Sespdt + [oda Tl AT AN cap[Pr AW, 4],

X = (A, C,C,B), ' ,

| - (15)
where n denotes the different components of 11111\5 and P,,Q, the punctured points
created by the intersection of nth components of links with £. ¥o[A4] is the vacuum
wave functional at time t=-00, which is determined by eq.(14) and will be explicitly
shown later. In the language of a operator form, eq.(15) can be rewritten as
- following

|phyé >= (I, Pe'cp/ Z;—1 Ai(zy, 72)da')|0 > ) : (16)

with T" the pro;ectlon on transverse surface ¥ of the links locating in the three-
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dimensional space-time region of less time ¢. Hence we have

Qplohys > = ([dPal-ECoFp, + kBefly + }f*TECHCY

><IInN=1 P empf g: Zi=1,2/iid$i)|0 >
= (dal~Colk B, — (21,60 x — xp,)TE - 89(x - x,)]

+ £ Be Il — 1 fei1g CPC))lphys >,

(17)

where we have used that
axPn 5Aa( )Iphys > = -%ﬂz)lphys >, ‘
; | (18)

axQna—mlphys > = BT 8(x — Xq,)|phys > .

Note that in the locations of punctures 05 becomeb a matrix-valued operator,
so do every fields containing in Qp, but out the punctures @p and the fields
containing in it restore to the ordmary ones. Repeating above process, one can
reduce the physical state condltlon Qp|phys >=0 to that

k :
[ Pl — o (69 — x5, )T — 80— XQn])T“]lphyS> 0. (1)

From Gauss law constraints egs.(14) and (19) satisﬁed by physical states, we
can show that the physical states indeed can be explained as conformal blocks..
Let’s first see the case that there exist no Wilson loop operators. As stated above,
we choose the polarization that A; plays the role of canonical coordinate and
the physical states are repi‘esented by the functional with respect to A;(z), the
e1genvalue of operator A;. Introducing the new fields U(x) defined by[9]

T*A}(x) = —iU” 1(x)@lU(x) - (20)

or in other words,
U(x) = U(z1,22) = Peapi / " .dtT“A“(t 25), @)

one can ﬁnd the solution to the constraint equatlon eq.(14) takes the iollowmg
form ~

Uo[A] = exp[—i [ dPye*P1TrU- 16 U9U 10, —ig- fzdzxtra,-U‘laiU]
127 (&4

= exp— Swzw
' (22)
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Hence one see that physical vacuum state corresponds to a special conformal block
of WZW model — the scattering amplitude from vacuum to vacuum .

< 0 out|0 in >= /DU exp — 1Swzw : (23)

If there exist Wilson loops in the universe, in order to exhibit the explicit
identification of conformal block with physical state, we adopt complex coordinate
descrxplnon with the convention z—\/-(:cl-} 1T3),Z = \/—(:1:1 —1iz,); A —f(Al—zAg),

A'—T(Al +44;). It can be easily proved that the A; polarization in term of |

complex language is consistent with the real A, polarization

[Az, fiw] = [Afz, Am] = 0

(24)
[A:, Ab ] — -81r6(2)(z w)aab
\Correspondmgly, the constraint equa,txon eq. (20) takes the following form
koo | '
‘ —F Iphys >= L [b( Nz — zp, )Ty — 6(2)(z - an)T(n)]|phy., (25)
Starting from this, one can verify that
o - T T8 T
a_‘I’phyS[AE] = 'k+Cv (Zn;&m ;(n%(:m Lﬁ_l ;ﬁjﬁ.‘f{gﬁ )\I'phys [AZ],
5 e - (26)
az_’.’\l’phyS[Ail = k+0v (zm¢n Zan~2Gm Zm_1 Zon _zP ) phys[Az z),
that is,
g YomaslAel = 250, zi“ ()\Il,,hys[Az], k=1,2,..2N. @7

They are exactly the Knizhnik- Zamolodchikov equations satisfied by the conformal |
block for 2N primary fields '

- 9 ‘ | v T Th) |
5—‘ < Ql(*l)"-q)2N(‘°2N) >= k + CV Ek;&l 2 — 21 < @1(21) @QN(ZzN) > (28)

Hence from egs.(23) and (27), we come to the conclusion that physical states can
be explained as the conformal blocks of WZW model.

In summary, we perform BRST quantization for Chern-Simons field theory and
reduce the physical state condition Q=0 to the Gauss law constraints associated
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with the case that Wilson loops are present or not, then we exhibit tke identi-

- fication of constraint equation for physical states Wluh Knizhnik-Zamolodchikov

. equation satisfied by conformal blocks, this is consistent with the facts coming
from Witten’s canonical quantization approach. In this sense, we state that for
Chern-Simons field theory, its BRST and canonical quantization are equivalent.
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' Abstract
Gencral clussical systems with phase spaces being cotangent bundles are quan-

tized in geometric quantization formalism. Under Schrodinger coordinate polariza-

tion, it 1s shown that quantum Hilbert spaces are composed of appropriate sections .

. of some vector bundles with flat connections over classical configuration spaces.

Concequently, we have shown that different adoptions of irreducible unitary repre-

sentations of the fuﬁdamental group of the classical configuration space will lead

“to different quantum Hilbert spaces, and hence, different quantum theories.

Applying the result to identical partical systems, we have shown that various
quantum statistics can be naturally derived. Physical interpretations of various
quantum stutistics are also discussed. '
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1. Introduction

The m- cffect in quantum the01y is rd”ened to such phenomenom that, when
the fundament al gloup of a classical conﬁgura,tlon space is nontuvxal various new
effects which are unobservable at classical level may appear at quantum level. An

example of m-effect in quantum theory is the famous Aharanove-Bohm effect[1].

Many people have investigated the problem and its concequancés in the frame-
yvork of Feynfnannés path integral quantization[?]. However, with an observation
that mi-effect is a kind of pure quantum effect related to global properties and
should emerge naturally in quant‘iza.tiyén procedure, it seenﬁs reasonable and help-
ful to trcat the problem in view of geometric .quaﬁtization which is essentially
the ”globalization” of canonical qﬁarﬂiiation. Some papers whefe diS'CuSSiOHS are
" along this line but limited it scalar quantim mechanics has been i)ubli,shed pre-
Cviously[3]. -

" In this papel ‘we will discuss the pr oblem in a more general contents and show
that genera.l wl-effect can be naturally derived via geometnc quantization. We
bwill also discuss the applicati‘oh of our résult to identical partical systems, where

various quantum statistics will appear as natural concequances of the m-effect.

Physical interpretations of various quantum statistics are to be discussed, cither.

2. The Wl—Effect via Geometric Quantization

In Harmltoman formalism of classical mechamcs a cla,sqmal system is d(.scnbed
by a phase space ‘which is a symplectic manifold (M,w) plus a sct of classical

observables f € o (M, R). The purposc of geomctnc quantization is to construct
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1.-Introduction

The - effcct in quantum theoxy is referred to such phenomenons that, when
the fundcxmcntal group of a classical conﬁgurauon space is nontnvml various new
effects which are unobser vable at classical level may appear at quantum level. An

example of my-effect in quantum theory is the famous Aharanove- Bohm effect[1].

Many people have investigated the problem and its concequances in the frame-
work of Feynmann’s path integral qﬁantizat\ion‘[2]. However, with an observation
that m-effect is a kind of puré quantum effect related to global“properties and
should emerge naturally in quantization procedure, it secins reasonable and help-
ful to trcat the problem in view of geometric quantization which-is essentially
the ”globalization” of canonical qﬁa’ntiza.ﬁon. Some papers where discussions are
~ along this line but limited at scalar quantumn mechanics has been published pre-
“viously[3].

In 'this'papel"’, we will discuss the problem in a more general contents and show
that general 7;-effect can be naturally derived via geometric quantization. We
w111 also discuss the apphcatlon of our result to identical partical systems, where
various quantum statistics will appear as natural concequances of the m- effect.

Physical interpretations of various quantum statistics are to be discussed, either.

-, 2. The m;-Effect via Geometric Quantization'

In Hamiltonian formalism of classical mechanics, a classical system is described
by a phase space which is a symplectic manifold (M,w) plus a set of “classical

observables f € c *(M, R). The purposc of geometric quantization is to construct
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a Hilbert space H from this sympleéticv manifold va.nd establish a map f — f so
that f is a linear operator acting on ‘M and satisfies féllowingvDirac’s quantum
“conditions:
1). f— fisa monomonphism. ' | ,
2). If{f,g} =k, then If,d] = —ihk

where {.,.} is Poisson bracket and [.,] is commutator.

Considering the cross-sections of a vector bundle possece a natur al structure
of vector space, quantwatlon for a classwal sy.,tem stated above could be achleved
by introducing a Hermit, vector bundle B over M with ('onnecmon The set’ of
square-integrable smooth sections will compose a Hilbert space H and the opef_a"por g
f corresponding to f € C®(M,R) can be constructed as follows[4]. ’I‘he one-
parameter group ¢ of canonical transiormaf.lons gcnerated by f has a unique lift
to a one-parameter group of connection preserving transformations of B which
defines the action of ¢'j én the 'space of sections of B. The operator f is then
deﬁned by ' | v

fl = in e (o W
where s are sections of vector bundle B.

Analogue to the derivations for line bundle[3,4], above expression can be en-

valuated more explicitively as:

f=—ihox, +f I @

‘where I is the identity operator, v is the covariant differential operator defined
on the bundle and X is the Hamiltonian vector field associated with f, defined -

as i§,w = —df.
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It is obvious that above constructmn of f satisfies Dlrac s condltlons 1). In
order that it obeys condmon 2), substltutmg equatlon (2) into the condltlon 2),a

1

: stralghtforwald calcu]a,tlon shows tlldt

h([vx,, Vx,] — .V[x,',)z(g]) = Xf_(g) | )

Namely, the curvature of the vector bundle B (lhs. of (3)) should be proportion
to the symplectic structure w of the base manifold (M,w).(Note that,X,(g) =
2w(Xy, X,).)

Hdwever, above c§nst1~ucted Hilbert space 'H can not be directly used as a
correct physwal quantum H]Ibert space since "wave functlons” (identified with
“smooth sections of the vector bundle over M ) generally depend on both COOI‘dl-
| nates and conjagated momenta in phasc space, which would lead to violation of
' uncertainty prlnuple (It is for tlus reason that H is called plequantlzatlon Hilbert
‘spa.ce[4] )

A typical way to circumvent this problem is to reduce the préquantyizvation space
by ”poiarization"’ meéhanism[él], that is, only those ”polarized” smooth sections
. are admitted to be physical "wave functions”. When M = T*Q with Q is the con-
ﬁguration space, the simplest pola.rizafion is flle so-called ver,_fical polarization(or

Schrodinger coordinate polarization) and‘. the poiarized sections are those depend
only on coordinates of Q. |

Under the vertical polarization, physical ”wa.vé—fﬁﬁctions” can l:'>e equally -re-'
garded as smooth sections of a’vector bundle F bver @, which is actually the
prOJect bundle of p1ev10us bundle B over T Q. Slnce the curvature of B is propo-

“sional to the symplectlc structure w of T*Q and due to the fact that wlo =0, we

arrive at followmg lemma
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Lemma: When a classical system is quantized via geometric quantization under
Schrodinger coordinate polarization, its quantum Hilbert space is composed of
smooth sections of some vector bundle F over classical configuration space @,
whose curvature must be vanish. In other words, the bundle E admits only flat

connections. .

Now, according to Milnor’s theorem(5], which said that a vector bundle over
@ with standard fibre C™ admit a flat connection if and only if-it is of the form
Q% pC™, where Q is the universal covering space of @, Risa n—dimensikon.a.l compiex
representation of @)’s fundamental group m(Q) and Q xp C™ is the associated
vector bundle of @ (which’ 1fself is a principle ’ﬂ'l(Q) bundle over Q). As a Lesult
physical "wave functions” can be identified with smo{ot’h scctions of vector bundle
Q xpC". |

Furbhe1 more, it can be proved fhar, the smooth sectlons of vector bundle Q Xn

C" can be eqmvalent;ly descnbed by sorne appxopuate functions ¥ E C °°(Q cn ).

To be concrete, let us ‘denote T(Q xzC (‘”) as thc, t.et of smooth sections of Q x RC"

Given a smooth section S’ € T(Q xr C"), we may define a cox_'xjesponding :
function ¥, € C>(Q, C™) by the relation,

SEr() = 3% S

where pr : T*Q — Q | ‘ \. S | , L

Since S(pr(q)) = S(pr(§v)) for all v € m(Q), from (4) and the équivzplgncc |

relation [§,y] = [§v, R(v™")y] of associated bundle, we have,

60D = i, B = 6 BRG] )
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Namely, the function ¥ should obey following property,
¥.(3) = RMT(37) o - (6)

Conversely, given a function ¥ € C>(Q,C") satisfing (6), we can define a

corresponding smooth section of @ x z C™ as follows,
Su(e) =[6,9(@)] M
Since v
4, ()] = [n,Rw 1)\1/(«1)1 =@ %@ 8)
Sy(q) is independent of cholces q € pr'(q) and thus, is well- deﬁned

- Therefore, we arrive at an improtant result that,
D@ xr O™ = {Tec=(@, C“)l‘i’(rh) = R(yM¥(§). Ve m(@‘)} ©)

FAS a rebult when performlng quantlzatlon m mu1t1 connected conﬁgux a'rlon space
Q, physmal wave functlons can be de‘;crlbed by functlons ¥ E C’ °°(Q, C’”) satisfying
¥(§v) = R(y~ 1)\Il(q) Vv € 7r1(Q) where R is any umtary 1epresentat10n of the

" foundamental group 7r1(Q)

‘Note that the wavefunctions ¥(§) ;m defined ever the universal cevering spéce
@ of classical configuration space Q and are singled-valued. The quantum system
;nay also be described by wavefunctions ¥(g) over @ through a suitable projec-
tion[*]. In this case, the wavefunctions lI’(q) have to be multi-valued. When a

m'poxnt q is moved around a loop ¥ E 7r1(Q) the wavefunctlon \Il(q) will gam a

‘phase factor R(y~1).

Clearly, when m(Q) has various nonequivalent irreducible unitary represen- .

tations, each of them will bear a distinct quantum theory. Therefore, there is
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generally an amblgulty in quantxzmg a classical system with nontnv1al configura-
tion space. This kind of a.mblguxty is totally dlffercnt from dyna.mzcal ones such
as ordering amblgulty in conventxonal quantum mecha,mcs[6] and is commonly
referred as the m;-effect in quantum theory. It 1s‘recogr_uzed that many quantum
phenoﬁenons are straight concequances of the effect. In next section, we will shbw
how various quantum statistics can be naturally explalned and derlved from the

result here.

3. The m-effect and Quantum Statistics

At its beginnings, the concept of quantum statistics wasv limiéed at Bose-
Einstein statistics or Fermi-Dirac statistics of identical partlw.l systems, which
requlre the Wavefunctlons of the systems to be symmetry or antxsymmetry under .
permutatmn of two particles’ positions. Though the requlremen.ts upon wavefune-
tiorps,“a.re basically from physics consivd'e‘mtions it has been fecognized that they
can be understood topologically. The essential 1dea is to consider the 1dentxcalness

“of partxcles before quantization, which Ieads to following classical conﬁguratxon

space for N 1dent1cal particles in R®[2],
CN(Ra) = (R‘w — A)/Sy | (10)

where SN is pcrmutatlon group and A is the diagolized set which. should be cut

off in order to make CN(R3) a smooth manifold.

- The fundamental group of Cy(R) is readily proved to be Sn. There are only
two 1- dimensional irreducible unitary representat;ons of S'N The first of them is
such that R(v) = 1, Vy € S; the second one is such that R(y) = —-1ifyisa odd

permutation and R(vy) = 1ifyisan even permutation. Obviously, according to the
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result of last section, they lead to Fermionic and Bosonic statistics, respectively.

" When Wilczeck proposed anyon systems which was shown to be of importmice
| in understandmg FQHE and perhaps hxgh~T superconduchwty, fracmonal statis-
tics emerged as a commonly mterested 1ssue[7] Though Wilczeck’s anyon s ystun
'was based on concrete model(composxte of electric cha.rge and ma,gnetxc ﬁux), it is
" not hard to see that anyon can be understood more naturally in the fra,mework of
m-effect. Let us consider & system of N u:lentlcal particles in R, whose classxcal

,conﬁguratxon space is Cy(R?) = (R*N — A)/Sn.

Its fundamental group is proved to be Artin’s braid group By composed of
generators {o;|i = 1,2,..., N} with following algebraic relations:

0ig; = 0,'0'.: Vi — jl>1

Gi0i0i = Cig10i0i1 QA
where a, means the operation moving the ith pa.rl;icle around the (i+1)th particle
once without enclosing any other parl;iclee The 1- rlimensional irreducible unltary
,representatlons of the By are easnly shown to be labelled by a parameter 6 € [0,27)

and the forms of 0;’s under the representation labelled by 6 are as follows:
Ro(a,-) = eia, Veo; € By (12)
Therefore, referring to the result of last section, general f-statistics intermediated

between Boson and Fermion are allowed in two dimensional plane. (For more

© detailed analysis please see references {3} or Y.S.Wu’s paper in [2].)

- "~ With these succeses, it could be suggeste:l that this kind of topological approach
of understanding general quantum statistics might be a correct attemption. In-

‘stead of limitting on Euclidean space, we may consider identical particle systems
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on general manifolds. Furthermore, we may investigate the results of nonscalar
quantization, whick will involve high dimensional irreducible representations of

the foundamental group[8].

The ronflguratlon space of N spinless 1dent1cal particles in a gener al manifold
Mis CN(M) = (]WN A)/SN Its fundamental group is to be denoted as BN(.M)

commonly named as N-string braid group on M.

According to the discussions last éection, d‘iﬁ'é.r‘er‘lt ddoi)tic)né of ii‘reduci_ble uni-
tary representations of BN(M t)"wil'l bear distin'ct“q{lantum theories. When M is
simply connected, these distinct quantuni theorlcs can be éqﬁivﬁlcntly interpre-
tated as quantumn theories of N identical particles ‘system with distinct qﬁaﬁmun
"statistics‘, since the elements of BN(A/I ) are nothing but the éxchanging operations
among particles. However, if M itself is' multi-connected, there is a quantization
ambiguity already present for N = 1 (and therefore has nothing to do with stattis-
- tics) which will manifest itself again in By(M) for any N. To get the set which
labels different quantum statistics, we must “mod out” those resulted from = 1(M)

in an appropriate way.

To illustrate the ideas explicitively, let us give'a concrete example—three iden- ,
tical particles on a torus T2. A(,cor(hng to the Benerdl discussions of brnid groups
by Ladegalllerle[Q], the foundament;ﬂ group of the system’s conﬁgmatxon space,
. denoted as B3(T?), is readily shown to be composed of generators {01, o5 @, B},
where 0; means the operation moving the ith pa,rtic'le around the (i+1)th pav'rticlg
once without enclosing any other particies and: @ (f) mean the opera.tién‘s moving

the 1th particle around the meridinal(longitadinal) loop of the torus once. The

.
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algebraic relations' among the generators are as follows:
010201 = 020102, alagalﬂa'-lﬂ'la =e,
oa0;la™ = 0yf0; 1 = e, (1a)? = (agy)? (13)
(018)" = (Br)?,”  o7'aoif = Borao,
. It should be noted that though Bs(T?) has four generators, only two of them,
o, and a3, are dﬁirectelyv related to quantum statistics, sinceﬂithe othe_r two, a and
B, are actually the generators of x;(T?) and have néthing to do with exchang-

ing operations. We will call the subgroup composed of o, and o, as "statistics

subgroup”.
| Now, by examining the irreducible unitary represgntations of 33(T2'), we will

see that vafioq_s’ quantum statistics are allowed for such three identical particles
system:

i). Scalar 9—st§tisticé,

For one dimensional unitary representations of Ba(T?), the algebraic relations
(13) can be simplified as,

oy=0y=0, o0’=e.

’i‘herefore, o have to Be (+1) or (-15, which méans that.only allowed scalar

statistics of the system are Bosonic or Fermidﬁic statistics. |

ii). Nonscalar abelian statistics,

Since B3(T?) is a nonabelién group, its high dimensional irreducible represen-
. tations must be nonabelian. However, generally speaking, the representati’dns of
the "statistics subgroup” composed of o, and o, under some high dimensional

i

222



1rred1101b10 replesentamons of B3(T"‘) could b(, abehan Thuvcfme due to the non-
trivialness of 7r1(1"2), there appears thc concept of nonscalftx abohan StatlSthS As
a simplest example, let us vonsxd(,r a wrtam hlgh dlrl'lCIlSlOIld.l ureduc1ble umtary
representation of By(T?) where 0y =09 = e'oI whlle a, f3 take apploprlate forms
to make the representatlon bemg 1rreduc1blc A(.cordmg to (13) one can find that
0 must obey the condition e8¢ = 1. \Iamcly, 0 can take only one of values 0 /3,

2m /3, m, 47r/3 S /3. Adopuon of § = 0 or 7 means Bosomc or. Fe1 mionic statlstxcs ‘

whlle other choxces of §'s values conespond to various fractlonal statlstlcs

A fact to be emphasmcd is that, 1f l1m1tea at S(Za.lcu quantum mechamcs ‘the
system allows only Bosonic or Ferrmomc sta,tlstlcs as n1ent10ned ini); howeve1 if we
1nclude nonscalar quantum mecha,nu‘s 1nto (,()llSldel El.thl’lS ‘then new pOSSlb]llt]es ‘

of h actional statistics are allowed.v

iii). Nonabelian statistics,

Under most of the high dimensional irreducible representations of nonabelian
group B3(T?), the representations of 7statistics Vsubg.;'oup,” composed of g, and o,
are nonabelian,.either. In these. cases, the corresp,ondiﬁg quantum statistics are
commonly named as nonabéli_;;n statistics, where the "phase factors” resulted from

exchanging operations among identical particles are noncommutable matrix.
4. Conclusions and Discussions.
In this paper, general classical systems with phase space being cotangent bun-
dles have been quantized in georﬁet'ric' Qﬁalltizati01i formalism. The quantiza-

tion kprocedﬁré has been perf"orméd 'genéra.lly ‘wivtho'ut limitting on scalar quan-

tum mechanics. The res ultcd quanturn wavefunctlom are gener ally multi- valued,
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© multi- component functlons over conﬁguxatlon Space The multi-valueness and
) mult1-componentness of quantum wavefunctlons are deternnned by the 1rreduc1ble
' bumtary representatlons of the foundamental group of the classical conﬁgurmtlon’

- spaces Wthh leads to so-culled 1r1-effect in quantum theory.

Applymg, our result to Jdentlcal pa,rtlcles systems; we ha.ve shown that vurlous
_‘quantum statistics could be 1nterpretated as natural concequances of the - effect
Furthermore, we have dlscussed 1dent1cal part1c1es systems in general mamfold
uwhere the topologlcal plopertws of the base mamfold are shown to have nontmvml
influences upon systcm s poss1ble quantum sta,tlstlcs It'’s shown that a system
whu,h does not allow fractional statistics in the framework of scalar quantum
' mec,hamcs may allow fr actional statistics 1f we adopt multi- component quantum
‘wavefunctlons(The number of components is Just the dnn(,nsmn of the adoptecl
representation of system’s fundamental group). In addition, nonabelian statistics
which do not exist in scalar quantum mechanics generally emerge in no‘n’scalar

quantum mechanics.

" Here, we have seen that the generation from conventional scal,z‘lr'v quantum
‘wavefurictions to multi—cOmpo‘nent quantum’ wavefunctions is not a trivial one.
Though this generation is straightforward in mathematical constructions of geo-
metric quantization as described in section 2, its physics interpretati‘ons deserve
more discussions. As usual, the multi-componentness of a system’s wavefunctions
can be attributed to some "internal freedom” of the system. However, if we are
lxnterested in the orlgm of the mternal freedom there exist two very dlﬁ'erent.
- cases: 1). One case is that the numbcr of components of system s wcwefunctlons

dis equal to mN (where N is the number of ldentlcal partlcles of the system) :

In this case, t_he "internal freedo_rn” of the system is understood as causing by

A}
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the intefﬁal ‘frk(‘aédom of 1nd1v1dualpart1clewhose 1nternal sﬁacé 1s 6f difﬁénsioﬂ
m. The physical realization of this case ‘csuld be to regard individual particle as
a composite of some nonabelian charge with corresponding flux-tube. (Similar to
Wilczeck’s anyon fnodel ) 2). The; ‘other'case is tha.t d # mN . In this case, thé
system’s d ”internal” degrees of treedom can not be attnbuted to 1nd1V1dua1 par-
ticles, and one has to say that they are assocmted only to the many body system.

The physical reahzatlon of thm case is not a snnple work and is unde1 researching

by many people[10].
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ABSTRACT

In tlus Letter, we predlct that ’rhe quantum Ha.ll eﬁ'ects 1ndud~
ing both integral and fractional cases, can be observed when the
magnetic field and the applied electric field are not uniform. In
the present model, the non-uniformity breaks the higher Landau
levels into energy bands while it may not aﬁ’ect the deg:,enel acy of
the lowest Landau level.

‘Mailing address

227




The integral and fractional quantum Hall effects (IQHE and FQHE) were
discovered in 1980 [l and 1982[3. Many investigations in this field have been
provided.?! In most of the experimental and theoretical proposals, one consid-
ers the effect under the uniform external fields because the uniformity of the
external fields makes the simplity both of experiment and theory. However,

_one can ask if the quantum Hall effect can be observed when the magnetic
field and the applied electric field are not uniform. In this letter, we discuss
this subject. We find that when the uniform magnetic field is perturbed the
ground state wave function of the single-electron is exactly soluble if there is a
suitable electric field. Thus, the variational ground state wave function of the
N-electrons may be constructed by means of a similar way to the construction
in the common FQHE. The filling factor of this state is not uniform: But,
the non-uniformity of the filling factor is same as that of the magnetic field in
our case such that the Hall coefficient is still fractional. Under such external
" fields, however, the excited states of the single electron are not exactly soluble.
To the first order of the non-uniformity, we find that the degeneracy of the
Landau levels is lifted completely. Therefore, if the non-uniformity is regarded
as some kind of imperfections, the IQHE should be observed in such case.

~ Consider a free electron moving on a two-dimensional plane. Assume there
~ are non-uniform magnetlc and electric fields. For qpe(nﬁcatlon[“] we investigate
following two cases: ' '

B, = = Bo(1 +8g:%)k, Dl 852:130 7y (1a)
. = o hB 2
B, = —Bo(1 — ——-)k E2 99; 5 (1b)

where g;, i = 1 2, are the parameters with dimensions L and L~? respectively;
By are constant; k 7 are the unit vectors in the normal to the plane and the
radius direction. The fields (1a) is related to the normal matrix model with
the potential V(M) = (1/4)Tr(M'M + (,/2)Tr(M'M)* ( M is an N x N
normal matrix).) The fields (1b) may be prefered by experimentists. For
example, a ring sample called Corbino disk is put closely between two sets of
solenoids. In each set, the solenoids are ring upon ring. Then, by adjusting
the electric currents through these solenoids, the magnetic field will have a
reduced distribution along the radius. The electric field E; may be made
by putting a point charge on the center of the ring, whose charge, of. course,
should coincide with eq.(1b). In symmetric gauge, the vector potentials and the

scalar potentials of eq.(1) are A() = Ezgg[y(l + 4g1r2)2 — z(1+4g,7* )71, =

491 ﬁBo 2 CBO gth

@ — - — (1 - ® ===
o and A‘ [y(l .‘72/7 )Z (1 92/T)J] ¥ 2m.cr’ the
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single-electron Hamiltonians are

-1 RO e B0 e . .
He = POty (PO Loy 0
= oG+ 2407+ (G2 4 0] e @

It is easy to see that the Schrodinger’s equations Hs ) = £¢() have the
exact ground state wave functions ¢(1) = zmexp{—(1/41*)r? — (g,/21*)r*} and
¢ = zmexp{—(1/412)r? — (92/20%)r} (1 = (hc/eB,)'/?) and the energy of the
groud states is & = (1/2)Aw?, where z =  + ¢y and w? = eBy/mec is the
cyclotron frequency associa.ted with the uniform field B,. ' ‘

Now, we consider the N-electron system described by the Hamiltonian .
: H(i) _ki[. ! (‘hv + CA(i'))z eoW(r)] +U, - (3)
. —:j=12mei iR P AT o -
where U includes the poten,thl_gvér‘;erated,by,a neutralizing background and
‘the Coulomb interactions among the electrons. And the interactions are weak
ie. |U| < hw?. The variational ground :sta.tel wave functions, thus, can be
constructed by the Laughlin-Jastraw’s forml®! ' o

N
m o l » (5] .
Pz on) = T = z)meap{=7 3 [af* = £ 0]l

, N 2,
PP (21, ..., 2v) = [I(zi - =) ‘63319{—1 > lal? - Y PRES
: v <5 R o

where the magnetic length [ = (he/ eBo)l/’:z is set equal to unit andz'm s an
odd integer. o R

Along the Laughlin’s formulation in the discussions of the common FQHE, (¢
one can write the square of the modulus of P as a classical Boltzmann dis-
tribution | . o N L
|1/)£i)(zla",')2?N)|2 = eip{'—ﬂ(bz(;f)f(zlu“azfv)}y E V (5)

where 1/8 =m is the fictitious temperature and the effective _poténti"alsv', :

1 2k
(I)e(zf)f = —2m? Z lnlzi — z]'I -+ mZ[——l 9| + gl|zk|4],
=(2) .. 9 L ,Izk|2, S .

q)eff = —2m Eln]z; — zj‘l-+m2[.___2 : +.g2|zk|.].‘ o
i<j ' ko o
These effective potentials describe such a systein$ the first term in the potential
represents the repulsion between particles of charge m via two dimensional
Coulomb interaction; the second term is the attraction of these particles to the
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origin due to a neutralizing ba,ckground on the same ring of charge densmes

PV = (1 4+ 8gyr?)/(2x1?) and p{? = (1 — go/2r)/(271?), i.c.

88, = ~2m* Y Inlz; — 24| +m2/dﬁ zinlz 2l (1)

i<y

The neutmhty of the system. tells us that the electron den31ty in states () is
" equal to : ‘ 3 |
| | o _ 2 e - _1_‘33"(*). ®
m m hc ‘ ‘ '
This results in the filling factors of these states have a Ia.dl'LlS d1str1bu’c10n
v = (1/m)(1 + 8¢,72) and ¥® = (1/m)(1 — g2/2r). Rigorously, we should
prove that the perturbation to the incompressible quantum fluid theory do not
change too many properties of the unperturbed theory. But if the perturba-
" tion is sufficient small we believe that the present system remains the main
properties of the two-dimensional one-component plasma. For instance, in the
“small T = 2m, the system is a liquid. We shall glve a detzuled dlscussmn for :
this matter in a separate proposal.

" To understand the physical 1mphcatmn of the above result, we con81del the

Boltzmann equation )
of , ~of F 0 f of :
6t v " or + m, Ov =G ot )”” ’ (9)

Where F = eE" 4 (e/c)v x B with E** being the sum of the E; and a uniform
applied electric field Eq. By: definition, pl) = [ f(r, v)dv so that 8f/0r is of
the g;-order. The velocity v in the lowest order 1s proportional to the electric
field. Thus, in the weak field approximation, the second term of the left-
hand side of eq.(9) may be ignored because it is proportional to g:[E®|. By
using the relaxation time approximation, therefore, the conductwﬂ;y tensor
still has the familiar form o4, = 0¢/[l + (wWeT)2), 00y = p¥ce/B; — Oz [WeT
where 0o = p{)e?7/m and w, is the cyclotron frequency associated with B;.
When the relaxation time 7 — oo, we find that the Hall conductivity o,y =
pﬁ,i)cc/_B,- = #ez /h is fractional while the longitude conductivity oz, = 0. As a
result, one expects that the FQHE can be observed when the external magnetic
-an electric fields are not uniform. o
- The quasiparticles of the present model can also be discussed by the similar
‘way to describe the quasiparticles in the common ‘FQHE.[G]- From eq.(7), we
see that the only difference between our model and the two-dimensional one-
component plasma is the density of the state. The charge of the particles is not
changed. This, and the fractional Hall coeflicient, imply that the quas1part1cles
in our'model should have the fractional ‘charge. In concluding our descnptlon
to the FQHE, we world like to mention that the general fractional quantum
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Hall ,ta,te in our model may be constructed by the Haldane’s hierarchical
~scheme.[] We do not give the details here.

We turn to understand the excited states of the single-electron Schrodinger’s
equation. It is found that the excited states of the Schrodinger’s equation are
not exactly soluble. Up to the first order of perturbation, the higher Landau
levels are broken into the energy bands. The standard perturbative theory
in the course of quantum mechanecis may be employed. However, it is too
complicated to solve our problem because the Landau levels are high degen-
eracy. Fortunately, the ground state of the single-electron is exactly known,
which may be taken as a starting point to do the perturbative theory. Take
the Hamiltonian Hs, as an example, we present the result$ of the first order
perturbation. Also consider the symmetric gauge, the wave functions are de-
noted by ¢, where n is the index of energy band and m is corresponding to -
the wave vector. The ground states ¢g, = z™e™/ (f = (1/4)|z|* + (91/2)|2]")
are still degenerate as we have mentioned. Then, it may be check that the
lowest state in each energy band, up to the first order of g¢i,

$no =L eI\ L=(1-4apl2):z, (10)
and the eigenvalue of the first perturbation is (in the unit of )
Eno = [(1+16g1)n + 1/2R0. - (11)

This implies that the lowest energy in cach band is higher the original Landau
energy. The other states may be constructed in the following way. For example,
assuming the sought wave function ¢, is

Gna =L"an(d+ 5) + L]ze7/, e (12)
then a cdﬁsistent coefﬁcﬁent a, and eigen-energy are
2n ‘ ‘ | 1.
n= - , Eaa=[1+(1+1)16 + =]Aw?
A eyl SRR R

The state

(13)

$1m = la1m(0 4 2) + L2 | (14)
is, for a suitable a, ,,, corresponding to
Eim = [(1 4+ (m + 1)16g;) + §]hw2. (15)
Repeat the previous process, one can obtain the state ¢, and the corre-

sponding energy &, = [(1 + (m + 1)16¢:)n + 1]hw?. The conclusion is the
higher Landau levels are completely separated into energy bands. The theory
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of the IQHE is essentla.lly based on the non- mteractlon two-dimensional elec-

~ tron gas with weak impurity or imperfection. - In our case, the non-uniform
parts of the external fields can be regarded as a type of weak imperfection.
This 1mperfect10n breaks completely the Landau levels into energy bands. Fur-
_thermore, the existence of the electric field leads to that the extended states

~could exxst Thus one expects that the IQHE can be observed in the present
case. :
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Solv‘ing of the Yang-Baxter EQuation‘ (In) !
- Shi He

" Institute of Systems Science, Academia Sinica
Beijing 100080, China

Abstract

Let the special matrix R and the permutation matrix P be

Tyis L1 T1 Tny 1 0 0.0

R =. ;'l:5 1’13 Tg Ty , P = 00 ‘ ,
T To T3 T2 01 00}
Ti2 T Te Tie 0 0 01

where :1,, are compl(**{ var 1'Jblcs |
Let R= RP. Then the Yang- Ba,xtu equation is
A . . .
M = (mij) =R12R23R12 - R23R12R23 = 0, (YBE)

where. Rm__R ®I and R23- I® R

. The Yang-Baxter equation (YBE) is a system of algebraic equatlons By using
Wu Elimination, it is solved for this special case. A series solutions of YBE including
multiparameters are obtained.

'Work supported in part by CCAST (World Laboratory), ITP and NSF of China.
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Quantum ’Algebyré« as Deformed Symmetry
Shao-Ming Fei and Han-Ying Guo

CCAST (World Laboratory)
P. O. Box 8730, Beijing 100080, China

and

Institute of Theoretical Physics, Academia Sinica
P. O. Box 2735, Beijing 100080, China’

Abstract

The general algebraic (including deformation) maps among algebras = -
with three generators are sytematically investigated in terms of sym-
plectic geometry and geometric quantization on 2-D mainfolds. From
which the explicit Hamiltonian of Heisenberg model with SU,(2) sym-
metry and arbitrary spin values are given. The deformed symmetries -
in differential dynamical systems and the g-deformation of SO(3)
group transformations in usual R® are also discussed. '

" 'Mailing address
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Quantum Doubles and Quantum Double Pairs

The Relationship Between Quantum Algebras and Quantum Groups 1

Han-ying Guo, Ke Wu and Renjié Zhang

CCAST(World IJaboratory)
P. 0. Box 8730, Beijing 100080, China

and

Institute of Theoretical Physics, Academia Sinica .
P. O. Box 2735, Beijing 100080, China * '

‘Abstract

The concept of quantum double pairs was introduced and by this
a method of realizing the quantum grou,ps from guantum algebms
was proposed.

1This work was supported by the Clunese National Natural Science Foundatlon
2Malhng address.
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S’pin_.Chaihé Associated with Multiparameter
R-Matrices of Six-Vertex Type !

* Shao-Ming Fei*!, Han-Ying Guo*!, Lu-Yu Wang** and Hong Yan*
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P.O.Box 8730, Beijing 100080, China

and

]‘Instltute of Theoretical Physics, Academia Sinica
P.0.Box 2735 Beumg 100080, China?
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Urumgqi 830046, Xinjiang, China?®

Abstract

The general Bazterizations and spin chain Hamiltonians related to
the multiparameter solutions of Yang-Bazter equation are given. The
quantum integrable spin-chain models are investigated via quantum
inverse scattering method and the Bethe ansatz equations are pre-
sented. The spin-chains of XY type, associated to the nonstandard

" R-matrices are emphasized and the corresponding Bethe ansatz equa-
tions are shown to be analytically solvable. In the algebraic Bethe
ansatz approach, the quantum universal enveloping algcbms and quan-
tum pseudo groups are analysed in a 3ystematzc way.

1Work supported in part by the National Natural Science Foundation of China, CCAST and ICTP.
*Mailing address.
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