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abstract

In this paper we investigate the problem to satisfy the Mach’s principle in cosmology.
Particularly we consider de Sitter-Fantappiè Relativity and Brans-Dicke theory. These
two approaches, in fact, in natural way seem to incorporate this principle and the accel-
erating Universe.

I. INTRODUCTION

Einstein’s General Theory of Relativity revolutionized our thinking about the nature of space and time
and it explained gravity in a different way from Newton’s law. Gravity is a manifestation of the geometry
of spacetime and the gravitational force becomes a metric force, resulting from the local curvature of
spacetime. One of the very first applications of General Relativity concerned the Universe itself and the
first attempts towards applying General Relativity to cosmology were made by Einstein himself in 1917.
The current models of cosmology are based on the following Einstein’s equations

Rµν − 1

2
gµνR = (8πG/c4)Tµν + Λgµν (1.1)

where Rµν is the Ricci tensor, R is the Ricci scalar, Tµν is the stress-energy tensor, and Λ is the cosmo-
logical constant. By assuming a standard perfect fluid matter we may write

Tµν = (p+ ρ)uµuν − pgµν (1.2)

where p is the pressure, ρ the energy density and uµ the velocity. Therefore if we apply this equations to
the whole Universe, we find the relativistic cosmology, in which the cosmological principle can be postu-
lated and a model of constant spatial curvature obtained. In fact the Robertson-Walker metric describes
a spacetime with homogeneous and isotropic spatial sections, so that the intrinsic spatial curvature is
constant throughout the space and its general form is written as

ds2 = c2dt2 − a2(t)[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)] (1.3)

in which (r, θ, φ) are the comoving coordinates and a(t) is the scale factor. The dynamical problem is
completely set when matter evolution equations are given; they are the contracted Bianchi identities
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Tµ
ν;µ = 0 (1.4)

A further equation has to be imposed in order to assign the thermodynamical state of matter. It, usually,
is

p = γc2ρ (1.5)

where γ is a constant ( 0 ≤ γ ≤ 1 for standard perfect fluid matter ). In such context we obtain the
system

..
a

a
= −4πG

3c2
(ρ+ 3p) +

Λc2

3
(1.6)

(

.
a

a
)2 +

kc2

a2
=

8πG

3c2
ρ+

Λc2

3
(1.7)

.
ρ+ 3(

.
a

a
)(ρ+ p) = 0 (1.8)

Predictions of relativistic cosmology include the initial abundance of chemical elements formed in a period
of primordial nucleosynthesis, the large-scale structure of the Universe and the existence and properties
of a thermal echo from the early cosmos, the cosmic background radiation. Despite this, we have to
pay close attention to General Relativity, where, inevitably, the application of Einstein’s equations to
cosmological problems requires an extreme extrapolation of their validity to very far regions of spacetime.
The relativistic cosmology is unable to provide an explanation as to why the density of the Universe should
be so close to the critical value. In fact we have

Ω− 1 =
k

H2a2
=

k
·
a
2 (1.9)

and as
·
a
2
decreases with time, |Ω− 1|must increase if k is non zero. This means that the Universe diverges

from the flat case if k ̸= 0 and the fact that it appears to be almost flat today means that Ω must have
been very close to one in the early Universe. Besides at present, the cosmic microwave background is
observed to be extremely homogeneous and isotropic on large scales, with temperature fluctuations of
only 10−5K. This suggests that all regions of the sky were in causal contact at some time in the past,
but is contradicted as follows. The horizon size is the distance light has travelled since the beginning of
the Universe and is given by

d(t) = a(t)

∫ t2

t1

dt

a(t)
(1.10)

which remains finite as a(t1) → 0 if
··
a > 0. When the microwave background was formed the region in

causal contact would have been approximately 0.09Mpc.With the subsequent expansion this corresponds
to a patch of the present microwave background subtending an angle of only 2 degrees. Finally magnetic
monopoles should have been created in large numbers during phase transitions in the early universe.
They are very massive, stable and survive annihilation, to quickly come to dominate the Universe, result-
ing in matter domination before the epoch of nucleosynthesis and an oservable monopole density today.
However, the light elements are observed in the abundances predicted by primordial nucleosynthesis in
radiation dominated cosmology and no monopoles are observed, so a mechanism is nedeed to remove
the monopoles prior to nucleosynthesis. The most principal problem is the singularity problem and, ac-
cording to Hawking-Penrose theorems, the appearance of singularity in cosmological solutions of General
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Relativity is inevitable1,2. Many physicists and cosmologists are inclined to believe that classical General
Relativity must be revised in the case of extremely high energy densities, pressures and temperatures. The
singularity must mean for cosmology that the classical Einsteinian theory is inapplicable in the beginning
of cosmological expansion of the Universe. Due to these facts alternative theories have been considered
as, for example, Extended Theories of Gravity which have become a sort of paradigm in the study of
gravitational interaction based on the enlargement and the correction of the traditional Einstein scheme3.
The paradigm consists in adding higher-order curvature invariants and scalar fields into dynamics which
come out from quantum terms in the effective action of gravity. The minimal extension, discussed by
Einstein himself to obtain a static Universe model, is the general relativity with a cosmological constant
and in this case the action is the following

S =
1

16πG

∫ √
−g(R+ 2Λ)d4x (1.11)

Gravity lagrangians with terms of quadratic or higher order in the Ricci scalar have also been studied in
cosmology. In a Riemannian spacetime, let be given the action of the fourth-order as4

S =
1

16πG

∫ √
−g(R+ αR2 + 16πGLmatter)d

4x (1.12)

In a Riemannian spacetime this action is minimized with respect any variation of the metric tensor if
and only if we have that

(1 + 2αR)(Rµν − 1

2
gµνR) = 8πGTµν − α

2
R2gµν + 2α(gλµg

k
ν − gµνg

λk)R;λk (1.13)

The previous relation is the fundamental field equation of the fourth-order gravity in a Riemannian space-
time. We can take into account the most general class of higher–order-theories in four dimensions derived
from lagrangians that are functions not only of R but also �R or �nR, where � is the d’Alembertian.
They can be generated by the action

S =
1

16πG

∫ √
−g[F (R,�R, ...,�nR) + 16πGLmatter]d

4x (1.14)

The field equations are obtained by varying action with respect to the metric getting

Θ(Rµν − 1

2
gµνR) = 8πGTµν +

1

2
gµν(F −Θ)R+ (gµλgνk − gµνgλk)Θ;λk

+
1

2

n∑
i=1

i∑
j=1

(gµνgλk + gµλgνk)(�j−1R);k(�i−j ∂F

∂�iR
);λ

−gµνgλk[(�j−1R);k�i−j ∂F

∂�iR
];λ (1.15)

with

Θ ≡
n∑

j=0

�j(
∂F

∂�jR
) (1.16)

Other motivations come from the Mach’s Principle, that played an important role in the development
of General Relativity, as, for example, the Brans-Dicke theory in which the gravitational interaction is
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mediated by a scalar field as well as the tensor field of General Relativity and the gravitational constant
G is not presumed to be constant but instead 1/G is replaced by a scalar field which can vary from place
to place and with time5. Another theory in accord with Mach’s Principle is de Sitter-Fantappiè Relativity
initially proposed by Fantappiè and subsequently developed by Arcidiacono and other authors [6-27]. At
present, both Brans-Dicke theory and de Sitter Relativity are generally held to be in agreement with
observation.

The paper is organized as follows: In Sect.2 we introduce the Mach’s Principle, while in Sect.3 we
analyze the Brans-Dicke Cosmology; Sect.4 is devoted to the Brans-Dicke theory in the context of de
Sitter Relativity; in Sect.5 we give the conclusions.

II. MACH’S PRINCIPLE

Acceleration appears absolute and in his Philosophiae Naturalis Principia Mathematica, Newton tried
to demonstrate that one can always decide if one is rotating with respect to the absolute space, measuring
the apparent forces that arise only when an absolute rotation is performed. In his famous example of
the rotating bucket filled with water, Newton deduced the existence of an absolute, nonrotating space
from the observation of the curved surface the water forms. If a bucket is filled with water, and made
to rotate, initially the water remains still, but then, gradually, the walls of the vessel communicate their
motion to the water, making it curve and climb up the borders of the bucket, because of the centrifugal
forces produced by the rotation. Newton says that this experiment demonstrates that the centrifugal
forces arise only when the water is in rotation with respect to the absolute space. It is know that Mach
proposed a radical criticism of Newton’s absolute space, more than thirty years before Einstein’s first
paper on relativity and he concluded that the inertia would be an interaction that requires other bodies
to manifest itself, so that it would have no sense in a Universe consisting of only one mass. This same
thought had been expressed by the philosopher George Berkeley in his De Motu published in 1721 and
he can be considered the precursor of Mach and Einstein. In Berkeley and Mach idea the concept
of absolute motion should be substituted with a total relativism in which every motion, uniform or
accelerated, has sense only in reference to other bodies. However, from Mach’s principle it has been
further deduced that the numerical value of the gravitational constant must be determined by the mass
distribution in the Universe, while in Newton’s theory it is just an arbitrary constant. According to this
principle, the inertia of a body is not an intrinsic property of its own, it rather depends on the mass
distribution of the rest of the universe.It is well known that Mach’s ideas about the relativity of inertia
played an important role in the development of general relativity. Einstein aimed at an explanation of
inertia which would eliminate the privileged role of the class of inertial frames in classical mechanics,
and which was based on the premise that the results of measurements should not depend on the choice
of coordinates assigned to events. With his principle of equivalence, Einstein recognized that gravity
was simply acceleration in disguise. Moreover, Einstein’s equations indicate that matter is the source for
gravity. But if acceleration and gravity are linked, and if gravity depends on matter, then can acceleration
be attributed to matter? The origin of inertia and Mach’s principle provided the motivation for Thirring
to investigate the gravitational field inside a rotating hollow shell28. If the rotation of astronomical bodies
is relative to the distant masses in the Universe, then one might expect to recover inertial forces inside a
rotating hollow shell. Thirring showed the existence of a Coriolis-type force that has been qualitatively
interpreted as a Machian dragging effect. Moreover, Lense and Thirring gave a general treatment of
orbital precession due to the proper rotation of a central source29. Ironically, even if general relativity
contains Machian elements, contrary to its name it still contains absolute elements and does not resolve
the problem of the origin of inertia.

III. BRANS-DICKE COSMOLOGY

The Brans-Dicke theory of gravity is a natural extension of Einstein’s gravity and it takes into account
a variable Newton gravitational coupling whose dynamics is governed by a scalar field ϕ = A/G. In such
a way Mach’s principle is better implemented and the action for this theory is the following
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S =

∫ √
−gLd4x =

∫ √
−g[ 1

16π
(ϕR− ω∇µϕ∇µϕ

ϕ
) + LM ]d4x (3.1)

where ω is a generic dimensionless parameter of the theory and the Lagrangian LM represents the perfect
fluid matter. Note that the Einstein’ General Relativity will be recovered in the ω → ∞ limit of the
Brans-Dicke theory. The equations of motion for the metric and the Brans-Dicke scalar field are

ϕGαβ + gαβ�ϕ− ϕ,α;β = χTαβ +
ω

ϕ
(ϕ,αϕ,β − 1

2
gαβϕ,σϕ

,σ) (3.2)

To obtain the explicit form for the scalar field, we calculate the trace of all members of the Brans-Dicke
previous equation and we get

�ϕ =
χ

2ω + 3
T (3.3)

This equation shows that the scalar field ϕ is produced by the matter T in accord with the Mach’s Prin-
ciple. Assuming our Universe is homogeneous and isotropic on large scale, we work with the Robertson-
Walker spacetime

ds2 = c2dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(3.4)

We suppose the scalar field to be homogeneous in expanding homogeneous isotropic Universe so its energy
density and pressure depends only on time ϕ = ϕ(t). Then the field equations take the forms

H2 +H

·
ϕ

ϕ
− ω

6
(

·
ϕ

ϕ
)2 =

8π

3ϕ
ρ− k

a2
(3.5)

··
ϕ+ 3H

·
ϕ =

8π

2ω + 3
(ρ− 3p) (3.6)

·
ρ+ 3H(ρ+ p) = 0 (3.7)

where H is the Hubble parameter and the overdot stands for the derivative with respect to the cosmic
time. The first equation corresponds to the Friedmann relation, the second equation is the equation of
motion of the Brans-Dicke scalar field. The last is the conservation law for the matter fluid. In30, the
authors have shown some interesting solutions. For example, by following Dirac and his relationship
between fundamental constants31,we have G ∝ H where the symbol ∝ is taken to mean ’proportional
to’. In fact we have the mysterious empirical Weinberg formula

m = (
H~2

Gc
)1/3 (3.8)

where m is the pion mass. Therefore we can write

{
G = γH

ϕ = A
G = A

γH
(3.9)

Let us remember that H =
·
a
a ⇒

·
H =

··
aa− ·

a
2

a2 and therefore we have
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·
ϕ =

d

dt
(
A

γH
) = −A

γ

·
H

H2
= −A

γ

··
aa− ·

a
2

a2
a2

·
a
2 =

A

γ

·
a
2
− ··
aa

·
a
2 =

A

γ
(1 + q) (3.10)

where q = −
··
aa
·
a
2 is the deceleration parameter. From the previous relation we get

·
ϕ
ϕ = (1+ q)H and if we

assume ρ ∼= 3H2

8πG the Friedmann relation becomes

H2 + (1 + q)H2 − ω

6
(1 + q)2H2 = H2 − k

a2
(3.11)

Therefore we obtain the following equation

1 + q − ω

6
− ω

3
q − ω

6
q2 +

6k
·
a
2 = ωq2 + (2ω − 6)q + ω − 6− 36k

·
a
2 = 0 (3.12)

In the flat Universe we have the following solutions

q = −1 and q =
6

ω
− 1. (3.13)

We can see that −1 ≤ q ≤ 0 and this implicates that the Universe is accelerated.

IV. BRANS-DICKE THEORY IN DE SITTER SPACETIME

De Sitter-Fantappiè Relativity was initially proposed by Fantappiè obtaining as spacetime symmetry
group S(O5) and that is the group of rotation of the Euclidean 5-dimensional space. He wrote a new
group of transformations which had as limit Poincaré’s group and he was able also to demonstrate that
his group was not able to be the limit of any continuous group of 10 parameters. Fantappié’s group is
characterized by two constants: speed of light c and a radius of space-time r = ctb where tb is the temporal
distance from the Big Bang. This group determines an Universe endowed with a perfect symmetry: de
Sitter’s Universe. The Fantappiè group generalizes Poincaré for long distance kinematics, meaning that
when magnitudes of all translations are small compared to the de Sitter radius, the Fantappiè group
becomes the Poincarè group. By considering the homogeneous coordinates so defined

xk = rxk/x5 , (4.1)

we get the 5-dimensional pitagorics metric and the following Beltrami metric in projective 4-dimensional
spacetime

L2ds2 = L(
4∑

i=1

dxidxi)− (
4∑

i=1

xi
r
dxi)

2 (4.2)

with

L =
x21 + x22 + x23

r2
− c2

r2
t2 + 1 =

x21 + x22 + x23
r2

− (
t

tb
)2 + 1 =

x21 + x22 + x23
r2

− η2 + 1. (4.3)

At the relativistic limit, that is for r → ∞, this metric is reduced to Minkowski’s metrics in fact

{
L→ 1∑ xi

r dxi → 0
(4.4)
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Instead, de Sitter-Fantappiè General Relativity is based on the following Arcidiacono 5-dimensional equa-
tions that generalize the 4-dimensional Einstein equations

GAB = χTAB (4.5)

We shall use the indices A,B for the values 0, 1, 2, 3, 4 and the indices i, k for the values 0, 1, 2, 3.Let us
remember that, following the definition of Cartan, any Riemann manifold is associated with an infinite
family of Euclidean spaces tangent to it in each of its P points. These infinity spaces are joined by a
connection law and are individuated by a holonomy group. By introducing a local coordinates system yi

and a linear forms, ωi, of differential dyi we can write ds2 = ωsω
s. If we consider, on the tangent space

to a point P, four ortogonal vectors ei we have10

 dP = ωiei
dei = ωk

i ek
eiek = δik

(4.6)

where ωi
k = γiksω

s and γiks are the Ricci rotation coefficients. If the point P and the associated reference
frame describe a closed infinitesimal cycle on the tangent space, in general the vector e′i doesn’t coincide
with ei and the cycle is open. It can be closed through a translation Ωi and a rotation Ωi

k on the tangent
space and we have

{
Ωi = dωi + ωi

s ∧ ωs

Ωi
k = dωi

k + ωi
s ∧ ωs

k
(4.7)

where Ωi is the torsion and Ωi
k is the curvature. To develop de Sitter General Relativity we have to intro-

duce a 5−dimensional Riemann manifold which allows as holonomy group the Fantappié one, isomorphic
to the 5−dimensional rotations group, and the gravitation equations are the previous Arcidiacono equa-
tions. Given a Riemannian manifold M and u and v, two linearly independent tangent vectors at the
same point x0, we can define

K(u, v) = [

∑
Rαβγδu

αvβuγvδ∑
(gαγgβδ − gαδgβγ)uαvβuγvδ

](x0). (4.8)

It can be shown that K(u, v) depends only on the plane spanned by u and v and it is called sectional
curvature. We have that a Riemannian manifold is locally projectively flat if and only if the sectional
curvature is constant. Therefore while in classical General Relativity the curvature tensor equal to zero
means Minkowski spacetime, in projective general relativity curvature tensor equal to zero means de
Sitter spacetime. The metric of spacetime in de Sitter General Relativity is the following generalized
Beltrami metric which was found by Arcidiacono

L′2ds2 = [L′gik + (Yi −Xi)(Yk +Xk)]dx
idxk (4.9)

where Xi = gi0 + gikx
k , Yi =

1
2 (∂ig00 + xs∂igs0 + xrxs∂igrs) and L

′ = g00 + 2gi0x
i + gikx

ixk.
Therefore the metric tensor is

∼
g ik =

L′gik + (Yi −Xi)(Yk +Xk)

L′2 (4.10)

and it is not symmetric. The symmetric component is

∼
g(ik) =

L′gik −XiXk + YiYk
L′2 (4.11)

instead the antisymmetric part is
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∼
g [ik] =

XiYk −XkYi
L′2 (4.12)

In the case of de Sitter special relativity we have gik = δik, gi0 = 0, g00 = 1, L′ = L,Xi = xi and Yi = 0
and we get again the classical Beltrami metric. If we consider negligible x/r and t/tb,by setting gik = aik,
gi0 = ϕi and g00 = ϕ2 we obtain L′ = ϕ, Xi = ϕi, Yi = ϕψi with ψi = ∂iϕ and we get

∼
g(ik) =

aik − ϕiϕk + ψiψk

ϕ2
(4.13)

∼
g [ik] =

ϕiψk − ϕkψi

ϕ3
(4.14)

If we have ϕi = 0, we get

∼
g(ik) =

aik + ψiψk

ϕ2
(4.15)

∼
g [ik] = 0 (4.16)

obtaining a scalar-tensor theory similar to classical Brans-Dicke theory and we can write

 Rik − 1
2Rgik = χTik

Ri0 = χTi0
R00 − 1

2ϕ
2R = χT00

(4.17)

V. CONCLUSION

The Brans-Dicke theory of gravity and de Sitter-Fantappiè Relativity are the best theories that incor-
porate the Mach’s Principle. The Mach idea played an important role in the development of the Einstein
theory but, General Relativity, doesn’t verify such principle. Like General Relativity, Brans-Dicke theory
predicts light deflection and the precession of perihelia of planets orbiting the Sun. However, the precise
formulas which govern these effects, according to Brans-Dicke theory, depend upon the value of the cou-
pling constant ω. The value of ω consistent with experiment has risen with time. Initially ω > 5 was
consistent with known data, while, currently, the experimental measures show that the value of ω must
exceed 40. In the Brans-Dicke theory, in addition to the metric, which is a rank two tensor field, there
is a scalar field, ϕ, which has the physical effect of changing the gravitational constant. Arcidiacono has
drawn a scalar-tensor theory in the context of Projective Relativity obtaining a geometric scalar field.
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20 L. Chiatti, Fantappié-Arcidiacono Theory of Relativity Versus Recent Cosmological Evidences : A Preliminary

Comparison, EJTP 4, No. 15 17–36 (2007).
21 I. Licata, L. Chiatti, The Archaic Universe: Big Bang, Cosmological Term and the Quantum Origin of Time

in Projective Cosmology, Int. Journ. Theor. Phys., vol. 47, n.12, (2008).
22 G. Iovane, E. Benedetto, El Naschie ϵ(∞) Cantorian spacetime, Fantappié’s group and applications in cosmology,

Int.Jou.Nonlinear Scienze and Numerical Simulations 6(4) 357-370 (2005).
23 G. Iovane, E. Benedetto, A projective approach to dynamical systems, applications in cosmology and connec-

tions with El Naschie ϵ(∞) Cantorian spacetime. Chaos Solitons and Fractals, 30, 2, 269-277, (2006).
24 G. Iovane, S. Bellucci, E. Benedetto, Projected spacetime and varying speed of light, Chaos Solitons and

Fractals, 37, 1, 49-59, (2008).
25 S. Bellucci, E. Benedetto, G. Iovane, El Naschie’s E-Infinity Cantorian Spacetime and Group Theory for

Projective Relativity, accepted International Journal of E-Infinity and Complexity Theory in High Energy
Physics & Engineering (2009)
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