
Exploring the String Landscape:

The Dynamics, Statistics, and Cosmology of Parallel Worlds

Stein Pontus Ahlqvist

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2013



c© 2012
Stein Pontus Ahlqvist
All rights reserved



ABSTRACT

Exploring the String Landscape:

The Dynamics, Statistics, and Cosmology of Parallel Worlds

Stein Pontus Ahlqvist

This dissertation explores various facets of the low-energy solutions in string theory known

as the string landscape. Three separate questions are addressed – the tunneling dynamics

between these vacua, the statistics of their location in moduli space, and the potential real-

ization of slow-roll inflation in the flux potentials generated in string theory. We find that the

tunneling transitions that occur between a certain class of supersymmetric vacua related to

each other via monodromies around the conifold point are sensitive to the details of warping

in the near-conifold regime. We also study the impact of warping on the distribution of vacua

near the conifold and determine that while previous work has concluded that the conifold

point acts as an accumulation point for vacua, warping highly dilutes the distribution in pre-

cisely this regime. Finally we investigate a novel form of inflation dubbed spiral inflation to

see if it can be realized near the conifold point. We conclude that for our particular models,

spiral inflation seems to rely on a de Sitter-like vacuum energy. As a result, whenever spiral

inflation is realized, the inflation is actually driven by a vacuum energy.
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Introduction

It has been a fundamental and largely unquestioned assumption in physics until the mid

20th century that the constituents of nature are point-like. While it may not seem like a

radical idea, introducing extended objects such as strings into physics has given birth to

an entire subfield of mathematical physics known as string theory. By simply requiring a

quantum mechanical fundamental string to propagate in a Lorentz invariant way one can

show that Einstein’s equations of general relativity must be satisfied. What may be even

more impressive is that one can also show that consistency can only be achieved in a specific

space-time dimension. So, while other theories of physics can be consistently formulated in

arbitrary dimensions, string theory requires there to be precisely ten dimensions.1 Clearly,

we only experience four such dimensions at low energy so it becomes crucial to understand

what happens to the additional six. The most well-studied approach is to compactify the

additional dimensions on an internal manifold leaving only four large dimensions.

Ideally, one would like to make predictions on how the dynamics of string theory affects

low-energy physics in four dimensions. Here we currently reach a roadblock. As it turns

out there are many consistent low-energy solutions of string theory, and currently it is not

know which, if any, corresponds to our observable universe. This landscape of string theory

is in many ways one of the major challenges of modern string theory mainly due to its vast

size and computational complexity2. A heuristic argument based on counting the number of
1Interestingly, the fact that this calculation should even yield an integer is not clear at the outset.

2There is actually also a landscape in quantum field theory. See the concluding remarks for a brief
discussion of this.
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inequivalent flux compactifications for a generic Calabi-Yau manifold shows that there may

be as many as 10500 distinct solutions, clearly too many to sort through one-by-one. Clearly

it is of great importance to understand the structure of this landscape which is what we

presently attempt.

We begin this dissertation with a review of the required background material. This

includes Calabi-Yau manifolds and their associated moduli spaces, an in-depth discussion

on warping in the deformed conifold geometry for type IIB supergravity, as well as a brief

review of tunneling in quantum field theory and the numerical techniques that are useful in

finding these tunneling solutions.

In chapter 2 we focus on understanding the tunneling dynamics in the string landscape.

We find that tunneling solutions tend to be drawn incredibly close to the conifold point

which corresponds to a degeneration of the compactification manifold. We conclude that the

dynamics of the string landscape may be much more involved than previously thought.

In chapter 3 we discuss the statistical properties of the distribution of vacua in moduli

space. In particular while past work has concluded that the conifold point acts as an accumu-

lation point for vacua, we find that strong warping corrections highly dilute the distribution

in precisely this regime.

Finally, in chapter 4 we investigate whether cosmological slow-roll inflation can be sus-

tained in the landscape. In particular, we look to see if the recently proposed spiral inflation

has any chance of being realized. Our results here are negative in that spiral inflation, when

possible in our models, is actually driven by a vacuum energy rather than any novel form of

inflation.
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Chapter 1

Background

1.1 Extra Dimensions in String Theory

The work contained in chapters 2, 3, and 4 will focus on various aspects of the string

landscape which more or less corresponds to the different compactifications of ten dimensional

string theory to four dimensions. As a result, it is very important to understand precisely

what these internal dimensions look like. We review the relevant concepts in this section

beginning with a brief discussion on supersymmetry in four dimensions and then continuing

to Calabi-Yau manifolds and their moduli spaces. The structure of Calabi-Yau manifolds

and their space of smooth deformations is an incredibly rich subject. As a result we will

here only be able to touch upon the particular concepts utilized in the remainder of this

dissertation.

From the perspective of the string action, whether it be the bosonic or supersymmetric

version, the dynamics of the string is encoded in a two dimensional field theory where

the degrees of freedom can be interpreted as the embedding coordinates of the string, Xµ,

µ = 0, 1, 2, . . . . , D − 1 and possibly their world-sheet superpartners. The space on which

these fields propagate is the two dimensional string world-sheet which corresponds to the

space-time surface that the string sweeps out over time. Even though the fields are part of
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a nontrivial representation of the Lorentz group, this appears in the field theory as a global

internal symmetry and is therefore subject to anomalies. Requiring an anomaly free Lorentz

symmetry constrains the number of space-time dimensions to be D = 26 in the case of a

purely bosonic theory and D = 10 in supersymmetric string theories. Clearly this seems to

be too many since we only observe four such dimensions and it becomes critical to explain

what happens to the remaining six. A particularly useful approach to addressing this issue is

provided by Kaluza-Klein compactification in which one assumes that the overall space-time

takes on a product form between four dimensional Minkowski spaceM4 and a six dimensional

compact internal manifold M6

M10 = M4 ×M6. (1.1)

The question naturally arises what this internal manifold looks like. In particular, for the

superstring one can show that N = 1 supersymmetry in the four dimensional Minkowski

space M4 restricts the manifold to be of Calabi-Yau type.

1.1.1 Calabi-Yau Manifolds

The spectrums of the various superstring theories are supersymmetric. In the case of the

type IIA and IIB string one obtains extended N = 2 supersymmetry in ten dimensions while

for the heterotic and type I strings, standard N = 1 supersymmetry is realized. Based on

the following phenomenological and computational reasons, it is reasonable to suspect that

N = 1 supersymmetry should emerge at high energies in four dimensions. In particular,

the various coupling constants in the standard model seem to unify at high energies if one

assumes that the standard model at some point becomes supersymmetric. Furthermore, the

Higgs mass tends to receive large quantum corrections unless again supersymmetry emerges

at high energies. Finally, supersymmetry also provides us with powerful computational tools.

For all of these reasons, it is desirable to make sure that N = 1 supersymmetry survives

in D = 4 dimensions. Depending on the compactification manifold, various amounts of
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supersymmetry will survive in the effective four dimensional low-energy theory.

In fact, as we will shortly see, each supersymmetry in ten dimensions can give rise to as

many as four supersymmetries in four dimensions. As a result, the N = 2 supersymmetry of

the type II string can result in as much as N = 8 supersymmetry in four dimensions. This

happens if one takes the internal six dimensional manifold to be a six torus, T 6. Clearly this

is too much supersymmetry and as a result one has to look for manifolds that break more

supersymmetry.

As has been shown in e.g. [1], the existence of a covariantly constant spinor implies

that there are four-dimensional background field configurations that satisfy precisely N = 1

supersymmetry. More precisely, the variations of the bosonic fields are proportional to

fermionic fields which necessarily vanish classically. However, the variations of the fermionic

fields could potentially break supersymmetry since they are proportional to bosonic fields

which do not have to vanish classically. If we set some of these to zero (we will get back

to the validity of this later when we discuss flux compactifications), one can show that the

variation of the gravitino field is given by

δψM = ∇Mε, (1.2)

where ε is the parameter for supersymmetry transformations (and is thus a spinor). In

order for this to vanish it must be possible to find a covariantly constant spinor field. For

the external space this, together with the assumption of maximal symmetry, leads us to

the understanding that M4 must indeed be four dimensional Minkowski space and that the

spinors must themselves be constant. For the internal manifold however, the story is much

more complex. One can of course always find a spinor field on the internal manifold that

locally satisfies ∇aε = 0 by simply integrating this equation in some neighborhood. However,

it is not always possible to do this globally due to topological obstructions. The statement

that a covariantly constant spinor exists is equivalent to the fact that the manifold has
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special holonomy. The reason is that if one were to parallel transport this particular spinor

around any closed loop, it would always return to itself. However, upon parallel transport

around a closed loop, spinors on a six dimensional manifold generically transform according

to the spinorial representation of Spin(6) = SU(4). For a spinor of definite chirality this

representation splits up and it would therefore transform either according to a fundamental

or anti-fundamental representation. The only way that a covariantly constant spinor can

exist is therefore if the true holonomy is not SU(4) but rather a subgroup of it so that the

fundamental of SU(4) contains a singlet under this subgroup. This means that the holonomy

must be at most SU(3). If the holonomy is an even smaller subgroup, there will be multiple

singlets which means that one obtains extended supersymmetry. In general one obtains one

supersymmetry in four dimensions for each supersymmetry in ten dimensions up to a factor

of the number of singlets in the fundamental under the holonomy group

N4D = N10D × Singlets. (1.3)

As a result, one finds for an SU(3) holonomy manifold N = 1 supersymmetry for the type

I and heterotic string and N = 2 supersymmetry for the type II string. Despite giving

too much supersymmetry for the type II string we will still consider this compactification

since one can add in so-called orientifold planes to the compactification which reduces this

to N = 1 supersymmetry. As a result, we are on the hunt for SU(3) holonomy manifolds.

In fact, the existence of a covariantly constant spinor implies a few other properties of

the compactification manifold [3, 8]. In particular, as we will discuss in the next section,

it must be a complex Kähler manifold. Together with the special holonomy property men-

tioned above this implies that it must be a Calabi-Yau manifold. Just to reiterate, this

analysis involved assuming that various bosonic fields vanish or take on constant values. As

we will discuss later, turning these fields back on moves us away from the Calabi-Yau con-

straint and in fact stabilizes various aspects of the internal manifold that would otherwise
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be unconstrained and thereby (at least partially) solves the so-called moduli problem.

In summary, N = 1 supersymmetry in the four extended dimensions dictate that the

six internal dimensions must be compactified into a Calabi-Yau manifold. We now go on to

discuss some of the properties of this class of manifolds.

Properties of Calabi-Yau Manifolds

A Calabi-Yau manifold is a particular type of a six dimensional manifold which can support

complex coordinates in a consistent way (i.e. the transition functions are holomorphic).

Moreover, a Calabi-Yau must be Kähler which implies that its metric can locally be written

in terms of a Kähler potential,

gµν̄ = ∂µ∂̄ν̄K(z, z̄). (1.4)

Alternatively, a Kähler manifold is one whose Kähler form J = igµν̄dz
µ ∧ dz̄ν̄ is closed, that

is dJ = 0. This can be shown to be equivalent to the statement above that the metric can

be written in terms of the Kähler potential. Such a Kähler potential can generally not be

continuously defined everywhere so one must work in patches {Ui}. In the intersection of

two or more such patches, Ui ∩ Uj, the different Kähler potentials must differ by Kähler

transformations

∆K = f(z) + f̄(z̄). (1.5)

These transformations leave the metric invariant

gµν̄ = ∂µ∂̄ν̄K → ∂µ∂̄ν̄(K + f(z) + f̄(z̄)) = gµν̄ . (1.6)

The other components of the metric gµν and gµ̄ν̄ vanish. A Calabi-Yau must also support a

Ricci flat metric. More precisely c1(M6), the first Chern class of M6, must vanish. The first

Chern class is, up to a factor of 2π, the cohomology class of the Ricci curvature 2-form

R = Rµν̄dz
µ ∧ dz̄ν̄ . (1.7)
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A highly nontrivial theorem conjectured by Calabi and later proved by Yau in the late 1970s

states that any such manifold admits a Ricci flat metric whose corresponding Kähler form is

in the same cohomology class as the original Kähler form. The opposite direction is trivially

true since a vanishing Ricci form of course corresponds to the trivial cohomology class and

therefore the first Chern class of the manifold must vanish. As a result these two definitions

can be used interchangeably. Often one speaks of a Calabi-Yau threefold highlighting its

complex dimension rather than its real dimension.

One very important consequence of being a Calabi-Yau manifold is that there exists a

nowhere vanishing holomorphic 3-form [3, 8]

Ω = Ωµνρ(z)dzµ ∧ dzν ∧ dzρ. (1.8)

Since the components are holomorphic, this form is necessarily closed.

dΩ = (∂ + ∂̄)Ω (1.9)

= ∂αΩµνρ(z)dzα ∧ dzµ ∧ dzν ∧ dzρ + ∂̄ᾱΩµνρ(z)dz̄ᾱ ∧ dzµ ∧ dzν ∧ dzρ = 0 (1.10)

The first term vanishes since there are only three linearly independent one-forms (dz1, dz2, dz3)

while the wedge product involves four such forms. The second term vanishes because the

components of Ω are holomorphic functions of the coordinates. Despite being closed, Ω

cannot be exact since Ω∧ Ω̄ is proportional to the volume form and if the volume form were

exact, the Calabi-Yau volume would vanish according to Stoke’s theorem. As a result Ω

defines a nontrivial cohomology class in H3,0. Since the dimensionality of this class is given

by the Hodge number h3,0 = 1 (see below), this is a representative of the (up to scalings)

unique cohomology class in H3,0. This fact will be very important to us when we later define

integrals of this form over cycles of the Calabi-Yau since if Ω were exact, these would trivially

vanish due to Stoke’s theorem.

Before we move on, it will be advantageous for us to quickly mention the concept of Hodge
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numbers and the Hodge diamond. For real manifolds one can compute various topological

numbers called Betti numbers which measures the dimensionality of the various de-Rahm

cohomology groups. However, since these manifolds are complex, one can refine the notion

of exact and closed forms to the holomorphic and anti-holomorphic sectors. In particular,

one can consider (r, s) forms that are closed but not necessarily exact with respect to the

exterior derivative ∂̄. These forms organize into classes called Hr,s

∂̄
which were used above

in discussing the holomorphic 3-form. The dimension of these various spaces are called the

Hodge numbers, hr,s and can be arranged in the Hodge diamond. Using various relationships

among them that arise from complex conjugation, Hodge duality, and Poincare duality one

can compute most of these numbers. The only unspecified Hodge numbers for Calabi-Yau

3-folds are h1,1 and h1,2. The Hodge diamond therefore becomes

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

−→

1

0 0

0 h1,1 0

1 h1,2 h1,2 1

0 h1,1 0

0 0

1

(1.11)

The two remaining Hodge numbers will provide us with the dimensionality of the space of

smooth deformations of Calabi-Yau manifolds referred to as its moduli spaces.

1.1.2 Moduli Space of Calabi-Yau Manifolds

Given a certain Calabi-Yau, there exists a family of smooth deformations of the metric

that one can perform that respects the Calabi-Yau structure. In other words, each Calabi-

Yau really refers to an infinite set of smoothly connected manifolds. This space can be

parametrized by a finite, albeit sometimes rather large, number of parameters.
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Consider two nearby metrics g and g+δg. In order for these to both describe Calabi-Yau

manifolds we must have

Rmn(g) = Rmn(g + δg) = 0. (1.12)

One can then ask what sort of metric deformations δg are possible [3]. Many of these

deformations will actually be equivalent to each other by simple coordinate transformations.

After choosing a particular gauge, one can show that δg must satisfy the Lichnerowicz

equation

∇k∇kδgmn + 2R p q
mn δgpq = 0. (1.13)

Consider then generic metric deformations δgmn. Since this is a complex manifold, we may

divide these up into two kinds of deformations: those of mixed indices, δgµν̄ , and those of

pure indices, δgµν and δgµ̄ν̄ . Out of these deformations one can define both (1, 1) and (2, 1)

forms which can be shown to be harmonic (see the discussion below which parallels [3]). As

a result, the number of linearly independent such deformations can be computed in terms of

the Hodge numbers discussed above. In particular the deformations separate into two main

classes: Kähler structure deformations and complex structure deformations.

Kähler Deformations

Recall that the Kähler form is given in terms of the metric as

J = igµν̄dz
µ ∧ dz̄ν̄ . (1.14)

As a result, the metric deformations of the mixed index type, δgµν̄ correspond to deformations

of the Kähler form. These so-called Kähler structure deformations give rise to a (1, 1) form

which, using the Lichnerowicz equation, can be shown to be harmonic [3]

∆ω = 0 with ω = δgµν̄dz
µ ∧ dz̄ν̄ (1.15)
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As a result, the number of independent Kähler parameters of our Calabi-Yau is given by

the Hodge number h1,1. Note however, that since g∗µν̄ = gµ̄ν the Kähler form is necessarily

real. As a result the Kähler parameters parameterize an h1,1 dimensional real space. In-

terestingly however there is also a 2-form potential B whose deformations can be combined

with these to form a total of h1,1 complex parameters. This is traditionally referred to as

the complexification of the Kähler cone and we speak of the complexified Kähler form

J = B + iJ. (1.16)

The main point to take away however is simply that the number of complex parameters that

preserve the Calabi-Yau structure while modifying the Kähler structure is h1,1 which is a

topological number specific to each Calabi-Yau family. Also note that since each Calabi-Yau

comes equipped with a Kähler form, we must have at least one Kähler parameter, h1,1 ≥ 1.

Complex Structure Deformations

One can also consider the metric deformations of pure type, that is δgµν . Once these are

implemented, it is clear the metric no longer takes on the Hermitian form of only mixed

indices. Is it possible however that by a suitable change of coordinates, one can bring the

metric back into such a form? The answer is yes, but that these coordinate transformations

cannot be holomorphic since holomorphic transformations preserve the Hermitian metric

structure. In other words, if such a holomorphic transformation w(z), w̄(z̄) did exist, the

inverse transformation would have to take an Hermitian metric into one with nonzero pure

components. However, this is not possible:

g(z)
µν =

∂wα

∂zµ
∂w̄β̄

∂zν
g

(w)

αβ̄
+
∂w̄ᾱ

∂zµ
∂wβ

∂zν
g

(w)
ᾱβ = 0 since

∂w̄ᾱ

∂zµ
=
∂w̄β̄

∂zν
= 0. (1.17)

As a result, one must consider transformations that link inequivalent complex structures

together. These are therefore referred to as complex structure deformations. In order to
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analyze these further, one can construct a (2, 1) form which again using the Lichnerowicz

equation can be shown to be harmonic [3]

dη = 0 with η = Ωabcg
cd̄δgd̄ēdz

a ∧ dzb ∧ dz̄ē (1.18)

There are therefore h1,2 linearly independent metric deformations of this type. This time

around, the components δgµν are allowed to be complex and the h1,2 parameters are thus

allowed to be complex as well.

To summarize, there are h1,1 + h1,2 independent complex parameters that smoothly pa-

rameterize the space of metric deformations that are compatible with the Calabi-Yau struc-

ture. Since the various manifolds are smoothly deformable into each other it is possible to

choose a different compactification manifold for each space-time point in four dimensions.

This then implies that these h1,1 +h1,2 complex parameters will appear in four dimensions as

complex scalar fields. This field space is referred to as the moduli space of the string theory

compactification. It is very important to recognize that these two sectors are independent

and that the total moduli space factors into the Kähler side and complex structure side

M =M1,1 ×M1,2. (1.19)

This implies that one can consistently focus on one of these sectors at a time.

An Example - the Quintic

As a canonical example of a Calabi-Yau manifold that will reappear later on, we here give a

quick construction of the so-called quintic.

Consider four-dimensional complex projective space CP4 which is constructed from C5−

{0} by identifying points (z1, . . . , z5) ∼ λ(z1, . . . , z5) for λ ∈ C. This space is Kähler and

compact although its first Chern class does not vanish. However, by restricting to a hyper
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surface defined by the vanishing of a quintic polynomial,

P (z1, . . . , z5) = 0 where P (λz1, . . . , λz5) = λ5P (z1, . . . , z5), (1.20)

one can retain the Kähler structure of the manifold while setting its first Chern class equal

to zero. In other words, this hyper surface is a Calabi-Yau manifold. In principle, each

quintic polynomial can give rise to its own distinct Calabi-Yau (although we will shortly see

that there is some redundancy in this description). The various polynomials are of course

smoothly related to each other by varying their coefficients. For a degree five polynomial in

five variables there are  9

4

 = 126 (1.21)

monomials of the form za1
1 . . . za5

5 with aa + . . . + a5 = 5. By a holomorphic change of co-

ordinates in the five variables z1, . . . , z5, some of these can be removed. In order for this

transformation to be globally well defined, it must be of the form wi = αi +M i
jz
j. In order

for it to also respect the projective identification in CP4, (z1, . . . , z5) ∼ λ(z1, . . . , z5), it must

also be homogeneous in the coordinates so that the most general form is wi = M i
jz
j. The

matrix M i
j has 25 independent components, so that 25 of the original 126 parameters can

be removed, leaving precisely 101 parameters that cannot be removed using holomorphic

changes of coordinates. These therefore represent the complex structure deformations. The

Kähler deformations are inherited from the complex projective space in which we are em-

bedding this hyper-surface. As a result, the hodge numbers are h1,1 = 1, h1,2 = 101 for the

quintic hyper-surface in CP4 which is traditionally called the quintic.

The Metric on Complex Structure Moduli Space

As mentioned above, the low-energy approximation to string theory will contain scalar fields

that can be traced back to the various deformations of the compactification manifold con-
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sistent with the Calabi-Yau properties. It is of paramount interest to properly understand

their low-energy dynamics. Most naturally one would like to obtain the form of the scalar

potential that governs their dynamics. This can be a rather involved problem and so we

will postpone a detailed discussion of this until later. Another important aspect of their

dynamics is specified by their kinetic terms. Traditionally scalar fields are taken to have

canonical kinetic terms

Lkin =
∑
i

∂µφi∂µφ̄i (1.22)

However, as we will now discuss, the scalar fields that arise from deformations of the Calabi-

Yau compactification manifold will have non-canonical kinetic terms

Lkin = Gij(φa, φ̄b)∂
µφi∂µφ̄

j. (1.23)

This is tantamount to having a nontrivial metric on the moduli space [8]. We take this

metric to be the Weil-Peterson metric

ds2 =
1

2V

∫
gab̄gcd̄ [δgacδgb̄d̄ + (δgad̄δgcb̄ + δBad̄δBcb̄)]

√
gd6x. (1.24)

Here we are integrating over the entire Calabi-Yau and take V as its total volume.1 We will

for the remainder of this dissertation focus on the complex structure deformations and only

in passing mention the Kähler structure part of the story. As a result, we can effectively

work with the moduli space metric

ds2 =
1

2V

∫
gab̄gcd̄δgacδgb̄d̄

√
gd6x. (1.25)

The variations δgab must be linear combinations of the h1,2 allowed deformations. Let us

decide on a basis for this space, δg(α)
ab where the α labels the basis element. We can then

1It is important to realize that this metric on moduli space is physically distinct from the metric that
exists on the Calabi-Yau itself. In fact, although we will soon determine the metric on moduli space, no
nontrivial Calabi-Yau metrics are currently known.
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write a generic deformation in terms of h1,2 complex coordinates tα as

δgab = tαδg
(α)
ab (1.26)

δgāb̄ = t̄ᾱδg
(ᾱ)

āb̄
. (1.27)

The moduli space metric can then be written as

ds2 = 2Gαβ̄δt
αδt̄β̄ with Gαβ̄ =

1

4V

∫
M
gab̄gcd̄δg(α)

ac δg
(β̄)

b̄d̄

√
gd6x (1.28)

We will now run through a standard argument [3] that allows us to write Gαβ̄ entirely in

terms of the holomorphic 3-form Ω that is defined on the Calabi-Yau manifold. The main

idea is as follows. When we decide to deform the metric by adding say δgab = δtαδg
(α)
ab and

δgāb̄ = δgab we must, as mentioned above, also change coordinates in a way that changes the

complex structure of the manifold. One should in principle be able to compute the necessary

coordinate transformation (we take δtα infinitesimal)

za → za(z1, z2, . . . , z̄1, z̄2, . . .) ≈ za +Ma
α(z1, z2, . . . , z̄1, z̄2, . . .)δtα (1.29)

for some function of the original coordinates Ma
α. Given this coordinate transformation, one

can compute what happens to the holomorphic 3-form. In particular, it will no longer be of

pure (3, 0) type since the basis 1-forms will pick up an anti-holomorphic part

dza → dza + dMa
αδt

α (1.30)

= dza +

(
∂Ma

α

∂zb
dzb +

∂Ma
α

∂z̄b̄
dz̄b̄
)
δtα (1.31)

= (δab +
∂Ma

α

∂zb
δtα)dzb +

∂Ma
α

∂z̄b̄
δtαdz̄b̄. (1.32)

Furthermore since the 3-form components carry indices they also transform under the coor-

dinate transformation. Putting all of this together, one finds that Ω becomes partly a (3, 0)
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form and partly a (2, 1) form. Since the exterior derivative is independent of the moduli

space coordinates, these new forms must also be closed and therefore define cohomology

classes in H3,0 and H2,1 as usual

∂αΩ ∈ H3,0 ⊕H2,1. (1.33)

Since Ω is a representative of the unique class (up to scalings) of the cohomology group H3,0

(recall that the Hodge number h3,0 = 1), the (3, 0) part must be proportional to Ω itself and

we therefore have

∂αΩ = KαΩ + χα (1.34)

for some closed (2, 1) form χα and function Kα. Note that Kα only depends on the moduli

space coordinates and is completely independent of the coordinates on the Calabi-Yau itself.

The reason for this is that if Kα depended on the Calabi-Yau coordinates, we would have

defined another closed (3, 0) form KαΩ which is in a class of H3,0 that is linearly independent

of the class that Ω is in which contradicts the fact that h3,0 = 1.

One can of course run this argument backwards. Given a (2, 1) form χα and a value for

Kα, one can compute the metric deformation δgab. If we define the components of χα as

χα =
1

2
(χα)abc̄dz

a ∧ dzb ∧ dz̄c̄, (1.35)

one obtains for the metric deformations

δgāb̄ = − 1

||Ω||2
Ω̄ cd
ā (χα)cdb̄δt

α (1.36)

where we have defined the scalar

||Ω||2 =
1

6
ΩabcΩ̄

abc. (1.37)
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In fact, ||Ω||2 is constant over the Calabi-Yau manifold [3] (however it is not constant over

the moduli space). One can then use this in the moduli space metric from (1.28) to obtain

Gαβ̄ = −
∫
χα ∧ χ̄β∫
Ω ∧ Ω̄

. (1.38)

Using the form for χα from (1.34), we can write this as

Gαβ̄ =

∫
(∂αΩ−KαΩ) ∧ (∂̄β̄Ω̄−Kβ̄Ω̄)∫

Ω ∧ Ω̄
(1.39)

= −
{∫

∂αΩ ∧ ∂̄β̄Ω̄∫
Ω ∧ Ω̄

−Kα

∫
Ω ∧ ∂̄β̄Ω̄∫
Ω ∧ Ω̄

−Kβ̄

∫
∂αΩ ∧ Ω̄∫
Ω ∧ Ω̄

+KαKβ̄

}
(1.40)

At this point write ∂αΩ as KαΩ + χα again and similarly for ∂̄βΩ̄ in the middle two terms.

Then recognize that the wedge product between a (3, 0) form such as KαΩ and a (2, 1) such

as χ̄β̄ vanishes identically so that

Gαβ̄ = −
{∫

∂αΩ ∧ ∂̄β̄Ω̄∫
Ω ∧ Ω̄

−KαKβ̄

}
(1.41)

Of course Ω is holomorphic over the Calabi-Yau, but it can be shown that Ω varies holomor-

phically with respect to the moduli space coordinates as well [8]. As a result the following

partial derivatives with respect to the moduli space coordinates vanish when applied to Ω

and Ω̄

∂αΩ̄ = 0 (1.42)

∂̄β̄Ω = 0. (1.43)

The above expression for the metric can therefore be written as

Gαβ̄ = ∂α∂β̄

{
− log

(
i

∫
Ω ∧ Ω̄

)}
. (1.44)
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In other words, the moduli space of the given Calabi-Yau compactification is also Kähler,

that is Gαβ̄ = ∂α∂β̄K with the Kähler potential

K = − log

(
i

∫
Ω ∧ Ω̄

)
. (1.45)

Note that K is real according to this definition

K∗ = − log

(
−i
∫

Ω̄ ∧ Ω

)
= − log

(
i

∫
Ω ∧ Ω̄

)
= K (1.46)

since the two 3-forms Ω and Ω̄ anti-commute. In order to determine the form of the function

Kα from (1.34) we take the wedge product of (1.34) with Ω̄ on both sides and integrate over

the Calabi-Yau. ∫
∂αΩ ∧ Ω̄ = Kα

∫
Ω ∧ Ω̄ +

∫
χα ∧ Ω̄ (1.47)

Since χα is a (2, 1) form and Ω̄ is a (0, 3) form, their wedge product vanishes identically and

so the last term above is zero. One can then solve for Kα to find

Kα =

∫
∂αΩ ∧ Ω̄∫
Ω ∧ Ω̄

(1.48)

Once again, since Ω only depends on the moduli space coordinates tα holomorphically and

vice versa for Ω̄, the partial derivative can be moved out to give

Kα = −∂αK. (1.49)

As a result, the (2, 1) form χα can actually be written as

χα = (∂α + ∂αK)Ω. (1.50)

We will soon see that this particular combination can be interpreted as a covariant deriva-
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tive with respect to Kähler transformations. Interestingly, although in principle one would

imagine that (∂α + ∂αK)Ω ∈ H3,0 ⊕ H2,1, it is actually completely contained in H2,1. We

will get back to all of these expressions later on when we get to the bulk of the discussion.

Kähler Transformations

The holomorphic 3-form is only defined up to an overall scaling. With our understanding

of the moduli space one can actually scale Ω differently at different points in moduli space.

Consider then multiplying it by a moduli dependent function

Ω→ ef(t)Ω. (1.51)

Note that the scaling function is holomorphic in tα which is consistent with our previous

comments on how Ω must depend holomorphically on the moduli space coordinates. The

Kähler potential then changes according to

e−K → i

∫
ef(t)Ω ∧ ef̄(t̄)Ω̄ = ef(t)+f̄(t̄)e−K (1.52)

so that

K → K − f(t)− f̄(t̄). (1.53)

This is known as a Kähler transformation. As a result, the Kähler potential is only defined up

to such transformations. Fortunately, as we mentioned above, the metric does not actually

change under a Kähler transformation since it is obtained by applying both a holomorphic

and an anti-holomorphic derivative to K. Furthermore, it is clear that the partial derivative

does not transform covariantly under Kähler transformations when applied to Ω

∂αΩ→ ∂α
(
ef(t)Ω

)
= ef(t)∂αΩ + ef(t)Ω∂αf(t). (1.54)
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However, one can define the Kähler covariant derivative aluded to above

DαΩ = ∂αΩ + (∂αK)Ω. (1.55)

This definition of the derivative does transform covariantly since the connection Kα trans-

forms in such a way as to absorb the extra terms

DαΩ = ∂αΩ + (∂αK)Ω→ ∂α
(
ef(t)Ω

)
+ (∂αK − ∂αf(t))

(
ef(t)Ω

)
= ef(t)DαΩ. (1.56)

Similarly, it is clear that the form of the other Kähler covariant derivatives are

D̄ᾱΩ = ∂̄ᾱΩ = 0 (1.57)

DαΩ̄ = ∂αΩ̄ = 0 (1.58)

D̄ᾱΩ̄ = ∂̄ᾱΩ̄ + (∂̄ᾱK)Ω̄. (1.59)

Period Functions and Special Geometry

It is clear from the above discussion that there is a tight link between the coordinates on the

moduli space and the holomorphic 3-form. More precisely, given the holomorphic 3-form at

two nearby points, one can compute the Kähler potential using (1.45) and then the (2, 1)

form χαδt
α using (1.50). The metric deformation δgab can then be found from (1.36). This

can all be done without any explicit reference to the coordinate system tα. As a result, Ω

carries all the information in it pertaining to the coordinates on moduli space. One can

therefore use the 3-form to create a set of coordinates forM1,2.

One way to do this is to consider integrals of Ω over various 3-cycles, the periods [3, 8].

Here it is important to recall that Ω is closed but not exact since the integral of an exact

form over a 3-cycle must vanish. Although there are infinitely many 3-cycles, here we only

care about 3-cycles in distinct homology classes. The reason is that according to Stoke’s

theorem the integral of a closed form such as Ω over 3-cycles in the same homology class



21

(that is, they differ by the boundary of a 4-surface) are equal

∫
M+∂N

Ω =

∫
M

Ω +

∫
∂N

Ω =

∫
M

Ω +

∫
N

dΩ =

∫
M

Ω. (1.60)

We must thus find a basis of homology classes in H3. We choose the symplectic basis where

the cycles are split into two groups, the A-cycles and the B-cycles where none of the A-

cycles intersect each other and similarly for the B-cycles. However, for each cycle in one

group there is a cycle in the other group that does intersect it

AI ∩ AJ = 0 BI ∩BJ = 0 AI ∩BJ = −BJ ∩ AI = δIJ . (1.61)

This is analogous to how one can choose the cycles on a two dimensional surface. One can

Figure 1.1: Here we illustrate the A and B cycles for a g = 2 surface in two dimensions. The
3-cycles on the Calabi-Yau would be higher dimensional generalizations of these.

then define the periods over these cycles as

XI =

∫
AI

Ω (1.62)

FJ =

∫
BJ

Ω. (1.63)

All of the information that Ω contains is also contained in the periods. This can easily be
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seen by writing Ω explicitly in terms of them as

Ω = XIαI − FJβJ . (1.64)

Here we have introduced the 3-forms αI and βJ dual to these cycles AI and BJ so that

∫
AJ

αI = δJI and
∫
BJ

αI = 0 (1.65)∫
BJ

βI = −δIJ and
∫
AJ

βI = 0. (1.66)

The periods XI , FJ must therefore contain enough information to construct a coordinate

system for the moduli space. In fact, there is a large redundancy among them since there

are more periods than there should be coordinates. In particular there are dim(H3) = b3

distinct classes of 3-cycles. Using the fact that H3 and H3 are isomorphic to each other, this

equals b3. Furthermore, this Betti number can be written in terms of the Hodge numbers

as b3 = h3,0 + h2,1 + h1,2 + h0,3 = 2(1 + h1,2). There are therefore more than twice as many

classes of 3-cycles as there are moduli space coordinates. As a result, the FJ periods can be

taken to depend on the XI periods

FJ = FJ(XI). (1.67)

However, the various XIs still overparametrize the space since there are h1,2 +1 such periods.

This is accounted for by noting that Ω is itself only defined up to an overall scaling. The XI

are therefore projective coordinates. In a patch where X0 6= 0 one can then define the h1,2

coordinates

tα =
Xα

X0
for α = 1, 2, . . . , h1,2. (1.68)

The fact that the periods FJ depend on the periods XI leads to the idea of special geometry
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[8]. To see how this works, consider differentiating Ω with respect to XI

∂IΩ = αI −
∂FJ
∂XI

βJ . (1.69)

Since ∂IΩ must be the sum of a (2, 1) form and a (3, 0) form as we showed above, the wedge

product Ω ∧ ∂IΩ vanishes so that

∫
Ω ∧ ∂IΩ = 0. (1.70)

In terms of the periods, this implies that

FI = XJ∂IFJ . (1.71)

This can trivially be rewritten as

FI = ∂IF (1.72)

where we have defined the pre-potential,

F =
1

2
XIFI (1.73)

The fact that the periods FI can be derived from a single function, F is referred to as special

geometry [8].
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1.2 The Type II Superstring

There are five consistent string theories in ten dimensions. Throughout this dissertations,

we will focus exclusively on one of these called type IIB string theory, or more precisely its

low-energy limit, type IIB supergravity. In this section we briefly review the idea of the

superstring and provide a heuristic derivation of the field content of type IIB supergravity.

We then write down the action for this theory and discuss its SL(2,Z) symmetry.

The first approach toward writing down a string action is the Polyakov action for the

bosonic string. However, this action only leads to states which are space-time bosons and

as such is not phenomenologically viable. There are two main approaches for incorporating

fermions into the theory. The most natural approach would be to formulate the theory not

in D dimensional space-time, but rather in superspace. There is however another equivalent

formulation known as the Ramond-Neveu-Schwarz (RNS) formalism that we employ here.

It is not immediately clear that these two formulations are equivalent or even that the

RNS formalism results in space-time fermions although the latter of these claims will be

confirmed below. The main idea of the RNS formalism is to add fermonic fields to the

world-sheet theory in such a way as to respect world-sheet supersymmetry. As a result, the

spinors must themselves transform as vectors under the global Lorentz group and thus carry

a vector index. Furthermore, in D = 2, it is possible to define Majorana-Weyl spinors. We

take the spinors ψµ+ and ψµ− below to be of precisely this form for positive and negative

chirality respectively. The superstring action is then

S = − 1

4πα′

∫
d2σ (∂αXµ∂

αXµ − 2iψµ+∂−ψµ+ − 2iψµ−∂+ψµ−) . (1.74)

We will now continue by discussing the open and closed superstrings.
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1.2.1 The Open String

Boundary Conditions

Varying the action in (1.74) with respect to the fermionic fields yields the usual equations

of motion that one would expect

∂±ψ
µ
∓ = 0. (1.75)

These yield left moving and right moving sectors. Just like for the bosonic string we must

also specify our boundary conditions. In the case of the bosonic string, the action contains

two derivatives. As a result, the boundary term can be sent to zero by either choosing fixed

endpoints (Dirichlet boundary conditions) or vanishing σ derivative (Neumann boundary

conditions). In our case, the action is only first order in derivatives, so we won’t be able to

send the boundary terms to zero by simply setting the σ derivatives to zero. However, at

the same time we now have two independent fields ψ+ and ψ−. As a result, it may not be

necessary to have both of these fields fixed at σ = 0, π. Instead, one may be able to play the

fields off each other. In particular, the boundary term is

δS ⊃
∫
dτ [(ψ+δψ+ − ψ−δψ−)σ=π − (ψ+δψ+ − ψ−δψ−)σ=0] . (1.76)

We can make this vanish by taking

ψ+ = ±ψ− at the endpoints of the string. (1.77)

These two choices are both consistent. The choice ψ+ = ψ− is called Ramond boundary

conditions (denoted R for short) while the other choice, ψ+ = −ψ− is called Neveu-Schwarz

boundary conditions (denoted NS for short). One can show that the states that arise from

the Ramond sector are space-time fermions while those from the Neveu-Schwarz sector are

space-time bosons.
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Massless Field Content

The next step in the analysis involves writing the fermionic fields in terms of a Fourier

expansion. The coefficients of these modes become raising and lowering operators in the

quantum theory, something that is familiar from standard quantum field theory as well as

from the bosonic string. Just like for the bosonic string, the ground state for the superstring

is tachyonic. However, there is a consistent truncation of the theory which keeps only

those states with an odd number of (world-sheet) fermionic raising operators. As a result,

the tachyonic state is eliminated and the new set of states after this GSO projection have

non-negative mass-squared. The massless states (which are the ones that are kept in a low-

energy effective supergravity limit) consists of a massless vector field in the NS sector, 8v

and a massless spinor in the R sector. Since the spinor is massless it transforms under the

little group SO(8). The spinorial representation of this group has dimension 28/2 = 16 but

is reducible into two inequivalent Weyl spinors each of dimension 8, 16 = 8L⊕8R. Whether

one chooses the left-handed or right-handed spinor is a matter of convention for the open

string, so we will for convenience simply choose the left-handed one. As a result, the open

string gives us a low-energy field content of

8v ⊕ 8L. (1.78)

A point that is far from obvious is that the supergravity theory is supersymmetric.

1.2.2 The Closed String

As is familiar from the bosonic string, the closed string sector can be thought of as two

copies of the open string tensored together. As a result, the low-energy field content of the

closed string will be that of (8v ⊕ 8Spinor) ⊗ (8v ⊕ 8Spinor). Now, in the open string the

chirality of the spinorial sector was a matter of convention. However, here we obtain two

distinct possibilities: do the two sectors have the same or opposite chirality? These turn out
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to be physically distinct theories with different field content. In particular, one obtains type

IIA string theory/supergravity if the two spinors have opposite chirality while one obtains

type IIB string theory/supergravity if the two spinors have the same chirality. Since we will

focus on the type IIB theory for the remainder of this dissertation, we just work out the

field content of type IIB. The two spinors have the same chirality for type IIB, but which

chirality is still a matter of convention. Let us pick the 8L for definiteness. The massless

sector then becomes

(8v ⊕ 8L)⊗ (8v ⊕ 8L) = (8v ⊗ 8v)⊕ (8v ⊗ 8L)⊕ (8L ⊗ 8v)⊕ (8L ⊗ 8L) (1.79)

The first term represents the NS-NS sector since it is obtained by tensoring two copies of

the field content that originates in the NS sector. The middle two terms similarly represents

the NS-R and R-NS sectors respectively while the final term represents the R-R sector. Out

of these terms, only the NS-NS and R-R sectors lead to space-time bosons (the remaining

ones result in their fermionic superpartners). The NS-NS sector follows the standard anti-

symmetric tensor/symmetric traceless tensor/trace decomposition

8v ⊗ 8v = 1⊕ 28⊕ 35. (1.80)

The last of these fields is the graviton in 10 dimensions while the first one is the scalar known

as the dilaton. The middle field is the antisymmetric tensor (or more precisely, 2-form). The

NS-NS sector thus gives rise to the fields

NS-NS → gMN , B
(2)
MN , φ. (1.81)
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As for the R-R sector, the reduction into irreducible representations of SO(8) gives us p-form

fields of three different orders with dimensions 1, 28, and 352

8L ⊗ 8L = 1⊕ 28⊕ 35. (1.82)

These R-R p-form fields are traditionally labeled as follows

R-R → C(0) , C
(2)
MN , C

(4)
MNPQ. (1.83)

They of course have corresponding field strengths,

F1 = dC(0) (1.84)

F3 = dC(2) (1.85)

F5 = dC(4). (1.86)

We now move on to the low-energy supergravity limit that this field content gives us.

1.2.3 Type IIB Supergravity

The fields above interact at low energies according to the following type IIB supergravity

action

SIIB =
1

2κ2
10

∫
d10x
√
−g

(
R− |∂τ |

2

2τ 2
I

− |G3|2

12τI
− |F̃5|2

4 · 5!

)
+

1

8iκ2
10

∫
C(2) ∧G3 ∧ Ḡ3

τI
(1.87)

Here we have combined the field content from the previous section in various convenient

forms. In particular we have defined the axio-dilaton by combining the zero form R-R field

with the NS-NS dilaton

τ = C(0) + ie−φ. (1.88)
2Note that the dimensionality of this 4-form reflects the constraint that we discuss later that its field

strength must be self dual
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We have also combined the NS-NS 3-form field strength H3 = dB(2) and the R-R 3-form

field strength F3 = dC(2) into

G3 = F3 − τH3. (1.89)

Finally, we have defined

F̃5 = F5 −
1

2
C(2) ∧H3 +

1

2
F3 ∧B(2) (1.90)

This 5-form is self dual, something that must be imposed separately from the equations of

motion

∗F̃5 = F̃5. (1.91)

An interesting aspect of this action is that it exhibits an explicit SL(2,R) symmetry under

which τ and G3 transform as

τ → aτ + b

cτ + d
(1.92)

G3 →
G3

cτ + d
. (1.93)

In the quantum theory, this is broken to an SL(2,Z) symmetry.
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1.3 Flux Compactification

In chapters 2, 3, and 4 we will investigate various aspects of the potentials that govern

the dynamics of the moduli of Calabi-Yau compactifications. In this section we review

how these potentials arise via so-called flux compactification following the argument due to

[12]. In particular we begin by discussing the notion of warped compactifications which are

necessary modifications to the compactification of supergravity once fluxes are introduced.

We then go on to to discuss the back-reaction of these fluxes on the geometry near a singular

configuration of the Calabi-Yau called the conifold [4, 5]. This back-reaction due to warping

will be essential in all of the following chapters.

As we have eluded to a few times already, each Calabi-Yau manifold actually represents

an infinite number of distinct manifolds that are connected in a multi-dimensional moduli

space. The parameters of this space become massless scalar fields upon compactification.

Since no massless scalar fields have ever been observed, this presents us with a problem

– the moduli problem. The moduli come in two distinct sectors, the Kähler moduli and

the complex structure moduli. Out of these two sectors, the latter can be stabilized via

flux compactifications. The idea is to turn on background configurations for the 3-form

fluxes F3 and H3 from type IIB supergravity to achieve the stabilization. Interestingly

these background configurations can exist without sources much in the same way that a

nonzero vector field can exist on a torus. There are however some subtleties about this

approach. As a result, one must be slightly more general. In particular one considers warped

compactifications where the space-time manifold does not quite factor into and external and

internal piece but rather as

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)gmndy

mdyn. (1.94)

Here µ, ν = 0, 1, 2, 3 denote four dimensional space-time while m,n = 5, 6, . . . , 9 represent

the internal space. Notice the nontrivial warp factor in front of the Minkowski metric and
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the Calabi-Yau3 metric, gmn, in (1.94). This implies that as one moves in the internal space,

the effective scale of the external space varies. Furthermore, note that in order to maintain

four dimensional Poincaré invariance, the warp factor can only depend on the internal coor-

dinates A = A(y). For a long time, it was believed that such warped compactifications were

impossible due to a no-go theorem [10] that we now turn to.

1.3.1 No-Go Theorem

Here we review the results from [10]. We will consider the most general background configu-

ration of type IIB supergravity that is consistent with four dimensional Poincaré invariance.

The axio-dilaton can only depend on the internal coordinates,

τ = τ(y). (1.95)

The 5-form field strength F̃5 can furthermore only have either four components in the external

four dimensional space or none at all. These are of course related via Hodge duality, and

since this 5-form is already self dual, we can write the most general background configuration

for it as

F̃5 = (1 + ∗)[dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3]. (1.96)

Finally, there is no way for the 3-form fluxes F3, H3 to take on any external components

without breaking Poincaré invariance. As a result, we must take

F3, H3 ∈ H3(M6,Z). (1.97)

The fact that we are here restricting to the integer cohomology is simply because the fluxes

must be quantized according to a generalized Dirac quantization condition.
3Technically once we allow for non-vanishing background configurations for the various form fields, our

analysis that showed that the internal space must be a Calabi-Yau is invalidated. However, one can run
through a similar argument to show that the internal manifold must still be conformally Calabi-Yau which
precisely means that the metric must take the form of (1.94) with gmn a Calabi-Yau metric.
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One can then use these background configurations in the trace reversed Einstein field

equations [10] obtained by varying the type IIB action with respect to the metric,

RMN = κ2
10

(
TMN −

1

8
gMNT

)
, (1.98)

where TMN is the stress energy tensor of the type IIB field content and T its trace. By

looking at the external components of this equation M,N = 0, 1, 2, 3 and tracing over them,

one then obtains an equation for the warp factor

∇2e4A = e2AGmnpḠ
mnp

12τI
+ e−6A[∂mα∂

mα + ∂me
4A∂me4A]. (1.99)

Here, the Laplacian as well as all the implied metric contractions in e.g. ∂mα∂
mα are

obtained using the Calabi-Yau metric gmn. Now, integrate this expression over the entire

Calabi-Yau. The left-hand side must vanish since it is a total derivative. The right-hand

side must therefore also vanish upon integration. However, the right-hand side is positive

semi-definite. The only way that the integral of the right-hand side can vanish is therefore

if each term vanishes identically. One then obtains the no-go theorem that states that the

only possible background configurations are

G3 = 0 (1.100)

e4A = constant (1.101)

F̃5 = 0 (1.102)

The last condition follows from the fact that α is constant. As a result, one finds that the

contribution of the various form fields vanishes and therefore that they cannot be used to

stabilize the internal manifold. There is however a nice way to evade this no-go theorem.

This involves adding various sources to the story.



33

1.3.2 Adding Local Sources

So far we have only written down the part of the low-energy theory pertaining to the gauge

fields. In particular, we have not yet discussed what objects source the various fields. A

generalized version of Gauss’ law states that once we have found an object that sources the

field strength Fp one can find its charge by surrounding it by a higher dimensional sphere

and then integrating the field strength over it. For a field strength Fp, this must be a p

dimensional sphere, Sp. As a result, the object must have precisely p+ 1 transverse spatial

dimensions. Given a total of D − 1 spatial dimensions, the object must itself be D − p− 2

dimensional. These higher dimensional objects are well known from a discussion of open

strings, they are D-branes. As a result, the field strengths of type IIB supergravity couple

magnetically4 to the following D-branes

F1 couples magnetically to D7 branes (1.103)

F3 couples magnetically to D5 branes (1.104)

F5 couples magnetically to D3 branes (1.105)

Similarly, one can couple electrically to various branes. The same counting works as above

expect that one finds the charge by integrating ∗Fp over a sphere rather than Fp. As a result,

Fp couples electrically to a brane with dimension p− 2.

F1 couples electrically to D(−1) branes (1.106)

F3 couples electrically to D1 branes (1.107)

F5 couples electrically to D3 branes (1.108)

The D(-1) brane is a D-instanton while the D1 brane is a D-string.

By considering these sources in addition to the field strengths, one finds that warped
4Which one is called electric and which one is called magnetic is a matter of convention.
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compactifications become possible [12]. In particular the sources will contribute to the right-

hand side of Einstein’s equations

∇2e4A = e2AGmnpḠ
mnp

12τI
+ e−6A[∂mα∂

mα + ∂me
4A∂me4A] + κ2

10e
2A(Tmm − T µµ )loc. (1.109)

Note that the relative minus sign in the contribution of these sources to the right-hand side

is a direct consequence of the trace reversed Einstein equations. Now, as long as the contri-

bution of the sources is positive semi-definite, one again finds, by integrating the two sides

over the internal space, that the flux G3 must vanish, that the warp factor is constant and

that F̃5 = 0. However, if the contribution is instead negative, is is possible to satisfy Ein-

stein’s equations while having a nontrivial flux background and warp factor. Thus, nontrivial

warped/flux compactifications are possible when

(Tmm − T µµ )loc < 0. (1.110)

In order to proceed from here, we introduce another constraint on the fluxes since the above

expression does not determine the form of the background fields by itself. This leads us to

introduce the tadpole condition

1.3.3 Tadpole Condition

Consider the definition of the 5-form field strength, F̃5 in (1.90). Taking the exterior deriva-

tive of both sides and using the definitions for F3 and H3 gives us

dF̃5 = F3 ∧H3. (1.111)

Integrating this over the internal manifold gives us (since the left-hand side is exact)

∫
F3 ∧H3 = 0. (1.112)
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However, as mentioned above, we must now also include localized sources. Some of these

sources generate a D3 brane charge that sources this 5-form flux. Clearly D3 branes accom-

plish this, but it turns out that even D7 branes carry an induced D3 brane charge as do O3

planes [12]. In fact, O3 planes carry a negative D3 charge. We must therefore also include

a source term on the right-hand side of the expression above for dF̃5

dF̃5 = F3 ∧H3 + 2κ2
10T3ρ3, (1.113)

where ρ3 is the D3 charge density. The tadpole condition is then obtained by integrating

this over the manifold just as before

1

2κ2
10T3

∫
F3 ∧H3 +Q3 = 0. (1.114)

Now, as mentioned above this charge Q3 can arise from two sources. Either it is directly due

to D3 branes that fill the external 3 spatial dimensions, or it could be due to D7 branes that

are wrapping various 4-cycles in the Calabi-Yau and filling the external 3 spatial dimensions

or O3 planes that are space filling [12]. One can then rewrite the tadpole condition as

1

2κ2
10T3

∫
F3 ∧H3 +ND3 = L. (1.115)

Here L is the D3 charge due to all other sources besides D3 branes while ND3 is simply the

number of D3 branes. If one views the type IIB theory as arising as a limit of a certain

F-theory compactification (more on this later), one can compute L in terms of the Euler

character of the corresponding 4-fold CY4

L =
χ(CY4)

24
. (1.116)
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Returning to (1.113), we can write it in terms of α,G3 and e2A from before as

∇2α = ie2AGmnp ∗6 Ḡ
mnp

12τI
+ 2e−6A∂mα∂

mα + 2κ2
10e

2AT3ρ3. (1.117)

Here ∗6 refers to the Hodge dual in the internal space. Combining this expression with that

of the Einstein equations from before, (1.109), we find

∇2(e4A−α) =
e2A

24τI
|iG3−∗6G3|2 + e−6A|∂(e4A−α)|2 +

1

2
κ2

10e
2A(Tmm −T µµ − 4T3ρ3). (1.118)

Let us suppose that the sources satisfy the BPS-like condition

Tmm − T µµ = 4T3ρ3. (1.119)

It then becomes clear (again by integrating both sides) that warped compactifications only

become possible if

∗6G3 = iG3 (1.120)

e4A = α. (1.121)

Notice, that unlike the previous case without sources, including sources does not imply a

vanish flux nor a trivial warping. As a result, flux compactifications are possible as long as

the appropriate sources are included and the complex structure moduli can, as we will see

below, therefore be stabilized.

1.3.4 Four Dimensional Physics

Now that we have illustrated that flux compactifications are in fact possible, we continue

to discuss the four dimensional effects of such a setup. In four dimensions, the moduli will

appear as scalar fields. However, unlike the zero flux unwarped case, their dynamics is now
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governed by a nontrivial potential. Such a potential can be derived from the Gukov-Vafa-

Witten superpotential [62]

W =

∫
G3 ∧ Ω. (1.122)

Here Ω is the holomorphic 3-form on the Calabi-Yau and the integral is taken over the entire

Calabi-Yau space. Just as before we also have the Kähler potential obtained by integrating

Ω ∧ Ω̄ over the Calabi-Yau [3]

Kcs = − log

(
i

∫
Ω ∧ Ω̄

)
. (1.123)

This will only depend on the complex structure moduli. The Kähler potential for the axio-

dilaton is given by a similar formula except that one uses the holomorphic 1-form on a torus

rather than Ω3. The result is

Kad = − log(−i(τ − τ̄)). (1.124)

The entire Kähler potential is then given by considering both of these sectors

K = Kcs +Kad. (1.125)

From the Kähler potential, we can derive the Kähler connection Ka and the Kähler metric

Kab̄ just as before5,6

Ka = ∂aK (1.126)

Kab̄ = ∂a∂b̄K (1.127)
5There are actually nontrivial corrections to the Kähler metric and connection when warping is intro-

duced. These will be very important in the remainder of this dissertation so we will spend a considerable
amount of effort understanding these below.

6Note that before we defined Ka = −∂aK. From this point on we will drop the minus sign and simply
let Ka = ∂aK for simplicity.
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Using the connection we can, as before, define the Kähler covariant derivative acting on the

superpotential

DaW = (∂a +Ka)W (1.128)

Db̄W = ∂b̄W (1.129)

We can now write down the scalar potential that the moduli see. It follows the standard

supergravity form

V = eK
(
Kab̄DaWD̄b̄W̄ − 3|W |2

)
. (1.130)

One can also consider the overall volume modulus, ρ with its corresponding Kähler potential

Kvm = −3 log(−i(ρ− ρ̄)). (1.131)

Notice that the covariant derivative of W with respect to the volume modulus is given by

DρW = KρW =
−3

ρ− ρ̄
W. (1.132)

This, together with the fact that

Kρρ̄ =
3

|ρ− ρ̄|2
, (1.133)

implies that the final term −3|W |2 is cancelled against the contribution from the volume

modulus

Kρρ̄DρWD̄ρ̄W̄ − 3|W |2 =
|ρ− ρ̄|2

3

9

|ρ− ρ̄|2
|W |2 − 3|W |2 = 0. (1.134)

These models are referred to as no-scale models. We will work with these for the remainder

of this dissertation. The scalar potential therefore takes the form

V =
eKcs

16τIρ3
I

(
Kab̄DaWD̄b̄W̄

)
. (1.135)
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Here the sum runs over both the complex structure moduli as well as the axio-dilaton. We

have explicitly used the form for the Kähler potential for the axio-dilaton and the volume

modulus in the pre-factor. Note that we assume that ρI is fixed elsewhere and as a result is

just a constant factor that does not affect the dynamics.

1.3.5 Warping Correction to The Kähler Metric

As mentioned above, there will be corrections to the Kähler metric and connection (and

therefore also to the kinetic terms and the potential in the Lagrangian) once warping and

fluxes are included. Roughly this can be thought of as the back-reaction of the fluxes on

the geometry. This correction will be one of the more important aspects throughout the

remainder of this analysis, so we spend a considerable amount of effort understanding it

here.

The original formula for the Kähler metric in the absence of any warping was derived in

the section on geometry above, and is

K = − log

(
i

∫
Ω ∧ Ω̄

)
. (1.136)

This was all derived using the fact that the compactification manifold is a Calabi-Yau space.

Since we are now considering warped compactifications, such an analysis is not quite accurate

anymore. A full treatment of the geometry of the moduli space now requires generalized

complex geometry. However, in [42, 43] it was argued that an effective Kähler metric can be

derived using the following correction

K = − log

(
i

∫
e−4AΩ ∧ Ω̄

)
(1.137)

where e−4A is the warp factor from above. The idea behind this correction can be understood

roughly as follows. In the unwarped case, Ω ∧ Ω̄ is proportional to the volume form on the

Calabi-Yau. This is most clearly seen by recognizing that the Hodge number h3,3 = 1 and
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thus that any (3, 3) form with non-vanishing integral over the Calabi-Yau must lie in the

same cohomolgy class as the volume form. Therefore, Ω∧ Ω̄ can differ from the volume form

by at most a total derivative. Now, when warping is included it is reasonable to suspect (at

least to first order) that the correct formula for the Kähler potential would be modified in

the same way that the volume form would be modified. This is captured by how the 10D

and 4D Planck scales are related. To see how this works, consider the gravitational action

in 10D,

S ∼M8
10

∫
R10

√
Gd10x (1.138)

where M10 is the 10D Planck scale, R10 is the 10D Ricci scalar, and G is the warped metric.

Integrating out the six internal dimensions, we should end up with

S ∼M2
4

∫
R4
√
gd4x. (1.139)

WhereM4 is the 4D Planck scale, R4 is the 4D effective Ricci scalar, and g is the effective 4D

metric. In particular, we see that the 4D and 10D Planck scales are related by integrating out

all of the internal y-dependence. Counting everything up, we see that we get a factor of e−6A

from the warping correction on the internal space, another factor of e4A from the warping

correction on the external space, and finally a factor of e−2A from how the Ricci scalar

depends on the warp factor (this is easily seen by considering a Weyl scaling). Multiplying

these together, we see that the two Planck scales are related by an an exponential factor7

equal to e−4A. This is then the warp factor that should be included in the correction to the

Kähler potential.

It is therefore evident that in order to find the warp correction to the Kähler metric, one

must first find the warp factor e−4A. For general compactifications with small fluxes, one does

not expect a very large warp correction. However, there are certain singular configurations
7This is another nice aspect of warped compactifications. The fact that the two scales can be related

exponentially allows one to address the hierarchy problem effectively. In fact, warped metrics have been
studied for this reason alone.
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of the Calabi-Yau geometry where certain cycles of the manifold that can support fluxes

collapse. In these circumstances, it is expected that the corrections due to warping become

important. We will now briefly study these singular Calabi-Yau limits which are called

conifolds and then continue by analyzing the warp factor near the tip of the conifold.

1.3.6 The Conifold Geometry

Many Calabi-Yau manifolds can be constructed as intersections of hypersurfaces in products

of complex projective space. The simplest example was discussed above and is given by the

vanishing of a quintic polynomial in CP4

P (z1, . . . , z5) = 0 (1.140)

where z1, . . . , z5 are projective coordinates in CP4. In general, the direction orthogonal

to the hyper surface is given by the gradient ∂iP . However, in the particular case where

this vanishes together with the polynomial itself, one finds that the manifold develops a

singularity [4]. As an example we can consider the mirror manifold [7, 2] 8 to the quintic

which is given by the vanishing of the quintic polynomial in CP4

P (z1, . . . , z5) = z5
1 + z5

2 + z5
3 + z5

4 + z5
5 − 5ψz1z2z3z4z5 = 0. (1.141)

The gradient of this polynomial is given by

∂iP = 5z4
i − 5ψz1z2z3z4z5/zi. (1.142)

8We won’t discuss mirror symmetry at all in this dissertation, but it is worthwhile quickly mentioning that
most known Calabi-Yau manifolds come in mirror pairs whose hodge numbers (h1,1, h1,2) are interchanged.
As a result, the mirror of the quintic, called the mirror quintic has only one complex structure parameter
since the quintic itself has one Käbler parameter.
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The vanishing of the gradient then gives us (after multiplying through by zi) the set of

equations

5z5
1 − 5ψz1z2z3z4z5 = 0

5z5
2 − 5ψz1z2z3z4z5 = 0

5z5
3 − 5ψz1z2z3z4z5 = 0

5z5
4 − 5ψz1z2z3z4z5 = 0

5z5
5 − 5ψz1z2z3z4z5 = 0.

Multiplying these five equations together gives us a constraint on ψ

ψ5 = 1. (1.143)

For the particular manifold where ψ = 1, there is a singular point on the manifold. If one

sits at the singularity and defines a local coordinate system (w1, w2, w3, w4) in the embedding

space of CP4 such that the origin wi = 0 correspond to the singular point, the manifold can

locally be described by the vanishing of some function of the four local coordinates wi

f(w1, w2, w3, w4) = 0. (1.144)

A hallmark of a singularity is that there is no first order approximation to the surface at

that point. As a result, if one attempts to Taylor expand the function f near the singularity,

one sees that there is no first order term

f(w1, w2, w3, w4) = f(0, 0, 0, 0)+wi∂if(0, 0, 0, 0)+
1

2
wiwj∂i∂jf(0, 0, 0, 0) =

1

2
wiwj∂i∂jf(0, 0, 0, 0).

(1.145)

Thus, it is locally given by the vanishing of a quadratic polynomial. Any such polynomial

can be brought to the standard form below via a linear coordinate transformation. Let us
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suppose that the original coordinates wi were chosen precisely this way so that near the

singular point we have

w2
1 + w2

2 + w2
3 + w2

4 = 0. (1.146)

Now, notice that if wi represents a point that satisfies the above quadratic equation, then

so does the point with coordinates λwi where λ is some arbitrary complex constant. As a

result, the surface near the singularity is in fact a cone. The manifold is therefore called the

conifold. The singular point itself corresponds to the tip of the cone. Notice as a passing

remark that in the case where there are multiple complex structure parameters, one can

imagine fixing all but one of these and tuning the remaining one until the space develops

a conical singularity. As a result, the points in moduli space that correspond to a conifold

geometry is a complex co-dimension one subspace. In the case of the mirror quintic which

only has one complex structure modulus, this is therefore a point.

In general, a cone can be described by a base manifold whose size shrinks to zero as one

approaches the tip of the cone. In the traditional two dimensional cone, this would just be

a circle. However, here the base must be a five dimensional manifold. To find its topology,

we imagine centering a seven sphere S7 at the tip of the conifold with radius R [4, 5]. The

intersection between this sphere and the conifold itself then represents the base space. We

thus have the two constraints

4∑
A=1

(wA)2 = 0 (1.147)

4∑
A=1

|wA|2 = R2. (1.148)
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In order to solve these equations, we introduce the vector

w =



w1

w2

w3

w4


. (1.149)

The two equations can then be written as

wTw = 0 (1.150)

w†w = R2. (1.151)

Splitting the vector w into real and imaginary parts w = x+ iy, we find the three equations

x · x = R2/2 (1.152)

y · y = R2/2 (1.153)

x · y = 0. (1.154)

The first two equations describe 3-spheres. However, the last equation forces x, y to be

orthogonal to each other. As a result, the x may parameterize a three-sphere while the y

may parametrize a two-sphere. The base, which we will denote T 1,1, is topologically the

product

T 1,1 ∼ S3 × S2. (1.155)

Although no Calabi-Yau metric is known, one can deduce the metric near the tip of the

conifold. In particular, it must take the standard cone-form

ds2 = dρ2 + ρ2dΣ2 (1.156)
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where dΣ2 is the metric on T 1,1. One can show that there is a unique metric dΣ2 that gives

a Ricci flat metric ds2 [4, 5]. This metric is given by

dΣ2 =
1

9
(2dβ + cos θ1dφ1 + cos θ2dφ2)2 +

1

6
(dθ2

1 + sin2 θ1dφ
2
1 + dθ2

2 + sin2 θ2dφ
2
2). (1.157)

Here θ1, θ2 ∈ [0, π] while φ1, φ2, β ∈ [0, 2π] are the coordinates on T 1,1. One can restrict to

the S3 base or the S2 fiber by choosing [52]

• S3 base – set θ2 = φ2 = 0

• S2 fiber – set β = 0 (or some other constant), θ1 = θ2, and φ1 = −φ2.

We now define the following 1-forms [11]

e1 = − sin θ1dφ1

e2 = dθ1

e3 = cos 2β sin θ2dφ2 − sin 2βdθ2

e4 = cos 2βdθ2 + sin 2β sin θ2dφ2

e5 = 2dβ + cos θ1dφ1 + cos θ2dφ2.

Then using these, we define

g1 =
1√
2

(
e1 − e3

)
g2 =

1√
2

(
e2 − e4

)
g3 =

1√
2

(
e1 + e3

)
g4 =

1√
2

(
e2 + e4

)
g5 = e5.
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In terms of this last basis, we see that the metric on the base becomes

dΣ2 =
1

9
(g5)2 +

1

6

4∑
i=1

(gi)2. (1.158)

The volume form on the base T 1,1 is therefore 1
62·3g

1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 so that the volume

of the base is

Vol(T 1,1) =

∫
T 1,1

1

62 · 3
g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 =

1

2233

∫
T 1,1

e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 (1.159)

Using the expressions above for the basis ei we find that the volume is

Vol(T 1,1) =
1

2 · 33

(∫ 2π

0

dφ

)(∫ 1

−1

d cos θ

)
=

16

27
π3. (1.160)

It will be helpful to define the forms [52]

ω1i = 2dβ + cos θidφi for i = 1, 2

ω2 =
1

2
(g1 ∧ g2 + g3 ∧ g4) =

1

2
(e1 ∧ e2 + e3 ∧ e4) =

1

2
(sin θ1dθ1 ∧ dφ1 − sin θ2dθ2 ∧ dφ2)

ω3 = ω2 ∧ g5 = d(ω12 ∧ ω11). (1.161)

The forms ω2 and ω3 can be integrated over the 2-sphere fiber and 3-sphere base respectively.

The result for the fiber is (recall that the fiber is obtained by setting β = 0, θ1 = θ2, and

φ1 = −φ2) ∫
S2

ω2 =

∫
S2

sin θdθ ∧ dφ = 4π. (1.162)

The result for the S3 base is given by (again, setting θ2 = φ2 = 0 to restrict to the base)

∫
S3

ω3 =

∫
S3

1

2
(sin θdθ ∧ dφ) ∧ (2dβ + cos θdφ) =

∫
S3

sin θdθ ∧ dφ ∧ dβ = 8π2. (1.163)

Later on we will need to consider the Hodge dual of various forms on the six dimensional
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conifold. As a result, it will be beneficial to work out the Hodge dual of the form ω3 above.

Note that this is the six dimensional dual, so we denote it as ∗6. We therefore wish to

compute

∗6ω3 =
1

2
(∗6(g1 ∧ g2 ∧ g5) + ∗6(g3 ∧ g4 ∧ g5)). (1.164)

This is very easy to compute if one introduces the basis of forms

λi = ρgi/
√

6 for i = 1, 2, 3, 4 (1.165)

λ5 = ρg5/3 (1.166)

λ6 = dρ. (1.167)

In terms of this basis, the metric becomes the Kronecker delta. In this case it is simple to

compute the Hodge dual of ω3 to be

∗6ω3 =
1

2

6 · 3
ρ3

(∗6(λ1 ∧ λ2 ∧ λ5) + ∗6(λ3 ∧ λ4 ∧ λ5))

=
1

2

6 · 3
ρ3

(λ3 ∧ λ4 ∧ λ6 + λ1 ∧ λ2 ∧ λ6)

=
1

2

3

ρ
(g3 ∧ g4 ∧ dρ+ g1 ∧ g2 ∧ dρ)

=
3

ρ
dρ ∧ ω2 (1.168)

This is in fact exact since ω2 is closed:

∗6ω3 = d(3 log ρ ω2). (1.169)

Now, given a 3-form

Aω3 + B ∗6 ω3 (1.170)

we see (using ∗2
6 = −1) that it is imaginary self dual if B = −iA and can therefore be written
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as

A(ω3 − i ∗6 ω3). (1.171)

Note also that this form is exact with a potential

A
(

1

2
ω12 ∧ ω11 − 3i log ρω2

)
. (1.172)

1.3.7 Branes and Fluxes on the Conifold

We have now developed the necessary machinery to understand how fluxes impact four

dimensional physics when the compactification manifold approaches a conifold singularity.

Our goal is now to compute the warp factor e−4A [11]. As per our discussion above, we know

that for the case of sources that saturate the BPS-like bound in equation (1.119), the warp

factor can be read off from the 5-form F̃5

e−4A = α where F̃5 = (1 + ∗)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3. (1.173)

The goal is therefore to find the expression for this five-form. We will accomplish this by

analyzing the tadpole condition. In particular we know that

dF̃5 = 2κ2
10T3ρ3 +H3 ∧ F3. (1.174)

As a result, both H3 ∧ F3 and ρ3 can be thought of as sourcing the 5-form. We will analyze

both of these below. Let us begin with ρ3. Suppose that we stack ND3 D3 branes at the

tip of the conifold that are point-like in the internal space and fill the external space. The

five-form F̃5 must therefore have a part to it, let us call it F5 since it can be identified with

the R-R 5-form F5 = dC4, that satisfies

1

(4π2α′)2

∫
T 1,1

F5 = ND3. (1.175)
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As a result, we can write F5 as

F5 =
1

2
πα′2ND3 ω2 ∧ ω3 = 27πα′2ND3Vol(T 1,1) (1.176)

where Vol(T 1,1) is the volume form on the conifold base. We will get back to this expression

for F5 later, but for now let us move on the the other contribution to F̃5, H3 ∧ F3. In

particular, suppose that we also place a stack of N D5 branes that wrap one of the S2 fibers

and otherwise is localized at the tip of the conifold. The 3-form F3 must then satisfy

1

4π2α′

∫
S3

F3 = N. (1.177)

This suggests that the 3-form can be written as

F3 =
α′

2
Nω3 + f ∗6 ω3. (1.178)

Note here the second term f ∗6 ω3. This is needed later when we impose the self duality

constraint on G3. Here it does not contribute to the integral, so we are free to add it in. We

also allow an NS-NS flux to source H3 so that

1

4π2α′

∫
S3

H3 = M. (1.179)

This similarly implies that H3 can be written as

H3 =
α′

2
Mω3 + h ∗6 ω3. (1.180)
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Let us now determine f and h. This is done by requiring the 3-form flux G3 = F3 − τH3 to

be imaginary self dual. Using the expressions for F3 and H3 above we find that

G3 =
α′

2
Nω3 + f ∗6 ω3 − τ

α′

2
Mω3 − τh ∗6 ω3 (1.181)

=

(
α′

2
N − τ α

′

2
M

)
ω3 + (f − τh) ∗6 ω. (1.182)

In order for G3 to be imaginary self dual we therefore need (according to (1.171)) that

f − τh = −i
(
α′

2
N − τ α

′

2
M

)
. (1.183)

Collecting up real and imaginary parts, we find

f =
α′

2τI
(NτR − |τ |2M) (1.184)

h =
α′

2τI
(N − τRM). (1.185)

We will use the SL(2,Z) symmetry of type IIB supergravity to set the NS-NS flux to zero,

M = 0. The 3-form fluxes are then

F3 =
α′

2
Nω3 +

α′NτR
2τI

∗6 ω3 (1.186)

H3 =
α′

2τI
N ∗6 ω3 (1.187)

We can then compute the wedge product H3 ∧ F3 to be

H3 ∧ F3 =
α′2N2

4τI
∗6 ω3 ∧ ω3 = 27 · 3N2

2τI

dρ

ρ
∧Vol(T 1,1). (1.188)

Notice that this can be written as a total derivative

H3 ∧ F3 = d

(
27 · 3N2

2τI
log

ρ

ρ0

Vol(T 1,1)

)
. (1.189)
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As a result, the contribution to F̃5 itself from this must roughly be

F̃5 ∼ 27 · 3N2

2τI
log

ρ

ρ0

Vol(T 1,1) (1.190)

with the caveat that it must of course be self dual. Let us define

Neff (ρ) = ND3 +
3N2

2πτI
log

ρ

ρ0

. (1.191)

We can then write the 5-form as

F̃5 = (1 + ∗)F5 (1.192)

where we have defined

F5 = 27πα′2Neff (ρ)Vol(T 1,1). (1.193)

We are now almost done. Recall that the ultimate goal is to find the warp factor which can

be read off from the expression for F̃5. In particular, we would have to write F̃5 as in (1.173).

However, here it is written in terms of the internal components. As a result, we must then

compute the Hodge dual of F5 above

F̃5 = (1 + ∗)F5 = (1 + ∗) ∗ F5. (1.194)

We turn to this computation now.

1.3.8 Warping on the Conifold

In order to finally compute the warp factor, we must compute the Hodge dual of F5 above

which is equivalent to computing ∗Vol(T 1,1) [11]. In order to do this, we recall that the T 1,1

metric becomes δij/ρ5 in the basis λi. However, in this case we must compute the dual in

the full 10D theory. As a result, it would be beneficial to consider a basis in which the full
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10D metric becomes δMN . The is accomplished by introducing the forms

Eµ = eAdxµ (1.195)

F i = e−Aλi. (1.196)

In terms of this basis, the volume form on T 1,1 becomes

Vol(T 1,1) =
1

ρ5
λ1 ∧ λ2 ∧ λ3 ∧ λ4 ∧ λ5 =

e5A

ρ5
F 1 ∧ F 2 ∧ F 3 ∧ F 4 ∧ F 5 (1.197)

We therefore have

∗Vol(T 1,1) =
e5A

ρ5
∗ (F 1 ∧ F 2 ∧ F 3 ∧ F 4 ∧ F 5) (1.198)

=
e5A

ρ5
E0 ∧ E1 ∧ E2 ∧ E3 ∧ F 6 (1.199)

=
e8A

ρ5
dρ ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3. (1.200)

Using this in the expression for F5 we can now finally read off for the warp factor that

dα

α2
= 27πα′2

Neff (ρ)dρ

ρ5
. (1.201)

Integrating this we find

e−4A = c+
27πα′2

4ρ4

(
ND3

τI
+

3N2 log(ρ/ρ0)

2πτ 2
I

+
3N2

8πτ 2
I

)
. (1.202)

We have included a constant of integration c above that reflects an overall scaling of the

Calabi-Yau. This is therefore related to the Kähler side of the story.

We now have a good understanding of how warping and fluxes affect the 10D physics.

The question still remains how this translates to four dimensions. In other words, we still

have to compute the warped Kähler metric that is derived from the potential in (1.137). We
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turn to this now.

1.3.9 Warped Kähler Metric on the Deformed Conifold

We expect the back-reaction due to warping/fluxes to become important as one approaches

the tip of the conifold. In other words, as long as one stays away from the singularity, the

warp factor shouldn’t really impact the physics much. As a result, it seem reasonable to

split the integral over the Calabi-Yau into two pieces, one that reflects the contribution near

the tip of the cone and another one that reflects the contribution due to the remaining bulk

of the Calabi-Yau where the warp factor is simply given by c [42, 47].

K = − log

(
ic

∫
Bulk

Ω ∧ Ω̄ + i

∫
Conifold

e−4AΩ ∧ Ω̄

)
(1.203)

If we define

KBulk = − log

(
ic

∫
Bulk

Ω ∧ Ω̄

)
, (1.204)

we can (to first order) write the full Kähler potential as

K = KBulk − ieKBulk

∫
Conifold

e−4AΩ ∧ Ω̄. (1.205)

The warping correction to the Kähler metric9, K̂ξξ̄ then becomes [42, 47]

K̂ξξ̄ = −ieKBulk

∫
Conifold

e−4Aχ ∧ χ̄. (1.206)

where χ is the (2, 1) form that corresponds to complex structure deformations

χ =
1

8π2
(ω3 − i ∗6 ω3) =

1

8π2

(
ω3 − 3i

dρ

ρ
∧ ω2

)
. (1.207)

9Here ξ is defined as complex structure parameter that vanishes at the conifold point and is normalized
according to ξ =

∫
S3 Ω.
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We thus have

χ ∧ χ̄ =
i

32π4
ω3 ∧ ∗6ω3 = − 81i

16π4

dρ

ρ
∧Vol(T 1,1). (1.208)

Near the tip of the conifold, the warp factor is only a function of ρ. As a result, the integral

for the warp correction to the metric becomes a single integral

K̂ξξ̄ =
3

π
eKBulk

∫ Λ0

ρ0

dρ

ρ
e−4A(ρ). (1.209)

Here we have introduced two limits on the integral over ρ that must be discussed. The upper

limit is straight-forward, since the conifold geometry at some point must be glued into the

bulk of the Calabi-Yau geometry. As a result, we cut off the integral at some point Λ0.

However, the lower limit is slightly more subtle and has to do with the deformed conifold

geometry. For the singular conifold, ρ may be taken arbitrarily small. However, from the

moduli space perspective, there exists deformations that takes one away from the strictly

singular conifold. In particular, while for the singular conifold the entire space T 1,1 ∼ S3×S2

collapses, a finite size of the S3 is retained for the deformed conifold. As a result, there is

actually a lower limit to how small ρ can become. If we take the complex structure parameter

ξ to gauge the size of this sphere according to

ξ =

∫
S3

Ω, (1.210)

We see that ρ0 must be related to |ξ| according to

ρ0 ∼ |ξ|1/3. (1.211)

Using this in the expression for the warp correction to the metric above, we find that

K̂ξξ̄ ∼ c1 log
Λ3

0

|ξ|
+

c2

|ξ|4/3
. (1.212)
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This result will have to be combined with the result for the Bulk (which we compute later).

The main message to take away from this analysis is that there is a significant contribution

to the Kähler metric for small |ξ| that goes like |ξ|−4/3. This will be diluted by the overall

volume of the Calabi-Yau, and so will generally be multiplied by some small constant Cw

Kξξ̄ ∼ Cw|ξ|−4/3 for sufficiently small |ξ|. (1.213)

This warp correction will be incredibly important through the remainder of the discussion.
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1.4 Tunneling in Quantum Field Theory

In chapter 2 we will undertake a detailed investigation of the tunneling dynamics in the

landscape. In particular we investigate the instanton trajectories (or more precisely the

domain walls) connecting vacua related to each other by monodromies (closed loops) around

the conifold. In order to fully appreciate the arguments presented in that section it is very

important to have a firm grasp of tunneling in quantum field theory. An excellent exposition

of such processes has been given by Coleman, Callan, and de Luccia in the seminal papers

Fate of the false vacuum: Semiclassical theory, Fate of the false vacuum II: First quantum

corrections, and Gravitational effects on and of vacuum decay [13, 14, 15]. Here we briefly

review their original arguments in a form relevant to the rest of our discussion.

Consider a scalar field theory with a potential V (φ) that has multiple non-degenerate

local minima. For simplicity, suppose that there are two minima located at points φF and

φT with φT being the global minimum and that we shift the potential by a constant so

that V (φF ) = 0. An example of such a potential can be seen in figure 1.2. Classically, a

field that takes on the homogeneous value φ(x) = φF can exist in that state indefinitely.

However, quantum mechanics renders such a state unstable to quantum tunneling. Keeping

with this idea, we will refer to the field configuration where φ takes on the homogeneous

value φ(x) = φF as the false vacuum while the corresponding homogeneous state with

φ(x) = φT will be referred to as the true vacuum. One would of course like to understand

the dynamics that underlies such a tunneling event and furthermore be able to compute

the rate at which such events take place. The relevant quantity is of course the tunneling

rate per unit volume, Γ/V . As Coleman showed us [13, 14, 15], this rate is computed by

considering the Euclideanized theory with potential −V (φ):

L =
1

2
(φ̇2 + (∇φ)2) + V (φ). (1.214)
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Figure 1.2: An example of a potential with two non-degenerate minima.

Up to a prefactor, the tunneling rate is then given by

Γ/V = e−SE , (1.215)

where SE is the action of a trajectory in field space, traditionally called the bounce, that

begins at the false vacuum at Euclidean time τ = −∞ and continues to a field configuration

where a part of space-time has transitioned into the true vacuum which we will take to occur

at time τ = 0 where it momentarily stops. The trajectory then continues to move back to the

false vacuum at Euclidean time τ = +∞ (which is why it is called the bounce). Although,

a priori any kind of trajectory seems admissible, Coleman proved that the dominant decay

channel is given by the one that is O(4) symmetric. In such a case, the field only really

depends on the various coordinates and time through the quantity ρ where ρ2 = τ 2 + ~r 2 so

that φ(τ, x1, . . . , xD−1)→ φ(ρ).

Using this ansatz in the action, theD dimensional field theory becomes a 0+1 dimensional

action of a point particle rolling in the inverted potential where we would identify ρ as the

time variable. The equations of motion combine into the single ordinary differential equation

d2φ(ρ)

dρ2
+ (D − 1)

dφ(ρ)

dρ
− V ′(φ) = 0. (1.216)
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This equation is supplemented by two boundary conditions. The fact that the field must

approach the false vacuum at infinity gives us the first boundary condition below. The

second boundary condition simply arises because we have chosen τ = 0 to be the time at

which the field configuration reverses direction, i.e. bounces. An example trajectory in the

O(4) symmetric case can be seen in figure (1.3). The goal is therefore to find the bounce

trajectory and to compute its action.

φ(ρ =∞) = φF (1.217)
dφ

dρ
(ρ = 0) = 0 (1.218)

Figure 1.3: The bounce for the Euclidean (inverted) potential

1.4.1 Thin Wall Approximation

Solving this problem is in general quite difficult. This can be traced back to the fact that the

boundary condition in (1.218) are of Neumann type and therefore don’t tell us where to begin

at τ = 0. Given a generic potential with nontrivial vacuum structure one must generally

resort to numerics in order to find the bounce. However, there is an interesting class of
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potentials for which an approximate analytical solution exists. To see how this goes, please

notice that (1.216) is precisely the equation of motion for a point particle in the potential

−V with a time dependent friction term and that this friction term vanishes at sufficiently

large ρ. Now, suppose that the two vacua of V (φ) are almost degenerate. Then if one wishes

to end at φF at ρ = +∞, one cannot afford to lose too much energy. The trajectory must

therefore begin very close to φT and stay there for very long until the friction term has died

off and only then begin moving to the false vacuum. In other words, the bounce very closely

solves the equation of motion without a friction term and with Dirichlet boundary conditions

on both ends

d2φ(ρ)

dρ2
− V ′(φ) = 0. (1.219)

φ(ρ =∞) = φF (1.220)

φ(ρ = 0) = φT . (1.221)

This of course is nothing but a soliton (stationary solution with fixed boundary conditions)

interpolating between the two minima. The field therefore spends a long time at the true

minimum, φT and then quickly transitions to values near the false vacuum where it stays

until ρ → ∞. As a result, the transition between the two minima is effectively localized

in a very narrow region in ρ. These solutions are therefore called thin wall solutions and

the method of approximating the tunneling solutions by a soliton is called the thin wall

approximation. An example of such a configuration in one dimension can be seen in figure

(1.4). There we shifted the coordinate so that the wall occurs at ρ = 0. Once the tunneling

event has occurred, the field begins its classical evolution in the state where τ = 0. From

that point on it evolves according to the Minkowski space equations of motion which are

analytic continuations of the Euclideanized equations. As a result, the dynamics is given by

the same functional form φ(ρ) but with ρ2 = −t2 +~r 2. The initial field configuration is then

that of a bubble the interior of which is in the true vacuum and the exterior of which is in
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Figure 1.4: An example soliton that interpolates between the two vacua where we have
shifted the coordinate so that the wall occurs at ρ = 0.

the false vacuum. The overall action of the bounce has two main contributions: that due

to the interior of the bubble and that due to the bubble wall itself. If we suppose that the

bubble takes on a radius R, we have

SE =

∫
dρ ρD−1 ΩD LE =

ΩD

D
RD(−V (φT )) + ΩDR

D−1SW . (1.222)

Here, SW is the action of the wall (i.e. soliton) and ΩD is the solid angle in D dimensions.

In order to obtain a true tunneling solution, we must now find the saddle point of the action

by maximizing the action above over its only negative mode [14]. Inserting the appropriate

value for R back into the expression for SE gives us

R =
(D − 1)SW

ε
(1.223)

SE =
ΩDS

D
W

D

(
D − 1

ε

)D−1

, (1.224)

where we for defined ε = V (φF ) − V (φT ) for notational clarity. Note that the Euclidean

action goes to infinity for degenerate vacua (ε→ 0) and thus the tunneling rate vanishes as

one would expect.
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1.5 Numerical Techniques

In chapter 2 we will need to find instanton trajectories in a multi-dimensional landscape. As

argued above, this entails solving a set of nonlinear coupled differential equations with non-

trivial boundary conditions. Very often one must resort to numerical methods in these cases.

Here we review two of the main numerical techniques that are used in finding such solutions

[16, 52]. In chapter 2 we will employ the relaxation technique as well as its generalization

near singular points in field space both of which are described in detail below.

Given a generic potential with multiple non-degenerate minima, one can ask what the

tunneling rate is from a given false vacuum into either the true vacuum or another false

vacuum of lower energy via Coleman de Luccia instantons. Only in particular cases can

these rates be computed analytically. In particular, for an N dimensional field space with

coordinates φi with i = 1, 2, . . . , N one must solve the set of differential equations

d2φi
dρ2

+ (D − 1)
dφi
dρ

+
∂V

∂φi
= 0, (1.225)

subject to the boundary conditions

φ(ρ =∞) = φF (1.226)
dφ

dρ
(ρ = 0) = 0, (1.227)

where φF is taken as the initial false vacuum and φT is the vacuum to which we are tunneling

which may or may not be the true vacuum. In general these differential equations are

nonlinear and coupled and are therefore incredibly difficult to solve analytically and one

must rather generically resort to numerics. Here we discuss two main numerical approaches

to solving these sets of differential equations: the shooting method and the relaxation method

[16].
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1.5.1 The Shooting Method

Let us for now focus on a single scalar field, that is set N = 1, so that our field space be-

comes one-dimensional. Then the system of equations becomes a single nonlinear differential

equation. Note that the equations (1.225) are equivalent to the equations describing a point

particle moving in the inverted potential −V with a time dependent frictional term that

dies off as ρ → ∞. Coleman originally showed us that this equation always has a solution

using his famous overshot/undershoot argument which utilizes the fact that the motion of

a particle varies continuously with the initial conditions [13]. In particular he considered

dropping the particle with zero initial velocity from various points on the potential near

the vacuum φT and watching it move along the potential. If we place the particle too far

down the potential the particle will not have enough energy to reach φF at future infinity,

see figure 1.5. However, if we instead place the particle very near the vacuum φT it will

linger there for a very long time at which point the frictional term will have disappeared.

At that point the particle will have so much energy that it will not just reach the vacuum

φF , but it will overshoot it, see figure 1.5. Coleman then deduced using continuity that a

solution must exist for some intermediate point. Although originally used for an existence

Figure 1.5: Example of initial conditions that lead to an undershoot situation (image on
left) and an overshoot situation (image on right).

proof, Coleman’s argument suggests a numerical technique that has become known as the

shooting method. In particular, one chooses some initial point φ(0) and drops the particle

there with zero initial velocity and watches the particle evolve for a very long time. If the
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particle ends up overshooting the false vacuum we move the initial point farther down the

potential while if the particle does not reach the false vacuum, we move the initial location

father up. We then repeat the process until we have found an initial location that satisfies

our requirements for precision.

This brings us to a note worth mentioning. In any numerical approach there is necessarily

some inherent precision issues. In the particular case of the shooting method, one must first

decide how long to wait for the particle to reach the false vacuum. For points near the correct

starting location it may take very long for the particle to reach φF or it may only reach φF

asymptotically. As a result, one will never be able to find the correct starting location but

by making the time we observe the system for sufficiently large, we can approximate the

initial condition arbitrarily well.

Strengths and Weaknesses of the Shooting Method

One of the main strengths of the shooting method is that it works equally well in potentials

that satisfy the thin wall approximation as in those that do not. This is very important since

those that do not admit thin wall solutions are particularly difficult to analyze analytically

since the boundary conditions are partly of Neumann type. Furthermore, as we will see in

the next section, the relaxation method is only really applicable in thin wall scenarios so the

shooting method is a nice complementary method to keep in mind when solving tunneling

problems.

The shooting method has however a glaring shortcoming. Consider a multidimensional

field theory with scalar fields φi with i = 1, 2, . . . , N . Finding the starting location then

entails finding the initial value of all of the fields, φ1(0), φ2(0), . . . , φN(0) and unless there

is some significant symmetry of the problem, using the shooting method becomes unwieldy.

The reason is simply that if the trajectory does not end at the false vacuum it is now

not a simple matter of overshooting/undershooting anymore. In particular, it is not clear

in which direction the initial point must be moved. The problem therefore turns into a
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multidimensional problem where it is not even clear that a solution must exist.

Fortunately, while the shooting method fails us in these instances, the relaxation method

which we discuss next handles these cases with ease.

1.5.2 The Relaxation Method

The relaxation method solves the ordinary differential equations (1.225) by converting them

to partial differential equations in two variables [16]. Although this seems like complicating

the situation, we will see that in some instances it can help us find numerical solutions to

the ordinary differential equations.

Consider a potential with a false vacuum φF and a true vacuum φT . Furthermore suppose

that the two vacua are nearly degenerate so that we can use the thin wall approximation and

therefore that the instanton locally looks like a soliton. Then the problem consists of finding

the soliton that interpolates between the two minima. This can of course be framed as the

ground state of a 1 + 1 dimensional field theory with the boundary conditions φ(−∞) = φT

and φ(+∞) = φF and Lagrangian

L =
1

2
∂µφ∂

µφ− V (φ) (1.228)

Since the soliton is the ground state for these boundary conditions, any other field configu-

ration that begins at φT at ρ = −∞ and ends at φF at ρ = +∞ must by definition contain

more energy and will therefore decay into the soliton given a sufficient amount of time. In

principle one can therefore begin at t = 0 with any such configuration and simply allow it to

evolve in time. The configuration is of course not static and will thus radiate away energy

until it decays into the appropriate ground state. This is the essential idea of the relaxation

method, we simply let our initial condition relax into the time independent solution.

There are a few numerical issues however that must be addressed. First of all, in any

numerical simulation one cannot specify the boundary conditions at ±∞. Instead, one must
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choose a large range in ρ and fix the boundary conditions at the edge of the box. As a rule of

thumb, the tension of the wall should be significantly larger than the energy scale implied by

the size of the box. Since we don’t know the tension a priori, we need to repeat the numerical

simulations a few times until we are certain that robust results have been obtained.

Moreover, another effect of the finite box size pertains to the relaxation itself. Although

radiation should escape to infinity thereby allowing the initial condition to relax to the soli-

ton, the finite sized box will, due to the Dirichlet boundary conditions, reflect this radiation

back in. As a result, the decay will never actually take place. As a work-around, we include

in addition to the standard terms in the equations of motion, a friction term that is meant

to remove the excess energy

φ̈− φ′′ + fφ̇+ V ′(φ) = 0. (1.229)

Once the field has reached a static solution, such a friction term should not have any effect

on the dynamics. In order to ensure that the frictional force does not interfere with the

concept of relaxation, one tends to manually turn it off after a certain amount of time. If

the solution remains static afterwards, this is a good indication that an acceptable solution

has been found.

Strengths and Weaknesses of the Relaxation Method

The main strength of the relaxation method is that it is easily generalized to multidimensional

landscapes. One must then in general add a frictional term to each of the equations of motion

in order to remove the energy consistently from all fields. This is to be contrasted with the

shooting method that miserably fails in such multidimensional scenarios. An example of

the use of the relaxation method in a one dimensional field theory can be seen in figure

(1.6) as can another example of it being used in a two dimensional field theory. The main

drawback with the relaxation method is that it is only applicable in cases where the thin

wall approximation can be made. The reason for this is simply that the relaxation method

is useful in finding solitonic profiles which only approximate the instanton configuration
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Figure 1.6: (Left) Here we have run the relaxation method for the soliton interpolating
between the minima located at φ = ±1 of the potential V (φ) = (φ2 − 1)2. As is clear, even
an initial condition that is far away from the correct soliton profile will decay to the desired
shape rather quickly. (Right) Here we have run the relaxation method for the potential
V (φ, ψ) = cos(φ) cos(ψ). One of the vacuum states is taken to be φ = π, ψ = 0 while the
other one is φ = 2π, ψ = π indicated by red dots in the image. The initial profile in red
is far from the correct solitonic profile but very quickly converges to the appropriate form
indicated in black. An intermediate profile is shown in blue.

for such nearly degenerate vacua. Furthermore, solving a set of nonlinear partial differential

equations tends to be computationally expensive effectively increasing the amount of memory

needed by a power of two compared to the original ordinary differential equations due to

the increased number of grid points. One also sees a similar increase in computational

complexity essentially due to the same reason. Finally, since the energy strictly decreases

during relaxation, it is sometimes possible for the field to settle down in a configuration that

is a local minimum of the energy although not the global minimum that corresponds to the

soliton. The reason for this is that the dynamics is only sensitive to local properties of the

field space. As a result one could imagine a field space that supports two static solutions

one of which has lower energy than the other. In order to avoid these sorts of issues, it is

important to try many different initial conditions when applying the relaxation method to

ensure that the solution that one obtains in fact corresponds to that of lowest energy.
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Singular Points in the Field Space

As we have seen above, the field space may sometimes contain singular points (we will be

concerned with the conifold point below). Using the relaxation method in these instances

may be a traitorous endeavor especially when the soliton must pass near these special points

[52].

Suppose that the final solution interpolating between φT and φF passes very near a

singular point in field space. Then, if one uses the relaxation method to find this profile, one

must be very careful since the initial condition is not a static solution and will therefore at

least initially exhibit dynamics that could potentially draw the profile into the singularity

and thereby halt the numerical progress. The natural path to pursue is to insert initial

conditions that are close enough to the correct solution that the dynamics during relaxation

is not too violent. However, as we do not know the soliton profile a priori, this is not a

reasonable approach. Instead, one may insert an artificial hard wall shielding the profile

from the singularity. This is accomplished by adding a large step function barrier to the

potential

V (φ1, φ2, . . . , φN)→ V (φ1, φ2, . . . , φN)+H

(
r0 −

√
φ2

1 + . . .+ φ2
N

)
θ

(
r0 −

√
φ2

1 + . . .+ φ2
N

)
.

(1.230)

Here we have chosen φ = 0 as the singular point for definiteness and have inserted a wall

of height H around the origin of radius r0. The field profile will then hit this wall after

some time. But instead of continuing into the singularity it will bounce back and eventually

lay itself against it. After some of the energy has been removed due to the already present

frictional terms, one may slowly remove the wall by decreasing r0. If this is done sufficiently

slowly, one may lower the profile near the singular point and once r0 becomes smaller than

the distance of nearest approach of the final soliton it may settle into its final shape. In

such a way, one may avoid the singularity. This kind of approach is incredibly useful in

analyzing domain wall solutions near the conifold locus of string theory [52]. An example of
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this approach can be seen in figures (1.7,1.8) below.

Figure 1.7: Here we illustrate the use of the relaxation method with the origin (labeled by
a red dot) taken as a singular point. With a poor choice of initial profile (red curve), the
dynamics brings it through the singular point (blue curve).
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Figure 1.8: Here we have employed the hard wall approach described above. The region
around the singular point has been surrounded by a hard wall addition to the potential
which over time decreases in size until the profile has been safely lowered near the singular
point and taken on its final shape.
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Chapter 2

Conifolds and Tunneling in the String

Landscape

2.1 Introduction

When compactifying string theory on a Calabi-Yau manifold, there is an inherent ambiguity

regarding which Calabi-Yau should be chosen. There are certain discrete choices one must

make. However, in addition to these discrete choices, each Calabi-Yau comes with several

continuous parameters that are undetermined, the so-called moduli. Once the theory is com-

pactified, these parameters become dynamical in four dimensions and appear in the effective

action as massless scalar fields. In order to stabilize these fields and give them a nonzero

mass, one can turn on background values for the various p-form fields that also appear in

string theory. The precise values of these fields, while quantized, are still undetermined.

In general compactifications several hundred components must be specified. Each of these

choices can in principle yield a stable configuration of the moduli. As a result, very many

potential compactifications are possible. Each of these vacua of string theory leads to dis-

tinct low-energy physics. As a result it is very important to understand this landscape of

string theory.
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There are several questions that may be asked about the structure of these solutions.

Here we focus on the question of dynamics. While these vacua may appear stable classically,

quantum mechanics renders them unstable. Since the aspect that distinguishes these vacua

from each other is the choice of flux that is used in the compactification, it seems reasonable

that tunneling between them involves the nucleation of a brane that carries the appropriate

charge. Here we examine the question of tunneling from a field theoretical perspective where

the vacua can be continuously connected via monodromies around the conifold point in the

moduli space. We find that the instanton trajectory (or, more precisely, the domain wall

profile) is drawn very close to the conifold point. This can be interpreted in terms of brane

nucleation as well.

2.2 Flux Compactification of One Parameter Models

2.2.1 The Superpotential, Kähler Potential, and Scalar Potential

Type IIB string theory contains two different 3-form field strengths, F3 in the R-R sector

and H3 in the NS-NS sector. By turning on nontrivial background configurations for these,

one generates a superpotential for the effective four dimensional theory that depends on the

complex structure moduli

W (z) =

∫
Ω ∧ (F3 − τH3). (2.1)

Here Ω is the holomorphic 3-form on the Calabi-Yau, τ is the axio-dilaton, and the integral

is taken over the entire Calabi-Yau. This is of course a rather formal looking expression,

and in order to make explicit contact with physics one must first find a way to write this in

terms of computable functions. As a first step toward doing precisely this, let us introduce

a set of 3-cycles on the Calabi-Yau, CI with I = 1, 2, . . . , 2(1 + h1,2). Let us also introduce
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the Poincaré dual basis of 3-forms CI so that for every closed 3-form α, we have

∫
CI
α =

∫
CI ∧ α, (2.2)

where the latter integral is over the entire Calabi-Yau. Let us introduce the intersection

form, QIJ , which tells us how the various cycles intersect each other

QIJ =

∫
CI ∧ CJ . (2.3)

Here the integral is over the entire Calabi-Yau. Clearly the form of Q depends on the choice

of basis for H3 although in any basis it must be anti-symmetric since the wedge product of

the two 3-forms is itself anti-symmetric. Let us now expand the holomorphic 3-form Ω in

terms of this basis

Ω = ΩICI . (2.4)

We also define the periods of the Calabi-Yau as the integrals of Ω over the various 3-cycles

ΠI =

∫
CI

Ω. (2.5)

Using the expression for Ω in this basis, we have

ΠI =

∫
CI

Ω = ΩJ

∫
CI ∧ CJ = QIJΩJ . (2.6)

This implies that Ω can be written in terms of the periods as

Ω = (Q−1
IJ ΠJ)CI . (2.7)

The two 3-forms F3 and H3 can similarly be expanded in this basis

F3 − τH3 = Q−1
IJ (FJ − τHJ)CI . (2.8)
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Here we have defined the quantities FI and HI as the amount of flux over each of the 3-cycles

FI =

∫
CI
F3 =

∫
CI ∧ F3 (2.9)

HI =

∫
CI
H3 =

∫
CI ∧H3. (2.10)

Using these expressions, we then find that the superpotential is given by

W =

∫
Ω ∧ (F3 − τH3)

= (Q−1
IJ ΠJ)(Q−1

KL)(FL − τHL)

∫
CI ∧ CK

= (Q−1
IJ ΠJ)(Q−1

KL)(FL − τHL)QIK (2.11)

= (FI − τHI)Q
−1
IJ ΠJ . (2.12)

In general any basis of 3-cycles is admissible. However it will be beneficial for our purposes

to focus on a particular choice of cycles for which the intersection form takes a particularly

concise form. This is the symplectic basis where the cycles come in pairs of so-called A-cycles

and B-cycles. The intersection form then takes the form

Q =



−1

1

·

·

−1

1


. (2.13)
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In this case we can organize the values FI and HI into two vectors F and H and the periods

into a vector Π

Π(z) =



ΠN(z)

ΠN−1(z)

·

·

Π0(z)


, (2.14)

so that the superpotential can be written as

W = (F − τH) · Π(z). (2.15)

In addition to the superpotential, we would also like to understand the structure of the

Kähler potential and ultimately the full scalar potential that governs the dynamics of the

moduli in four dimensions. The Kähler potential is given by

Kcs = − log

(
i

∫
Ω ∧ Ω̄

)
. (2.16)

In terms of the periods, this becomes

Kcs = − log
(
iΠ∗i (z̄)Q−1

ij Πj(z)
)

= − log
(
iΠ†Q−1Π

)
. (2.17)

In addition to this, one also has Kähler potentials for the axio-dilaton and the overall volume

modulus

Kad = − log (−i(τ − τ̄)) (2.18)

Kvm = −3 log (−i(ρ− ρ̄)) . (2.19)
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The total potential is then K = Kcs+Kad+Kvm. From the Kähler potential, one can derive

the Kähler connection and metric in the usual way. This then ultimately provides us with

an expression for the scalar potential. For our purposes it takes the no-scale form1

V =
eKcs

16τIρ3
I

(
Kij̄DiWD̄j̄W̄

)
(2.20)

where the sum runs over the complex structure moduli and the axio-dilaton (i, j̄ = 0). Flux

compactifications cannot stabilize the volume modulus ρ. As a result, we will assume that

it is stabilized by some other mechanism. The prefactor of ρ−3
I above is therefore simply an

overall constant and does not affect the dynamics of the other fields at all.

Now, how can one determine the components FI and HI that go into defining the flux

compactification? There are only two constraints on these components. First of all, they

must be integers since the field strengths satisfy generalized Dirac quantization conditions.

Secondly, they must satisfy the tadpole condition

∫
H3 ∧ F3 ≤ L → FIQ

−1
IJHJ ≤ L (2.21)

where L is an upper bound on the D3 charge that can be carried by the 3-form fields that

in some circumstances can be derived by considering the system from the perspective of

F-theory (a generalized version of type IIB string theory). This concludes the discussion

about the fluxes. We now turn to the question: how can one find the periods for a certain

Calabi-Yau?
1This means that the terms Kρρ̄DρWD̄ρ̄W̄ and −3|W |2 cancel in the expression for the potential.
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2.2.2 Picard-Fuchs Equations

The 3-form Ω belongs to the cohomology group H3,0. Under variations of the complex

structure, Ω picks up a component in H2,1. Continuing in this way one finds

Ω ∈ H3,0 (2.22)

∂iΩ ∈ H3,0 ⊕H2,1 (2.23)

∂i∂jΩ ∈ H3,0 ⊕H2,1 ⊕H1,2 (2.24)

∂i∂j∂kΩ ∈ H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 (2.25)

∂i∂j∂k∂lΩ ∈ H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 (2.26)

Notice that for each derivative the cohomology class picks up a new linearly independent

component. This is true until all of the distinct classes have already been enumerated. Once

this has happened, we find that the set of derivatives of Ω is no longer linearly independent

as far as cohomology classes go. In particular, a certain linear combination of these forms

must be exact

αijkl∂i∂j∂k∂lΩ + βijk∂i∂j∂kΩ + γij∂i∂jΩ + δi∂iΩ + εΩ = dη. (2.27)

In general, the coefficients above may depend on the complex structure moduli and are

therefore functions on the moduli space but otherwise independent of the coordinates on

the Calabi-Yau itself. We now integrate this entire expression over any of the 3-cycles CI .

The right-hand side integrates to zero since it is exact and the cycles have no boundary. We

therefore obtain a differential equation for the periods of the Calabi-Yau

αijkl∂i∂j∂k∂lΠJ + βijk∂i∂j∂kΠJ + γij∂i∂jΠJ + δi∂iΠJ + εΠJ = 0. (2.28)
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These are the Picard-Fuchs equations. In this analysis we will focus on one parameter mod-

els for which h1,2 = 1. As a result, the Picard-Fuchs equations become ordinary differential

equations in the complex variable z. They are of fourth order so that they have four indepen-

dent solutions which is necessary since there are dimH3 = dimH3 = h3,0 +h2,1 +h1,2 +h0,3 =

2(1 + h1,2) = 4 independent 3-cycles for which we can define periods. More precisely we will

focus on the “generic family of compact one-parameter models” of [28, 52] for which the

Picard-Fuchs equation takes the form

[
δ4 − z(δ + α1)(δ + α2)(δ + α3)(δ + α4)

]
ΠI(z) = 0. (2.29)

Here, we have defined the differential operator δ = zd/dz. Different choices for the pa-

rameters αi correspond to different Calabi-Yau moduli spaces. In particular, if we set

α1 = 1/5, α2 = 2/5, α3 = 3/5, and α4 = 4/5 we obtain the periods for the mirror-quintic.

These equations are generally solved by the Meijer G functions.

Now, there are four linearly independent solutions to this equation and a priori it is not

clear which linear combinations of them to take for the various periods. Of course, different

combinations can be related to different choices of the basis of 3-cycles on the Calabi-Yau

manifold. Since we will be interested in the symplectic basis we choose the solutions to the

Picard-Fuchs equation to represent this same choice [28, 52]. In order to find this linear

combination of solutions, one analyzes the monodromy matrices for the Meijer G functions

around the three points2: z = 0, z = 1, and z = ∞ [28, 52]. One can then tune the

linear combinations until the monodromy matrices take on the same form as they do in the

symplectic basis. We will get back to this issue below when we discuss how to compute the

periods in Mathematica. For now, let us just assume that the appropriate linear combination

has been found and that Πi(z) refers to the periods in the symplectic basis.

The monodromy behavior of the periods in the symplectic basis around the conifold
2These three points correspond to the large complex structure point (z = 0), the conifold point (z = 1),

and the Landau-Ginzburg point (z = ∞). We will only be concerned with with conifold point in what
follows.
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point, z = 1 is given by

Π3 → Π3

Π2 → Π2

Π1 → Π1

Π0 → Π0 + Π3. (2.30)

Here we take Π3 as the period over the collapsing cycle. Under such a monodromy, the

superpotential actually changes

W = (F − τH) · Π→ (F − τH) · TΠ (2.31)

where T is a monodromy matrix that encodes the monodromy behavior in (2.30). For

fixed fluxes it is not quite clear what it would mean to perform one of these monodromies.

In particular it may be surprising that the superpotential (and also therefore the scalar

potential) is not single-valued. In an attempt to make sense of this, we notice that rather

than having the monodromy matrix act on the periods above, we may allow it to act to the

left on the fluxes

(F − τH)→ (F − τH)T. (2.32)

In terms of components, this implies that (for Gi = Fi − τHi)

G0 → G0 +G3

G1 → G1

G2 → G2

G3 → G3.

As a result, one may think of the various sheets as potentials arising from flux compact-
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ifications with different fluxes. This prescription therefore allows us to study tunneling

phenomena in field theoretic terms without having to resort to discussing brane nucleation

explicitly3. This is precisely the perspective that we will take below. Using the relaxation

method, we will attempt to numerically find the domain wall that interpolates between two

supersymmetric vacua. In order to speed up the computations, we will need to pre-compute

the periods on a grid. We turn to this analysis next.

2.2.3 Numerical Computation of Periods

Numerical computation of the Kähler potential K, Kähler metric Kzz̄, superpotential W ,

and the flux potential V require the use of Meijer functions that solve the fourth-order

Picard-Fuchs ODE. Mathematica has built-in Meijer functions, however these evaluate too

slowly for analytical computations. Instead, we generate a table of look-up values for these

functions on a grid running from (−5.01, 4.99) in both the Re(z) and Im(z) directions. The

grid spacing is 0.05 between each vertex.

The numerical Meijer functions for our models are defined using the built-in ones as

follows

U0 = c MeijerG[{{1− α1, 1− α2, 1− α3, 1− α4}, {}}, {{0}, {0, 0, 0}},−z],

U1 =
c

2πi
MeijerG[{{1− α1, 1− α2, 1− α3, 1− α4}, {}}, {{0, 0}, {0, 0}}, z],

U−2 =
c

(2πi)2
MeijerG[{{1− α1, 1− α2, 1− α3, 1− α4}, {}}, {{0, 0, 0}, {0}},−z],

U3 =
c

(2πi)3
MeijerG[{{1− α1, 1− α2, 1− α3, 1− α4}, {}}, {{0, 0, 0, 0}, {}}, z],

where the α-parameters are the ones that appear in the Picard-Fuchs equation and define

the class of Calabi-Yaus considered. The constant c is given by

c =
1

Γ(α1)Γ(α2)Γ(α3)Γ(α4)
.

3Note that this only works for fluxes that are related via these particular monodromy relations.
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It is also useful to compute look-up tables for the derivatives of these functions:

∂zU0 = c MeijerG[{{−α1,−α2,−α3,−α4}, {}}, {{0}, {−1,−1,−1}},−z],

∂zU1 = − c

2πi
MeijerG[{{−α1,−α2,−α3,−α4}, {}}, {{0,−1}, {−1,−1}}, z],

∂zU
−
2 =

c

(2πi)2
MeijerG[{{−α1,−α2,−α3,−α4}, {}}, {{0,−1,−1}, {−1}},−z],

∂zU3 = − c

(2πi)3
MeijerG[{{−α1,−α2,−α3,−α4}, {}}, {{0,−1,−1,−1}, {}}, z].

Initially, we arrange for the branch-cuts to lie along the real axis from (−∞, 0] and [1,∞).

To do this, we must define

U2 =

 U−2 , if Im(z) < 0,

U−2 − U1, if Im(z) ≥ 0
(2.33)

and similarly for ∂zU2.

Let the look-up tables constructed from the above definitions be U0, U1, U2, U3, dU0,

dU1, dU2, and dU3. These arrays contain just the values of the Meijer functions at the grid

points. To form the interpolating function on the grid for say, U0 one must form a table

associating each entry in U0 to its corresponding grid point. One can then run Mathematica’s

Interpolation function on this table. Usually this is one of the final steps after computing

the table of values for a function of interest such as the flux potential.

The periods in the symplectic basis Πj are encoded in the look-up tables P0, P1, P2, P3

where

P3 = m2U1 +m4U3,

P2 = 3U1−m4U2,

P1 = −U1,

P0 = U0. (2.34)
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The mi are given in terms of the parameters αi that specify the model under consideration

as

m2 = 4
(
sin(πα1)2 + sin(πα2)2

)
, m1 = 1−m2, (2.35)

m4 = 16 sin(πα1)2 sin(πα2)2, m3 = −m4. (2.36)

The computation of all the other functions of interest in terms of the canonical periods now

follows.

As we will see below, the numerical simulations will drive us near the conifold point. As

a result, it will be important to know the form of the potential etc. in this regime. We turn

to this now.

2.3 Near-Conifold Potential and Numerical Data

In general, a conifold locus in the moduli space represents Calabi-Yaus that develop various

singular points due to the collapse of certain cycles. In the one-parameter examples, there

is a single conifold point and a single cycle that degenerates while the periods of the other

cycles become constant [2].

Due to the paired intersections of cycles in a Calabi-Yau, the collapsing cycle’s partner

develops interesting behavior in the moduli space (despite going to a constant at the conifold

point). Call the collapsing cycle A and the intersecting cycle B. Making a closed loop in

moduli space around the conifold point, one finds that there is an ambiguity involved in

determining what happens to the B-cycle. From the perspective of the periods, a loop

around the conifold point sends ΠB → ΠB + ΠA . This implies that

ΠA = ξ + πA (ξ), ΠB =
ξ

2πi
log

ξ

Λ3
0

+ πB(ξ), (2.37)

where the functions πA and πB are O(ξ2) and O(1), respectively. The monodromy of the
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B-cycle period is captured by the behavior of log in the expression above. The constant

Λ3
0 arises from cutting off the conifold geometry and gluing it into the bulk Calabi-Yau at

r ∼ Λ0 where r is the radial coordinate for the singular conifold.

Given the above expressions, we can work out the behavior of the Kähler potential,

Kähler metric, superpotential, and the flux potential in the near-conifold limit. We will first

do this while ignoring corrections from strong warping.

2.3.1 The Kähler Potential and its Derivatives

The complex structure Kähler potential for the one-parameter models is

Kcs = − log
(
i
(
Π3Π0 − Π3Π0 + Π1Π2 − Π1Π2

))
. (2.38)

In our notation, the collapsing cycle is given by ΠA = Π3, and its intersecting partner is

ΠB = Π0. Plugging in the near-conifold behavior of these cycles and sweeping up all of the

O(1) dependence into a function k(ξ) gives

Kcs = log

(
|ξ|2

2π
log

Λ6
0

|ξ|2
+ k

)
→ − log k, (2.39)

where the expression after the arrow indicates the limit of the Kähler potential when we

neglect terms of order O(ξ).

The derivative is then

Kξ = eKcs

(
ξ̄

2π

(
log

Λ6
0

|ξ|2
− 1

)
− kξ

)
→ −kξ

k
. (2.40)

And the Kähler metric is

Kξξ̄ = |Kξ|2 + eKcs

(
1

2π

(
log

Λ6
0

|ξ|2
− 2

)
− kξξ̄

)
→ 1

2πk
log

Λ6
0

|ξ|2
+ κ(ξ), (2.41)
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where κ(ξ) ∼ O(1). The near conifold Kähler metric possesses a logarithmic singularity at

the conifold point.

In order to include the effects of strong warping for very small |ξ|, we modify the expres-

sion for the Kähler metric above by introducing the warp correction term

Kξξ̄ ≈
1

2πk
log

Λ6
0

|ξ|2
+
K1

k
+

C1

k|ξ|4/3
, (2.42)

where C1 is taken to be very small, reflecting that we are working with a large (but finite)

volume Calabi-Yau manifold. Note also that we have replaced κ = K1/k in the above as it

is more convenient to work with in the final expression for the flux potential.

2.3.2 The Superpotential and its Derivatives

The superpotential is as above

W = F · Π− τH · Π = A+ τB. (2.43)

Recall that we can use the SL(2,Z) invariance of type IIB supergravity to ensure that H3

always vanishes. This means that while A has non-trivial monodromy near the conifold

point, B does not since the flux multiplying Π0 is set to zero.

The near-conifold behavior of these functions is easily computed

A =
FA ξ

2πi
log

ξ

Λ3
0

+ a(ξ)→ a(ξ), B = b(ξ), (2.44)

where a and b are O(1) and depend on the choice of the fluxes associated to the other cycles

(including the B-cycle). We also have

Aξ =
FA

2πi

(
log

ξ

Λ3
0

+ 1

)
+ aξ →

FA

2πi
log

ξ

Λ3
0

. (2.45)
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Thus, the derivatives DξW and DτW of the superpotential take the following form near the

conifold

DξW ≈
FA

2πi
log

ξ

Λ3
0

+ A1 − τB1, (2.46)

and

DτW ≈
√
k(A2 + τ̄B2). (2.47)

2.3.3 The Flux Potential Near the Conifold

The leading behavior of the flux potential in ξ is determined by the behavior of A in the

superpotential above. Recall that the flux potential is given by

V =
eKcs

16τIρ3
I

(
Kξξ̄|DξW |2 +Kτ τ̄ |DτW |2

)
. (2.48)

Inserting the expressions for the Kähler potential, metric, and superpotential near the coni-

fold, we have

V =
1

16τIρ3
I

((
1

2π
log

Λ6
0

|ξ|2
+K1 +

C1

|ξ|4/3

)−1 ∣∣∣∣FA

2πi
log ξ + A1 − τB1

∣∣∣∣2 + |A2 + τ̄B2|2
)
,

(2.49)

where C1 is a small constant (its order of magnitude mainly reflecting the large volume of

the compactification manifold) and Λ0 the cut-off characterizing where the singular conifold

is glued into the bulk Calabi-Yau geometry.

2.3.4 Mirror Quintic Near-Conifold Numerical Data

Our numerical simulations have been carried out for vacua arising from flux compactification

on the mirror quintic. Given the fluxes F = (3,−6,−9,−1) and H = (−1, 0,−7, 0), the
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parameters in the near-conifold flux potential (2.49) are

K1 = 0.524211,

A1 = 13.1691 + 17.3632 i,

B1 = 0.209511 + 0.000277995 i,

A2 = −9.55217 + 7.75481 i,

B2 = −2.26182 i. (2.50)

The choice of F flux implies that FA ≡ F3 = −1.

The mirror quintic period data near the conifold is approximated as follows: for the

period functions that are regular near the conifold, we used Mathematica to compute them

in terms of Meijer G functions and find their expansions to first order around the conifold

point. The period Π0 picks up a monodromy on sending ξ → e2πiξ. We captured this

behavior, the O(1) and O(z) behavior by fitting a function of the appropriate form to a

numerically generated period function. The fit is good for |ξ| ∼ 0.04 for Λ3
0 ∼ 1. The result

is

Π3 → ξ ≡ −0.355878 (z − 1)i,

Π2 → 6.19501− 7.11466 i− (2.33032 + 2.85683 i)ξ,

Π1 → 1.29357 i+ 0.423645 ξ,

Π0 →
ξ

2πi
log(−iξ) + 1.07128− 0.0630147 i ξ.

We now turn to finding supersymmetric vacua of the theory.
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2.4 Finding Vacua

Supersymmetric vacua are points for which DzW = DτW = 0. Note that in principle

we should also have DρW ∼ W = 0. However, since we are not stabilizing the volume

modulus anyway, we consider solutions to the first two conditions to be supersymmetric.

The condition DτW = 0 is simplest to solve. In particular, using the form of the Kähler

potential for the axio-dilaton from (2.19) we have

Kτ = ∂τK = − 1

τ − τ̄
(2.51)

Kτ τ̄ = ∂τ ∂̄τ̄K =
1

|τ − τ̄ |2
(2.52)

Kτ τ̄ =
1

Kτ τ̄

= |τ − τ̄ |2. (2.53)

We can therefore compute the covariant derivative with respect to the axio-dilaton explicitly

DτW = ∂τW +KτW = − 1

τ − τ̄
(F − τ̄H) · Π (2.54)

Setting this equal to zero gives us an expression for the axio-dilaton in terms of z

τ̄ =
F · Π
H · Π

. (2.55)

We can then use this result in the expression for DzW = 0 to obtain a single equation for

the complex structure parameter z. Unfortunately, the resulting equation for z is far too

complicated to solve analytically except for in certain regimes (such as in the near conifold

limit). In order to find a generic vacuum one must therefore resort to numerics.

Since we ultimately wish to analyze the tunneling trajectories (or more precisely the

domain wall profiles) for two vacua that are separated by a monodromy around the conifold

point, it may be necessary to sort through several choices of fluxes before a satisfactory set

of vacua can be found. Two such vacua are obtained by setting the fluxes as follows.
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• Choosing F = (3,−6,−9,−1) and H = (−1, 0,−7, 0) results in a vacuum at z =

0.463− 0.124i.

• Choosing F = (2,−6,−9,−1) and H = (−1, 0,−7, 0) results in a vacuum at z =

0.229− 0.363i.

Notice that these two choices of flux are precisely related via the monodromy relations in

(2.33). Now that we have found two vacua related in the appropriate way, we continue to

study the domain wall that interpolates between them.

2.5 Numerical Conifunneling

In this section we apply the numerical relaxation method to find domain wall solutions in

degenerate vacua—these solutions are excellent approximations to instantons with weakly

non-generate vacua. We postpone discussing the physical interpretation of our solutions

to the next section. Our goal is to look for instantons between vacua that reside on sep-

arate sheets of the flux potential. In our construction, such vacua are associated with the

monodromy transformations around the conifold point. If we take the perspective of the

monodromies acting on the fluxes, the instantons describe tunneling between different flux

compactifications.

It will turn out that the bounce solution connecting these flux vacua generically passes

very close to the conifold point. The instanton solution is driven there by the presence of

non-trivial kinetic terms despite the seeming lack of an obvious path in the potential.

Seeing this behavior numerically requires knowledge of both the Kähler metric and the

potential in both the bulk (i.e. far away from the conifold point and near the vacua), and

near the conifold point in the field space. In the bulk where an analytical form for the

potential and metric are unavailable, we use look-up tables for the relevant functions. Near

the conifold point however, analytical expressions for the potential and metric are available.

In principle one could imagine glueing these two regimes together. However, relaxation is
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easier to implement when we split the problem into two parts: relaxation in the bulk and

relaxation near the conifold point.

2.5.1 Equations of Motion and Setup

Our goal is to find domain wall solutions using the relaxation method for this system given

an action

L = − (Kzz̄∂µz∂
µz̄ +Kτ τ̄∂µτ∂

µτ̄) + V (z, τ) (2.56)

where z is the complex structure modulus and τ is the axio-dilaton. We assume that the

Kähler moduli fields are frozen by some mechanism and that they do not contribute to the

dynamics, so we will simply treat them as constants. Hence, we have a system with four real

fields. It is convenient to choose the following parameterization

reiθ ≡ z − 1 , τ ≡ u+ iv (2.57)

where φ ≡ {r, θ, u, v} are all real dynamical fields which we have collected into a vector φ

for notational simplicity. In the same vein, we also define

Kzz̄ ≡
1

2
f(r, θ) (2.58)

and remind the reader that

Kτ τ̄ =
1

2

1

4v2
. (2.59)
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We are looking for domain wall solutions which are effectively 1+1 dimensional, hence we

can choose (x, t) as coordinates. Ignoring gravity, the equations of motion are

f(r̈ − r′′) +
1

2
(ṙ2 − r′2)− 1

2
∂r(r

2f)(θ̇2 − θ′2) + ∂θf(θ̇ṙ − θ′r′) + ∂rV = 0

fr2(θ̈ − θ′′) +
1

2
r2∂θf(θ̇2 − θ′2)− 1

2
∂θf(ṙ2 − r′2) + ∂r(fr

2)(ṙθ̇ − r′θ′) + ∂θV = 0

− 1

2v3
(v̇u̇− v′u′) +

1

4v2
(ü− u′′) + ∂uV = 0

− 1

4v3
(v̇2 − v′2) +

1

4v3
(u̇2 − u′2) +

1

4v2
(v̈ − v′′) + ∂vV = 0

(2.60)

with dots and primes denoting time and space derivatives.

Domain wall solutions, φ∗(x), are static solutions to the set of differential equations (2.60)

with boundary conditions

φ∗(x→ −∞) = φ1 , φ∗(x→∞) = φ2 (2.61)

where φ1 and φ2 are the locations of the minima.

We solve (2.60) on a finite 1-dimensional grid, with a domain {xmin, xmax} where the

domain’s size is much larger than 1/m, m being the characteristic mass of the domain

wall4. In practice, we choose the size of the domain to be a balance between accuracy and

computational efficiency. Once a solution is found, we vary the size of the domain to ensure

that the results are robust.

We insert a test solution at some initial time t0, φ0(x, t0). In addition to possessing the

correct boundary conditions, we fix the first derivatives at the boundaries to be identically
4This is not known in advance of course, but one can make a good guess at a value just after a few

iterations of our prescription.
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zero at all time (i.e. Dirichlet boundary conditions)

φ̇(xmax, t) = φ̇(xmin, t) = 0. (2.62)

Given these boundary conditions, we then guess several initial profiles for r0(x, t0) and

θ0(x, t0) that interpolate between the two vacuum positions. Using these test profiles we

find the corresponding minimum points of a given r and θ for u0(x, t0) and v0(x, t0), which

we can find by solving for5

∂V

∂u
(u0, v0) = 0 ,

∂V

∂v
(u0, v0) = 0. (2.63)

The total energy functional of the system is the integral of the Hamiltonian over the domain6

E[φ(x)] =

∫ xmax

xmin

dx

[
1

2
f(ṙ2 − r′2 + r2θ̇2 − r2θ′2) +

1

8v2
(u̇2 − u′2 + v̇2 − v′2) + V (r, θ, u, v)

]
.

(2.64)

The true domain wall solution, if it exists, minimizes the total energy of the system

E[φ(x)] ≥ E[φ∗(x)]. (2.65)

Hence any deviation from the true solution means that there is additional energy in the

system, which manifests itself as scalar radiation as the fields seek to relax to their true min-

imum energy configuration. In a perfect world, the radiation propagates to spatial infinity,

never to be seen again. However, our fixed boundary conditions act as a rigid barrier at

finite distance, and hence radiation will bounce back from this barrier and remain in the
5This choice for u0 and v0 is motivated by the fact that we expect that in the actual domain wall solution

u and v do not deviate radically from this global minimum solution. However, they do deviate in general,
which we can easily see by their equations of motion (2.60): the spatial derivatives must be supported by a
non-zero derivative of the potential.

6We have suppressed two spatial dimensions – the energy functional is formally infinite if integrated over
these suppressed dimensions.
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system. To remove this radiation, we introduce friction terms into the equations of motion

φ̈+ φ′′ + ... = 0→ φ̈+ φ′′ + ...+ λ(t)φ̇ = 0, (2.66)

allowing the fields to relax into the true minimum energy configuration (i.e. a domain wall).

Note that we allow the friction term to be a function of time; we will say a bit more about

how we engineer the friction term later. In principle, the friction term turns itself off once

the static solution has been found. We check for the robustness of our solution by manually

turning off the friction term.

The test solutions themselves are not very important. In practice, we find that a well

chosen initial profile may speed up the computation marginally, but most guesses find iden-

tical static solutions in the end. More insidious however, is the possibility that there exist

multiple static solutions which are not the minimum energy solution φ∗. To test for that,

we choose several different initial profiles with different initial total energy and check that

they all relax to the correct solution.

In addition, there may be no solution. The simpler case of this possibility is that the

total energy becomes negative after some time. Since our potential is bounded from below

and positive, V > 0, this never happens. More difficult to detect is the possibility that the

field approaches, but never quite converges to, a static configuration. In this case, the system

never completely relaxes and long code run times may be mistaken for a true solution. We

can check for this by taking the time derivative of the total energy, but in practice we never

encounter such a situation.

In the following sections, we separate the field space into two regimes: far away from the

conifold point r > 0.1 which we call the bulk and the near conifold regime where r < 0.1. The

cut-off at r = 0.1 is arbitrary, motivated by the fact that we lack accurate numerical data

for the potential below this point. Near the conifold point, the calculation of the potentials

is tractable analytically. Note that the numerical bulk potential does not include the effects
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of warping, but since the data is only really accurate down to r = 0.1 and strong warping is

not expected to be important until r � 1, this is not a problem.

In summary, we find that in the bulk relaxation phase, the field profile for r relaxes

towards the conifold point rapidly, reaching r < 0.1 where we do not possess numerical data

for the potential. To investigate the near conifold behavior, we use our analytic potentials

and find that the field profiles do indeed continue to be driven to near r = 0, but then

making a turn-around back into the bulk. While deep inside the near conifold regime, we

find that θ makes a rapid transition across the sheets, hence tunneling across a monodromy

transition. We dub this behavior, where the fields are driven towards the conifold point in

order to transition into a new flux configuration conifunneling.

2.5.2 Relaxation in the Bulk

We first look for domain wall solutions between two supersymmetric vacua related by a

conifold monodromy in the bulk. We choose the fluxes before and after the monodromy

according to

F1 = (3,−6,−9,−1) → F2 = (2,−6,−9,−1) (2.67)

H1 = (−1, 0,−7, 0) → H2 = (−1, 0,−7, 0). (2.68)

The potentials at each corresponding sheet in z-space are generated using numerically com-

puted Meijer functions. The vacuum positions are to rather high precision

z1 = 0.4628− 0.1237i (2.69)

z2 = 0.2286− 0.3631i. (2.70)

We use coordinates (r, θ) around the conifold point to unwrap the potential and stitch the

data together across the sheets. From this, we generate the effective super and Kähler
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potentials. The vacua positions in these coordinates are then, with θ = 0 being the branch

cut,

φ1 = (r1 = 0.55, θ1 = −2.92, u1 = −3.41, v1 = 4.22) (2.71)

φ2 = (r2 = 0.85, θ2 = 3.58, u2 = −3.37, v2 = 4.17). (2.72)

The vacuum positions for τ = u+ iv are found using conditions (2.63). We use the following

test profile

θ(x, t0) =
2(θ2 − θ1)

π
tan−1

(
ex/δ

)
+ θ1 (2.73)

r(x, t0) =
2(rmin − r1)

π
tan−1

(
e(x−x1)/∆1

)
+

2(r2 − rmin)

π
tan−1

(
e(x−x2)/∆2

)
+ r1

(2.74)

where ∆, δ are parameters which control the initial test thickness of the walls, x1 < x2 control

the location of the walls, while rmin sets the radial turn-around point (see figure 2.1).

We then run relaxation simulations, using uniform and constant friction for all 4 dynam-

ical fields, varying both the initial test profiles and the magnitude of the friction (ranging

from λ = 0.1 to λ = 10) to ensure that our general conclusions are robust. Generically, the

field profile for r rapidly relaxes to near the conifold point r < 0.1 where we do not possess

good numerical data for the bulk flux potential (see figure 2.2), hence the simulation breaks

down at this point. As a result, we must complement our analysis in the bulk with one that

focuses on the near conifold regime.
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(a) (b)

Figure 2.1: Initial (blue) and final (red) profiles for the complex structure field r (left) and
θ (right) in the bulk relaxation phase. We stopped the simulation at the final configuration,
r < 0.1 even though the fields are still not static (indeed they are highly dynamical) since we
do not have numerical data for the potentials. Nevertheless, it is clear that the path between
the two vacua is rapidly relaxing to the conifold point. We will replace the numerical potential
with a near-conifold analytical potential in the next section.

(a) (b)

Figure 2.2: Figures showing the path of the complex structure (r, θ). On the left, we su-
perimposed the initial (black) and final (red) profiles of the bulk relaxation phase over the
reduced potential V (r, θ, umin(r, θ), vmin(r, θ)), where umin and vmin are global minima for τ
found using (2.63). On the right, we suppress the structure of the potential, but instead plot
the final path in polar coordinates. The two sheets are joined at θ = 0 with r = 0 being the
conifold point. It is clear from this picture that the path traverses close to the conifold point
as it wanders down the “funnel”.
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2.5.3 Results from Relaxation in the Vicinity of the Conifold Point

In order to investigate the behavior of the solutions near the conifold point, we use the

analytical approximation described above

Vnc =
1

16τIρ3
I

((
1

2π
log

Λ6
0

|0.35r|2
+K1 +

C1

|0.35r|4/3

)−1 ∣∣∣∣FA

2πi
log 0.35r + A1 − τB1

∣∣∣∣2 + |A2 + τ̄B2|2
)
.

(2.75)

Note that this is simply equation (2.49), with the rescaling |ξ| = 0.35r for consistency with

the notation we are using in this section. The parameters of this near conifold potential are

derived assuming that the two vacua are associated by the monodromy described by (2.67).

The values for the various parameters were given in (2.50) for the mirror quintic. This

(a)

È

0

(b)

Figure 2.3: Initial (blue) and final (red) profiles for the complex structure field r (left) and
θ (right) in the near-conifold relaxation phase. In the final configuration, a static solution is
achieved and hence is a true domain wall solution. The complex structure modulus funnels
very close to the conifold point, the proximity depending on how strong the warping is. In
terms of the r and θ fields, it is clear that a very sharp θ transition occurs when the field
is near the conifold point r � 1. This indicates that there are three clear phases in the
entire process—a shrinking of the 3-cycle associated with the formation of the conifold, a
monodromy transition as θ tunnels into the next sheet, and then a return of the 3-cycle to
near its original size.

approximation becomes almost exact near the conifold r < 0.1, but breaks down in the bulk.

The key feature that is lost is the existence of the original vacua. To stabilize the vacuum

positions, we drill Gaussian supersymmetric vacua into the potential

Ṽ = Vnc + V1 + V2 (2.76)
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Figure 2.4: The final (red) profiles for the axio-dilaton field u (left) and v (right), and the
global minima (black) umin (left) and vmin (right) in the near-conifold relaxation phase. In
the final configuration, a static solution is achieved and hence is a true domain wall solution.
It is clear from the equations of motion (2.60) that umin and vmin are not static solutions.
The actual final static domain wall solutions are mildly localized. The global minimum
solution exhibits a sharp feature as expected from the highly localized nature of the complex
structure z domain wall solution.

with

Vi = −Vnc(ri, θi, ui, vi)e[−(θ−θi)2−(r−ri)2]/σ2

(2.77)

where σ is the width of the Gaussian holes. At these vacuum positions, Vi = 0. The

positions of the holes are matched to the actual vacuum positions for their respective flux

configurations, as given in (2.71). Note that we do not drill holes in the τ directions; we

simply solve for the minima of τ via equation (2.63) as in section 2.5.2. Since the behavior of

the domain wall will be dominated by the near conifold regime, we do not try to reproduce

the shape of the potentials beyond this modification. As long as the solution conifunnels

towards r → 0 when it is at r > 0.1 we are satisfied with the overall bulk behavior.

Nevertheless, there remain two subtleties involved in choosing the exact coefficient for

the strong warping factor C1. First, in principle it may depend on τ , although such a

dependence will not greatly effect the behavior of τ . Second, the exact numerical value of

this coefficient is treated as a free parameter related to the overall volume of the Calabi-Yau

manifold. Consistency requires that the parameter be chosen small enough so as not to have

any effects on the bulk of the moduli space. For the purpose of our numerical simulation,



97

we choose C1 such that the warping term is subdominant when r ≈ r1,2 i.e.

C1 �
(

1

2π
log

Λ6
0

|0.35r|2
+K1

)
|0.35r|4/3 at r = r1, r2. (2.78)

Again, we use the test solutions (2.73) and (2.74), varying the test parameters to ensure

robustness of our conclusions (figures 2.3 and 2.4). However, due to the strong warping

term r−4/3 in the flux potential, instead of inserting constant friction terms for all our field

equations, we use instead an exponentially damping friction

λφ(t) = λφ(t0)e−α(t−t0) (2.79)

where α is some parameter which governs how rapidly friction is turned off7. The static

(a) (b)

Figure 2.5: Figures showing the path of the complex structure (r, θ). On the left, we su-
perimposed the initial (black) and final (red) profiles of the near conifold relaxation phase
over the “reduced” analytic near-conifold potential Vnc(r, θ, umin(r, θ), vmin(r, θ)), where umin

and vmin are global minima for τ found using (2.63). On the right, we plot the final path in
polar coordinates, suppressing the gaussian vacuum holes but keeping the structure of the
potential near the conifold visible – the strong warping term r−4/3 suppresses the potential
deep inside the conifold point, resulting in a potential that looks like a true “funnel”. The
two sheets are joined at θ = 0 with r = 0 being the conifold point. The final static path
falls deep into the funnel but reemerges on the other side of the monodromy—the conifold
funnels the path across the monodromy, hence our moniker conifunneling.

7We also imposed a hard cut-off of the friction when we check for stability after a solution is obtained. In
addition to this, we employ the hard wall regulator discussed in the numerical methods section that allows
the profile to avoid the conifold point.
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solutions are shown in figure 2.5. The solution relaxes towards the conifold point as we have

seen in the previous section using the bulk potential. However, instead of falling into an

abyss, the domain wall solution passes very close to the conifold point, and then turns back

up into the bulk. In other words, a stable static domain wall solution exists between two

vacua related by a monodromy transformation. Moreover, the domain wall passes very close

to the conifold point—the exact proximity being determined by the coefficient in front of

the strong warping term r−4/3 in the Kähler metric. The smaller the coefficient, the later

the turn-around occurs8.

2.6 The Physics of Conifunneling

Despite trying to find a tunneling path through non-singular parts of the Calabi-Yau moduli

space, numerical relaxation drove our solutions into the vicinity of the conifold point. These

instantons represent conifunneling. Relaxation was only able to succeed due to the crucial

effects of strong warping, analyzed in [47, 43, 44], and described both in general and for the

conifold above in the section on warping. In this section we interpret conifunneling from a

geometrical perspective.

2.6.1 Geometric Interpretation

Figure 2.6 shows the value of the tension integrand in terms of five separate terms: kinetic

terms in each field and the flux potential term. We can see that the kinetic terms in τ

are very small, which means the dynamics are mostly in the complex structure moduli, z9.

In particular, the dynamics separates into three distinct parts: radial changes toward and

away from the conifold point occur in the beginning and the end of the transition, while
8We note that although both log r and r−4/3 blow up as r → 0, the rate at which this blow up occurs is

crucial in determining whether the domain wall will turn around sufficiently quickly.

9This means that we would have got similar results if we had reduced the problem from 4D to 2D and
only focused on z. But it is not obvious that τ would essentially act as a spectator field, so we included it
in the analysis for completeness.
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Contribution to Lagrangian

x

- 0.4 - 0.2 0.2 0.4

2
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6

8

Figure 2.6: The action integrand (Lagrangian) broken up into contributions from five terms.
The thin-blue line is the potential term, the dashed-purple line is the kinetic term in r, the
solid-purple line is the kinetic term in θ. Kinetic terms in the two components of τ are
colored red and green, and barely contribute. Note that the potential dips below zero for the
two vacua, this is an artifact of our procedure for drilling these vacua in the near-conifold
potential.

angular changes around the conifold occur in the middle. The two vacua are connected by

a monodromy transformation, namely, a change of ∆θ ∼ 2π. We just need to determine the

most economical way to perform this transformation. Namely, minimizing the tension with

3 terms,

σ = σ1 + σm + σ2 , (2.80)

where σm is the tension for a monodromy transformation in the vicinity of a point in the

moduli space—i.e. keeping close to some geometrical configurationM∗ for the Calabi-Yau.

The first term σ1 comes from deforming the Calabi-Yau from vacuum 1 to the geometryM∗,

and σ2 from deformingM∗ back to vacuum 2.
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For our case, σm is essentially the action integral in the θ direction,

σm =

∫ √
2V − 2V0

√
Kzz̄ r dθ , (2.81)

and σ1, σ2 are like integration in the r direction,

σi =

∫ √
2V − 2V0

√
Kzz̄ dr . (2.82)

These expressions illustrate that taking the fixed geometryM∗ to be very near the conifold

minimizes σm. However, σ1 and σ2 grow in this same limit. As a result, there is some optimal

M∗ whose precise form is determined via the interplay between σ1, σm, and σ2. However,

one thing is clear: since σm is minimized near the conifold, one should expect that the profile

may at least be drawn somewhat close to the conifold point.

The geometric picture is quite straight-forward. The shrinking 3-cycle near the coni-

fold point is exactly the cycle which we cut and twist in the monodromy transformation.

Physically the shrinking 3-cycle (with flux) cannot go to zero size, so eventually it becomes

strongly warped and the monodromy happens at the tip of the strongly warped conifold, as

shown in figure 2.7. Both shrinking and warping help to reduce σm. We can also understand

this process in the dual picture, where the flux is changed by nucleating a charged brane

instead of monodromy. The fluxes due to F3 and H3 change by nucleating a 5-brane. Three

legs of this 5-brane will wrap the shrinking cycle leaving two spatial directions for the (2+1)D

domain wall in the 4D space-time. As depicted in figure 2.8, the monodromy contribution

is replaced by a brane,

σ2−brane
4D = σ5−brane

10D (Vshrinking 3−cycle)(volume factor)(warp factor) . (2.83)

The volume factor corresponds to the dimensional reduction from the 10D theory string

frame to the 4D theory Einstein frame. It is a constant in our case since we have frozen the
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Figure 2.7: Top left is the vacuum configuration of the Calabi-Yau manifold. A monodromy
transformation (on the red cycle) contributes less to the action if the 3-cycle is small (top
right), and even less if it happens on the tip of the strongly warped conifold (bottom).

Figure 2.8: The extended horizontal direction represents 4D space-time. The top tube comes
with the 3-cycle wrapped by the D5 brane, which wants to shrink. The bottom tube represent
the other 3-cycle where the flux is changing, in which the brane is a point like object where
the flux line can end. Placing the charge on a locally warped region also reduces 4D tension.
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Kähler moduli. It is also easy to see why the shrinking 3-cycle volume and the warp factor

help to reduce the effective 4D tension.

Of course, it is very surprising to see that the balance between reducing σm and increasing

σ1 + σ2 happens at such an extreme geometry—a strongly warped Calabi-Yau. In the next

section we will provide a more quantitative analysis in this particular case. Here we want

to suggest a good intuition for general multi-field tunneling. The roughly equal separate

contributions shown in figure 2.6 suggest an equipartition among the three terms σ1, σ2, and

σm that make up the action, (2.80). This is quite natural assuming that the three terms

depend on a parameter in the same way (say polynomially or exponentially). What we have

is essentially a generalized virial theorem telling us that the three terms should have similar

orders of magnitude. Knowing this in advance, we could use this to estimate how big the

deformation of the vacuum geometry is.

2.6.2 The Shortest Path

Our numerical results suggest a simple analytical argument for conifunneling. As noted

previously, although the axio-dilaton τ changes during tunneling, it contributes very little to

the action integral. Therefore the dynamics is similar to a 2D problem in just the complex

structure modulus z.

We start from the simplest case with 2D canonical kinetic term in polar coordinates,

L =
1

2

(
ṙ2 + r2θ̇2

)
− Vinverse(r, θ) . (2.84)

Let us first assume that the inverse potential Vinverse does not have any special properties

near the conifold point (taken to be at the origin, r = 0). In this case, minimizing the action

is like finding the shortest path, which is of course a straight line. If there are multiple sheets

through branch cuts emanating from the conifold point along θ = 2πn there is an additional

constraint. When the angular separation between two points is larger than π, a straight line
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will be obstructed by the branch cut. Therefore the maximum angular separation is π if two

vacua are to be connected by a tunneling path.

The strongly warped behavior near the conifold point in our mirror quintic case tells us

that we must modify the above with non-canonical kinetic terms

L =
K(r)

2

(
ṙ2 + r2θ̇2

)
− Vinverse(r, θ) . (2.85)

Assuming that the dominant behavior of the Kähler metric is of the form

K(r) = r2β , (2.86)

we may change to a more natural set of variables, defining

r̃ =
rβ+1

β + 1
. (2.87)

This yields

L =
1

2

(
˙̃r2 + r̃2(β + 1)2θ̇2

)
− Ṽinverse(r̃, θ) , (2.88)

where

Ṽinverse(r̃, θ) = Vinverse

(
[(β + 1)r̃]1/(β+1), θ

)
. (2.89)

Ignoring the inverse potential, we can see that

∆θmax =
π

β + 1
. (2.90)

In our case β = −2/3, so ∆θmax = 3π, namely 3/2 of monodromy transformation, is the best

we can get. We have confirmed this with numerical simulations.

Also, note that if we did not include the strong warping correction, we would have had

K(r) ∼ log r , V (r) ∼ log r , (2.91)
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near r = 0. Since log r diverges slower than any rβ with β < 0, it should give us roughly

∆θmax = π. Also the uncorrected V has a logarithmic divergence, which corresponds to an

attractive core in the inverse potential. It is also weaker than, for example, Vinverse = −1/r.

As we saw in the simulation, there is no reason that a path can make ∆θ ∼ 2π.

From this point of view, conifunneling happens because the path needs the strong warping

correction to the Kähler metric in order to make a monodromy angle change of 2π. For our

particular choice of fluxes F3 = −1, this is the minimum amount by which F0 can change.

With |F3| > 1, one might expect to see several vacua on one sheet, which would correspond

to changing F0 by 1 several times. We have not seen such things in any of the examples

we have investigated10. However, let us for the moment simply assume that there are cases

with multiple vacua for |F3| > 1. From our result, it is quite natural to make the following

3 conjectures:

• For angular changes less than π, which means |∆F0| < |F3|/2, tunneling is possible

regardless of warping and the path does not get close to the conifold point.

• For angular changes larger than π, which means |∆F0| > |F3|/2, we will see conifun-

neling.

• For angular changes larger than 3π, which means |∆F0| > 3|F3|/2, there will be no

tunneling path.

2.7 Discussion

We have undertaken a detailed study of the flux transitions in type IIB one-parameter models.

We have focused throughout on the mirror-quintic for definiteness. Vacua that are related

by a monodromy transformation around the conifold point were studied and domain wall
10Multiple vacua in a given sheet have been observed in other analyses [37], but τ is treated as a fixed

parameter. Our τ is dynamical and we know of no physical reason that requires multiple vacua on a single
sheet.
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solutions that interpolate between them were found numerically. A general feature is that the

domain wall was driven near the conifold point where strong warping effects dominate. A nice

geometrical picture associated with this transition was given. In particular, the nucleating

brane favors a small cycle so that the effective 4D tension is minimized. Balancing this

against the action required to deform to and from this configuration tells us that the cycle

must approach some minimal size at which point the monodromy/brane nucleation takes

place.

The usual intuition might have suggested that since these flux vacua are near each other

in the complex moduli space, it should be simple to construct an appropriately charged

brane whose nucleation brings one from one vacuum to another. Our findings suggest that

competing effects between the energy required to nucleate a brane wrapping the appropriate

cycles and the contraction or growth of these cycles are an essential aspect of the dynamics.

Thus, it seems clear that given an initial flux vacuum, finding the most probable tunneling

path is more subtle than simply looking at the separation in z-space and concluding that

a brane can connect two neighboring vacua. Rather, such a brane would still need to wrap

appropriate cycles in order to absorb the appropriate charges, and thus, we expect that

the dynamics of these cycles will play a crucial role in determining when such a brane can

be nucleated. Because of this, we expect conifunneling to be important in determining how

tunneling occurs through a “discretuum” [17] of flux vacua such as that envisioned by Bousso

and Polchinski [18].
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Chapter 3

Warped Vacuum Statistics

3.1 Introduction

Complex structure moduli in type IIB string theory are stabilized by turning on various

p-form fluxes on the internal manifold. This process yields a very large number of stable

configurations each of which in principle leads to distinct low-energy predictions. Under-

standing this landscape of string theory is of utmost importance. Above we have seen an

in-depth discussion of the dynamics governing these low-energy solutions and found that

the conifold point seems to be of distinguished importance [52]. However, another aspect of

the vacua that is well studied in the literature is that of statistics [18, 53, 54]. As argued

in [18], the existence of very many vacua with closely spaced vacuum energies may take us

one step toward understanding the seemingly unnatural value for the cosmological constant.

Furthermore, it is reasonable to suspect that the distribution of vacua in moduli space will

also have an impact on the dynamics since nearby vacua would be expected to have different

tunneling rates than distant ones. As a result, it is valuable to understand various statistical

aspects of the distribution of vacua better. Such studies were undertaken in [53] and [54]

and later numerically in [32] where they found that the conifold acts as an accumulation

point for vacua in the landscape. In fact, in a Monte-Carlo search [32] a significant number
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of vacua were found as far in as |ξ| ∼ e−120 where ξ is the complex structure modulus taken

to vanish at the conifold point.

Interestingly we also know that it is precisely near the conifold point that the back-

reaction of fluxes in the form of warping becomes important. It thus seems natural and

necessary to investigate precisely what type of effect warping has on the analysis carried out

in [53, 54, 32]. Here we undertake such an analysis.

3.2 Background

Compactifying type IIB string theory on a Calabi-Yau manifold leads to a low-energy effec-

tive field theory that contains various scalar fields called moduli. These moduli are related

to the smooth ways in which the internal Calabi-Yau manifold can be deformed. Some of

these scalar fields, the ones that are related to the complex structure deformations, may be

stabilized by turning on various p-form fluxes that naturally appear in the supergravity the-

ory on the internal manifold. This process generates the Gukov-Vafa-Witten superpotential

[62]

W (z) =

∫
Ω3 ∧G3. (3.1)

Here the integral is taken over the Calabi-Yau manifold, Ω3 is its holomorphic (3, 0) form,

and G3 = F3 − τH3 is a combination of the the two 3-form field strengths and the axio-

dilaton. These are the fluxes that are turned on to yield the superpotential above. As the

complex structure is deformed, the value for W changes, something that is indicated by the

explicit dependence of W on the complex structure parameter z. Given this superpotential,

the scalar potential is given by the usual supergravity form

V = eK/M
2
P

(
Kab̄DaWD̄b̄W̄

)
. (3.2)
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The sum here runs over the complex structure moduli (a, b = 1, 2, . . . , h2,1) as well as the axio-

dilaton (a, b = 0). Notice that the term − 3
M2

P
|W |2 that is usually present in the expression for

the potential in supergravity is absent above. This is because for the overall volume modulus

ρ, the term Kρρ̄|DρW |2 precisely cancels against − 3
M2

P
|W |2. This is simply a symptom of

the fact that flux compactification can only stabilize the complex structure parameters so

that the superpotential ends up independent of the Kähler moduli.

The strategy is now to analyze the minima of the potential in (3.2). In particular we will

focus on supersymmetric vacua in the discussion to follow.

3.3 Analytical Distributions

We are ultimately interested in understanding the distribution of vacua near the conifold

point. However, a more tractable quantity to compute is the so-called index density defined

below. This is closely related to the count of vacua, and in fact approximates the count very

well in the cases we discuss. We begin by reviewing past results and then continue with the

analysis by adding modifications due to warping.

3.3.1 Counting the Vacua

Here we will review the derivation of the index density given by Douglas and Denef in [54],

focusing on areas where our analysis, including the effects of warping, will differ. We will

restrict attention to supersymmetric1 vacua that satisfy DaW = 0 for all complex moduli

and the axio-dilaton. The strategy is to consider these equations as constraints on the choice

of fluxes and otherwise, simply allow the fluxes to scan. First, assume that fluxes are fixed
1Technically supersymmetric vacua must satisfy DaW = 0 for all moduli including those in the Kähler

sector. However, since we are not stabilizing the Kähler moduli, we refer to vacua for which DaW = 0 only
for the complex structure moduli and the axio-dilaton as supersymmetric.
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and consider the function on moduli space given by2

δ2n+2(DW (z)) ≡ δ(D0W (z)) . . . δ(DnW (z))δ(D0W (z)) . . . δ(DnW (z)). (3.3)

Clearly this provides support only at the locations of the vacua. However, as written each

vacuum does not contribute with the same weight. To see this, rewrite equation (3.3) as a

sum of delta functions which explicitly spike at the locations of the minima

δ2n+2(DW (z)) =
∑
vac

δ2n+2(z − zvac)

| detD2W |
. (3.4)

Here the determinant arises from expanding the argument of the delta functions near each

minimum in much the same way as

δ(f(x)) =
∑

δ(f ′(xzero)(x− xzero)) =
∑ δ(x− xzero)

|f ′(x)|
. (3.5)

The matrix denoted D2W is the (2n+ 2)× (2n+ 2) matrix

∂aDbW ∂aDbW

∂aDbW ∂aDbW

 , (3.6)

where we let a, b range over the n = h1,2 moduli as well as the axio-dilaton. Note that the

partial derivatives in the matrix above can be replaced by covariant derivatives at the vacua

since there the conditions DaW = 0 render the two expressions equivalent

∂aDbW = DaDbW − (∂aK)DbW = DaDbW at supersymmetric vacua where DbW = 0.

(3.7)

If we then integrate this over the moduli space we find contributions from each vacuum

associated with the fixed set of fluxes with weight | detD2W |−1. Since the value of this
2Our conventions for the delta functions and integration measures depending on a complex variable z

are given by δ2(z) = δ(Re z)δ(Im z), and d2z = d(Re z)d(Im z).
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expression varies over the moduli space, the result of this integration will not reflect the

number of vacua but rather some sort of weighted sum of them. To actually count the

vacua, we must instead integrate over the delta-functions appropriately weighted

∫
d2nzd2τ δ2n+2(DW (z))| detD2W |. (3.8)

This expression defines the vacuum count for a given set of fluxes. Another useful quantity

related to the vacuum count considered in [54] is the index, which involves dropping the

absolute values around the determinant of the fermion mass matrix

∫
d2nzd2τ δ2n+2(DW (z)) detD2W. (3.9)

This integral then counts the number of positive vacua minus the number of negative vacua,

where parity is given by the sign of the determinant of the matrix in equation (3.6). The

index therefore provides us with a lower bound to the number of vacua (since the difference

between positive and negative vacua is always bounded above by their sum). So far our

discussion has focused on a fixed set of fluxes. To count all vacua, we must then sum over

the fluxes. The fluxes must satisfy the tadpole condition which can be thought of as a

consistency condition on how the fluxes can be organized on the internal manifold

L =

∫
CY
F3 ∧H3 ≤ L∗. (3.10)

Here L∗ is the maximum possible value for L. L∗ can be derived from F-theory and as

a result it will turn out to be useful to lift this discussion from type IIB supergravity to

F-theory. To see how this works, recall that the action for type IIB supergravity has an

SL(2,Z) symmetry under which the axio-dilaton transforms as

τ → aτ + b

cτ + d
where ad− bc = 1. (3.11)
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By using these transformations, one can restrict the value of the axio-dilaton to lie in the

region3

−1/2 ≤ Re(τ) ≤ 1/2 and |τ | > 1. (3.12)

This should be familiar as the fundamental domain for the complex structure parameter of

a torus. It is thus natural to ask if one can incorporate the dynamics of the axio-dilaton by

considering some new theory which naturally lives in 12 dimensions which is then compact-

ified on a space that is locally the direct product of a Calabi-Yau threefold and a two torus.

This is in fact possible, and the theory one must consider is called F-theory. More precisely,

the internal manifoldM is taken as an elliptically fibered Calabi-Yau four-fold, whose base

consists of the original three-fold and fibers are given by the auxiliary 2-torus whose complex

structure parameter is given by the axio-dilaton τ . In general F-theory compactifications,

the four-fold does not have to be a global direct product bundle of a three-fold and a torus

(as is true for any fiber bundle) and in fact below we consider precisely such a nontrivial

bundle.

We decompose the holomorphic 4-form of the Calabi-Yau four-fold on which F-theory

is to be compactified in terms of the holomorphic 3-form from the type IIB Calabi-Yau

three-fold and the holomorphic 1-form defined on the torus

Ω4 = Ω1 ∧ Ω3. (3.13)

If we consider the two 1-cycles A and B on the torus, we can define the two 1-forms α and

β dual to the cycles A and B such that
∫
A γ =

∫
T 2 α ∧ γ and

∫
B γ =

∫
T 2 β ∧ γ for all closed

1-forms γ. Then, as long as we define our holomorphic 1-form Ω1 as

Ω1 = α− τβ, (3.14)
3In particular one would use the transformations τ → τ + 1 and τ → −1/τ multiple times to accomplish

this.
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we will have τ =
∫
AΩ1/

∫
B Ω1 as we want for the complex structure of the torus. Furthermore,

if we write the flux 4-form that appears in F-theory in terms of those from type IIB as

G4 = β ∧ F3 − α ∧H3, we can write the left-hand side of the tadpole condition as

1

2

∫
M
G4 ∧G4 = −

∫
T 2

α ∧ β
∫
CY3

F3 ∧H3. (3.15)

If we normalize the F-theory torus volume so that
∫
T 2 α ∧ β = −1, this exactly reproduces

the tadpole condition in the type IIB picture. With K = dimH3
CY3

we’ve lumped the 2K

fluxes F0, . . . , FK−1, H0, . . . , HK−1 into the 2K components of G4. Also note that with this

definition of the flux 4-form, we can write the usual type IIB superpotential as

W =

∫
M

Ω4 ∧G4. (3.16)

As a result, we have made explicit the correspondence between type IIB supergravity and

F-theory. We continue by choosing a particular basis of 3-forms on the CY3 {Σi} with

i = 1, 2, . . . , dimH3
CY3

, and denote the intersection form in this basis as Qij so that

∫
CY3

Σi ∧ Σj = Qij. (3.17)

We can extend {Σi} to a basis of 4-forms ofM by wedging them with the 1-forms α and β on

the torus, {α ∧ Σa, β ∧ Σa}. In this basis, we denote the components of the field strength G4

by Na with a = 0, 1, . . . 2K−1, and the intersection form in the full 4 (complex) dimensional

space by ηab. Then, the tadpole condition in equation (3.10) can be written in terms of the

components of the two fluxes (F = F iΣi and H = H iΣi) as

L =
1

2
NaηabN

b = F iQijH
j ≤ L∗ (3.18)

We should then sum only over the fluxes that satisfy this inequality. We can accomplish this
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by summing over all fluxes while including a step function that enforces the inequality.

Index =
∑

Fluxes

θ(L∗ − L)

∫
d2nzd2τ δ2n+2(DW (z)) detD2W (3.19)

We write the step function as an integral over a delta function4,

θ(L∗ − L) =

∫ L∗

−∞
δ(L− L̃)dL̃ (3.20)

yielding

Index =
∑

Fluxes

∫ L∗

−∞
dL̃

∫
d2nzd2τ δ(L− L̃)δ2n+2(DW (z)) detD2W. (3.21)

By treating the fluxes N0, . . . , N2K−1 as continuous, we can approximate this sum by an

integral,

Index =

∫ L∗

−∞
dL̃

∫
d2KN

∫
d2nzd2τ δ(L− L̃)δ2n+2(DW (z)) detD2W. (3.22)

It is natural to define the index density in moduli (and axio-dilaton) space by

µI(z, τ) =

∫ L∗

−∞
dL̃

∫
d2KN δ(L− L̃)δ2n+2(DW (z)) detD2W. (3.23)

Upon integrating over τ, z, this will then equal the total index. We now pursue the logic of

[53, 54] and rewrite this index density in terms of geometric properties of the moduli space.

A first step in doing this is to change basis from {α ∧ Σa, β ∧ Σa} to the set of linearly

independent 4-forms {Ω4, DaΩ4, D0DiΩ4} ∪ {c.c} where a ranges over the complex moduli

as well as the axio-dilaton while i ranges only over the moduli. This proposed basis consists

of 4(n + 1) elements where n denotes the number of complex moduli in our theory, which
4Note that in [54] the step-function is expressed in terms of a contour integral over an exponential eαL∗ .

Our expression in terms of a delta function proves to be more useful for the analysis incorporating warping
effects.
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agrees with the 2K elements of the original basis. This new basis satisfies

∫
M

Ω4 ∧ Ω̄4 = e−K(τ,z) (3.24)∫
M
DaΩ4 ∧ D̄b̄Ω̄4 = −e−K(τ,z)Kab̄ (3.25)∫

M
D0DiΩ4 ∧ D̄0̄D̄j̄Ω̄4 = e−K(τ,z)Kτ τ̄Kij̄, (3.26)

with all other combinations vanishing. We now manipulate this new basis in a way to produce

one that is orthonormal. First, by rescaling all of our basis elements by the factor eK(τ,z)/2,

the new basis won’t have any of the extra exponentials in their inner products:

∫
M
eK(τ,z)/2Ω4 ∧ eK(τ,z)/2Ω̄4 = 1 (3.27)∫

M
eK(τ,z)/2DiΩ4 ∧ eK(τ,z)/2D̄j̄Ω̄4 = −Kij̄ (3.28)∫

M
eK(τ,z)/2D0DiΩ4 ∧ eK(τ,z)/2D̄0̄D̄j̄Ω̄4 = Kτ τ̄Kij̄, (3.29)

And because of the properties of the covariant derivative, that is that it transforms co-

variantly under Kähler transformations, we can accomplish these changes by rescaling the

holomorphic four-form by this same factor:

Ω4 → eK(τ,z)/2Ω4. (3.30)

For notational simplicity we will redefine Ω4 to represent this rescaled version. When we

want to explicitly refer to the actual holomorphic 4-form, we will denote it as Ω̂4:

Ω4 = eK(τ,z)/2Ω̂4. (3.31)

Finally, we can consider any linear combination of the basis above. In particular, we consider

the set B = {Ω4, DAΩ4, D0DIΩ4} ∪ {c.c.} where DA ≡ eaADa, and the vielbeins eaA satisfy
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eaAe
b̄
B̄
Kab̄ = δAB̄, as usual. Our new basis is orthonormal:

∫
M

Ω4 ∧ Ω̄4 = 1 (3.32)∫
M
DAΩ4 ∧ D̄B̄Ω̄4 = −δAB̄ (3.33)∫

M
D0DIΩ4 ∧ D̄0̄D̄J̄Ω̄4 = δIJ̄ . (3.34)

The 4-form flux G4 in the new basis is given by

G4 = XΩ4 − Y ADAΩ4 + ZID0DIΩ4 + c.c. (3.35)

with X, Y Ā, Z Ī , X, Y
A
, Z

I being the coefficients of G4 in this basis. We have chosen the

signs in front of the various coefficients for later convenience. Note that G4 does not de-

pend on the complex structure moduli or axio-dilaton, which implies that the coefficients

X, Y Ā, Z Ī , X, Y
A
, Z

I must themselves depend on zi and τ in such a way as to cancel the

dependences arising from Ω4 and its derivatives in the expression for G4 above. Since G4

does not depend on the complex structure of the Calabi-Yau or the axio-dilaton, we can

relate these coefficients to various combinations of derivatives acting on the superpotential.
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In particular

W =

∫
Ω4 ∧G4 = X (3.36)

DAW =

∫
DAΩ4 ∧G4 = YA (3.37)

D0D0W = 0 (3.38)

D0DIW =

∫
D0DIΩ4 ∧G4 = ZI (3.39)

DIDJW =

∫
DIDJΩ4 ∧G4 = FIJKZK (3.40)

DIDJW = δIJX (3.41)

D0̄D0W = X (3.42)

D0̄DIW = 0. (3.43)

Note that we have defined the coefficients FIJK = i
∫
CY

Ω3 ∧ DIDJDKΩ3 = i
∫
CY

Ω3 ∧

∂I∂J∂KΩ3. Also, note thatW denotes the rescaled superpotential; when we want to explicitly

refer to the original one, we will once again place a hat on top of it (Ŵ ). We briefly divert

our attention to deriving these expressions for the components of G4.

• W = X

By the definition of the superpotential, we have

W =

∫
M
G4 ∧ Ω4

=

∫
M

(
XΩ4 − Y ADAΩ4 + ZID0DIΩ4 + c.c.

)
∧ Ω4 = X (3.44)

In the last step we used the orthonormality of the basis.

• DAW = YA
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Since G4 is independent of the moduli, we can move the covariant derivative inside the

integral so that it only hits Ω4.

DAW =

∫
M
G4 ∧DAΩ4 (3.45)

Then inserting the expression for G4 in the new basis and again using the orthonor-

mality of the basis (
∫
MDB̄Ω4 ∧DAΩ4 = −δB̄A), we obtain

DAW =

∫
M

(
XΩ4 − Y ADAΩ4 + ZID0DIΩ4 + c.c.

)
∧DAΩ4

= −Y B̄

∫
M
DB̄Ω4 ∧DAΩ4 = +YA (3.46)

• D0D0W = 0

Once again, since G4 is independent of the moduli, we have

D0D0W =

∫
M
G4 ∧D0D0Ω4 (3.47)

Now D0Ω4 is a (0, 1)∧ (3, 0)-form (where we highlight the order of the form in the fiber

and on the base respectively) since

D0Ω4 = (D0Ω1) ∧ Ω3 ∈ H0,1 ∧H3,0. (3.48)

In fact, we see that

Dτ Ω̂1 = (∂τ +Kτ ) (α− τβ) = Kτ (α− τβ) = Kτ Ω̂1 (3.49)

where we have used Kτ = −1/ (τ − τ). Using the fact that the vielbein e0
0 = 1/Kτ , we

have

D0Ω4 = Ω1 ∧ Ω3, (3.50)
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As a result, the expression under investigation reduces to

D0D0Ω4 =
(
D0Ω1

)
∧ Ω3. (3.51)

However we know that D0Ω1 = 0, so the identity holds.

• D0DIW = ZI

This identity follows from orthonormality:

D0DIW =

∫
M
G4∧D0DIΩ =

∫
M

(
XΩ4 − Y ADAΩ4 + ZID0DIΩ4 + c.c.

)
∧D0DIΩ = ZI

(3.52)

• DIDJW = FIJKZ
K

We will again use the definition for G4

DIDJW =

∫
M

(
XΩ4 − Y ADAΩ4 + ZID0DIΩ4 + c.c.

)
∧DIDJΩ4 (3.53)

It is useful to note that DADBΩ4 is a (2,2)-form. In fact, given the nature of our

Calabi-Yau 4-fold, essentially factorizing into a 3-fold and a torus, this (2,2)-form can

be decomposed as (2, 2) = (1, 0) ∧ (1, 2) ⊕ (0, 1) ∧ (2, 1). To see this, note that DAΩ4

could in principle be a mixture of a (3, 1)⊕ (4, 0), but the (4,0) component vanishes:

∫
M
DAΩ4 ∧ Ω4 = DA

(∫
M

Ω4 ∧ Ω4

)
−
∫
M

Ω4 ∧DAΩ4 = 0. (3.54)

The second term here vanishes since Ω4 varies holomorphically with respect to the

moduli space coordinates while the first term vanishes due to the definition of the

covariant derivative and the Kähler potential:

DA

(∫
M

Ω4 ∧ Ω4

)
= DAe

−K = ∂Ae
−K +KAe

−K = −KAe
−K +KAe

−K = 0. (3.55)
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Similarly DADBΩ4 could in principle have (2, 2)⊕ (3, 1)⊕ (4, 0) structure. However,

∫
M
DADBΩ4 ∧ Ω4 = DA

(∫
M
DBΩ4 ∧ Ω4

)
−
∫
M
DBΩ4 ∧DAΩ4 = 0 (3.56)

implying that there is no (4, 0) component. Furthermore

∫
M
DADBΩ4 ∧DCΩ4 = DA

(∫
M
DBΩ4 ∧DCΩ4

)
−
∫
M
DBΩ4 ∧DADCΩ4 (3.57)

the first term on the left-hand-side is equal to DAδBC = 0. The second term becomes

δAC

∫
M
DBΩ4 ∧ Ω4 = 0 (3.58)

which shows that there is no (3, 1) component in DADBΩ4 either and therefore that it

is completely contained in H2,2. Because of the direct product nature of the four-fold,

one can further break this up as

DADBΩ4 ∈ H1,0 ∧H1,2 ⊕H0,1 ∧H2,1. (3.59)

Now, DIDJΩ4 is precisely a (1, 0)∧ (1, 2)-form since the covariant derivatives only act

on the 3-fold factor. The only pieces of the integral in (3.53) that can yield a non-zero

result must then be of the form (0, 1)∧ (2, 1), which are thus proportional to D0DIΩ4.

This leaves us with

DIDJW = Z
K
∫
M
D0DKΩ4 ∧DIDJΩ4. (3.60)

The DK and D0 derivatives commute, so we have

DIDJW = Z
K
DK

(∫
M
D0Ω4 ∧DIDJΩ4

)
− ZK

∫
M
D0Ω4 ∧DKDIDJΩ4. (3.61)
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The first term on the right-hand-side vanishes due to orthonormality since D0Ω4 is a

(3,1)-form while DIDJΩ4 is a (1, 0)∧(1, 2)-form. Factorizing Ω4 = Ω1∧Ω3, we see that

D0Ω4 = Ω1 ∧ Ω3. The integral over the torus will simply yield a factor of −i (recall

that Ω1 refers to the rescaled holomorphic 1-form on the torus, so the usual factor of

e−K(τ,τ̄) is absent), leaving us with

DIDJW = iZ
K
∫
CY

Ω3 ∧DKDIDJΩ3. (3.62)

Pulling out all scaling factors and vielbeins, and explicitly writing out the covariant

derivatives, we see that the resulting derivatives can all be converted to partials. This

allows us to rearrange the ordering and finally gives

DIDJW = iZ
K
∫
CY

Ω3 ∧ ∂I∂J∂KΩ3 = FIJKZ
K (3.63)

where we have defined the coefficients FIJK = i
∫
CY Ω3 ∧ ∂I∂J∂KΩ3.

• D̄ĀDBW = δĀBX

First consider

D̄āDbŴ = ∂̄ā(∂b +Kb)Ŵ = (∂̄ā∂b +Kbā +Kb∂̄ā)Ŵ = KabŴ (3.64)

The first and last term vanish since Ŵ is holomorphic in the moduli. Then, since

W = X, by reintroducing the scaling factor eK/2 and the vielbeins, we have

D̄ĀDBW = δĀBX. (3.65)

• D̄0̄DIW = 0

We can easily see this by noting that the outer derivative is a regular partial derivative

and that this commutes with the inner derivative. Then, since Ŵ is holomorphic in τ ,
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∂̄0̄ sends the expression to zero.

We now return to our main analysis. With the expressions (3.36-3.43) we can then

rewrite all of our expressions in terms of these new functions on moduli space. For the

tadpole condition we obtain

L =
1

2
NηN =

1

2

∫
G4 ∧G4 = |X|2 − |Y |2 + |Z|2, (3.66)

where |Y |2 = Y
A
Y ĀδĀA, etc. The index density then becomes

µI(z, τ) =

∫ L∗

−∞
dL̃

∫
d2X d2n+2Y d2nZ J | det g| δ(L̃− |X|2 + |Y |2 − |Z|2)δ2n+2(YA) |X|2

× det

XδIJ − ZIZJ

X
FIJKZK

F IJKZK XδIJ − ZIZJ

X


(3.67)

Here J is the Jacobian obtained in changing variables from Na to X, YA, ZI , which we will

determine explicitly below. We have included an additional factor of | det g| which comes

from transforming both the delta functions and the determinant to the new variables, and

note that factors of eK cancel between the delta functions and the determinant.

Let us now compute the Jacobian |J |. In the original basis, the components of G4 were

given by Na. We can now write the Na in the new basis

N = η−1
(
XΠ− Y ADAΠ + ZID0DIΠ + c.c.

)
. (3.68)

Here the Πs are the periods of the rescaled holomorphic 4-form and are related to the usual

ones by a factor of eK/2.We can see from this expression that the change of basis is achieved

by the application of the matrix

M = η−1(Π,−DAΠ, D0DIΠ, c.c.). (3.69)
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If we use the convention that d2z = 1
2i
dz ∧ dz̄, we find that the appropriate Jacobian is

J = 22(n+1)| detM | = 4n+1| det η|−1/2| detM †ηM |1/2. (3.70)

We have M †ηM = diag(1,−1n+1,1n, 1,−1n+1,1n), which follows from our choice of an

orthonormal basis of 4-forms. This implies that the Jacobian is given by

J = 4n+1| det η|−1/2. (3.71)

The final expression is then (after explicitly integrating over YA),

µI(z, τ) = 4n+1| det η|−1/2

∫ L∗

−∞
dL̃

∫
d2X d2nZ | det g| δ(L̃− |X|2 − |Z|2)|X|2

× det

XδIJ − ZIZJ

X
FIJKZ

K

F IJKZK XδIJ − ZIZJ

X

 . (3.72)

We can explicitly integrate over the phases, leaving only integrals over the magnitudes |X|

and |Z|, showing that the tadpole delta function fixes the region of integration to lie on

a circle of radius
√
L̃ in the |X|, |Z| plane. There is therefore no need to integrate over

negative L̃s, and furthermore the remaining finite integral can be evaluated. Following this

approach, one can show that the index density has a nice geometrical interpretation [54]:

µI(z, τ) = det(R + ωI), (3.73)

where R is the curvature 2-form on the moduli space and ω is the Kähler form. For the case

of one complex modulus (and the axio-dilaton), this reduces to

µI = −π2| det η|−1/2ω0 ∧R1 (3.74)

where ω0 is the Kähler form on the axio-dilaton side while R1 is the curvature form on the
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moduli space side. In order to obtain this, one must use a relationship between the Kähler

and curvature forms on the axio-dilaton moduli space: R0 = −2ω0.

3.3.2 Incorporating Warping

The analysis above neglected the back-reaction of the fluxes on the geometry. These effects

become pronounced when one approaches the conifold locus essentially since one of the cycles

that carries flux collapses there. A complete treatment of warped Calabi-Yau geometry

involves using the machinery of generalized complex geometry [55, 45, 56]. However, a rough

method that produces the appropriate functional behavior induced by warping near the

conifold will suffice for our purposes. This behavior can be derived by taking the warped

Kähler potential to be approximated by [42]

e−K̃ =

∫
e−4A Ω ∧ Ω̄, (3.75)

where e−4A = 1 + e−4A0/c is the warp factor, with e−4A0 capturing the significant warping at

the conifold while c is a constant related to the overall volume of the Calabi-Yau manifold.

One can roughly divide up the Calabi-Yau manifold into two regions, one that corresponds

to the part near the tip of the conifold and another one that corresponds to the rest of the

manifold that we will call the bulk. In the bulk, the warp correction is negligible so that

e−4A → 1 there. As a result, we can write

e−K̃ ≈
∫

Bulk
Ω ∧ Ω̄ +

∫
Conifold

(
1 +

e−4A0

c

)
Ω ∧ Ω̄. (3.76)

In general, we will use tildes to denote quantities that include warp corrections. The warp-

corrected Kähler metric has been shown to have the near-conifold form [52, 47, 44, 43]

K̃ξξ̄ ≈
K1

k
− 1

2πk
log ξ +

Cw
k|ξ|4/3

= Kξξ̄ + K̂ξξ̄, (3.77)
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where ξ is the local coordinate around the conifold point, k = limξ,ξ̄→0 e
K(ξ,ξ̄) and K1 is

a constant (to leading order) associated with the Kähler metric’s expansion around the

conifold. The hatted quantity in the rightmost expression corresponds to the warp correction

to the original, unwarped Kähler metric. The constant Cw is on the order of the inverse

volume of the Calabi-Yau, capturing the suppression of the warping effects at large volume.

We find by integrating the expression for the Kähler metric in (3.77), that up to shifts

by functions holomorphic and antiholomorphic in ξ, we have

K̃ ≈ K + 9Cw|ξ|2/3 = K + K̂, (3.78)

K̃ξ ≈ Kξ + 3Cw
ξ̄1/3

ξ2/3
= Kξ + K̂ξ. (3.79)

To take warping into account in computing the vacuum count and index, we follow the basic

logic laid out above while incorporating various necessary modifications. First, we continue

to define quantities such as X, Y, and Z without making any reference to the warping.

This is perfectly fine since those are simply geometric quantities defined on the Calabi-Yau

itself. As a result, the logic for converting the step function θ(L∗ − L) into an integral is

unchanged. What does change however, are the expressions within the delta-functions and

the determinant of the fermion mass matrix. More precisely, the positions of the vacua are

now determined by the conditions DAW+K̂AW = 0, where the second term is the correction

due to warping. Thus, the delta-functions must now read

δ2n+2(YA + K̂AX), (3.80)

and the quantities appearing in the fermion mass matrix now have to incorporate warp

corrections:
(
DA + K̂A

)(
DB + K̂B

)
W . Note that at a vacuum we have the equivalence

∂A(DBW +K̂BW ) ≡
(
DA + K̂A

)(
DB + K̂B

)
W , and in general we will make use of similar
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equivalences in what follows. We have:

D0(DI + K̂I)W ≡ ZI , (3.81)(
DI + K̂I

)(
DJ + K̂J

)
W ≡ FIJKZ

K
+ K̂IJX + K̂JYI , (3.82)(

DI + K̂I

)(
DJ + K̂J

)
W ≡

(
δIJ̄ + K̂IJ̄

)
X. (3.83)

The first expression is a direct consequence of equation (3.39) together with the fact that

there is no τ dependence in the warping correction

D0(DI + K̂I)W = D0DIW +D0(K̂IW )

= ZI + K̂ID0W = ZI . (3.84)

The second expression is easily obtained by distributing the various derivatives and tossing

away terms proportional to (DJ + K̂J)W which vanish at the vacua.

(
DI + K̂I

)(
DJ + K̂J

)
W = DIDJW +DI(K̂JW ) + K̂I(DJ + K̂J)W

= DIDJW + K̂IJW + K̂JDIW

= FIJKZ̄K + K̂IJX + K̂JYI (3.85)

Finally, the third expression above is obtained by again distributing the derivatives and

tossing away terms proportional to
(
DJ + K̂J

)
W as well as recognizing that DIW̄ = 0.

(
DI + K̂I

)(
DJ + K̂J

)
W = DID̄J̄W̄ +DI(K̂JW ) + K̂I

(
DJ + K̂J

)
W

= δIJ̄W̄ + K̂IJ̄W̄

=
(
δIJ̄ + K̂IJ̄

)
X. (3.86)

Upon making these substitutions in order to include warping and then integrating over the
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YA we find the index density

µI = 4n+1| det η|−1/2

∫ L∗

−∞
dL̃

∫
d2X d2nZ | det g| δ

(
L̃− α|X|2 − |Z|2

)
|X|2 (3.87)

× det

 XµIJ̄ −
ZIZJ̄

X
FIJKZ

K
+ σIJX

F IJKZK̄ + σ̄IJX XµĪJ −
Z ĪZJ

X

 (3.88)

where α = 1− K̂IK̂
I

, µIJ̄ = δIJ̄ + K̂IJ̄ , and σIJ = K̂IJ − K̂IK̂J .

In order to compute this density, it proves helpful to consider the special case of one

complex modulus as well as the axio-dilaton. In this particular case, we obtain the expression

µI ∝
∫ L∗

−∞
dL̃

∫
d2X d2nZ | det g| δ

(
L̃− α|X|2 − |Z|2

) (
|Z|4 + (µ2 − |σ|2)|X|4 − (2µ+ |F|2)|X|2|Z|2

)
(3.89)

Here F = F111 is the only component of FIJK in the case of a single complex modulus and

similarly for the other indexed quantities. Note, that we have eliminated a few terms that

will integrate to zero because they depend explicitly on the phases of X,Z. Far from the

conifold, α approaches 1 since the warping corrections can then be neglected. However, when

one moves toward the conifold, α gets progressively smaller until at some critical value it

equals zero, and then the warping correction drives α negative. As long as α is positive, the

tadpole delta function fixes the range of integration so that |X| and |Z| lie on a finite ellipse.

Upon computing the integral, one therefore obtains a finite value for the index. However,

when α goes to zero, this ellipse becomes increasingly stretched until for α = 0, the range of

integration for |X| becomes unconstrained. At this point, the integral above for the index

density diverges. Then, as α goes negative, this divergence persists as the ellipse turns into

a hyperbola. Naively, this suggests that there should be an infinite number of vacua within

a finite disk surrounding the conifold point. This is in stark disagreement with numerical

Monte-Carlo searches which find a finite density near the conifold (we discuss such numerical

simulations in detail below). However, a more careful analysis that we carry out next takes
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into account the finite bound on the fluxes and yields a finite result.

3.3.3 Finite Fluxes

One major difference between the analysis above and numerical simulations is the range of

the fluxes. In numerical simulations fluxes are necessarily kept within a finite range, while in

the derivation above, arbitrarily large ones were included. To derive a theoretical distribution

that mirrors the effects seen in numerical studies, it is best to include a bound on the fluxes.

This complicates the final expression for the theoretical distribution but, of course, the finite

bound is physically well motivated since the supergravity approximation breaks down for

large enough fluxes. In the absence of warping, the finite range does not lead to dramatic

differences from naively taking the bound to infinity, but as we will see, this limit is more

involved when warping is included.

Suppose that we bound our fluxes by the range Ni ∈ [−Λ,Λ]. The Na and X, Y, Z

variables are related by

X = NaΠa (3.90)

YA = NaDAΠa (3.91)

ZI = NaD0DIΠa. (3.92)

Here the Π’s are the periods of the rescaled holomorphic form, as before. We would thus

expect the ranges on X, Y, Z to be moduli dependent. Let us separate the phase and mag-

nitude of X, Y, Z. Although in principle, the ranges of the phases may have a complicated

dependence on both the moduli and the magnitudes |X|, |Y |, |Z|, we will neglect this sub-

tlety and suppose that they range over the usual [0, 2π]. As a result, we can easily integrate

these variables out, leaving us with the integrals over the magnitudes. We would expect to
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have these range over the values

|X| ∈ [0,ΛfX(ξ, τ)] (3.93)

|YA| ∈ [0,ΛfY (ξ, τ)] (3.94)

|ZI | ∈ [0,ΛfZ(ξ, τ)] (3.95)

for particular functions on moduli space fX , fY , and fZ . Let us consider fX . The largest

value that |X| will take corresponds to the fluxes Na taking one of their two extreme values

of ±Λ; which of the two possibilities maximizes |X| depends on the near conifold behavior

of the periods. We must choose the eight signs for the eight fluxes Na in such a way that we

maximize the expression

fX = max

(∣∣∣∣∣∑
a

±Πa(ξ, τ)

∣∣∣∣∣
)
. (3.96)

Since the periods are all finite in the near conifold limit, the ξ dependence decouples. How-

ever, the value for fX will still be τ dependent. As far as fY and fZ are concerned, the idea

is the same except for the fact that the ξ dependence can’t be neglected due to logarithmic

divergences. In particular, we find that

fX = fX(τ) (3.97)

fY = f 1
Y (τ)|1− f 2

Y (τ) log(ξ)| (3.98)

fZ = f 1
Z(τ)|1− f 2

Z(τ) log(ξ)|. (3.99)

Here we have defined functions only of the axio-dilaton fX , f
1
Y , f

2
Y , f

1
Z , f

2
Z . Now consider a

fixed point in moduli space ξ as well as a fixed value for τ . Then the upper limits on these

integrals will involve particular constants multiplying the flux cutoff Λ. Integrating over the

variables Y0 in the expression for the index density, the delta function δ (Y0) fixes Y0 = 0,
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leaving us with

µI ∝
∫ L∗

−∞
dL̃

∫ fXΛ

0

|X|d|X|
∫ fY Λ

0

|Y |d|Y |
∫ fZΛ

0

|Z|d|Z| | det g| δ(L̃− α|X|2 − |Z|2)

× δ2
(
Y1 + K̂ξX

) (
|Z|4 +

(
µ2 − |σ|2

)
|X|4 −

(
2µ+ |F|2

)
|X|2|Z|2

)
. (3.100)

The remaining delta function constraints come from the tadpole condition and the supersym-

metry condition DξW + K̂ξW = 0, equivalent to Y1 + K̂ξX = 0. Satisfying these constraints

will place complicated restrictions on the upper and lower bounds of the remaining integrals.

Let us first examine the region of integration imposed by the supersymmetry constraint

Y1 + K̂ξX = 0:

• When |X| is at its lower bound of 0, the constraint is trivial to satisfy by also setting

|Y1| = 0. Thus, the lower bound of |X| is unchanged.

• However, when |X| > 0, there will be points in the moduli space where the warping cor-

rection to the Kähler connection is rather large so that
∣∣∣K̂ξX

∣∣∣ > fY Λ. At such points,

the supersymmetry constraint cannot be satisfied and so the delta function imposing

the constraint Y1 = −K̂ξX must vanish. We thus see that the upper bound of |X| is re-

stricted in such cases to fY Λ/
∣∣∣K̂ξ

∣∣∣. Solving the delta function constraint for Y1 requires

that the upper bound of the |X| integral be taken to be |X|Λ = min
(

ΛfX ,ΛfY /
∣∣∣K̂ξ

∣∣∣).
Note that in our scheme for bounding the fluxes, the upper limits of integration for |X|, |Y |

and |Z| all scale with the cutoff Λ in the same way. So, simply taking the limit as Λ → ∞

won’t affect the analysis. From our scheme’s perspective, it is only in the strictly infinite case

where the naive divergence reappears as discussed at the end of section 3.3.2. (One could

imagine more complicated schemes for bounding the fluxes, treating X, Y , and Z indepen-

dently, allowing for a set of limits that recover the divergent results of the naive approach.

Such a scheme would increase the difficulty of relating the numerical and theoretical analyses,

as investigated in the unwarped case in [53, 54, 32] and also summarized above.
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Given the new limits of integration on |X|, we can freely integrate out the delta function

fixing the value of Y1:

µI ∝
∫ L∗

−∞
dL̃

∫ |X|Λ
0

|X|d|X|
∫ fZΛ

0

|Z|d|Z| | det g| δ
(
L̃− α|X|2 − |Z|2

)
×

(
|Z|4 +

(
µ2 − |σ|2

)
|X|4 −

(
2µ+ |F|2

)
|X|2|Z|2

)
. (3.101)

To simplify our notation, let us change variables to u = |X|2 and v = |Z|2. The density can

then be written as

µI ∝
∫ L∗

−∞
dL̃

∫ uΛ

0

du

∫ f2
ZΛ2

0

dv | det g| δ
(
L̃− αu− v

) (
v +

(
µ2 − |σ|2

)
u2 −

(
2µ+ |F|2

)
uv
)

(3.102)

where uΛ = |X|2Λ = min
(

Λ2f 2
X ,Λ

2f 2
Y /
∣∣∣K̂ξ

∣∣∣2)
It is useful to consider the two cases α > 0 and α < 0, separately.

The case α > 0

The delta function in (3.102) arising from the tadpole condition is δ(L̃ − αu − v). This

constrains the value of v to be L̃− αu. However, since v must itself lie in a certain interval,

this indirectly also constrains the region of integration on the L̃/u-plane. In the sections to

follow we will adhere to the notation X±up, X
±
down for the upper (up) and lower (down) limit

of integration for the variable X in the case of positive (+) and negative (−) α.

Let us first determine the lower bounds on L̃ and u:

• Since u, v and α are all both positive, the tadpole delta function fixes L̃ to be positive

as well. As a result, we don’t have to integrate over negative L̃s and therefore restrict

the lower limit of integration for L̃ to be zero:

L̃+
down = 0. (3.103)

• If the upper bound vup = f 2
ZΛ2 on v is too small so that vup < L̃ for a fixed L̃, then the
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delta function cannot be satisfied for arbitrarily small u. As a result, the lower limit on

u must then be taken to be
(
L̃− f 2

ZΛ2
)
/α. If instead vup ≥ L̃ then it is consistent to

take the lower bound on u to be 0. In order to incorporate both of these possibilities,

we take the lower bound on u to be

u+
down = max

(
0,
L̃− f 2

ZΛ2

α

)
. (3.104)

Now for the upper bounds:

• For large values of L̃ the values that u and v must take on in order to satisfy the

tadpole delta function become large as well. As a result, if the upper limit L∗ for L̃ is

too large, the delta function may vanish identically for all values of u and v. It may

therefore be necessary to cutoff the upper integration bound for L̃. In particular we

will set

L+
up = min (L∗, LΛ) where LΛ = αuΛ + f 2

ZΛ2. (3.105)

• If, at a fixed L̃, we had αuΛ > L̃, then since the lower bound on v is 0, this places an

upper bound on u of L̃/α. If the inequality is reversed, then the upper bound on u is

uΛ. So, in general the upper bound on u is

u+
up = min

(
uΛ, L̃/α

)
. (3.106)

Various possible regions of integration in the L̃/u-plane are illustrated in figure 3.1.

Using the bounds described above and integrating over v yields

µ+
I ∝

∫ L+
up

0

dL̃

∫ u+
up(L̃)

u+
down(L̃)

du| det g|
((

L̃− αu
)2

+ βu2 + γu
(
L̃− αu

))
(3.107)

where and β = µ2−|σ|2 and γ = −2µ−|F|2. Then, expanding everything out and integrating
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over u, we obtain

µ+
I ∝

∫ L+
up

0

dL̃| det g|

(
L̃2
(
u+

up − u+
down

)
+
γ − 2α

2
L̃
((
u+

up

)2 −
(
u+

down

)2
)

+
α2 + β − αγ

3

((
u+

up

)3 −
(
u+

down

)3
))

where the L̃ dependence of uup and udown has been suppressed in the last line.

In order to integrate over L̃, we must separate the integral above into two parts since

u+
up and u+

down are different functions of L̃. Let I +
up be the portion of the integral involving

terms containing powers of u+
up and I +

down be the portion of the integral containing u+
down.

Note that we will remove the |det g| factor from these integrals. Focusing first on I +
up we

see that for5 0 < L̃/α < u+
up (L∗), we can replace instances of u+

up

(
L̃
)
in the integral with

L̃/α, while if u+
up (L∗) < L̃/α, then u+

up = uΛ, which is independent of L̃. So I +
up splits into

integrals over the two regions:

I +
up =

∫ αu+
up(L∗)

0

dL̃

(
1

α
+
γ − 2α

2α2
+
α2 + β − αγ

3α3

)
L̃3

+

∫ L+
up

αu+
up(L∗)

dL̃

(
L̃2uΛ +

γ − 2α

2
L̃u2

Λ +
α2 + β − αγ

3
u3

Λ

)
(3.108)

Integrating yields

I +
up =

(
1

α
+
γ − 2α

2α2
+
α2 + β − αγ

3α3

)
α4
(
u+

up (L∗)
)4

4

+

((
L+

up

)3 − α3
(
u+

up (L∗)
)3
)
uΛ

3
+
γ − 2α

4

((
L+

up

)2 − α2
(
u+

up (L∗)
)3
)
u2

Λ (3.109)

+
α2 + β − αγ

3

(
L+

up − αu+
up (L∗)

)
u3

Λ

For the integral I +
down, we consider the regions 0 < L̃ < f 2

ZΛ and f 2
ZΛ < L̃. In the first

5Note that we could have considered u+
up
(
L+

up
)
instead of u+

up (L∗) as the upper part of the interval.
However, recall that L+

up is the smaller of either L∗ or LΛ. If L∗ > LΛ, u+
up
(
L+

up
)

= u+
up (LΛ) = uΛ since

from the definition of LΛ, the inequality uΛ < LΛ/α always holds.
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case, u+
down = 0 in which case this entire portion of the integral vanishes, while in the second,

u+
down =

(
L̃− f 2

ZΛ
)
/α. If L∗ < f 2

ZΛ2 then the entirety of I +
down = 0, so we have

I +
down = −θ

(
L∗ − f 2

ZΛ2
) ∫ L+

up

f2
ZΛ2

dL̃

(
1

α

(
L̃3 − f 2

ZΛ2L̃2
)

+
γ − 2α

2α2

(
L̃3 − 2f 2

ZΛ2L̃2 + f 4
ZΛ4L̃

)
+
α2 + β − αγ

3α3

(
L̃3 − 3f 2

ZΛ2L̃2 + 3f 4
ZΛ4L̃− f 6

ZΛ6
))

= −θ
(
L∗ − f 2

ZΛ2
) ∫ L+

up

f2
ZΛ2

dL̃

((
1

α
+
γ − 2α

2α2
+
α2 + β − αγ

3α3

)
L̃3 (3.110)

− f 2
ZΛ2

(
1

α
+
γ − 2α

α2
+
α2 + β − αγ

α3

)
L̃2

+ f 4
ZΛ4

(
γ − 2α

2α2
+
α2 + β − αγ

α3

)
L̃− f 6

ZΛ6α
2 + β − αγ

3α3

)

Integrating yields

I +
down = −θ

(
L∗ − f 2

ZΛ2
)(

f 8
ZΛ8

(
1

12α
− γ − 2α

24α2
+
α2 + β − αγ

12α3

)
− f 6

ZΛ6α
2 + β − αγ

3α3
L+

up + f 4
ZΛ4

(
γ − 2α

4α2
+
α2 + β − αγ

2α3

)(
L+

up

)2 (3.111)

− 1

3
f 2
ZΛ2

(
1

α
+
γ − 2α

α2
+
α2 + β − αγ

α3

)(
L+

up

)3
+

(
1

4α
+
γ − 2α

8α2
+
α2 + β − αγ

12α3

)(
L+

up

)4

)

Notice that when one ignores warping and the finite fluxes, α = 1, K̂ξ = 0, and Λ → ∞,

implying β = 1, γ = −2 − |F|2, u+
up (L∗) = L∗, and L+

up = L∗. In this case, we must go

back to the expression (3.108) and note that the second integral in that expression vanishes

since the lower and upper bound of integration are both L∗. Furthermore the integral I +
down

vanishes due to the θ-function prefactor. The index density in the unwarped case is thus

µUnwarped
I (ξ, τ) = |det g|I +

up = |det g| L
4
∗

4

(
6 + 3γ − 6 + 2 + 2β − 2γ

6

)
= |det g| L

4
∗

4!
(2− |F|2)

(3.112)

This precise combination gives us the curvature tensor as argued in [53, 54]. So, our ex-
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pression reduces to the correct form in the unwarped, infinite flux case. We now turn our

attention to the case where α < 0.

The case α < 0

Once again, we first establish the lower and upper bounds on L̃ and u.

Let us begin by analyzing the lower bounds.

• The tadpole delta function fixes L̃ = αu + v. The smallest value that L̃ can take on

therefore corresponds to taking u at its maximum (since α < 0) and v at its minimum.

As a result, we find

L−down = αuΛ. (3.113)

Note that this is negative.

• Consider some fixed L̃ ≤ f 2
ZΛ2. If L̃ > 0, then there is always a v = L̃ to cancel it, and

the lower bound for u in this case is 0. However, if L̃ < 0, the fact that v ≥ 0 implies

that for the constraint to hold, we need the lower bound for u to be L̃/α (which is

positive). So in general, the lower bound for u is

u−down = max
(

0, L̃/α
)
. (3.114)

We now turn to the upper bounds on L̃ and u.

• The largest L̃ that could possibly satisfy the tadpole condition L̃ = αu+ v is obtained

by taking u at its lower limit of zero and v at its upper limit of f 2
ZΛ2. This gives

L̃ = f 2
ZΛ2. If L∗ is smaller than this value, we must keep the upper limit at L∗.

Otherwise, it must be modified so that we take

L−up = min(L∗, f
2
ZΛ2). (3.115)
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• Consider again a fixed L̃. Then, since u is given by u = (L̃− v)/α, the largest u that

can satisfy the tadpole condition corresponds to taking v as its maximum value (since

α < 0). This would give u = (L̃ − f 2
ZΛ2)/α. If this falls within the original range of

integration, the delta function will vanish identically for large u. We can then restrict

the upper bound for u so that

u−up = min
(
uΛ,
(
L̃− f 2

ZΛ2
)
/α
)

(3.116)

Given these bounds on u and L̃, we may now integrate over v, eliminating the tadpole delta

function to get

µ−I ∝
∫ L−

up

L−
down

dL̃

∫ u−up(L̃)

u−down(L̃)
du | det g|

(
L̃2 + (γ − 2α)L̃u+

(
α2 + β − αγ

)
u2
)
. (3.117)

Carrying out the u integration yields

µ−I ∝
∫ L−

up

L−
down

dL̃| det g|

(
L̃2
(
u−up − u−down

)
+ L̃

(
γ − 2α

2

)((
u−up

)2 −
(
u−down

)2
)

+
α2 + β − αγ

3

((
u−up

)3 −
(
u−down

)3
))

(3.118)

where we have suppressed the L̃ dependence of u−up, and u
−
down.

As before, split the integral into two parts, I −
up and I −

down, involving just the u−up and

u−down parts, respectively. To compute I −
up we consider two cases:

• Suppose L∗ < LΛ, where we recall LΛ = αuΛ + f 2
ZΛ2. Note that since α < 0, we have

that LΛ < f 2
ZΛ2, and thus, L−up = L∗ in this case. We also see that u−up = uΛ, and so in

this case, the integral I −
up is simply

I −
up =

∫ L∗

L−
down

dL̃

(
L̃2uΛ + L̃

(
γ − 2α

2

)
u2

Λ +
α2 + β − αγ

3
u3

Λ

)
(3.119)
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• Suppose that L∗ > LΛ. In this case, for L̃ < LΛ, u−up = uΛ as before, but when L̃ > LΛ

we have u−up =
(
L̃− f 2

ZΛ2
)
/α. So the integral splits into two parts

I −
up =

∫ LΛ

L−
down

dL̃

(
L̃2uΛ + L̃

(
γ − 2α

2

)
u2

Λ +
α2 + β − αγ

3
u3

Λ

)

+

∫ L−
up

LΛ

dL̃

(
L̃2

(
L̃− f 2

ZΛ2

α

)
+ L̃

(
γ − 2α

2

)(
L̃− f 2

ZΛ2

α

)2

+
α2 + β − αγ

3

(
L̃− f 2

ZΛ2

α

)3)
(3.120)

These two expressions can be joined if we introduce Lmid = min (L∗, LΛ):

I −
up =

∫ Lmid

L−
down

dL̃

(
L̃2uΛ + L̃

(
γ − 2α

2

)
u2

Λ +
α2 + β − αγ

3
u3

Λ

)

+

∫ L−
up

Lmid

dL̃

(
L̃2

(
L̃− f 2

ZΛ2

α

)
+

(
γ − 2α

2

)
L̃

(
L̃− f 2

ZΛ2

α

)2

+
α2 + β − αγ

3

(
L̃− f 2

ZΛ2

α

)3)
(3.121)

The integral in the second line above vanishes if Lmid = L∗, since in that case L−up also is L∗.

Carrying out the integral yields (after plugging in L−down = αuΛ)

I −
up =

uΛ

3

(
L3

mid − α3u3
Λ

)
+
γ − 2α

4
u2

Λ

(
L2

mid − α2u2
Λ

)
+
α2 + β − αγ

3
u3

Λ (Lmid − αuΛ)(3.122)

+
1

4

(
1

α
+
γ − 2α

2α2
+
α2 + β − αγ

3α3

)((
L−up

)4 − L4
mid

)
(3.123)

− f 2
ZΛ2

3

(
1

α
+
γ − 2α

α2
+
α2 + β − αγ

α3

)((
L−up

)3 − L3
mid

)
(3.124)

+
f 4
ZΛ4

2

(
γ − 2α

2α2
+
α2 + β − αγ

α3

)((
L−up

)2 − L2
mid

)
(3.125)

− f 6
ZΛ6

(
α2 + β − αγ

3α3

)(
L−up − Lmid

)
(3.126)

The integral I −
down vanishes when L̃ > 0 since in that case u−down = 0. Thus, the only region
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that contributes is where L−down ≤ L̃ ≤ 0, in which u−down = L̃/α. We have,

I −
down = −

∫ 0

L−
down

dL̃

(
1

α
L̃3 +

γ − 2α

2α2
L̃3 +

α2 + β − αγ
3α3

L̃3

)
(3.127)

which gives

I −
down =

1

4

(
1

α
+
γ − 2α

2α2
+
α2 + β − αγ

3α3

)
α4u4

Λ (3.128)

where we have again used L−down = αuΛ.

The full index density is thus

µI(ξ, τ)/ det g =
(
I +

up + I +
down

)
θ(α) +

(
I −

up + I −
down

)
θ(−α) (3.129)

In the unwarped, infinite flux case where a concise geometric result is obtained, one can

integrate out the axio-dilaton to obtain an effective density only in terms of the complex

moduli. However, in our case this type of integration proves intractable. As a result we will,

when comparing with simulations, have to fix a value of the axio-dilaton and compare the

un-integrated form of our density. We now turn to a numerical study of this problem.

3.4 Numerical Vacuum Statistics

To perform a numerical study of the distribution of vacua in moduli space near the coni-

fold point, we will randomly choose appropriate fluxes F = (F0, F1, F2, F3) and H =

(H0, H1, H2, H3) and then solve the conditions DτW = 0 and DξW = 0 for the moduli

space coordinate ξ as well as for the axio-dilaton τ . Here W = NiΠi is the superpotential,

and N is an 8-vector whose first four components are those of F and last four are those of

H. We work in a basis such that the vector of 4-fold periods Π = (Σ, τΣ), where Σ is the

vector of periods on the 3-fold. Near the conifold point, the vector of 3-fold periods takes
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the form:

Σ =
∞∑
n=0

anξ
n + bξ log(−iξ), (3.130)

where the an and b are constant vectors associated with the expansion of the periods. Note

that in the case of a single complex modulus, the vector b = (0, 0, 0, b0), since only Σ0 has

non-trivial logarithmic behavior near the conifold. Also, the local coordinate around the

conifold point is proportional to Σ3, which implies that the vector a0 = (0, a2
0, a

1
0, a

0
0). We

begin by illustrating this approach in the case where the warping correction is neglected.

3.4.1 Unwarped Analysis

The unwarped Kähler potential is

e−K = −iΣ·Q·Σ = −i
(
(an ·Q · am)ξ̄nξm + (b ·Q · am)ξmξ̄ log(iξ) + (an ·Q · b)ξ̄nξ log(−iξ)

)
,

(3.131)

where the term proportional to b ·Q · b has been dropped since given b and η it vanishes.

For supersymmetric vacua in the unwarped case

DξW = N · (∂ξΠ + ΠKξ) = 0. (3.132)

Keeping logarithmic and constant terms gives

(F − τH) · (a1 + b (log(−iξ) + 1))− (F − τH) · a0
a0 ·Q · a1

a0 ·Q · a0

= 0. (3.133)

where the fact that a0 ·Q ·b = 0 has been used to simplify the expression. This is an equation

of the form

A+ B log(−iξ) = 0, (3.134)
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with

A = (F − τH) · b(a0 ·Q · a0) + (F − τH) · a1(a0 ·Q · a0)− (F − τH) · a0(a1 ·Q · a0)(3.135)

B = (F − τH) · b(a0 ·Q · a0). (3.136)

The leading-order constraints arising from requiring DτW = 0 are

τ =
F · Σ
H · Σ

=
F · a0

H · a0

. (3.137)

This implies that

F − τH =
(H · a0)F − (F · a0)H

H · a0

. (3.138)

As a result, we can quickly see that

|ξ| = |e−A/B|. (3.139)

Before considering the effects of warp corrections, it is worth determining how close to the

conifold vacua may be found in the unwarped scenario. The DξW = 0 constraint implies

that |ξ| is exponentially suppressed by the ratio of |A/B|, so if |A| is even just a couple of

orders of magnitude greater than |B|, we should expect to see vacua on the order of e−100

units away from the conifold point—indeed, this has been observed in previous studies [32].

In order for |A| to differ appreciably from |B| the quantity |(F − τH) · b| should be relatively

small compared to |(F−τH) ·a0| or |(F−τH) ·a1|. Using the form of the vector b above, this

indicates that the fluxes through the collapsing cycle, F3 and H3 should be small relative to

some of the other fluxes. We now turn to the warped analysis.
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3.4.2 Warped Analysis

Introducing warping leads to the corrections (3.78) and (3.79) to the Kähler potential and

its derivative. The modification to the near-conifold supersymmetric vacuum condition is

then

DξW −→ DξW + 3Cw
ξ̄1/3

ξ2/3
N · Π. (3.140)

Now, assuming that Cw is small (i.e. the volume of the 3-fold is large) these new terms will

matter only close to ξ = 0. The supersymmetry condition thus leads to

A+ B log(−iξ) + C ξ̄
1/3

ξ2/3
= 0, (3.141)

with A and B as before and

C = 3Cw(F − τH) · a0. (3.142)

We will turn to an in-depth analysis of the solutions to these equations in the following

section. However, before we get there we want to discuss the rough effects that the additional

warping term will have on the distribution.

In the unwarped case, we expect to find vacua at a distance e−100 or so away from the

conifold. This would require fluxes for which |A| ∼ 100|B|. Furthermore, for fluxes con-

strained to lie in (0, 100) this hierarchy is about the maximum order of magnitude difference

that one would expect. If however, Cw ∼ 10−20, then for |ξ| ∼ 10−100, the warp term contri-

bution is on the order of 1010, swamping the logarithmic contribution and requiring fluxes

for which |A| ∼ 1010 which lies beyond the range we consider.

In the region of strong warping where the logarithmic term is dominated by the warping

term, the distance of a vacuum from the conifold point is thus set by |C/A|3. Given that A

is at maximum of roughly 100 or so, the constant Cw, and thus, the overall volume of the

Calabi-Yau, determines how near the conifold vacua lie. This can dramatically truncate the

range—since the assumption of large but finite volume is well satisfied by volumes of order
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1020, but in those cases, vacua will not show up much closer than 10−60. We can get vacua

at around 10−120 by taking a volume of order 1040, but in the absence of warping, vacua as

far in as 10−200 are expected.

The main message of this argument is that warping pushes the vacua farther away from

the conifold point. Thus we expect to find in the next section that the conifold point no

longer acts like an accumulation point for vacua.

3.4.3 Monte-Carlo Vacua

For the numerical analysis, we use the Calabi-Yau manifold labeled model 3 in the appendix

of [52]. This family of Calabi-Yau can be expressed as a locus of octic polynomials in

WP4,1,1,1,1. The corresponding orientifold arises from a certain limit of F-theory compactified

on a Calabi-Yau fourfold hypersurface in WP12,8,1,1,1,1, following the methods of [57], and

briefly described in [40]. For our purposes, we use the fact that the fourfold has Euler

characteristic χ = 23328, which implies that Lmax = χ/24 = 972 for the tadpole condition

for flux compactification on the corresponding orientifolded 3-fold.

Since the warped form of the near conifold equation is not as simple to solve as in the

unwarped case, a slightly more involved approach is necessary. We begin by defining two

real variables ρ and θ such that

−iξ = ρ3eiθ (3.143)

We take ρ ≥ 0 and 0 ≤ θ ≤ 2π. In terms of these variables, eqn (3.141) and its complex

conjugate expression take the forms

A+ 3B ln(ρ) + iBθ +
C
ρ
e−iθ = 0 (3.144)

A+ 3B ln(ρ)− iBθ +
C
ρ
eiθ = 0. (3.145)

Multiplying the first equation by B and the second one by B, and then adding and subtracting
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the two, we find two purely real or imaginary equations. Letting A = aeiα, B = beiβ, and

C = ceiγ, we have

a sin(α− β) + bθ +
c

ρ
sin(γ − β − θ) = 0 (3.146)

a cos(α− β) + 3b log(ρ) +
c

ρ
cos(γ − β − θ) = 0. (3.147)

We now solve for ρ in terms of θ and then numerically solve the final equation for θ. It seems

natural to solve equation (3.146) for ρ since it is a linear equation. However, this approach

fails in the limit Cw → 0 since then c → 0 too. Instead we solve for ρ in equation (3.147).

One can rearrange the equation as

ρeΓ log(ρeΓ) = −ce
Γ

3b
cos(γ − β − θ). (3.148)

Here we have defined the constant Γ = a cos(α−β)
3b

. This is of the form x log(x) = y which has

the solution x = y/W (y) where W (y) is the Lambert W -function. We therefore find

ρ(θ) =
−c cos(γ − β − θ)

3bW (− ceΓ

3b
cos(γ − β − θ))

. (3.149)

Consider using this expression for ρ in equation (3.146), which now only depends on θ.

Under the assumption that there is only one near conifold vacuum for each set of fluxes,

the left-hand side must either start out positive, and go negative or vice versa. To find the

zero-crossing, we divide the region [0, 2π] into two equal pieces and then determine in which

region (if any) equation (3.146) changes sign. If such a region is found, we apply the same

method to that region, splitting it into two smaller intervals, continuing in this way until we

reach a predetermined level of accuracy.

There are two relevant comments to be brought up here. First, in equation (3.149) it is

not clear that the value of ρ is positive, or even real. We must therefore exclude the regions

where ρ is either negative or complex. Fortunately, if ρ is real, it is never negative since
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W (x) must have the same sign as x. A necessary and sufficient condition for ρ to be real is

that the argument of the Lambert W function is greater than or equal to −1/e. This means

that the relevant region to begin with may not be the entire interval [0, 2π]. Second, it turns

out that the Lambert W function has two real branches for arguments between −1/e and 0.

Thus, both of these branches must be considered.

To better compare the numerical and analytical and numerical distributions, we fix τ and

then select a random sets of fluxes F and H consistent with our choice of τ and satisfying

the tadpole condition, F ·Q ·H ≤ Lmax. For the particular model we consider, Lmax = 972,

and we display a run using τ = 2i, and Cw = 10−15 against the corresponding analytical

prediction in figure 3.2. We plot the vacuum count and integrated analytical distribution as

measured around the conifold point using a log scale for the distance from the conifold. As

is evident from the figure, the count receives two major contributions: the one farther away

from the conifold point is the usual contribution that is present without warping. However,

we also see a major contribution much closer to the conifold at a distance roughly on the

order of C3
w. This contribution is due to the strong warping effects and is matched by the

cumulative analytical results. Furthermore, notice that the number of vacua found within

this critical distance of roughly C3
w is negligible. This supports our conjecture that the vacua

that would have been present near the conifold point without warping are now either absent

or pushed farther away. In other words, the conifold point is no longer an accumulation

point of vacua to the same extent that it was without incorporating warping into the story.

3.5 Discussion

We’ve analyzed the distribution of flux vacua in the vicinity of the conifold point, including

the effects of warping, and confirmed our results by a direct numerical Monte Carlo search.

In comparison with the well known results, that don’t include warping, we find a significant

dilution of vacua in close proximity to the conifold, with the proximity scale set by the
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volume of the Calabi-Yau compactification.

One complication in the analytical approach, relative to the unwarped case, is the need

to bound the fluxes – a physically sensible requirement but one that can be avoided in the

unwarped analysis, yielding the geometrical result of [53, 54]. In the unwarped story, there

is a very nice geometrical form of the distribution in terms of the curvature on moduli space.

Given the type of bounding that was necessary above, we cannot determine if a similar

interpretation is available to us in this instance.
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(a) (b)

(c) (d)

Figure 3.1: Various possible regions of integration for α > 0. In (a) L∗ > LΛ, where
LΛ = αuΛ + f 2

ZΛ2 and uΛ = min
(

Λ2f 2
X ,Λ

2f 2
Y /K̂

2
ξ

)
so the region is cut off at uΛ. In (b)

f 2
ZΛ2 < L∗ < LΛ. In (c), L∗ < f 2

ZΛ2, and uΛ < L∗/α. Finally, (d) shows a region where
L∗ < f 2

ZΛ2 and uΛ > L∗/α.
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Figure 3.2: A comparison between numerical and analytical distributions. Red circles mark
the numerical data while the blue curve is the integrated analytical distribution. Distance
from the conifold |ξ| is plotted on a log scale on the horizontal axis, while the vacuum count
is plotted on the vertical axis.
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Chapter 4

Exploring Spiral Inflation in String

Theory

4.1 Introduction

It is widely believed that the early universe underwent a dramatic expansion called inflation

during which its size increased exponentially. There are many reasons to believe this, most

notably the incredibly successful prediction of the anisotropies found in the power spectrum

of the cosmic microwave background. Being of such fundamental importance in early universe

cosmology it is essential that it is embeddable within the structure of string theory.

There are multiple ways to approach inflation, most notably slow-roll inflation. Recently

a novel perspective on this kind of inflation was offered under the name spiral inflation [58].

Spiral inflation is very interesting from the perspective of string theory since the type of

potentials required to sustain it are very natural near the conifold point. Below we will

briefly review the ideas behind spiral inflation and then investigate if it can be realized in

string theory. Our results are negative in that whenever spiral inflation seems to be realized,

the inflation is actually driven by a non-zero vacuum energy. We back this assertion up with

a numerical investigation.
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4.2 Spiral Inflation

From the perspective of string theory, it is reasonable to suspect that multiple scalar fields

participated in the inflationary phase of the universe. However the generalization of the

standard slow-roll parameters to the case of multi-field inflation is nontrivial and many

proposals have appeared in the literature [58, 59, 60, 61].

One recent proposal [58] is particularly interesting from the perspective of string theory

since, as we will see in more detail below, it requires potentials with non trivial monodromies

around special points in their field space, a situation that is very natural in string theory.

To see how one arrives at such a conclusion, we briefly review the analysis from [58].

4.2.1 Slow-Roll Conditions for Multiple Fields

The analysis of slow-roll inflation begins with the assertion that the Hubble parameter must

vary slowly (this will produce an exponential expansion). In other words the relative change

of H during one Hubble time, 1/H, must be small

∣∣∣∣∣ ḢH2

∣∣∣∣∣� 1. (4.1)

We consider multiple fields φ1, φ2, . . . , φn taking on homogeneous configurations φi(t). One

can then write the Hubble parameter as

H2 =
8πG

3

(
1

2
φ̇i

2
+ V (φi)

)
. (4.2)

This gives

2HḢ =
8πG

3

(
φ̈i + ∂iV

)
φ̇i. (4.3)

The equations of motion for the scalar field in the background FRW metric are

φ̈i + 3Hφ̇i + ∂iV = 0. (4.4)
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Notice the additional term 3Hφ̇i referred to as the Hubble friction. This results from the

minimal coupling of the scalar fields to gravity. These equations can then be used to write

the expression for Ḣ as

Ḣ = −4πGφ̇2. (4.5)

The condition that the Hubble parameter changes slowly, (4.1), then gives

∣∣∣∣∣ ḢH2

∣∣∣∣∣� 1 →
1
2
φ̇i

2

1
2
φ̇i

2
+ V (φi)

� 1. (4.6)

This in turn implies that the dynamics of the field must be potential energy dominated

1

2
φ̇i

2 � V (φi). (4.7)

So far the analysis for the multiple field case does not differ from the standard single field

case. One can then define the first slow-roll parameter ε. Traditionally this is written in

terms of the potential and its first derivative but that way of writing it actually depends on

further conditions that do not have to be satisfied in the multiple field case. As a result we

stick with the dynamical definition

ε ≡
1
2
φ̇i

2

V (φi)
� 1. (4.8)

In order to obtain sustained inflation, one must also make sure that ε stays small or more

precisely that the relative change in ε during one Hubble time is small

ε̇

εH
� 1. (4.9)

Using the form for ε above, ε̇ can be written as

ε̇ = φ̈iφ̇i

1
2
φ̇j

2
+ V

V 2
+ 6H

(
1
2
φ̇i

2

V

)2

. (4.10)
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Using the fact that ε� 1, i.e. that the potential energy dominates over the kinetic energy,

we find
ε̇

εH
� 1 → η ≡ 1

H

2φ̈iφ̇i

φ̇j
2 � 1. (4.11)

In other words, the kinetic energy should not change much over a Hubble time. It is this last

expression that allows us to depart from the standard slow-roll conditions on the potential

when multiple fields are involved. Traditionally, one satisfies (4.11) by setting the acceleration

φ̈i to be very small. Together with the equations of motion this would imply that the slope

of the potential is proportional to 3Hφ̇i. Using the fact that the motion is potential energy

dominated this further implies that the slope must be small

∂iV ≈ −3Hφ̇i ≈ −
√

3

√
V

MP

φ̇i → M2
P

(
∂iV

V

)2

∼ φ̇i
2

V
� 1. (4.12)

However, in the present context it is clear that there are other ways to maintain small kinetic

energy without having a negligible acceleration. In particular, one only needs to ensure that

the acceleration is always perpendicular to the motion

~̈φ ⊥ ~̇φ → ~̈φ · ~̇φ� Hφ̇i
2
. (4.13)

As a result, no conditions are imposed on the steepness of the potential. Instead the con-

ditions are imposed on the dynamical trajectories that the fields travels on. The conclusion

of [58] is therefore that slow-roll inflation may be possible in steep potentials that otherwise

would have been overlooked by the standard slow-roll arguments.

4.2.2 Spiral Trajectories and the Global Properties of the Potential

Requiring the acceleration of the field to be orthogonal to its motion but not necessarily

small itself means that its trajectory must locally be roughly circular. This is why this

type of inflation was referred to as Spiral Inflation in [58]. If we choose the center of the
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circle to lie at φi = 0 and furthermore restrict to the case of two scalar fields φ1, φ2, we can

(after moving to polar coordinates) parametrize it as r = const with θ changing during the

evolution. In polar coordinates the equations of motion become

r̈ + 3Hṙ − rθ̇2 +
∂V

∂r
= 0 (4.14)

r2θ̈ + 2rṙθ̇ + 3Hr2θ̇ +
∂V

∂θ
= 0. (4.15)

It is clear that the only way a stable circular orbit can exist is if the potential in this regime

is radially attractive and furthermore if we balance the inward force due to the gradient of

the potential against the centrifugal term in the effective potential. Setting ṙ = 0 above

gives

rθ̇2 =
∂V

∂r
. (4.16)

In order for this type of inflation to differ significantly from standard slow-roll in a flat

potential, we really want the slope in the orthogonal (i.e. radial) direction to be large

enough so that we violate the standard slow-roll condition

∂V

∂r
∼ V

MP

. (4.17)

This means that the kinetic energy of the field is given by

1

2
r2θ̇2 =

1

2
r
∂V

∂r
∼ r

MP

V. (4.18)

We see that balancing the attractive radial force against the centrifugal force necessarily puts

the kinetic energy on the order of the potential (up to a factor of r). In order for this orbit

to still be potential energy dominated, one must therefore take r �MP . One can rearrange
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the above expression for the kinetic energy as

θ̇ =

√
2V

rMP

. (4.19)

The change in θ during one Hubble time is then approximately

∆θ =
θ̇

H
= θ̇

√
3M2

P

V
=
√

6MP/r (4.20)

Since we must take r � MP , we find that ∆θ is rather large. In other words, during a

single Hubble time, the field will cover a large angular displacement. In order to allow for

multiple e-foldings, we must then consider multiple laps around the origin. In order for the

acceleration to be orthogonal to the motion of the field, we must take θ̈ = 0. As is clear

from the equations of motion for θ, the potential must therefore have a monotonic slope in

the angular direction
∂V

∂θ
= −3Hr2θ̇. (4.21)

Clearly upon one revolution such a potential cannot return to its original value. As a result,

one is forced to consider potentials with multiple connected sheets. As was pointed out in

[58] this is very natural in string theory. In [58] one particular model was presented that

satisfies all of these constraints. We briefly review that model here. Consider the potential,

written in polar coordinates,

V (r, θ) = V0 + cθ +
c2

9αH2

rα

Rα+2
. (4.22)

We can obtain a stable circular orbit by initializing the system according to

r = R (4.23)

θ̇ = − c

3HR2
. (4.24)
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Despite initializing the system in this way, it is possible that the circular trajectory will still

decay over time. In particular one must make sure that r = R remains a minimum of the

effective potential even as one moves down the monodromy ladder. This can only be the case

if the angular momentum is conserved. Fortunately the angular momentum is conserved by

virtue of balancing the angular tilt against the Hubble friction. This can easily be seen by

rewriting the angular equation in terms of the angular momentum L = r2θ̇

L̇+ 3HL+
∂V

∂θ
= 0. (4.25)

Thus besides being critical for spiraling, balancing the Hubble friction agains the angular

slope also ensures that one can sustain the circular motion. As a result, the model above

that was introduced in [58] allows for the circular motion to be sustained indefinitely.

Clearly the monodromy of the potential was an essential part of the story without which a

sufficient number of e-foldings could not be achieved. This is particularly interesting from the

perspective of string theory since the scalar potential for the complex structure deformation

in flux compactifications of string theory on Calabi-Yau manifolds exhibit precisely such

monodromies near the conifold locus. We thus turn to studying the near conifold potential

of such models to see if one can realize spiral inflation in string theory.

4.3 Potentials in String Theory

The moduli space of string theory consists of two main sectors, the Kähler moduli space

and the complex structure moduli space. Out of these, only the complex structure moduli

can be stabilized by turning on fluxes on the internal manifold. We imagine that the Kähler

sector has already been stabilized in some way and focus on the complex structure moduli

space. As a result there will be contributions to the vacuum energy of the potential from

the Kähler side of the story. Also different classes of Calabi-Yaus have different values for

various parameters. As a result, we will below treat all of the parameters (including the
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vacuum energy) that go into defining a particular potential as adjustable.

We will focus on one parameter models and take the coordinate on moduli space to be ξ

and the axio-dilaton to be τ . The scalar potential is then given by

V (ξ, τ) =
eK

16τIρ3
I

(
Kξξ̄|DξW |2 +Kτ τ̄ |DτW |2

)
. (4.26)

Here ρI is related to the volume of the Calabi-Yau and is thus part of the Kähler moduli.

We imagine that it is stabilized in some other way and therefore only acts like a constant

here. The superpotential W is given by the Gukov-Vafa-Witten form [62]

W = ( ~F − τ ~H) · ~Π(ξ), (4.27)

and the covariant derivatives are computed as always like

DiW = ∂iW + (∂iK)W. (4.28)

In these expressions K is the Kähler potential on moduli space and the metric components

Kξξ̄ and Kτ τ̄ are given by applying two derivative to the Kähler potential Kij̄ = ∂i∂̄j̄K. The

vectors ~F = (F0,F1,F2,F3) and ~H = (H0,H1,H2,H3) are vectors of the components of the

fluxes F ,H in a certain basis of three-forms. Using modular invariance we set H3 = 0. The

vector ~Π = (Π3,Π2,Π1,Π0) is a vector of the periods of the holomorphic three-form Ω in the

basis of three-cycles, Ci, that is dual to whatever basis is chosen for the three-forms

Πi(ξ) =

∫
Ci

Ω. (4.29)

We choose the coordinate ξ on the moduli space in such a way that the conifold point, where

we take Π3 as the period over the collapsing cycle, occurs at ξ = 0 and furthermore normalize

the coordinate so that Π3 = ξ near ξ = 0.
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4.3.1 Near Conifold Form of the Metric and Potential

We pick a particular basis known as the symplectic basis where the intersection form takes

the form

Q =



0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


(4.30)

Near the conifold point of one parameter models, the periods are given by

Π3(z) = ξ (4.31)

Π2(z) = a0 + a1ξ (4.32)

Π1(z) = b0 + b1ξ (4.33)

Π0(z) =
ξ

2πi
log(−iξ) + c0 + c1ξ (4.34)

We now use these expression to derive the form of the Kähler potential, connection, and

metric as well as the superpotential and scalar potential.

Kähler potential, connection, and metric

The Kähler potential (for the complex structure moduli ξ) is given in terms of the periods

as

Ko = − log(iΠ†Q−1Π). (4.35)
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As |ξ| → 0, this remains regular. The connection Ko
ξ = ∂ξK

o also remains regular while the

the metric Ko
ξξ̄

= ∂ξ∂̄ξ̄K
o develops a logarithmic divergence

K0 = − log(k +
|ξ|2

2π
log |ξ|2)→ − log k (4.36)

K0
ξ = −eKo

(
kξ +

ξ̄

2π
(log |ξ|2 + 1)

)
→ −kξ

k
(4.37)

K0
ξξ̄ =

(
|Ko

ξ |2 −
1

πk
−
kξξ̄
k

)
− 1

2πk
log |ξ|2 → κ− 1

2πk
log |ξ|2. (4.38)

Here we have introduced various regular functions k(ξ), kξ(ξ), kξξ̄(ξ), and κ(ξ). Since we

are interested in the near conifold limit, we will evaluate them all at ξ = 0 so that they

essentially become model dependent constants.

Since we are working in the near conifold limit we must also consider the back-reaction

of the fluxes on the geometry in the form of warping. The warping correction to the Kähler

metric is given by [12, 42, 52]

Kξξ̄ = Ko
ξξ̄ + Cw|ξ|−4/3. (4.39)

One can integrate these to derive the warping correction to the Kähler connection

Kξ = Ko
ξ + 3Cw

ξ̄1/3

ξ2/3
. (4.40)

The warping correction to the Kähler potential is regular and therefore subleading com-

pared to the terms that are being kept in this approximation. We now move on to the

superpotential.

Superpotential

The superpotential is given in terms of the flux components and the periods as

W = (Fi − τHi)Πi(ξ) (4.41)
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and is regular as |ξ| → 0 (where regular involves terms like ξ log ξ). The (ordinary) derivative

of W is

Wξ = wξ +
F3

2πi
log ξ. (4.42)

Here we have isolated all of the regular terms fromWξ in the quantity wξ in order to highlight

the logarithmic divergence in Wξ. The covariant derivative of W which is what is used in

defining the scalar potential is then given by

DξW = Wξ +KξW =

(
wξ −

kξ
k
w

)
+

(
F3

2πi
log ξ + 3Cw

ξ̄1/3

ξ2/3
w

)
(4.43)

where again we highlight the divergent terms. For simplicity we lump all of the regular terms

into a function that we will call ω so that

DξW = ω +

(
F3

2πi
log ξ + 3Cw

ξ̄1/3

ξ2/3
w

)
(4.44)

The covariant derivative with respect to the axio-dilaton is given by

DτW =
1

τ̄ − τ
(Fi − τ̄Hi)Πi(ξ) =

M

τ − τ̄
. (4.45)

Here we have defined a function M that is regular in ξ. As a result we will treat it as an

adjustable parameter (that technically depends on τ). In terms of polar coordinates r, θ we

can write

DξW = ω +
F3

2πi
log r +

F3

2π
θ + 3Cwr

−1/3e−iθw (4.46)
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The scalar potential

We now have all of the ingredients necessary to construct the full scalar potential. If we

write w = |w|eiθw and ω = |ω|eiθω the square of the covariant derivative becomes

|DξW |2 = |ω|2 +

(
F3

2π

)2

(log r)2 +

(
F3

2π

)2

θ2 + 9C2
wr
−2/3|w|2 +

F3

π
|ω| sin(θω) log r

+
F3

π
|ω| cos(θω)θ + 6Cw|ω||w|r−1/3 cos(θω + θw − θ) +

3F3

π
|w|Cwr−1/3 log r sin(θw − θ) +

3F3

π
|w|Cwr−1/3θ cos(θw − θ). (4.47)

We see that the angular dependence comes in two versions: periodic and non-periodic. Out

of these, the periodic dependence will complicate things quite a bit as far as spiral inflation

goes. The reason is that since we want to balance the Hubble friction against the angular

slope, a varying slope will result in the angular momentum not being conserved and thereby

forcing the orbit to move closer to or farther away from the conifold. Although in principle

these variations could be very small, it is not clear how one would analyze these terms in

any systematic way. As a result, we will focus on the regions where this periodic dependence

is subleading. This happens when we take r � C3
w. This amounts to neglecting the warping

correction to the Kähler connection Kξ. In this regime the above expression reduces to

|DξW |2 = |ω|2 +

(
F3

2π

)2

(log r)2 +

(
F3

2π

)2

θ2 +
F3

π
ωI log r +

F3

π
ωRθ (4.48)

where we have reverted back to cartesian form ω = ωR+iωI . By shifting the angular variable

as φ = θ+ 2πωR/F3 we can absorb the linear term in θ. The scalar potential then takes the

form

V (r, φ) = V0(r) + V1(r)φ2 (4.49)
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where we have defined the two functions

V0(r) = α +
β

Kξξ̄(r)
(log r + γ)2 (4.50)

V1(r) =
β

Kξξ̄(r)
. (4.51)

The constants α, β, γ are given by

α =
|M |2

2kτI

β =
1

2kτI

(
F3

2π

)2

γ =
2πωI
F3

. (4.52)

4.4 Spiraling in String Theory

As spiral inflation requires circular trajectories, one is naturally led to consider multi-sheeted

potentials such as those appearing in complex structure moduli space in string theory, (4.49).

In order to maximize the time spent inflating, one should initialize the field in a minimum

of the effective potential

Veff =
L2

2r2
+ V (r, φ). (4.53)

Here we briefly neglect the effect of a nontrivial Kähler metric to illustrate the main approach

in the argument to follow. By balancing the Hubble friction against the angular tilt, we end

up conserving angular momentum. This in turn implies that the centrifugal uplift of the

potential is conserved and that a circular orbit may perhaps be sustained for a sufficiently

long time.
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4.4.1 Spiral Inflation Versus de Sitter Space

Minimizing the effective potential gives

L2

r3
=
∂V

∂r
. (4.54)

Since the motion is entirely in the angular direction, this equality can be used to express the

kinetic energy in terms of the potential as

L2

2r2
=

1

2
r
∂V

∂r
(4.55)

This is a direct result of spiral inflation. In our case we have a nontrivial Kähler metric, so

the effective potential is really

Veff =
L2

2Kξξ̄r
2

+ V, (4.56)

where the angular momentum is defined as L = Kξξ̄r
2φ̇. Despite this complication, the same

logic holds. In particular minimizing Veff results in

L2

2Kξξ̄r
2

∂
∂r

(r2Kξξ̄)

r2Kξξ̄

=
∂V

∂r
. (4.57)

The kinetic energy is thus in our case given by the more complicated expression

L2

2Kξξ̄r
2

=
∂V

∂r

r2Kξξ̄

∂
∂r

(r2Kξξ̄)
. (4.58)

So far everything results directly from the spiral condition but in addition to the spiral

condition one must always make sure to be potential energy dominated. As a result, one

gets a constraint on the potential

r2Kξξ̄

∂
∂r

(r2Kξξ̄)
.
∂V

∂r
� V. (4.59)
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This will be the pitfall of spiral inflation in string theory. It will turn out to be impossible

to satisfy this constraint without adding a large constant to V . This of course means that

inflation isn’t really driven by the spiral nature of the trajectory but rather by a de Sitter

like vacuum energy.

Consider any function of the form

f(r) = rn(log r)m. (4.60)

The derivative of such a function is at least on the same order as f(r)/r as long as n is not

too small

∂f

∂r
= nrn−1(log r)m + rn

m(log r)m−1

r
= rn−1(log r)m(n+

m

log r
) =

f(r)

r
(n+

m

log r
). (4.61)

Interestingly both the expression involving the Kähler metric, r2Kξξ̄, above and our potential

V (r, φ) consists precisely of such terms. As a result we first of all have that

r
∂

∂r
(r2Kξξ̄) ∼ r2Kξξ̄. (4.62)

More precisely, near the conifold point where the warping correction dominates, we have

r(r2Kξξ̄)
′ = 2

3
(r2Kξξ̄). The condition on the potential from (4.59) therefore becomes

r
∂V

∂r
� V (4.63)

Since the potential also consists of terms polynomial and logarithmic in r, the left-hand

side in this expression is on the same order as the potential itself seemingly violating this

condition. There is however one caveat. Since any terms independent of r will be annihilated

by ∂r, the left-hand side is just on the same order as the radially dependent terms in V .

As a result, the only way to retain a hierarchy such as the one described in equation (4.63)
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would be to have the potential dominated precisely by the terms independent of r.

r
∂V

∂r
∼ radially dependent part of V � V → V ∼ radially independent part of V.

(4.64)

In the original model proposed in [58] this could have been accomplished in two independent

ways: either by moving far up the monodromy ladder (i.e. setting θ very large) or by

choosing a large constant contribution to the potential V0. However, in our case moving to

large values for φ won’t do us any good since the angular dependence is intrinsically coupled

to a radially dependent function V1(r). As a result the only way for us to retain the hierarchy

in (4.59) would be to require the vacuum energy set by the constant α in (4.52) to dominate

the value of the potential

V (r, φ) ∼ V (0, φ) = α. (4.65)

This means that in order for spiral inflation to work, we must essentially be rolling around

in a highly uplifted de Sitter minimum. The inflation is in other words not so much driven

by the spiral nature of the trajectory but rather by a vacuum energy that would have

yielded standard de Sitter inflation anyway. In fact, the numerical simulations below indicate

that when one tries to implement spiral inflation the trajectory quickly begins violating the

orthogonality requirement set by the spiral conditions while continuing to inflate due to the

presence of a nonzero vacuum energy.

It is possible that examples exist outside of the context of flux compactifications where

the potential is not given by terms polynomial or logarithmic in r. In such cases it would be

possible that spiral inflation could yield new interesting inflationary scenarios. The schematic

form of such a potential is given in fig. (4.2). Regardless of its potential success outside of

the context currently being studied, the fact remains that within the realm of flux compacti-

fications in string theory, spiral inflation does not allow inflation to proceed in regimes where

regular de Sitter space like inflation could not have already been realized. In order to further

strengthen our point, we now turn to a numerical investigation of this topic.
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Figure 4.1: The general form of a sheet of the near conifold potential for the complex
structure modulus highlighting the need for an uplifted potential.

4.5 Numerical Simulations

In this section we investigate numerically precisely how long spiral inflation can be main-

tained in the type of potentials encountered in string flux compactifications. The first step

toward achieving this is to understand the optimal initial conditions for the field. Since we

are looking for circular trajectories, we clearly want to initialize the field without any radial

velocity, ṙ = 0. However, in order to sustain a circular orbit we also need to make sure that

r̈ = 0 or in other words that we start in a minimum of the effective potential. The worry is of

course that as the system begins to evolve, the minimum of the effective potential begins to

shift. We can avoid this by conserving angular momentum. This way the centrifugal uplift

of the potential will be conserved and the initial radial location will remain a minimum of

Veff for longer. This requires us to balance the Hubble friction against the angular tilt of

the potential,

3HL+
∂V

∂φ
= 0 → φ = − 3HL

2V1(r)
= −3HL

2β
Kξξ̄(r). (4.66)
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Figure 4.2: A schematic form of a potential that could potentially allow for spiral inflation
without relying on a de Sitter like vacuum energy.

The sign here simply tells us that we must move down the potential. Without any loss

of generality we can and will take L negative and therefore φ positive. Once L is given,

the equations in (4.57) and (4.66) determine the initial conditions of the field. The radial

velocity must be taken to be zero and the angular velocity is calculable from the angular

momentum. As a result we obtain a one parameter family of initial conditions parameterized

by the amount of angular momentum present in the system. One can therefore scan through

different values for L and for each value calculate the initial conditions. Once these initial

conditions have been specified, it is a simple matter to evolve the system forward numeri-

cally to see when exactly the spiral conditions fail. Clearly the equations (4.57) and (4.66)

are difficult to solve analytically so we spend some time in the next section solving them

numerically.
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4.5.1 Initial Conditions

The optimal initial location for the field is given by the simultaneous solution of equations

(4.57) and (4.66). Using equation (4.66) in (4.57) gives us an equation for the radial location

L2 =
2Kξξ̄(r)

2r4

K ′
ξξ̄

(r)r2 + 2Kξξ̄(r)r

(
−
βK ′

ξξ̄
(r)

Kξξ̄(r)
2

(log r + γ)2 +
2β

Kξξ̄(r)r
(log r + γ)− βK ′ξξ̄(r)

(
3HL

2β

)2
)
.

(4.67)

Rather than trying to solve this equation analytically we proceed numerically. One generally

finds that the equation has multiple roots. For sufficiently small angular momentum, a single

solution exists. Then as the angular momentum is increased, two additional roots appear

closer to the conifold point. These two additional solutions then begin to separate. One

approaches a limit point near the conifold point while the other root moves farther away from

the conifold point until it annihilates the root that was present for small angular momenta.

As the angular momentum is increased further, only the near conifold root remains. This

process is illustrated in figure 4.3 below. Since each of these roots is a legitimate starting

Figure 4.3: ∂rVeff (evaluated with φ = φ(r) where equation (4.66) is satisfied) is here plotted
for Cw = 10−5. (Left) Two additional solutions appear near the conifold point for sufficiently
large L. (Right) One of these solutions moves out to annihilate another one farther out as
the angular momentum is increased.

location, we investigate them all in the next section.
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4.5.2 Duration of Spiral Inflation

The strategy is to first fix angular momentum and then initialize the field at one of the (up

to three different) radial locations given by solving equation (4.67). The angular location

is furthermore given by equation (4.66). Once the initial conditions have been specified,

we integrate the equations of motion forward numerically. Simulations show that the axio-

dilaton does not evolve in any dramatic way. As a result we fix τ = 2i for the duration of

these simulations. For our system, the equations of motion are given by

Kξξ̄(r)r
2φ̈+K ′ξξ̄(r)r

2ṙφ̇+ 2Kξξ̄(r)rṙφ̇+ 3HKξξ̄(r)r
2φ̇+

∂V

∂φ
= 0 (4.68)

Kξξ̄(r)r̈ +
1

2
K ′ξξ̄(r)ṙ

2 + 3HKξξ̄(r)ṙ −
(

1

2
K ′ξξ̄(r)r

2 +Kξξ̄(r)r

)
φ̇2 +

∂V

∂r
= 0. (4.69)

We then track the orthogonality of the acceleration and the velocity. More precisely, we

track how quickly the kinetic energy changes. Since our system has a non-canonical metric

on the moduli space the relevant quantity to track is

η =
1

Kξξ̄(r)(ṙ
2 + r2φ̇2)

d

dt

(
Kξξ̄(r)(ṙ

2 + r2φ̇2)
)
. (4.70)

We repeat this for a set of angular momenta in the range 10−10 < |L| < 103 each time

solving the equations of motion for each of the possible initial conditions. We generally

find that despite being satisfied at t = 0 the spiral condition η � 1 becomes violated very

quickly. The time dependence during a generic run is displayed in figure 4.4. Furthermore,

the number of e-foldings one obtains before the spiral condition fails is far too small as is clear

from figure 4.5 where we display the number of e-foldings for each of the up three possible

initial conditions. This analysis is repeated for different values for Cw although we here only

display the results for Cw = 10−5. Interestingly, as we can see in figure 4.6, even after the

spiral condition η � 1 fails, the motion continues to be potential energy dominated. This

is just a symptom of the fact that we are rolling around in a de Sitter minimum. We also
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Figure 4.4: Evolution of the absolute value of the spiral condition from equation (4.70)
plotted here for Cw = 10−5 and L = 10−5. This is for the solution nearest the conifold point.

want to bring attention to the fact that the initial angular location tends to be very large.

If we interpret the angle as a proxy for how much flux is present in the compactification,

we see that one must necessarily move to very large fluxes. This is clearly something we

want to avoid for physical reasons since our supergravity approximation relies on these being

small. Despite this constraint on the size of the fluxes, we still consider this regime out of

completeness of our discussion.

4.6 Discussion

We have investigated the possibility of embedding spiral inflation in string theory. Although

at first it seems natural from a stringy perspective since the monodromies that are needed are

ubiquitous near the conifold point, we have found that this novel type of inflation is inherently

tied to de Sitter inflation in the particular models one encounters in flux compactifications.

As a result, even if spiral inflation was realized, the inflation would actually be driven by a

vacuum energy. This assertion was backed up by a numerical investigation. In particular it

was found that inflation continues due to the vacuum energy even after the spiral condition

fails to hold. We thus conclude that while intriguing, the spiral inflation model does not

offer any new vantage points in the realm of flux compactifications in string theory.
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Figure 4.5: Number of e-foldings for various choices of angular momentum |L| for the three
possible solutions. Note that the various solutions only exist for a range of |L| (see figure
4.3)
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Figure 4.6: Even though the spiral condition in this particular simulation failed at t =
2.2 · 10−4, the motion continues to be potential energy dominated for much longer. This
reflects the fact that we have a de Sitter like potential, and is not a result of spiral inflation.
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Concluding Remarks

It is amazing how powerful the concept of the string really is. The consistency of a relativistic,

quantum mechanical string requires the existence of gravity and provides us with Einstein’s

equations. It tells us about the dimensionality of the universe, and shows us that our world

must fundamentally be supersymmetric. It gives us gauge theories and D-branes, dualities

and string geometry. Despite all of its successes though, string theory remains a highly

controversial theory.

The arguments against string theory often involve the fact that the energy scales involved

are so large that “it is not falsifiable”. This however is not so much a criticism of string theory

as it is one of quantum gravity in general since the Planck scale involved is common to any

such theory. In fact, being a theory of more than just gravity, string theory actually has a

hope of giving testable predictions at much lower energies such as those probed at the LHC.

Of course teasing these predictions out of string theory is not a simple task, and to some

extent this is where the real issues with string theory lie. As we have discussed in some

depth above, the set of low-energy solutions in string theory is all but well understood. This

landscape of string theory may contain as many as 10500 low-energy vacua each with distinct

physical signatures. Clearly there are too many solutions for us to go through one-by-one,

and statistical searches therefore become of relevant. In fact even if one could find the precise

vacuum that corresponds to our observable universe, the natural follow-up question would

be “what happened to the other worlds?”.

Barring some sort of super-selection rule that singles out our vacuum as the only admis-
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sible one, we will be forced to question how natural our vacuum is both from a dynamical

and a statistical perspective. In particular, let us suppose that we find that the physical

properties of our vacuum are rather common throughout the landscape but that somehow

it is dynamically isolated. Despite being happy with our vacuum from a statistical perspec-

tive, the nagging question still remains, “how did we get here.” Clearly it is therefore very

important to understand both the statistical and dynamical properties of the landscape.

Within the domain of dynamics we must include both the quantum mechanical tunneling

solutions found in chapter 2 as well as the classical slow-roll scenarios investigated in chap-

ter 4. Furthermore, it is worth emphasizing that the subject of statistics and dynamics are

necessarily intertwined. In particular the density of vacua, and thus the distance between

them in moduli space, can certainly be argued to impact tunneling rates. Thus, even the

work presented in chapter 3 can be taken to impact the question of dynamics.

It is worth noting that even the fundamental problem of the landscape is not clearly

insurmountable. In fact, even quantum field theory suffers from a landscape problem which

in fact is much worse on the face of it than the corresponding issue in string theory. In defining

any quantum field theory one must specify a set of coupling constants and masses. These are

real parameters and as such one finds a multidimensional (continuous) landscape of coupling

constants. This is to be contrasted with string theory where one must specify a set of discrete

parameters – the fluxes. As an example, even the simplest supersymmetric extension of the

standard model, the MSSM, contains 124 different parameters. The difference of course

between string theory and quantum field theory, and the reason why no one is throwing

their hands up in despair in response to the landscape of the MSSM, is that there is a well

understood formalism that can be utilized in deriving the physical signatures in quantum

field theory and furthermore that this formalism is invertible so that any set of physical

observations can be directly used to constrain the space of coupling constants. However

there is no analogous formalism for string theory. It is conceivable that if such a general

method was developed, the landscape of string theory would no longer be an issue. In fact,
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since the landscape of string theory is fundamentally discrete, it is in principle possible to

find the precise vacuum that corresponds to our world whereas for quantum field theory any

experimental uncertainty will always manifest itself in a corresponding uncertainty in the

values for the coupling constants.

As a concluding remark, it is worth noting that even the existence of the landscape is

debatable. It is not clear how a thorough understanding of quantum gravity will alter our

understanding of these solutions and so looking to the future it is not clear that the notion

of the landscape will survive. However, one thing is clear: if the landscape does survive, a

thorough understanding of its dynamics, statistics, and cosmology will be essential.
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