
Symmetry in Nonlinear Mathematical Physics 1997, V.1, 138–146.

New Ansätze and Exact Solutions for

Nonlinear Reaction-Diffusion Equations

Arising in Mathematical Biology

Roman M. CHERNIHA

Institute of Mathematics of the National Academy of Sciences of Ukraine,
3 Tereshchenkivs’ka Str., Kyiv 4, Ukraine
E-mail: chern@apmat.freenet.kiev.ua

Abstract

The method of additional generating conditions is applied for finding new non-Lie
ansätze and exact solutions of nonlinear generalizations of the Fisher equation.

1. Introduction

In the present paper, I consider nonlinear reaction-diffusion equations with convection
term of the form

Ut = [A(U)Ux]x +B(U)Ux + C(U), (1)

where U = U(t, x) is an unknown function, A(U), B(U), C(U) are arbitrary smooth func-
tions. The indices t and x denote differentiating with respect to these variables. Equa-
tion (1) generalizes a great number of the well-known nonlinear second-order evolution
equations describing various processes in biology [1]–[3].

Equation (1) contains as a particular case the classical Burgers equation

Ut = Uxx + λ1UUx (2)

and the well-known Fisher equation [4]

Ut = Uxx + λ2U − λ3U
2, (3)

where λ1, λ2, and λ3 ∈ R. A particular case of equation (1) is also the Murray equation
[1]–[2]

Ut = Uxx + λ1UUx + λ2U − λ3U
2, (4)

which can be considered as a generalization of the Fisher and Burgers equations.
Construction of particular exact solutions for nonlinear equations of the form (1) re-

mains an important problem. Finding exact solutions that have a biological interpretation
is of fundamental importance.

On the other hand, the well-known principle of linear superposition cannot be applied
to generate new exact solutions to nonlinear partial differential equations (PDEs). Thus,
the classical methods are not applicable for solving nonlinear partial differential equations.
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Of course, a change of variables can sometimes be found that transforms a nonlinear partial
differential equation into a linear equation, but finding exact solutions of most nonlinear
partial differential equations generally requires new methods.

Now, the very popular method for construction of exact solutions to nonlinear PDEs
is the Lie method [5, 6]. However it is well known that some very popular nonlinear
PDEs have a poor Lie symmetry. For example, the Fisher equation (3) and the Murray
equation (4) are invariant only under the time and space translations. The Lie method
is not efficient for such PDEs since in these cases it enables us to construct ansätze and
exact solutions, which can be obtained without using this cumbersome method.

A constructive method for obtaining non-Lie solutions of nonlinear PDEs and a system
of PDEs has been suggested in [7, 8]. The method (see Section 2) is based on the consider-
ation of a fixed nonlinear PDE (a system of PDEs) together with an additional generating
condition in the form of a linear high-order ODE (a system of ODEs). Using this method,
new exact solutions are obtained for nonlinear equations of the form (1) (Section 3). These
solutions are applied for solving some nonlinear boundary-value problems.

2. A constructive method for finding new exact solutions of nonlinear
evolution equations

Here, the above-mentioned method to the construction of exact solutions is briefly pre-
sented. Consider the following class of nonlinear evolution second-order PDEs

Ut = (λ+ λ0U)Uxx + rU2
x + pUUx + qU2 + sU + s0, (5)

where coefficients λ0, λ, r, p, q, s, and s0 are arbitrary constants or arbitrary smooth func-
tions of t. It is easily seen that the class of PDEs (1) contains this equation as a particular
case. On the other hand equation (5) is a generalization of the known nonlinear equations
(2)–(4).

If coefficients in (5) are constants, then this equation is invariant with respect to the
transformations

x′ = x+ x0 t′ = t+ t0, (6)

and one can find plane wave solutions of the form

U = U(kx+ vt), v, k ∈ R. (7)

But here, such solutions are not constructed since great number papers are devoted to
the construction of plane wave solutions for nonlinear PDEs of the form (1) and (5) ( see
references in [9], for instance).

Hereinafter, I consider (5) together with the additional generating conditions in the
form of linear high-order homogeneous equations, namely:

α0(t, x)U + α1(t, x)
dU

dx
+ · · · +

dmU

dxm
= 0, (8)

where α0(t, x), . . . , αm−1(t, x) are arbitrary smooth functions and the variable t is consid-
ered as a parameter. It is known that the general solution of (8) has the form

U = ϕ0(t)g0(t, x) + · · · + ϕm−1(t)gm−1(t, x), (9)
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where ϕ0(t), ϕ1(t), . . . , ϕm−1(t) are arbitrary functions and g0(t, x) = 1, g1(t, x), . . .,
gm−1(t, x) are fixed functions that form a fundamental system of solutions of (8). Note
that in many cases the functions g0(t, x), . . ., gm−1(t, x) can be expressed in an explicit
form in terms of elementary ones.

Consider relation (9) as an ansatz for PDEs of the form (5). It is important to note
that this ansatz contains m unknown functions ϕi, i = 1, . . . ,m that yet-to-be determined.
This enables us to reduce a given PDE of the form (5) to a quasilinear system of ODEs
of the first order for the unknown functions ϕi. It is well known that such systems have
been investigated in detail.

Let us apply ansatz (9) to equation (5). Indeed, calculating with the help of ansatz
(9) the derivatives Ut, Ux, Uxx and substituting them into PDE (5) , one obtains a very
cumbersome expression. But, if one groups similar terms in accordance with powers of
the functions ϕi(t) , then sufficient conditions for reduction of this expression to a system
of ODEs can be found. These sufficient conditions have the following form:

λgi,xx + sgi − gi,t = gi1Qii1(t), (10)

λ0gigi,xx + r(gi,x)2 + pgigi,x + q(gi)2 = gi1Rii1(t), (11)

λ0(gigi1,xx +gi1gi,xx)+2rgi,xgi1,x +p(gigi1,x +gi1gi,x)+2qgigi1 = gjT
j
ii1

(t), i < i1,(12)

where Qii1 , Rii1 , T
j
ii1

on the right-hand side are defined by the expressions on the left-hand
side. The indices t and x of functions gi(t, x) and gi1(t, x), i, i1 = 0, . . . ,m − 1, denote
differentiating with respect to t and x.

With help of conditions (10)–(12), the following system of ODEs is obtained

dϕi

dt
= Qi1iϕi1 +Ri1i(ϕi1)2 + T i

i1i2ϕi1ϕi2 + δi,0s0, i = 0, . . . ,m− 1 (13)

to find the unknown functions ϕi, i = 0, . . . ,m − 1 (δi,0 = 0, 1 is the Kronecker symbol).
On the right-hand sides of relations (10)–(12) and (13), a summation is assumed from 0
to m-1 over the repeated indices i1, i2, j. So, we have obtained the following statement.

Theorem 1. Any solution of system (13) generates the exact solution of the form (9) for
the nonlinear PDE (5) if the functions gi, i = 0, . . . ,m− 1, satisfy conditions (10)–(12).

Remark 1. The suggested method can be realized for systems of PDEs (see [7, 8], [10])
and for PDEs with derivatives of second and higher orders with respect to t. In the last
case, one will obtain systems of ODEs of second and higher orders.

Remark 2. If the coefficients λ0, λ, r, p, q, s, and s0 in equation (5) are smooth functions
of the variable t, then Theorem 1 is true too. But in this case, the systems of ODEs with
time-dependent coefficients are obtained.

3. Construction of the families of non-Lie exact solutions of some non-
linear equations.

Since a constructive method for finding new ansätze and exact solutions is suggested, its
efficiency will be shown by the examples below. In fact, let us use Theorem 1 for the
construction of new exact solutions.
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Consider an additional generating condition of third order of the form

α1(t)
dU

dx
+ α2(t)

d2U

dx2
+
d3U

dx3
= 0, (14)

which is the particular case of (8) for m = 3. Condition (14) generates the following chain
of the ansätze:

U = ϕ0(t) + ϕ1(t) exp(γ1(t)x) + ϕ2(t) exp(γ2(t)x) (15)

if γ1,2(t) =
1
2

(±(α2
2 − 4α1)1/2 − α2) and γ1 �= γ2;

U = ϕ0(t) + ϕ1(t) exp(γ(t)x) + xϕ2(t) exp(γ(t)x) (16)

if γ1 = γ2 = γ �= 0;

U = ϕ0(t) + ϕ1(t)x+ ϕ2(t) exp(γ(t)x) (17)

if α1 = 0;

U = ϕ0(t) + ϕ1(t)x+ ϕ2(t)x2 (18)

if α1 = α2 = 0.

Remark 3. In the case D = α2
2 − 4α1 < 0, one obtains complex functions γ1 = γ∗2 =

1
2

(±i(−D)1/2 − α2), i2 = −1 and then ansatz (15) is reduced to the form

U = ϕ0(t) +
[
ψ1(t) cos

(
1
2

(−D)1/2x

)
+ ψ2(t) sin

(
1
2

(−D)1/2x

)]
exp

(
−α2x

2

)
, (19)

where ϕ0(t), ψ1(t), ψ2(t) are yet-to-be determined functions.

Example 1. Consider the following equation

Ut = (λ+ λ0U)Uxx + λ1UUx + λ2U − λ3U
2 (20)

which in the case λ = 1, λ0 = 0 coincides with the Murray equation (4). Hereinafter, it
is supposed that λ2 �= 0 since the case λ2 = 0 is very especial and was considered in [8].
By substituting the functions g0 = 1, g1 = exp(γ1(t)x), g2 = exp(γ2(t)x) from ansatz (15)
into relations (10)–(12), one can obtain{

Q00 = λ2, Q11 = λγ2
1 + λ2, Q22 = λγ2

2 + λ2,

R00 = −λ3, T 1
01 = −λ3, T 2

02 = −λ3
(21)

and the following relations

Rii1 = Qii1 = T j
ii1

= 0 (22)

for different combinations of the indices i, i1, j. With the help of relations (21)–(22),
system (13) is reduced to the form



dϕ0

dt
= λ2ϕ0 − λ3ϕ

2
0,

dϕ1

dt
= (λγ2

1 + λ2)ϕ1 − λ3ϕ0ϕ1,

dϕ2

dt
= (λγ2

2 + λ2)ϕ2 − λ3ϕ0ϕ2.

(23)
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The system of ODEs (23) is nonlinear, but it is easily integrated and yields the general
solutions

ϕ0 =
λ2

λ3 + c0 exp(−λ2t)
, ϕ1 =

c1 exp(λγ2
1t)

λ3 + c0 exp(−λ2t)
, ϕ2 =

c2 exp(λγ2
2t)

λ3 + c0 exp(−λ2t)
. (24)

In (24) and hereinafter, c0, c1, c2 are arbitrary constants . So, by substituting relations
(24) into ansatz (15) the three-parameter family of exact solutions of the nonlinear equa-
tion (20) for λ2

1 + 4λ0λ3 �= 0 is obtained, namely:

U =
λ2 + c1 exp(λγ2

1t+ γ1x) + c2 exp(λγ2
2t+ γ2x)

λ3 + c0 exp(−λ2t)
(25)

where γ1 and γ2 are roots of the algebraic equation

λ0γ
2 + λ1γ − λ3 = 0, λ2

1 + 4λ0λ3 �= 0. (26)

Remark 4. In the case λ2
1 +4λ0λ3 = −γ2

0 < 0, the complex values γ1 and γ2 are obtained,
and then the following family of solutions

U =
λ2 + exp

[
λ

4λ2
0
(λ2

1 − γ2
0)t− λ1

2λ0
x)

]
(c1 cosω + c2 sinω)

λ3 + c0 exp(−λ2t)
, (27)

where ω =
γ0

2λ2
0

(λλ1t− λ0x), are constructed (see ansatz (19)).

Similarly, by substituting the functions g0 = 1, g1 = exp(γ(t)x), g2 = x exp(γ(t)x) from
ansatz (16) into relations (10)–(12), the corresponding values of the functions Rii1 , Qii1 ,
T j

ii1
are obtained, for which system (13) generates the three-parameter family of exact

solutions of the nonlinear equation (20) for λ2
1 + 4λ0λ3 = 0, namely:

U =
λ2 + (c1 + 2c2λγt) exp(λγ2t+ γx) + c2x exp(λγ2t+ γx)

λ3 + c0 exp(−λ2t)
. (28)

Analogously, we obtain with the help of ansatz (17) the following family of solutions of
equation (20) (at λ3 = 0)

U =
c1 + λ2x+ c2 exp(λγ2t+ γx)

−λ1 + c0 exp(−λ2t)
, (29)

where γ = −λ1

λ0
.

Finally, ansatz (18) gives the three-parameter family of exact solutions

U =
c2 + 2λλ2t+ c1x+ λ2x

2

−2λ0 + c0 exp(−λ2t)
(30)

of equation (20) for the case λ1 = λ3 = 0, i.e.,

Ut = (λ+ λ0U)Uxx + λ2U. (31)
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As is noted, equation (20) for λ = 1 and λ0 = 0 yields the Murray equation (4). If we
apply Theorem 1 and ansatz (15) for constructing exact solutions of the Murray equation,
then the consraint ϕ2 = 0 is obtained and the two-parameter family of solutions

U =
λ2 + c1 exp(γ2t+ γx)
λ3 + c0 exp(−λ2t)

, (32)

where γ =
λ3

λ1
, is found. It is easily seen that the family of exact solutions (25) generates

this family if one puts formally c2 = 0, λ = 1, and λ0 = 0 in (25) and (26).
Solutions of the form (32) are not of the plane wave form, but in the case λ1 < 0 and

λ3 > 0, they have similar properties to the plane wave solutions, which were illustrated in
[1, 2] in Figures. So, they describe similar processes. In the case c0 = 0, a one-parameter
family of plane wave solutions is obtained from (32).

Taking into account solution (32), one obtains the following theorem:

Theorem 2. The exact solution of the boundary-value problem for the Murray equation
(4) with the conditions

U(0, x) =
λ2 + c1 exp(γx)

λ3 + c0
, (33)

U(t, 0) =
λ2 + c1 exp(γ2t)
λ3 + c0 exp(−λ2t)

, (34)

and

Ux(t,+∞) = 0, γ =
λ3

λ1
< 0 (35)

is given in the domain (t, x) ∈ [0,+∞) × [0,+∞) by formula (32), and, for λ2 < −γ2, it
is bounded.

Note that the Neumann condition (35) (the zero flux on the boundary) is a typical
request in the mathematical biology (see, e.g., [1, 2]).

Example 2. Let us consider the following equation

Ut = [(λ+ λ0U)Ux]x + λ2U − λ3U
2 (36)

that, in the case where λ0 = 0 and λ = 1, coincides with the Fisher equation (3). The
known soliton-like solution of the Fisher equation was obtained in [11]. Note that this
solution can be found using the suggested method too. It turns out that the case λ0 �= 0
is very special.

Let us apply Theorem 1 to construction of exact solutions of equation (36) in the case
of ansatz (15). Similarly to Example 1, one can find the following two-parameter families
of solutions

U =
λ2

2λ3

[
1 + tanh

λ2(t− c0)
2

]
+ c2

exp (2λλ3+λ0λ2)t
4λ0(

cosh λ2(t−c0)
2

)3/2
exp

(√
λ3

2λ0
x

)
(37)
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and

U =
λ2

2λ3

[
1 + tanh

λ2(t− c0)
2

]
+ c1

exp (2λλ3+λ0λ2)t
4λ0(

cosh λ2(t−c0)
2

)3/2
exp

(
−

√
λ3

2λ0
x

)
, (38)

where c0, c1, c2 are arbitrary constants. The solutions from (38) have nice properties.

Indeed, any solution U∗ of the form (38) holds the conditions U∗ → λ2

λ3
if t → ∞ and

λλ3 < λ0λ2; U∗ → λ2

2λ3

[
1 + tanh

λ2(t− c0)
2

]
< 1 if x → +∞, λ0λ3 > 0. Taking into

account these properties, we obtain the following theorem.

Theorem 3. The bounded exact solution of the boundary-value problem for the generalized
Fisher equation

Ut = [(1 + λ0U)Ux]x + λ2U − λ2U
2, λ0 > 1, λ2 > 0, (39)

with the initial condition

U(0, x) = C0 + C1 exp

(
−

√
λ2

2λ0
|x|

)
, (40)

and the Neumann conditions

Ux(t,−∞) = 0, Ux(t,+∞) = 0, (41)

is given in the domain (t, x) ∈ [0,+∞) × (−∞,+∞) by the formula

U =
1
2

[
1 + tanh

λ2(t− c0)
2

]
+ c1

exp λ2(2+λ0)t
4λ0(

cosh λ2(t−c0)
2

)3/2
exp

(
−

√
λ2

2λ0
|x|

)
, (42)

where C0 =
1
2

[
1 + tanh

−λ2c0
2

]
, C1 = c1

(
cosh

−λ2c0
2

)−3/2

, and c1 > 0.

Example 3. Consider the nonlinear reaction-diffusion equation with a convection term

Yt = [Y αYx]x + λ1(t)Y αYx + λ2Y − λ3Y
1−α, α �= 0, (43)

that can be interpreted as a generalization of the Fisher and Murray equations. One can
reduce this equation to the form

Ut = UUxx +
1
α
U2

x + λ1(t)UUx + αλ2U − αλ3 (44)

using the substitution U = Y α. It turns out that equation (44) for λ1(t) = −
(

1 +
1
α

)
γ(t)

is reduced by ansatz (17) to the following system of ODEs:


dγ

dt
= − 1

α
γ2ϕ1,

dϕ0

dt
= −

(
1 +

1
α

)
γϕ0ϕ1 + αλ2ϕ0 +

1
α
ϕ2

1 − αλ3,

dϕ1

dt
= αλ2ϕ1 −

(
1 +

1
α

)
γϕ2

1,

dϕ2

dt
=

[
− 1
α
γ2ϕ0 +

(
1
α
− 1

)
γϕ1 + αλ2

]
ϕ2

(45)
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for finding the unknown functions γ(t) and ϕi, i = 0, 1, 2. It is easily seen that in this case
the function γ(t) �= const if ϕ1 �= 0. Solving the system of ODEs (45), the family of exact
solutions is found that are not the ones with separated variables, i.e.,

U = ϕ0(t)g0(x) + · · · + ϕm−1(t)gm−1(x). (46)

It is easily seen that in the case α = −1, the system of ODEs (45) is integrated in terms
of elementary functions and one finds γ(t) = [λ2c0 + c1 exp(−λ2t)]−1.

Remark 5. The family of exact solutions with γ(t) �= const (see ansatz (17)) has an
essential difference from the ones obtained above since they contain the function γ(t).
So this family cannot be obtained using the method of linear invariant subspaces recently
proposed in [12, 13] (note that the basic ideas of the method used in [12, 13] were suggested
in [14]) because that method is reduced to finding solutions in the form (46).

Finally, it is necessary to observe that all found solutions are not of the form (7), i.e.,
they are not plane wave solutions. Moreover, all these solutions except (30) can not be
obtained using the Lie method. One can prove this statement using theorems that have
been obtained in [15].

4. Discussion

In this paper, a constructive method for obtaining exact solutions of certain classes of
nonlinear equations arising in mathematical biology was applied. The method is based on
the consideration of a fixed nonlinear partial differential equation together with additional
generating condition in the form of a linear high-order ODE. With the help of this method,
new exact solutions were obtained for nonlinear equations of the form (20), which are
generalizations of the Fisher and Murray equations.

As follows from Theorems 2 and 3, the found solutions can be used for construction
of exact solutions of some boundary-value problems with zero flux on the boundaries.
Similarly to Theorem 3, it is possible to obtain theorems for construction of periodic
solutions and blow-up solutions of some boundary-value problems with zero flux on the
boundaries.

The efficiency of the suggested method can be shown also by construction of exact
solutions to nonlinear reaction-diffusion systems of partial differential equations. For
example, it is possible to find ones for the well-known systems of the form (see, e.g., [16])


λ1Ut = ∆U + U

f1(U, V )
f2(U, V )

,

λ2Vt = ∆V + V
g1(U, V )
g2(U, V )

,

(47)

where the fk and gk, k = 1, 2, are linear functions of U and V . The form of the found
solutions will be essentially depend on coefficients in the functions fk and gk, k = 1, 2.
Note that, in the particular case, system (47) gives the nonlinear system{

λ1Ut = ∆U + β1U
2V −1,

λ2Vt = ∆V + β2U, β1 �= β2.
(48)

As was shown in [17, 18], system (48) has the wide Lie symmetry. Indeed, it is invariant
with respect to the same transformations as the linear heat equation. This fact gives
additional wide possibilities for finding families of exact solutions.
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