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Abstract

The method of additional generating conditions is applied for finding new non-Lie
ansétze and exact solutions of nonlinear generalizations of the Fisher equation.

1. Introduction

In the present paper, I consider nonlinear reaction-diffusion equations with convection
term of the form

Uy = [A(U)U,], + B(U)U, +C(U), (1)

where U = U(t, z) is an unknown function, A(U), B(U),C(U) are arbitrary smooth func-
tions. The indices ¢ and x denote differentiating with respect to these variables. Equa-
tion (1) generalizes a great number of the well-known nonlinear second-order evolution
equations describing various processes in biology [1]-[3].

Equation (1) contains as a particular case the classical Burgers equation

Ui =Ugr + MUU, (2)
and the well-known Fisher equation [4]

Up = Upe + AU — XU, (3)
where A1, A2, and A3 € R. A particular case of equation (1) is also the Murray equation
-2

Ut = Upe + MUUy + AU — A3U?, (4)
which can be considered as a generalization of the Fisher and Burgers equations.

Construction of particular exact solutions for nonlinear equations of the form (1) re-
mains an important problem. Finding exact solutions that have a biological interpretation
is of fundamental importance.

On the other hand, the well-known principle of linear superposition cannot be applied

to generate new exact solutions to nonlinear partial differential equations (PDEs). Thus,
the classical methods are not applicable for solving nonlinear partial differential equations.
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Of course, a change of variables can sometimes be found that transforms a nonlinear partial
differential equation into a linear equation, but finding exact solutions of most nonlinear
partial differential equations generally requires new methods.

Now, the very popular method for construction of exact solutions to nonlinear PDEs
is the Lie method [5, 6]. However it is well known that some very popular nonlinear
PDEs have a poor Lie symmetry. For example, the Fisher equation (3) and the Murray
equation (4) are invariant only under the time and space translations. The Lie method
is not efficient for such PDEs since in these cases it enables us to construct ansatze and
exact solutions, which can be obtained without using this cumbersome method.

A constructive method for obtaining non-Lie solutions of nonlinear PDEs and a system
of PDEs has been suggested in [7, 8]. The method (see Section 2) is based on the consider-
ation of a fixed nonlinear PDE (a system of PDEs) together with an additional generating
condition in the form of a linear high-order ODE (a system of ODEs). Using this method,
new exact solutions are obtained for nonlinear equations of the form (1) (Section 3). These
solutions are applied for solving some nonlinear boundary-value problems.

2. A constructive method for finding new exact solutions of nonlinear
evolution equations

Here, the above-mentioned method to the construction of exact solutions is briefly pre-
sented. Consider the following class of nonlinear evolution second-order PDEs

Uy = (A 4+ XoU)Upy + U2 + pUU, + qU? + sU + so, (5)

where coefficients A\, A, 7, p, q, s, and sg are arbitrary constants or arbitrary smooth func-
tions of ¢. It is easily seen that the class of PDEs (1) contains this equation as a particular
case. On the other hand equation (5) is a generalization of the known nonlinear equations
(2)-(4).

If coefficients in (5) are constants, then this equation is invariant with respect to the
transformations

¥ =x+x t' =t +to, (6)
and one can find plane wave solutions of the form
U=U(kx+vt), vkeR. (7)

But here, such solutions are not constructed since great number papers are devoted to
the construction of plane wave solutions for nonlinear PDEs of the form (1) and (5) ( see
references in [9], for instance).

Hereinafter, I consider (5) together with the additional generating conditions in the
form of linear high-order homogeneous equations, namely:

dUu anu
Oéo(tyﬁf)U-i-Oél(t,ﬂ?)%‘i‘"“"(kc—m207 (8)
where ag(t,x), ..., am—1(t,x) are arbitrary smooth functions and the variable ¢ is consid-

ered as a parameter. It is known that the general solution of (8) has the form

U= po(t)go(t;x) + -+ + em-1(t)gm-1(t, ©), (9)
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where o(t), v1(t),...,om—1(t) are arbitrary functions and go(t,z) = 1, q1(t,x),...,
gm—1(t, ) are fixed functions that form a fundamental system of solutions of (8). Note
that in many cases the functions go(¢,x), ..., gm—1(t,z) can be expressed in an explicit
form in terms of elementary ones.

Consider relation (9) as an ansatz for PDEs of the form (5). It is important to note
that this ansatz contains m unknown functions ¢;,7 = 1, ..., m that yet-to-be determined.
This enables us to reduce a given PDE of the form (5) to a quasilinear system of ODEs
of the first order for the unknown functions ;. It is well known that such systems have
been investigated in detail.

Let us apply ansatz (9) to equation (5). Indeed, calculating with the help of ansatz
(9) the derivatives Uy, U, U,, and substituting them into PDE (5) , one obtains a very
cumbersome expression. But, if one groups similar terms in accordance with powers of
the functions ;(t) , then sufficient conditions for reduction of this expression to a system
of ODEs can be found. These sufficient conditions have the following form:

NGizz + 89 — it = iy Qiiy (1), (10)
)\Ogigi,xx + T(gi,x)2 + PGiGix + Q(gi)2 = gilRii1 (t)’ (11)
No(9iGis o+ Gir Gisow) + 20 G Gir o+ P(9iGi1 0+ 9 Gi0) + 209590 = 95T (t), i < i1,(12)

where Qi , Riiy, Tl]l , on the right-hand side are defined by the expressions on the left-hand
side. The indices t and x of functions g;(¢,x) and g;, (¢t,x), i,i1 = 0,...,m — 1, denote
differentiating with respect to t and =z.

With help of conditions (10)—(12), the following system of ODEs is obtained

dp; ; .
CZZ = Qili‘ph + Ri1i(90i1)2 + Ellig(pil(piQ + 5i,050a 1=0,....,m—1 (13)
to find the unknown functions ¢;,i = 0,...,m —1 (d;0 = 0,1 is the Kronecker symbol).

On the right-hand sides of relations (10)—(12) and (13), a summation is assumed from 0
to m-1 over the repeated indices 41,42, j. So, we have obtained the following statement.

Theorem 1. Any solution of system (13) generates the exact solution of the form (9) for
the nonlinear PDE (5) if the functions g;,i = 0,...,m — 1, satisfy conditions (10)—(12).

Remark 1. The suggested method can be realized for systems of PDEs (see [7, 8], [10])
and for PDEs with derivatives of second and higher orders with respect to t. In the last
case, one will obtain systems of ODEs of second and higher orders.

Remark 2. If the coefficients \g, A, 7, p, ¢, s, and sp in equation (5) are smooth functions
of the variable ¢, then Theorem 1 is true too. But in this case, the systems of ODEs with
time-dependent coefficients are obtained.

3. Construction of the families of non-Lie exact solutions of some non-
linear equations.

Since a constructive method for finding new ansétze and exact solutions is suggested, its
efficiency will be shown by the examples below. In fact, let us use Theorem 1 for the
construction of new exact solutions.
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Consider an additional generating condition of third order of the form

dU d’U U
Odl(t)% +a2(t>W + W =

which is the particular case of (8) for m = 3. Condition (14) generates the following chain
of the anséatze:

U = po(t) + p1(t) exp(71(t)z) + p2(t) exp(v2(t)x) (15)

0, (14)

. 1
if y12(t) = §(i(a§ —4a1)M? — ag) and 41 # e

U = ¢o(t) + ¢1(t) exp(v(t)x) + zp2(t) exp(y(t)z) (16)
if gy =9=7#0;

U = ¢o(t) + ¢1(t)z + pa(t) exp(v(t)z) (17)
if a1 = 0;

U = ¢o(t) + ¢1(t)z + pa(t)a? (18)

if a1 = ag = 0.
Remark 3. In the case D = a3 — 4a; < 0, one obtains complex functions vy, = 74 =

1
i(jzi(—D)l/2 — ), i = —1 and then ansatz (15) is reduced to the form

U = po(t) + [wl(t) cos (%(—D)1/2w> + o (t) sin (%(—D)l/zwﬂ exp (—%) , (19)

where q(t),11(t),12(t) are yet-to-be determined functions.

Example 1. Consider the following equation
Ui = (A 4+ XoU)Ussz + MUU, 4 AU — \3U? (20)

which in the case A = 1, Ay = 0 coincides with the Murray equation (4). Hereinafter, it
is supposed that A2 # 0 since the case A2 = 0 is very especial and was considered in [8].
By substituting the functions go = 1, g1 = exp(y1(¢t)x), g2 = exp(y2(t)z) from ansatz (15)

into relations (10)—(12), one can obtain
Qoo = A2, Qu =Mi+X, Qu=M3+ X, (21)
Roo=—X3, Tor=-X3, Tih=-X3

and the following relations

Ry, = Qiiy, = TZJZI =0 (22)
for different combinations of the indices 7,7;,j. With the help of relations (21)-(22),
system (13) is reduced to the form

dipg 2

%20 _ Moo — A

ddt 240 3%0;

% = (M7 + A2)p1 — 3ot (23)
dipa

= (M3 + A2)p2 — Azpopa.
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The system of ODEs (23) is nonlinear, but it is easily integrated and yields the general
solutions

B A2 _ crexp(Mit) _ czexp(M3t)
a A3 + ¢ exp(—)\gt)’ L= A3 + ¢ exp(—&t)’ ¥2 = A3 + ¢ exp(—)\zt)

. (24)

2]

In (24) and hereinafter, cg,c1,co are arbitrary constants . So, by substituting relations
(24) into ansatz (15) the three-parameter family of exact solutions of the nonlinear equa-
tion (20) for A2 + 4\gA3 # 0 is obtained, namely:

A ta exp( A3t + y17) + co exp(AY3t + o)

U 25
A3+ ¢g exp(—)\gt) ( )

where 71 and 79 are roots of the algebraic equation
MV +HMY = A3 =0, A 44))3 #0. (26)

Remark 4. In the case A2 +4\g\3 = —2 < 0, the complex values y; and 7y, are obtained,
and then the following family of solutions

A2 + exp &()\% — )t — 2)\T10x) (c1cosw + ¢ sinw)
U= 27
Az + co exp(—Aat) ’ (27)

0
23

Similarly, by substituting the functions go = 1, g1 = exp(y(t)x), g2 = x exp(y(t)z) from
ansatz (16) into relations (10)—(12), the corresponding values of the functions Ry, Qi ,
Ti]i1 are obtained, for which system (13) generates the three-parameter family of exact
solutions of the nonlinear equation (20) for A2 + 4\gA3 = 0, namely:

where w = (At — Aoz), are constructed (see ansatz (19)).

X2+ (c1 4 2e00t) exp(My2t 4 yx) + cox exp(My2t + )

U
A3 + ¢ exp(—Aat)

. (28)

Analogously, we obtain with the help of ansatz (17) the following family of solutions of
equation (20) (at Az =0)

c1 + Ao + e exp(Ay%t + y)

U= ) 29
—A1 + coexp(—Aat) (29)
A
where v = 2
Ao
Finally, ansatz (18) gives the three-parameter family of exact solutions
2A Aot A2
U:CQ+ ot + c1x + Ao (30)

—2X0 + ¢ exp(—Aat)
of equation (20) for the case A\ = A3 =0, i.e.,

U = (A + XU)Uzs + AoU. (31)
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As is noted, equation (20) for A =1 and A9 = 0 yields the Murray equation (4). If we
apply Theorem 1 and ansatz (15) for constructing exact solutions of the Murray equation,
then the consraint ¢y = 0 is obtained and the two-parameter family of solutions

Ao+ ¢ exp(’yQt + yx)
U p—
A3 + ¢ exp(—Aat)

, (32)

A
where v = )\—3, is found. It is easily seen that the family of exact solutions (25) generates

this family if one puts formally c; =0, A =1, and Ao = 0 in (25) and (26).

Solutions of the form (32) are not of the plane wave form, but in the case A\; < 0 and
A3 > 0, they have similar properties to the plane wave solutions, which were illustrated in
[1, 2] in Figures. So, they describe similar processes. In the case ¢y = 0, a one-parameter
family of plane wave solutions is obtained from (32).

Taking into account solution (32), one obtains the following theorem:

Theorem 2. The exact solution of the boundary-value problem for the Murray equation
(4) with the conditions

A2 +crexp(yx)

U0, 33
(0,2) Nt (33)
A2 + 1 exp(v2t)
U(t,0) = , 34
(t,0) Az + co exp(—Aat) (34)
and
A3
1

is given in the domain (t,z) € [0,+00) x [0,4+00) by formula (32), and, for Ay < —~?2, it
is bounded.

Note that the Neumann condition (35) (the zero flux on the boundary) is a typical
request in the mathematical biology (see, e.g., [1, 2]).

Example 2. Let us consider the following equation
U= [()\ + )\QU)UI]J; + AU — )\3U2 (36)

that, in the case where Ao = 0 and A = 1, coincides with the Fisher equation (3). The
known soliton-like solution of the Fisher equation was obtained in [11]. Note that this
solution can be found using the suggested method too. It turns out that the case A\g # 0
is very special.

Let us apply Theorem 1 to construction of exact solutions of equation (36) in the case
of ansatz (15). Similarly to Example 1, one can find the following two-parameter families
of solutions

(2AX3+X0A2)t
A Aot — eXP 1, A
U= f 1 + tanh %} + ¢ P o 373 OXP (, / %1‘) (37)
3 (cosh 7)‘2@; CO)) 0
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and
(2AX3+X0A2)t
A Aot — eXp 1 A
U= f [1 + tanh %} +ac 2o 373 OXP (—, / %l’) , (38)
3 (COSh )\2(752*00)) 0
where cg, c1,co are arbitrary constants. The solutions from (38) have nice properties.
A
Indeed, any solution U* of the form (38) holds the conditions U* — )\—2 if ¢t — oo and
3

A3 < AgAg; UT — A2 {1 +tanhM
2)\3 2

account these properties, we obtain the following theorem.

<1 if x — 400, A3 > 0. Taking into

Theorem 3. The bounded exact solution of the boundary-value problem for the generalized
Fisher equation

Up = [(1 4+ MU)Usle + AU — \U?, Ao >1, Mg >0, (39)
with the initial condition

U(0,z) = Cy + C exp (— ﬁm) , (40)

2o

and the Neumann conditions

Ug(t,—o0) =0, Ug(t,+o00) =0, (41)
is given in the domain (t,z) € [0,+00) X (—00,+00) by the formula

A2(24+A0)t
U= % [1 + tanh AQ(t; CO)] +o— i 572 €XD <— 2)\720’3;0 : (42)

(cosh Az(t=co) (t2— CO))

—)\260

1 —Xa2co —3/2
where Cy = 3 1 + tanh 5 , C1 =c1 | cosh , and c; > 0.

Example 3. Consider the nonlinear reaction-diffusion equation with a convection term
Y = [YVa]e + MY Y, + XY — N3V o #£0, (43)

that can be interpreted as a generalization of the Fisher and Murray equations. One can
reduce this equation to the form

1
Up = UUpe + —U2 + M (H)UU, + adoU — a3 (44)
«
1
using the substitution U = Y. It turns out that equation (44) for A;(t) = — <1 + —) (%)
«
is reduced by ansatz (17) to the following system of ODEs:
v _ 1
d 1 1
% == (1 + —> YPop1 + adapo + —pf — ads,
t « «
(45)
dt rt a b
d 1 1
% = {——72800 + <— - 1) Y1+ a)\z] P2
t « o
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for finding the unknown functions ~(t) and ¢;, ¢ = 0,1, 2. It is easily seen that in this case
the function 7(¢) # const if 1 # 0. Solving the system of ODEs (45), the family of exact
solutions is found that are not the ones with separated variables, i.e.,

U =go(t)go(x) + - + @m-1(t)gm—1(2). (46)
It is easily seen that in the case a = —1, the system of ODEs (45) is integrated in terms
of elementary functions and one finds v(t) = [Aaco + ¢1 exp(—Aat)] ~*

Remark 5. The family of exact solutions with ~(t) # const (see ansatz (17)) has an
essential difference from the ones obtained above since they contain the function ~(t).
So this family cannot be obtained using the method of linear invariant subspaces recently
proposed in [12, 13] (note that the basic ideas of the method used in [12, 13] were suggested
n [14]) because that method is reduced to finding solutions in the form (46).

Finally, it is necessary to observe that all found solutions are not of the form (7), i.e.,
they are not plane wave solutions. Moreover, all these solutions except (30) can not be
obtained using the Lie method. One can prove this statement using theorems that have
been obtained in [15].

4. Discussion

In this paper, a constructive method for obtaining exact solutions of certain classes of
nonlinear equations arising in mathematical biology was applied. The method is based on
the consideration of a fixed nonlinear partial differential equation together with additional
generating condition in the form of a linear high-order ODE. With the help of this method,
new exact solutions were obtained for nonlinear equations of the form (20), which are
generalizations of the Fisher and Murray equations.

As follows from Theorems 2 and 3, the found solutions can be used for construction
of exact solutions of some boundary-value problems with zero flux on the boundaries.
Similarly to Theorem 3, it is possible to obtain theorems for construction of periodic
solutions and blow-up solutions of some boundary-value problems with zero flux on the
boundaries.

The efficiency of the suggested method can be shown also by construction of exact
solutions to nonlinear reaction-diffusion systems of partial differential equations. For
example, it is possible to find ones for the well-known systems of the form (see, e.g., [16])

MU = AU+Uﬁwv)

f(U, V) (47)
AoV, = AV + Vgl( )’
92(U, V)
where the fi and gi, kK = 1,2, are linear functions of U and V. The form of the found
solutions will be essentially depend on coefficients in the functions f; and g, k£ = 1,2.

Note that, in the particular case, system (47) gives the nonlinear system
{Mm:AU+mWV4,
ANV = AV + BU, 1 # Pa.

As was shown in [17, 18], system (48) has the wide Lie symmetry. Indeed, it is invariant
with respect to the same transformations as the linear heat equation. This fact gives
additional wide possibilities for finding families of exact solutions.

(48)
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