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ABSTRACT

A new criterion for driving a recursive partitioning decision rule
for nonparametric classification 1s presented. The criterion is
both conceptually and computationally simple, and can be shown to
have strong statistical merit. The resulting decision rule is asymp-
totically Bayes risk efficient. The notion of adaptively generated
features is introduced and methods are presented for dealing with

missing features in both training and test vectors.
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Introduction

In many classification problems, the underlying class conditional
probability densities are either partially or completely unknown. Con-
sequently, the classification logic must be designed from information
measured from representative samples drawn from each class. The non-
parametric classification problem may e stated in the following manner.
A random p-dimensional vector of observed features, ii is thought to be-

long to one of M populations, Ty Tye ool characterized by density dis-

M
tribﬁtions that are unspecified. On the basis of these features, a de—z
cision is made ss to which distribution function characterizes ii using
a training set of vectors drawn from each of the populations, T ﬂg.-.ﬂM-
The nonparametric decision rules that have received the most atten-
tion are the k-nearest neighbor decision rules first introduced by Fix and
Hodges [1,2]. The training samples from the M populations are combined
into a single population with each vector tagged as to the class from
which it originated. The k closest training vectors to §>(with respect
to a specified distance function and metric) are located, and ﬁais assigned
o the class with the largest representation in this set. These authors
investigated the rule for k — c and showed that the procedure is asymp-

totically Bayes risk efficient, if k is chosen to be a function of the

training ssmple size, N, such that lim k(N) = co, while Lim[k(N)/N] = O.
N-—w N - o

The rule for fixed k has been investigated by Cover and Hart [3].
They show that for the extreme case of k=l (nearest neighbor decision
rule), the asymptotic probability of misclassification is bounded from
above by R¥[2 - MR*/(M-1)] where R* is the Bayes probability of misclassi-

fication.



Despite their desirable statistical properties and intuitive appeal,
the k-nearest neighbor decision rules have not found widespread appli-
cation to classification problems. This is due, mainly, to their compu-
tational complexity. Although considerable progress has been made re-
cently in this regard [h], finding the nearest neighbors to a point in
p-dimensional space is relatively expensive computationally. Techniques
for using the full training sample to extract a subset of points with
relatively high discrimination information have been proposed [5,6]. The
k neafest neighbor rule is then applied to this reduced subset.

Another problem with the decision rules discussed above (as well
as almost all others) is that they lack an invariance that is intrinsic
to the classification problem, namely invariance under all strictly mono-
tone transformations of the feature axes. The maximel invariants are the
coordinate-wise ordered population levels of the training sets. Unfor-
tunately, the performance of these decision rules can depend greatly on
the choice of a particular transformation. Feature subset selection and
choice of metric are examples of trying to find good linear transforma-
tions. The optimum transformation, however, may not be linear. For ex-
auple, a metric that is good in one region of the feature space may not
be good in another. A feature subset that contains a great deal of dis-
criminating information in some regions of the space may contain little
or none in other regions. Discovering the best nonlinear transformation
of the feature axes for a particular decision rule and training data sam-
ple 1s a difficult problem and no general solutions have yet been proposed.

An alternate approach is to design the decision rule so that it con-
tains the desired invariance properties. Anderson [7] presents decision

rules based on statistically equivalent blocks or distribution free !
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tolerance regions. These rules partition the multivariate feature space
on the basis of a set of prespecified functions. Although these rules
possess the desired invariance and can be shown to be asymptotically
Bayes risk efficient, they may be no more useful than random assignment
for moderate sample sizes.

Henrichon and Fu [8)] and Meisel and Michalopoulos [9] present heur-
istic strategies for feature space partitioning based directly on the
class ildentities of the training samples. These strategies recursively
partition the marginal distributions of training sample subsets. These
subsets are obtained from previous such partitionings. At each stage,
the number of partitions, their location, and the particular feature used
for the partitioning is decided, using a heuristic measure of the mis-
classification rate based on the training sample identities. These de-
cision ruleé maintain the desired invariance to all monotone transfor-
mations of the features. Although ssymptotic results are not availlable
concerning their Bayes risk efficiency, empirical evidence and common
sense indicate that they can perform well with moderate training sample
sizes. In addition, Meisel gnd Michalopoulos observe that these parti-
tionings can be represented by binary decision trees. They apply a dy-
namic programming technique for finding the decision tree that tends to
minimize the average number of comparisons required to arrive at a de-
cision, given a particular partitioning of the feature space.

This note proposes a different criterion for driving the recursive
feature space partitioning algorithms of Henrichon and Fu, and Meisel and
Michalopoulos. This criterion is especially simple and is motivated di-
rectly from considerations of Bayes risk efficiency. In fact, the de~

cision rule that results can be shown to be asymptotically Bayes risk
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efficient with no assumptions concerning the underlying class probability
densities [10]. Computationally, the procedure is quite fast both in
the training and classification stages. Methods for using vectors with

missing coordinates in both training and classification are presented.

Recursive Partitioning

Consider first the simplest case of only two classes (M=2). The
decision rule for the multiclass problem will be seen below to be a
natural extension of the two-class rule. Let fl(§3 and f2(§3 represent
the (unknown) probability density functions of the two classes and Fl(§3
and F (23 their corresponding cumulative distributions. Assume that the

2

losses for misclassification are {1 and {2, respectively, and T and n2
are the corresponding prior probabilities. We meske the restriction

{1ﬂl = {éﬁg. Extensions to the general case are straightforward [10].

Suppose for the moment Fl(x) and Fé(x) are known univariate distri-
butions. Stoller [11] shows that if one were to cut the real line at a
point, assigning the left region to one class and the right to the other,
the point x* that minimizes the Bayes risk of misclassgification is the

point that meximizes the quantity

D(x) = |F(x) - Fy(x)] - (1)
that is
D(x*) = max D(x) . (2)

The quantity D(x*) is the well-known Kolmogorov-Smirnov distance between
the two distributions. In many situations, a single cut would not pro-
vide adequate discrimination; for example, if ii(x) and/or fé(x) were

multimodel. TIn this case, the Stoller procedure could be extended by

reapplying it to each of the two subintervals defined by the first par-
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titioning, resulting in four cuts. This Stoller partitioning ean be
recursively applied to each interval defined by the previocus partitioning,
unless the interval meets a terminal criterion (depending on Fl(x) and

F (x) in the interval) at which point the interval is not divided fur-

o
(x);

ther. A terminal interval is called a class one cell if Fl(x) > F2

otherwise, it is called a class two cell.

The Kolmogorov-Smirnoff distance is a well-known measure of the separ-
ability of +two distribution functions. A natural extension of Stoller
parfitioning to the multivariate case would be to cut on that feature for
which the Kolmogorov~-Smirnov distance between the two marginal clagss dis-
tributions is greatest. As with the univariate case, one could apply
the partitioning recursively to each subpopulation until it meets a
terminal eriterion, at which time i1t is assigned to one of the two classes.

In nonparametric applications, the marginal cumulative distributions

Fl(x) and F,_(x) are not known. However, they are easily estimated from

2
the empirical cumulative distributions @l(x) and ?2(x) by

0 x < xgl)
?i(x) = k/n xéi) <x < xéii (3)
1 x(l) =x
n

(1)

where Xp is the kth pecint of the ith class with the points ordered in
ascending values of x. Here n 1s the cardinality of the subsample under
consideration.

A nonparsmetric recursive partitioning slgorithm for two-class dis-
crimination ' can: proceed as follows. If the subsample meets the terminal
criterion, it is assigned to one of the two classes. Otherwise, the

Kolmogorov-Smirnov distance between the empirical marginal distributions



of the two classes,
D(x¥) = e ENCHER NCNINE (%)

is evaluated for each feature, j, in turn and the one for which D(xg) is
largest is chosen as the one to be cut. That is,

D(x§*) = mgx D(xg) . (5)

The location of the cut is taken to be X?*'

Since the partitioning procedure deals only with marginal distri-
butions, there is nothing that restricts it to the p-original features:
Based on his knowledge of the problem, the researcher can manufacture Aew
or transgenerated [8] features that are general functions of the original
features. At each stage in the partitioning, the feature for which D(x§)
is largest will be chosen. This maximization can be performed over all
features, original and manufactured. The algorithm chooses the one that
vields the best marginal discrimination at each stage of the partitioning.
Features containing little or no discriminating information are simply
ignored so  that there is no loss in adding any number of extra trans-
generated features. However, there is a great deal to be gained if one
or several of these transgenerated features yield good discrimination
for some of the partitioned subsamples.

It is not necessary that these additional features be manufactured
in advance of the partitioning. They can be constructed as the parti-
tioning progresses, and made dependent upon the particular subsample to
which they are applied. For example, one might add the feature set

-

yi = X'Wi (6)

-
where the W, are the eigenvectors associated with the largest several
eigenvalues of the matrix BC—l. Here B is the between class scatter

matrix and C is the within class scatter matrix for the particular sub-
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sample under consideration. Thus, the manufactured feature set can it-
self adapt to different subsamples and different regions of the feature
space. In several applications, we have found it useful to add the
gingle adaptive feature

y=x% (7a)
where

?

-1 - =
[Vl + V2] . (ml-mg)

is the direction associated with the Fisher linear discriminant. Here

E; and Vi (i=1,2) are the subsample mean and covariance matrices of th;
two classes. Although these generated features may be motivated by para-
metric considerations, they will be incorporated into the decision rule

only if they are found to be useful on the basis of the nonparametric
Kolmogorov~-Smirnov criterion.

It should be noted that the addition of adaptively generated fea-
tures can cause the resulting decision rule to no longer be invariant
under all strietly monotone transformations of the original features.

For those suggested above, however, the rule is invariant to linesr trans-
formations.

Terminal Criteria

Tt remains to specify the criterion that stops the partitioning of
a subsample establishing a terminal cell. The partitioning should clearly
terminate if the subsample contains training vectors only from a single
class, since further partitioning cannot change any class assignments.
One possibility is to meke this the sole criterion for termination. This
results in all of the training vectors themselves being correctly classi~
fied by the decision rule. However, this criterion is best only if it

is known in advance that there 1s no overlap in the feature space between



the underlying class probability densities. That is,

J r(F) 1,(0) & = 0. (&)

When the probability densities do overlap, the optimal Bayes decision rule
does not correctly classify all of the training vectors. Since the pur-
pose of the nonparametric procedure is to use the training sample to
estimate as closely as possible the Bayes decision boundary, requiring

it to correctly classify all of the training vectors would degrade its
perfdrmance in overlap situations.

The class sssignment of terminal cells is made on the basis of the
estimated density ratio fl/f2 within the ceil. The cardinality of the
subsample within each cell should be large enough to provide a reasonable
estimate of this density ratio. Thus, the partitioning of a cell should
terminate whenever it cannot be further partitioned in a way that insures
at least k subsamples remasining in each of the two daughter cells. Here
k is a preset absolute minimum subsample size for all terminal cells.
Also, the meximum for the Kolmogorov-Smirnov distance (egn 1) should be
sought in the restricted range X1 <x = Xk so that no cell can be
created with less than k subsamples.

The minimum cell sample size, k, is a parameter of the algorithm.
The best choice for its value is problem dependent. It should increase
with increasing total sample size N, more slowly than N. Gordon and
Olshen [10] prove that the recursive partitioning procedure described in
this paper is asymptotically Bayes risk efficient provided

lim k(N) _ lim k(N)
Nooy -0 and T A (9)

A method is described below for estimsting the best value of k for a par-

ticular problem from the training ssmple itself.
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Implementation

Meisel and Michalopoulous [9] note that any partitioning of a co-
ordinate space can be represented by a binary tree. They develop dy-
namic progremming techniques for constructing the particular tree that
tends to minimize the average number of comparisons required to arrive
at a terminal cell. Their techniques can be applied to the partitioning
that results from the algorithm described here.

Because the partitioning in this algorithm is binary st each stage,
it is possible to directly build a representative binary tree as the p;r—
titioning progresses. A subssmple at any stage in the partitioning is
represented by a node of the tree. The root of the tree represents the
entire training sample. The two sons of each nonterminal node represent
the two subsamples defined by its partiticning. The terminal nodes of the
tree represent the terminal cells. Rach nonterminal node must store the
feature number and split point used in its partitioning, as well as pointers
to its two sons. If the feature used for splitting was adaptively gen-
erated from the subsample itself, then the parameters for generating the
feature must be stored. Each terminal node stores the number of training
vectors from each class contained in its corresponding terminal cell.

Classification Rule

The rule for classifying a test vector is simply to assign it to the
class that the partitioning algorithm has assigned to the cell in which
1t lies. With the binary tree representation of the partitioning, this
can be accomplished easily and quickly. Starting at the root, the test
vector is directed down the tree until it arrives at 2 terminal node. If
the terminal node represents a unique class, the test vector is assgigned

to that class. If the node represents mixed classes, then the test vector



is assigned to the class with majority representation. While descending
the tree, the decision to go left or right at each nonterminal node = is

made as follows:
*

if x., = Xj*

3 go to left son

else go to right son.
Here j* is the partitioned feature (original, transgenerated, or adaptive)
*

and Xj* the corresponding split point stored at the node.

Multiclass Discrimination

A straightforward extension of this technique to multiclass problems
is to treat an M-class problem as a series of two-class problems. For
each two-class problem, a recursive partitioning is performed to separate
one of the class populations, i, from all of the others. In each terminal
cell  of each tree, the number of training vectors, Ci’ of the particular

class to be separated, and the number, O corresponding to the other classes

1
are stored. A test vector to be classified is directed down all M decision
trees to M corresponding terminal cells. The test vector is assigned to
the class j for which Cj - Oj is maximum over these M cells.

Although it might appear that this procedure increases the complexity
of the decision rule by a factor of M, this is not the case. TFor each of
the M decision trees, the object is to separate a single class, i, from
all of the others. Partitioning will oececur only near the decision
boundaries of class 1. Tralning vectors from other classes not near the
boundary will quickly be assigned to large cells containing no class i
vectors during the very early stages of partitioning, and thus are re-
moved from consideration in the later stages. Only those non-class i

vectors near the class 1 boundary participate significantly in the par-

titioning of the feature space for each class i decision tree.
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Missing Features

This decision rule can easily accommodate missing features in the
test vectors as well as the training vectors. Missing features in a
vector to be classified cause problems only if a feature that
is not present is used for partitioning at a node
on the path from the root to its terminal node. If this does not happen,
then the vector will arrive at a unique cell  1in each decision tree and
be c;assified in the usual way. If a node is encountered in which the .
discriminating coordinate is missing, then a decision as to which branch
to take cannot be made, and the point is directed down both branches.
This causes the test vector to ultimately appear in several terminal
cells in egch tree. The number of cells in which it will appear in each
tree ig one more than the number of ambiguous nodes it encounters. The
vector 1s assigned to the class with the largest representation in the
union of these cells.

Training vectors with missing features are handled similarly. Those
vectors with thelr jth coordinate missing, simply do not participate in
evaluation of the Kolmogorov-Smirnov distance for that coordinate. If
the jth coordinate turns out to be the one chosen for partitioning, then
those vectors missing that coordinate are included in both descendent
subsamples.

Transgenerated or adaptive features are functions of the original
measured features. One or several migsing original features can cause
many transgenerated or adaptive features to be uncalculable. If g great
many partitioned features turn out tc be of this manufactured type, simply
taking both branches at each one encountered may discard too much dis-

criminating information. An alternative at each such node would be to
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substitute for the missing original feature, a nominal value (for ex-

ample, the mean) taken from the training sample represented by that node.

Restricting the subsample to only that represented by the particular
node in question, allows any dependencies that wmay exist in the training
data between the measured features, to be used to advantage in estim-
ating a nominal value for the missing feature.

Limitations and Extensions

There is an intrinsic limitation to the recursive partitioning des~-
cribed above (as well as those of References 8 and 9). This limitation 
is a direct consequence of the fact that information from marginal dis-
tributions only is used to drive the partitioning. Although they are
unlikely to be encountered in practice, there are special situations in
which this limitation can adversely affect the performance of the de-
cision rule.
The general partitioning problem at a particular node in the de-

cision tree can be described as follows: Given (A) the particular set

of partitions that lead to the node (i.e., those defined on the path

to it from the root) and (B) all possible subsequent partitionings in

the subtree below it, choose the best feature and location for the cut

at that particular node. The recursive partitioning algorithm described
above uses the information only from part A. That is, it makes the best
possible cut at each node (given the cuts leading to the subsample repre-
sented by the node ) assuming that its two sons will be terminal. The
procedure does not "look ahesd" to all possible sequences of cuts choosing
the first of the best sequence [12]. Thus, the resulting feature space
partitioning is clearly suboptimal in'a statistical sense.

A complete look ahead is not computationally feasible, even for very

small sample sizes. However, a restricted L-level look ahead might be
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feasible for small to moderate training sample sizes. In this mode, each
feature is provisionally cut as if it were the one with the maximum
Kolmogorov-Smirnov distance. ZEach set of daughter subsamples are also
each provisionally cut along all of the features in the same manner, and
so on. The provisional partitioning is continued for L-levels or until
nodes become terminal. All of the resulting partitioning sequences are
evaluated and the best one is identified. (For p features, pL+l is an
upper limit on the number of such sequences). The original cut that leads
to the best sequence is the one chosen. This L-level look shead is reju
stricted in that it looks for the best sequence of cutting features, but
does not optimize with respect to cut locations. Each provisional cut is
made at that point which maximizes the Kolmogorov-Smirnov distance. Com-
putational considerations usually restrict L to be a very small number.
Also, except in unusual situations, very little decresse in expected error

rate 1s obtained by increasing L.

Computational Considerations

Computationally, the partitioning procedure described in the previous
sections is quite fast, both in the training and classification stages.
The computational requirements depend upon the minimum cell subsample size
k and look-ahead level L employed, as well as the separability of the
class populations. When the underlying class probsbilities overlap very
little and the decision boundary between them is relatively simple, the
algorithm can guickly construct large cells containing training vectors
from a single class. This considerably reduces the number of nodeg in
the decision tree.

A worst case occurs when there is no difference between the class

probability densities. In this case, the partitioning algorithm con-

- 13 -



structs a random binary tree. Although no discrimination is possible in
this situation, we can use it to estimate an upper bound on the aversge
computation. It is well known that the average computation reguired to
build a random binary tree is proportioned to W(N)log n, while the gver-
age search requires computation proportional to log n. Here n is the
number of nodes in the tree and W(N) is the computation asscciated with
each level in the tree. The number of nodes in the tree is N/k. Because
sorting is required for each marginal distribution, the computation re-
quired at each level to select the partitions is approximgtely “

W) o - W Logh,

so that the total average computation to build the tree is
I+l N
C(p, N, L, k) ~p " (Nlogl)log(y) - (10)

The average computation to descend the tree for classification of a test

(1)

vector is simply proportional to log(N/k These calculations are
guite crude and represent the average computation only for a worst case,
namely, maximal overlap of the underlying probability densities. They
do, however, give an indication of how the computational requirements
depend upon the various parameters of the problem.(e)
Discussion

The principal difference between the recursive partitioning algo-
rithm described here and earlier ones [8] [9] is the use of the
Kolmegorov-8mirnov criterion for selecting both the feature and location
for the cut at each stage in the partitioning. This criterion is both
conceptually and computationally simple, and can be shown to have strong
statistical merit [11]. The resulting decision rule can be shown to be
asymptotically Bayes risk efficient [10]. The notion of adaptively gen-
erated features is introduced and methods are described for dealing with

missing features in both training and test vectors.
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In an operational sense, this method differs in that at each stage
of the partitioning only a single cut is performed. At first thought,
one might be motivated to make several cuts on a single marginal distri-
bution, especially if there were several sequences of runs of a single
class. The strategy of the recursive partitioning presented here is to
make the single cut that yields the best marginal class separation. (Note
that from its definition (egns 1-3), the Kolmogorov-Smirnov criterion can
cause a split only at boundaries between two runs and never within a rqn.)
After the split, all of the marginal distributions of the two daﬁéhter.
subsamples are examined and each subsample 1s cut on its respective best
feature. It may be that the same feature that waes used to cut the parent
subsample is also the best for cutting bqth daughters. If so, the Kol-
mogorov~-Smirnov criterion will select it. However, making several cuts
on a single marginal distribution presupposes that this is the case with-

out examination of the other marginals after each cut.

An important by-product of purely binary partitioning is that a
binary decision tree representing the partitioning can be easily con-
structed as the partitioning progresses.

There are two parameters associated with this algorithm, the mini-
mum terminal cell sample size, k, and the look-ghead level L. Compu-
tational considerations usually restrict L to a very small value (for
example zero). As discussed above, very little is gained by increasing
the level of look ahead, except in special situations. One strategy
would be to invoke a look ahead only at those nodes in the decision tree
where none of the single marginal distributions provide adequate in-
crease in discrimination. For these cases, it could be that the best
pair (or perhaps triple) might provide a substantial increase over that
of the best single feature.

- 15 -



The optimum value for k is problem dependent. Experience has in-
dicated that the performance of the decision rule is not particularly
sensitive to its value over reasonable ranges. Because of the small
computational requirements of this procedure in both training and classi-
fication, it is feasible to use the "leave-m-out' technique to estimate
the best value of k directly from the training sample. A small number
m < N of vectors are deleted from the training set and the remainder are
used to design the decision tree. The left out vectors are then classi-
fied by the resulting decision rule and the number of errors are recoréed.
This procedure is repeated [N/d? times, each with a different set of de-
leted vectors. The error rate averaged over all of these trials is an
estimate of the error rate for the decision rule. The value of k can be

adjusted to minimize this estimated error rate.

Simulation Experiments

Applications of this decision rule are illustrated on two simulated
problems. Simulated data are used so that the performance can be judged
in light of the known separability of the underlying class probability
densities and the complexity of the decision boundaries. The first
example is a two-class problem that is constructed so that all linear
classifiers have no discriminating ability. The second example
is a seven-class problem. In both experiments, the decision rule was
implemented with no transgenerated features and only one adaptive fea-
ture, namely, the Fisher linear discriminant direction (Egn 7). No
look -ahead was employed (I=0) and the minimum cell sample size was ar-
bitrarily chosen to be ten (k=lO) on the basis of no optimization. The

results reported for each simulated experiment were obtained by gener-

- 16 -



ating twenty independent sets of training samples and a corresponding
twenty sets of 1000 test vectors. For each of these twenty trials, the
training sample was used to classify the 1000 test vectors. The stat-
istics listed in Tables 1 - 2 were obtained by averaging the results
over these twenty trials. The statistical uncertainties were obtained
by dividing the standard deviation about the mean by the square root of
twenty.

A, Two-Class Spherical Discrimination

In this problem, the probability density function of one class
population completely surrounds that of the other. The first four fea-
tures of the first population are distributed uniformly within a four-
dimensional spherical slab centered at the origin with inner radius 3.5
and outer radius 4.0. The last six features are distributed as a spheri-~
cal normal distribution located at the origin with unit covariance matrix.
All ten features of the second population are normally distributed with
unit covariance matrix and zero location. Thus, the two distributions
differ only in the first four features and the last six contain no dis-
criminating information. 1In order to make the problem more
realistic, the spherical symmetry was removed by scaling each feature
by its feature number. That is, the first coordinate is scaled by
unity, the second by two, and so on, the last being scaled by ten. The
asymptotic Bayes error rate for this experiment is 0.64%. A training
sample size of 500 was used for each class.

Table 1 shows the results of applying the recursive partitioning
decision rule to this problem and compares it to nearest neighbor dis-
crimination in terms of average error rate, decision time and memory

(3)

requirement.
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B. Multiclass Simplex Problem

This example consists of seven populations, each normally distri-
buted in six dimensions with unit covariance matrix. Each distribution
is located at a different vertex of a six-dimensional regular simplex
and separated by a distance of four. A training sample size of 500 was
used for each class. The asymptotic Bayes error rate for this example
is 9.6%. The results are shown in Table 2.

Although these examples were constructed to be difficult, the re-
curéive partitioning decision rule is seen to have comparable error rafe
to nearest neighbor discrimination, while requiring substantially less

computational resources.

ACKNCOWLEDGMENT

Many of the ideas presented here were inspired in discussions

with Richard A. Olshen and Charles T. Zahn, Jr.

- 18 -



TABLE 1

Two-Class Spherical Discrimination Problem
Asymptotic Bayes Error Rate = 0.64%
500 Training Vectors/Class

Recursive Nearest
Partitioning Neighbor
Error Rete (%) 16.9%0.5 35.240.3
Average Decision Time (ms) 0.099 12.5
Memory (bytes) 1061 40000

TABLE 2

Seven-Class Simplex Discrimination Problem
Asymptotic Bayes Error Rate = 9.6%
500 Training Vectors/Class

Recursive Nearest
Partitioning Neighbor
Error Rate (%) 13.3%0.3 15.9%0.3
Average Decision Time (ms) 0.59 7.66
Memory (bytes) 9016 28000
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(1)

(2)

(3)

FOOTNOTES

If, during the descent, a substantial number of nodes are encoun-
tered that cut on adaptive features,. the computation is increased
by the time required to compute the features at each of these nodes.
As a point of reference, the computation required to perform the
recursive partitioning for the example in Table 1 (p=lO, N=1000,

k=10, and I1=0) was 3.2 CPU seconds. See Footnote 3 below for com-

- putational details.

A1l simulation experiments were performed on an IBM 370/168 com-
puter with programs coded in FORTRAN IV and compiled with the IBM
FORTRAN H (extended) compiler at optimization level two. Compu-
tational performance is stated in terms of average CPU milliseconds
required to classify unknown test vectors. Memory requirements are
reported in bytes (8-bits) under the assumption that integer pointers
can be stored as halfword quantities (2 bytes), while real variables
are stored in full words (4 bytes). The fast near neighbor algorithm

of [4] was employed for all nearest neighbor calculations.
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