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Abstract

We present a detailed analysis of results from a new studhefjuantum evaporation
of Callan-Giddings-Harvey-Strominger (CGHS) black holéthin the mean-field approx-
imation. The CGHS model is a two dimensional model of quangravity which has
been extensively investigated in the last two decades. &dere Ashtekar, Taveras and
Varadarajan have recently proposed a solution to the irdton loss paradox within the
context of this model, which has rekindled the interest inHbwever, many aspects of
black hole evaporation in this model has been overlookeausz of lack of a solution
for black holes with macroscopic mass. We show that this westd, in part, limited
numerical precision and, in part, misinterpretation otaerproperties and symmetries of
the model. By addressing these issues, we were, for theifiret fable to numerically
evolve macroscopic-mass black hole spacetimes of the CGatielnwithin the mean-field
approximation, up to the vicinity of the singularity.

Our calculations show that, while some of the assumptioreying the standard
evaporation paradigm are borne out, several are not. Orteedrtticipated properties we
confirm is that the semi-classical space-time is asymgthyiiat at right future null infin-
ity, Z;;, yet incomplete in the sense that null observers reach agfi@auchy horizon in
finite affine time. Unexpected behavior includes that thedomass traditionally used in

the literature can become negative even when the area ofti®oh is macroscopic; an



improved Bondi mass remains positive until the end of sdassical evaporation, yet the
final value can be arbitrarily large relative to the Planclsmy@and the flux of the quantum
radiation atZ;; is non-thermal even when the horizon area is large compartatPlanck
scale. Furthermore, if the black hole is initially macrgsico the evaporation process ex-
hibits remarkable universal properties, which offer pesbs$ to attack to the mathematical
relativity and geometric analysis communities. Our resalso provide support for the full

guantum scenario developed by Ashtekar et al.
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Relation to Previous Work

Parts of Chapter 1 and Chapter 4, and most of Chapter 3 are basf], whose basic

results can also be found in [2]. Chapter 2 is based on [3].
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Chapter 1

Introduction

Here, we present the preliminary information that provittes context for the following
chapters. We start with a summary of black hole evaporatimhiaformation loss as it
was introduced by Hawking. After a short section that dertratess how results in two
dimensions can be related to the 4-dimensional case, wénoenwith the basics of the
Callan-Giddings-Harvey-Strominger (CGHS) model, thecHje2-dimensional model we
use to analyze black hole evaporation. We start with thesidakaction, and then have an
interlude in Sec. 1.3.2 to explain our motivations in examgrthis model, and to give a
summary of our results. This section is placed so that, reddem all backgrounds can
have an idea about the basics of the black hole evaporatmbgrawity in two dimensions
by this point. We continue our exposition of the CGHS modeplyviding a combination
of previously known results and our novel contributions,set the scene for the main
discussion. Lastly, we have a second look at black hole ea#ipa, this time from an

alternative direction that is better adapted to our work.

1.1 Black Hole Evaporation and Information Loss

Almost four decades ago, Hawking demonstrated that blaldsloan radiate particles with

a thermal spectrum and evaporate away [4]. This result wassigthe common intuition
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about black holes, and has led to tremendous amount of wayiiantum mechanics, gen-
eral relativity, and many theories which aspire to combime tivo. In this section, we
will give a summary of Hawking’s original results. Today, Wlking radiation and related
phenomena are standard parts of the curriculum of quantdentiieory in curved space-
time courses, and pedagogical expositions can be fountratiuctory [5] or advanced [6]

levels. We direct the interested reader to these sourcdsyéingive a mostly conceptual

explanation of the information loss problem.

r=20 '

event horizon

collapsing matter

[/

Figure 1.1: Penrose diagram of a black hole that forms frollagsing energy. The shaded
region is the collapsing energy, outside of which we have lav@czschild solution.;*
are the past and future time-like infinitie$,is the spacelike infinity, and* are the past
and future null infinities. The past image B6f does not cover all of the spacetime, which
means there are trapped surfaces. The event horizon, tineléagyuof the trapped region is
shown by a dashed line. Singularityra 0 is hidden behind the event horizon.

Following the original calculation [4], we begin by consitig) a spacetime where en-

ergy collapses to form a black hole. In the case of the spdlgrisymmetric collapse,
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the Penrose diagram for this spacetime is given in Fig. 1.4.ths fixed curved space-
time, consider a quantum fielgsatisfyingvV*V,¢ = 0 (V being the covariant derivative),

which has a mode expansion

o= Z <fiai + ﬁ@) (1.1)

where f; satisfy the wave equation and form a complete orthonormse bathe past null
infinity Z=. Z~ is a Cauchy surface, once we know the initial data on it, wenkgo
everywhere. Hence, Eq. 1.1 can be used to expreserywhere.

We cannot repeat the exact same procedur&fgrsince it is not a Cauchy surface.
This is because interior of the event horizon is not in the jpaage ofZ*, hence we need
to know the data on the event horizon as well. If we choose tihatisns of the wave
equatiorp; that are purely outgoing, i.e. with no Cauchy data on evernizbn, andy; that

area purely ingoing, i.e. they have zero Cauchy datagrone can say

o= Z <pibi + Pibj + qici + CECZ) (1.2)

7

outside the horizon. Since either of the mode expansionalid,wve can expresg; in

terms off;, and

b, = Z (aijaj - BijaD (1.3)

J

for someq;; andj;;. The state with no particles coming in fraht is defined as
a;|0) =0 foralli. (1.4)

On the other hand, this same state is not necessarily aseitiiby other annihilation oper-

ators associated with a different mode expansion. Spdbifica

(O[b]b:|0)y = |83 - (1.5)

J



which is in general nonzero. Remember thiatan be interpreted as the annihilation oper-
ator from the point of view off *, andb;sz- is the number counting operator for the mode
7. This has a simple interpretation: in curved spacetimeywacis observer dependent.
Even if we start with a vacuum state in the past, this may leaal state with particles in
the asymptotic future.

When|s;;]? is calculated, the expected number of particles with fraques observed
in the distant future is given by,

() = (1.6

e — 1
wherek is the surface gravity of the black hole. This is the emissipactrum of a black
body with temperatur%. I'(w) is called thegreybody factorand can be thought of ac-
counting for the fact that the radiation can scatter fromgpacetime curvature and fall
back into the black hole. The exact expressionlfau) as well as slight modifications
to the formula when charge and angular momentum are intemtlace not crucial for our
discussion and can be found in the detailed treatments wéaned.

In 4 spacetime dimensionsis inversely proportional td/, the mass of the black hole.
Even though we fixed the background metric and ignored thkrbaction, in a more real-
istic treatment, the black hole will lose mass due to Hawkadjation, and its temperature
will rise. Radiated power will increase, leading to a rungyaocess where finally the
black hole and the event horizon disappears in finite propes.tAt this point, we are left
with thermal radiation, which does not carry any informatibowever, in general, the mat-
ter that formed the black hole in the first place carried sorf@mation. Thusinformation
is lost in the evolution of a black hole space tinreboth quantum field theory and general
relativity, evolution is unitary, but something has beeaken when we tried to combine
the two. This is the celebratedformation loss problemwhich is sometimes also known
as the information loss “paradox”.

Information may very well be lost since we do not have an eita@bry of quantum

gravity, but many physicists found this possibility hardligest and have been looking for
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places where the missing information could have gone. Tisare agreed upon resolution
so far.

We should perhaps mention one possible shortcoming of Hayécalculation: ignor-
ing the backreaction. After all, information loss arisesewtthe black hole shrinks, which
is not explicitly captured in the fixed background calcuative summarized. However,
this was foreseen in [4], where it is argued that the sensabpicture of a fixed curved
spacetime should hold until the curvature reaches the RPksgale. This would mean that,
if quantum gravity or beyond-the-leading semiclassicatextions are to resolve the issue,
they can do so only at the very last stages of the life of thelkdhale. By this point, almost
all of the mass is lost, hence it is hard to imagine how suchallsemnant can hold all the
information about the matter that originally collapseddaoti a macroscopic black hole.

We will give another short summary of black hole evaporagibiine end of this chapter,

in Sec. 1.4, which will be adapted to the 2-dimensional case.

1.2 General Relativity in Spherical Symmetry

In two dimensions, the Riemann tensor has only one indepgrdenponent (e.gR1010)

due to its inherent symmetries, which can be captured by ite Bcalar
Rabcd =R (gacgbd - gadgbc) (17)
A direct consequence of this fact is an Einstein tensor thaishes identically
1
Gab = Rab — iRgab =0. (18)

Hence, Einstein equations are not useful in two dimensidosgiever, there is no shortage
of work on gravity in two dimensions, which go back many dexsaffor example, see [7]

for a collection of different approaches).



Our main aim in analyzing two dimensional models is gainingight into the 4-
dimensional case, and an important case to connect the tthe ispherically symmetric
(S—wave) sector of the Einstein-Klein-Gordon system. Corrdide spherical collapse of
a massless scalar fieldin 4 space-time dimensions. Mathematically, it is convente
write the coordinate which measures the physical radius of metric 2-spheres-as%/x
wherex is a constant with dimensions of inverse length. The spiace-netric 4g,, can
then be expressed as

=20

4gab =0+ 7280y 1= 9up + 2 Sab (1.9)

wheres,, is the unit 2-sphere metric and,gs the 2-metric in the r-t plane. In terms of

these fields, the action for this Einstein-Klein-Gordontsecan be written as

~ 1 A4r
S(g,0,f) = 87T—G4§fd2x gl e (R+2V*¢V,¢
+ 2e7%x%) =1 [d°z+/|ale "V [V f (1.10)

whereG, is the 4-dimensional Newton’s constaRt,is the derivative operator and tRe
scalar curvature of the 2-metrig,g The significance of the bold faced terms will be ex-
plained in the next section. The gravitational field is nowlew in a 2-metric g and a
dilaton field ¢, and the theory has a 2-dimensional gravitational constaott dimension
[ML]~" in addition to the constant of dimensionZ] ™! (x? is sometimes regarded as the
cosmological constant).

An important connection to four dimensions from this effesly two dimensional
model arises when we note that’® measures the area of spheres. Hence, once can deduce
the location of the apparent horizon by the rate of change &e will use these facts in

the following analysis of the CGHS model as well.

LIn this paper we set = 1 but keep Newton’s constant and Planck’s constarit free. Note that since
Gh is aPlanck numbein 2 dimensions, setting both of them to 1 is a physical retsbii.



1.3 The Callan-Giddings-Harvey-Strominger Model

The Callan-Giddings-Harvey-Strominger (CGHS) model Bhi2-dimensional model of
guantum gravity which has attracted attention due to thetfat it has black hole solu-
tions with many of the qualitative features of four dimemsibblack holes, while being
technically easier to investigate. Various propertieslatk holes in this model, and other
models inspired by it, have been studied extensively usiadytical and numerical meth-
ods [9, 10, 11]. Detailed pedagogical reviews can be fourjizh

In this section, we will start with the classical CGHS actiamd continue with the
semiclassical results some of which were long known and safmadnich were dicovered
by us [1] . CGHS model has recently come to the forefront inrnkiestigation of the black
hole information loss problem by Ashtekar, Taveras and daraan [13], whose approach

we follow in our notation and definition of variables.

1.3.1 The Classical CGHS Model

The CGHS action is given by [8]:

S0.0.0) =5 [r/ldle™ (R+4V° 69,0 +4s%)

N
— > 3 [ /|g VOV (1.11)
=1

whereV and Rare the covariant derivative operator and the scalar aureatf the 2-metric
g, respectivelyg is a dilatonic field, ang® are N identical massless scalars. Note that this
action is closely related to the one for the-wave sector of general relativity and some
comments are due on this similarity. The only differencenisome coefficients which
appear bold faced in Eq. 1.10. This is why one expects thdysinaf the CGHS model
should provide useful intuition for evaporation of sphalig symmetric black holes in 4

dimensions, which is confirmed by further study.



On the other hand, the two theories do differ in some impomays, which will be
discussed in Sec. 3.5. Here, we only note one: since thedifetld does not appear in
the scalar field action of Eq. 1.11, dynamicsfoflecouples from that of the dilaton. This
leads to analytical solutions for the classical CGHS eguatiwhich is one of the reasons
we investigate this model.

Now, since our space-time is topologicalty, the physical 2-metric g is conformally
flat. We can thus fix a fiducial flat 2-metri¢® and write g* = Qn, thereby encoding the
physical geometry in the conformal fact@rand the dilaton field.

We start with the equation of motion for thfefields’, which is simply the wave equa-

tion. Since the wave equation is conformally invariant,

Dgf=0 <« Ogf=0, (1.12)

f is only subject to the wave equation in the fiducial flat spab&kwcan be easily solved,
without any knowledge of the physical geometry governedtbyy). This is a key simpli-
fication which is not shared by the scalar figldn the spherically symmetric gravitational
collapse described by Eq. 1.1Denote by:* the advanced and retarded null coordinates of
n so thaty,, = 202" d,)2~. Then a general solution to Eq. 1.12 on the fiducial Minkowski
space(M?, n) is simply

FEF) = [0+ F-(27) (1.13)

where f,. are arbitrary well behaved functions of their argumentsthinclassical CGHS
theory, one setg_ = 0 and focuses on the gravitational collapse of the left mowviragle
f+. As one might expect, the true degree of freedom lies onlg,ini.e., f. completely
determines the geometry. But in the classical CGHS modeitetls a further unexpected

simplification:the full solution can be expressed as an explicit integrabimng f.!

2since allf () are identical, we will sometimes suppress the index



For later purposes, following [13], let us set

P =2

and introduce a new fiel® via

©0=0Q"'¢ sothat ¢ =0"'Pn®

Then the geometry is completely determined by the pair aldi@l, . The field equations

obtained by varying Eq. 1.11 are given by

0,0.®+rO = 0

$0,0.nO = 0. (1.14)

Moreover, we also have constraint equations

—ai @ + 8+ @a+ IHQ = GT++

—P P+0_P0_ IO = GT__, (1.15)

whereT,, is the scalar field stress-energy tensor. Constraint eapgatian be viewed as
fixing the gauge conditiop, ., = g__ = 0. They are only needed to be imposed for the
initial data, and are then preserved by the evolution egoati

These equations can be solved to expkes$ directly in terms off,. The resulting

expressions fo® and® are simpler in terms of ‘Kruskal-like’ coordinates given by

ket =e”, and k= —e "7 . (1.16)

Given any regularf ., the full solution to the classical CGHS equations can now be

9



singularitx..-"'

Figure 1.2: Penrose diagram of the CGHS black hole formed&ygtavitational collapse
of a left moving fieldf,. The physical space-time is that part of the fiducial Minkkivs
space which is to the past of the space-like singularity.

written as

—k2xt

[©)
I

o = @—NTGf dz* [T dz* (9f, /0TH)2. (1.17)

Note that, given any regulaf, the fields(©, ) of Eq. 1.17 that determine the geometry
are also regular everywhere on the fiducial Minkowski mddif/°.

How can the solution then represent a black holetirns out that, for any regulaf, ,
the field® of Eq. 1.17 vanishes along a space-like lije Along ¢, then, ¢® vanishes,
whence the covariant metric,dfails to be well-defined. It is easy to verify that the Ricci

scalar of g, diverges there. This is the singularity of the physical mejr The physical
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space-timé M, g,,) occupies only that portion @f/° which is to the past of this singularity
(see Fig. 1.2).

But does/, represent &lack holesingularity? It is easy to check thét/, g,,) admits
a smooth null infinityZ which has 4 components. The reason for the diamond-likeoconf
mal diagram rather than the triangular diagrams familiamfid dimensions is easy: In 4
dimensions, we usually suppress the angular coordinatdghe spatial coordinateis in
the intervall0 co), on the other hand, in an intrinsically two dimensional mptte spatial
coordinate is in the interval-oco co) and can reach to two different infinitie%; andZ;
coincide with the correspondirif~ andZ;~ of Minkowski space-timé/°, n) while Z;*
andZ;; are proper subsets of the Minkowski&h™ andZ;,". Nonetheless} is complete
with respect to the physical metri¢,gand its past does not cover all 8f. Thus, there
is indeed an event horizon with respectZp hiding a black hole singularity. However,
unfortunatelyZ;" is not complete with respect to,g Therefore, strictly speaking we can-
not even askif there is an event horizon —and hence a black hole— witheespZ;"!
Fortunately, it turns out that for the analysis of black hel@poration —and indeed for
the issue of information loss in full quantum theory— ofi}y is relevant.To summarize
then, even though our fundamental mathematical fighisb) are everywhere regular on
full M°, a black hole emerges because physics is determined by teatkian geometry
of g.

To make our case more concrete, let us examine the case otlk\shve pulse given

by
N +12 + +
5(8f+/6x )" =Mo(z" —xg) (1.18)
which leads to
dP=06- M (ka™ —1) H (k2™ — 1) (1.19)
K

whereH is the step function and where we chesg = 1 (simply by shifting the coordi-

SEven in 4 dimensions, the black hole region is definefas M \ J~(Z1) providedZ* is complete
If we drop the completeness requirement, even Minkowskispaould admit a black hole! See, e.g., [14].
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nates such thatf = 0). The conformal factof2 vanishes when

A GM (1 — Kl ) (1.20)

K Tt

leading to the singularity in Fig. 1.2.

To analyze the Hawking evaporation, we once more changeotbrelinates to

+ +
6ny — ef?

oY g GM (1.21)

K

which are the affine coordinates @g, for which the metric is flat as'y — co. We start
with the expression

(0. :T__:.10,) =0, (1.22)

where|0.) is the vacuum which is annihilated by the annihilation ofmnsin 2~ coordi-
nates, and7__ :, is the operator of the normal ordered energy-momentum terisbe f

field. The effect of a change of coordinates is given by [12]

dz\ 2 Ni (d==\>?( d \? [(dz\"?
ey (dy——) T (dy—) (dz‘) (dy—) (29

which finally leads to

5 -1
FHS (0 s T oy J0,) = Y [1 - (1 T G—Meﬂy) ] . (L29)

48 K

The straightforward interpretation of this expressiorhiattif we send in the vacuum
state, fromZ, prepared with respect to the affine coordinates thetethis will be inter-
preted as a flux of energy by an observerZgn the Hawking radiation. The details of
the fact that this flux is thermal and an alternative derorabf the expression for the flux

through the conformal anomaly can be found in [12]. Note thitflux is constant at late

12



times due to the fact that the surface gravity of a black holeur 2-dimensional model is
an absolute constant. This is in contrast to the case in 4rdiioes, where surface gravity
increases with decreasing black hole mass.

Although a black hole does result from gravitational calapn the CGHS model, it
follows from the explicit solution Eqg. 1.17 that one does @atounter all the rich behavior
associated with the classical spherical collapse in 4 daoes. In particular there are
no critical phenomena [15, 16], essentially because trer@ithreshold of black hole
formation: a black hole results no matter how weak the imfglpulsef, is. However, the
situation becomes more interesting even in this simple frmuze one allows for quantum

evaporation and takes into account its back reaction.

1.3.2 Motivation and Outline of the Results

Now that we have an idea of black hole evaporation and gravitwo dimensions, it is
a good time to give a summary of our results. The basic ideayeawill show in the
next chapter, is adding the leading order corrections tdikieel-background evaporation
calculation of the CGHS model, and investigating the chanigieoduced by this. We will
see that, at this semiclassical level, also called the mielhapproximation (MFA) level,
our job is still solving two coupled partial differential egtions similar to Eq. 1.14, but this
time with non-vanishing right hand sides, thus, we will netmorking with quantum states
except for a few instances where we give some conceptuaexipbns.

No closed form solution is known for the CGHS evolution egua at the MFA level,
and we will be led to use numerical methods. Our work is thel fome in a long line
of numerical studies, but all past work had the shortcomiingad being able to analyze
macroscopic-mass black holes, and for the most part, nogtasvare of the distinction be-
tween the macroscopic and microscopic-mass regimes, wiachill explain shortly. To
make this distinction clear, we first give further analytabysis of the CGHS equations,

and clarify certain misconception in the literature in g@t$ 1.3.3, 1.3.4 and 1.3.5. In these
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sections, we also give some novel results that we later usettact information about the

semiclassical spacetime, once we have our numerical snlutve have seen in the pre-
vious chapter that, the classical CGHS model is considgiabipler than the spherically
symmetric sector of the 3+1-dimensional Einstein-Kleior@on system, which was an ini-
tial motivation to work on it. Even with these simplificat®rat the MFA level, solving the

equations numerically and capturing all the important pts/ss a very challenging task.
We spend a whole chapter, Chapter. 2, to give the detailsrafh@thods and explain why
we needed them.

Most of the the physical results that we extract from the miragsolution are in Chap-
ter. 3. One major result we should mention is the fact thate@MFA level, the standard
black hole evaporation paradigm seems to be broken (Sek. Bt radiation from the
black hole is not thermal, even at times not close to the edtpf the singularity.Z;;
is not complete, which manifests itself with the fact that #ffine parameteriyis finite
at the end-point of the singularity (see Eq. 1.21 for comfra®verall, the picture is in
close agreement with the information loss resolution sgermd Ashtekar et al [13], which
we summarize in Sec. 1.4. We have also discovered a phenomgenamediniversality
which is the fact that as long as the black hole foprnemptlyand the infalling energy is
macroscopic, the physics d@;, hence the radiated energy, is independent of the shape of
the infalling energy profile, and only depends on the totfalimg mass. Moreover, physics
onZ} is identical near the end-point of the singularity, evendifierent initial-mass black
holes. In short, all macroscopic black holes eventuallyabehin the sameniversalway
from the point of view of an observer @f);. Aside from these major points, we also clarify
the definition of the black hole mass and radiated energydf©8HS model, and describe
the nature of the Cauchy horizon at the end-point of the $amgy We should mention that
not all of our findings are different from the expectationgha field, and we also report,
for example, the asymptotic flatness of the metric near thedwunull infinity (Sec. 3.2)

In Chapter. 4, we will give a final summary and interpret osutts further, specifically,
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we will try to establish connections to the 3+1-dimensiaree. Universality, the way we
have just summarized it, gives the impression that thelingpinformation is indeed lost in
the radiated energy from the black hole. However, we alsmeld that our results support
the resolution of the information loss paradox. A carefidlgsis of these two issues, and a
discussion of their separate nature in the CGHS model witlibeussed in Sec. 4.2. Here
we will only mention that, the analysis is based on the déifees of the causal structures
of 1+1-dimensional (Fig.1.1) and 3+1-dimensional (Fi@)kpacetimes. This discussion
also gives us a guide about how to approach the sphericattyngtric sector of the 3+1-

dimensional spacetime in future studies.

1.3.3 The Semi-Classical CGHS Model

To incorporate back reaction, one can use semi-classiesltgiwhere matter fields are
allowed to be quantum but geometry is kept classical. Heeeyil implement this idea
using the mean field approximation of [13, 17] where one igadhe quantum fluctuations
of geometry —i.e., of quantum fieldé), ci))— but keeps track of the quantum fluctuations
of matter fields. The validity of this approximation requit@large number of matter fields
@ withi = 1,... N (whence it is essentially the largé approximation [8, 12]). Then,
there is a large domain in space-time where quantum fluohgtf matter can dominate
over those of geometry. Back reaction of the quantum ramhatiodifies classical equations
with terms proportional taVGh. However, dynamics of the physical metgds again
governed by PDEs on classical field®), ®), which we write without an under-bar to
differentiate them from solution®, @) to the classical equationd/¢z = 0). In the domain
of applicability of the mean-field approximation, they areem by expectation values of
the quantum operator field& = (©) and® = (d). The difference from the classical case
is that the coefficients of the PDEs and components of theiengtrnow contain.

In the mean-field approximation, we capture the idea that drily the left moving

modes off ®) that undergo gravitational collapse by choosing the irstiate appropriately:
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Figure 1.3: Penrose diagram of an evaporating CGHS blaekihdhe mean field approx-
imation. Because of quantum radiation the singularity nadsan the space-time interior
and does not reach;" or Z (compare with Fig. 1.2.) Space-time admits a generalized
dynamical horizon whose area steadily decreases. It meetsrigularity at its (right) end
point. The physical space-time in this approximation esekia future portion of the fidu-
cial Minkowski space (bounded by the singularity, the last and the future part of the
collapsing matter).

we let this state be the vacuum state for the right moving mgfﬂéand a coherent state
peaked at any given classical profife for eachof the N left moving fieldsf\”. This
specification af — defines a (Heisenberg) stdte). Dynamical equations are obtained by
taking expectation values of the quantum evolution equatior (Heisenberg) fields in this
state| W) and ignoring quantum fluctuations of geometry but not of eraffechnically, this

is accomplished by substituting polynomidll{é), <f>) in the geometrical operators with

polynomialsP((0), (®)) := P(®,0) of their expectation values. For the matter fields

£@ on the other hand, one does not make this substitution; eesktrack of the quantum
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fluctuations of matter. These lead to a conformal anomalyil&\the trace of the stress-
tensor of scalar fields vanishes in the classical theory dusohformal invariance, the
expectation value of this trace now fails to vanish. Thaeefequations of motion of the
geometry acquire new source terms of quantum origin whiclifpds evolution.

To summarize, then, in the mean-field approximation the ohyoal objects are again
just smooth fieldg ¥, ©, ® (representing expectation values of the correspondingtqua
fields). While there aréV matter fields, geometry is still encoded in the two basic $eld
O, ® which determine the space-time metgitt via g** = Qn® := ©~1 & »?*. Dynamics
of f ©,® are again governed by PDEs but, because of the trace anoeigtions
governing®, ® acquire quantum corrections which encode the back reaofignantum
radiation on geometry. More details can be found in [13].

The basic quantitative difference in the semiclassica casnes from the trace anomaly.
In the classical theory, the trace of the energy-momentmsoie * vanishes. Due to one-
loop quantum contributions, however, it is nonzero at threisdassical level, and foNV

scalar fields is given by

<f9::%§R=>d14::Nha+aJn®@-ﬁ (1.25)

whereR is the Ricci scalar and/ = N/24.

As in 4-dimensional general relativity (and the classic&lHS model), there are two
sets of PDEs: Evolution equations and constraints whiclpegserved in time. As in the
classical theory, it is simplest to fix the gauge and writes¢hequations using the advanced
and retarded coordinates of the fiducial Minkowski metric. The evolution equationg ar
given by

Ow [P =0 & OgfP=0 (1.26)
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for matter fields and

0. 0_ D+ K20 = G(T,_) NGhO, 0_IndO~! (1.27)

P9, 0_InO© =—-G(T,_) = —NGhd, d_IndO™!

(1.28)

for the geometrical fields wheré] = N/24. The constraint equations tie the geometrical
fields©, ® to the matter fieldg”). They are preserved in time. Therefore we can impose

them just aZ~ where they take the form:
—? D+ 0_®9_InO = G(T__) =0 (1.29)

and

~P D +0, Py InO = G(T,,)=12NG (0, f2)* (1.30)

where= stands for ‘equality af .

We should mention that for any given finité, there is nonetheless a region in which
the quantum fluctuations of geometry are simply too largeghHermean field approxima-
tion to hold. This is reflected in the fact that a singularigrgists in this approximation,
although it is now weakened. Evolution equations cannotdbeed in closed form any
more, hence devising numerical approaches to the solutasnawnajor part of our analy-
sis. To demonstrate the weakening of the singularity, letaast the evolution equations

to give

(® —2NGh)0, 0_ ® = —k*(® — NGh)® — NGh 10, 00_d

NGh

8_,_0_ ln@ = —m

0,0 Ind. (1.31)

The mixed derivative of the fields diverges whknow assumesmon-zerovalueNGh /12,
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unless the right hand side vanishes. The right hand sideedirét equation does not vanish
at the critical value ofp, and the divergence indeed occurs which has been also sa#n in
previous numerical studies [12]. However, at the singtyathe conformal factor does
not diverge, being®@® !, whenceg® is invertible. Furthermore;® is alsoC? across this
singularity but notC!. Finally, because of back-reaction, the strength of thgugarity
diminishes as the black hole evaporates and the singukanig in the interior of space-
time; in contrast to the classical singularity, it does resahZ;; (see Fig. 1.3). Itis the
dynamics ofy,;, that exhibit novel features.

We will conclude this discussion of the field equations witfew remarks, and a de-
scription of our initial conditions. Becau§§) are all in the vacuum state, it follows imme-
diately that, as in the classical theory, all the right moMields vanish;ffi) = 0 alsoin the
mean-field theory. Similarly, becauﬁé) are in a coherent state peaked at some classical
profile f¢, it follows that, for alls, f@(z*) = f?(z%) (on the entire fiducial Minkowski
manifold A/°). Thus, as far as matter fields are concerned, there is rereliite between
the classical and mean-field theory. Similarly, as in thesital theory, we can integrate
the constraint equations to obtain initial data on two nypdrsurfaces. We will assume
that f\”) vanishes to the past of the liné = z}. Let I, denote the linet = = andI;
the portion of the line~ = z; < —1/x to the future ofz* = 2. We will specify initial
data on these two surfaces. The solution to the constrairdtems along these lines is not
unique and, as in the classical theory we require additipimasical input to select one. We
will again require thatb be in the dilaton vacuum to the past §f and by continuity on
I . Following the CGHS literature, we will take it to e= ¢**"—=7)_ 4 Thus, the initial

values of semi-classicé&l, ® coincide with those of classicél, ®:

©=¢"* =) onallofl] andI} (1.32)

4 Strictly, sinced is an operator on the tensor product¥fock spaces, one for eag¢hi’, the expectation
value isNe*" =) But this difference can be compensated by shifing We have chosen to use the
convention in the literature so as to make translation betvegir expressions and those in other papers easier.
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and

¢ = O onl and,
_ o i} (0)
O = O 12NG[" _dzt e [7 dzt e ()
on /g (1.33)

(see EqQ. 1.17). The difference in the classical and serssial theories lies entirely in
the evolution equations (1.27) and (1.28). In the classlwadry, the right hand sides of
these equations vanish whence one can easily integrate thethe mean-field theory,
this is not possible and one has to take recourse to numenigddods. Finally, while our
analytical considerations hold for any regular profilg to begin with we will follow the
CGHS literature in Sec. 3.2 and Sec. 3.3 and spetifyo represent a collapsing shell as

we did for the classical equations:

o\ 2

so the shell is concentratedat = 0. In the literature this profile is often expressed, using

x* in place ofz*, as:

oxt K

~ 2
12N <0f+> = MADM (5($+ — l) (135)

wheref(©) (z+) = f©(z). In Sec. 3.4 we will also discuss results from a class of smoot

matter profiles.

1.3.4 Singularity, horizons and the Bondi mass

The classical solution Eg. 1.17 has a singulafitywhere ® vanishes. As remarked in
section 1.3.3, in the mean-field theory, a singularity msdiut it is shifted t@ = 2NGh
[12]. The metricg®® = ©~1® »? is invertible and continuous there but n@t. Thus the

singularity is weakened relative to the classical theowytltermore, its spatial extension is
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diminished. As indicated in Fig.1.3, the singularity novigorates at a finite point on the
collapsing shell (i.e. does not extendZp) and it ends in the space-time interior (i.e., does
not extend taZy}).

What is the situation with horizons? Recall from Sec. 1.2, timthe spherically sym-
metric reduction from 4 dimensiong? = ¢~2¢/k? := ®/xk? and each round 2-sphere in
4-dimensional space-time projects down to a single poirther2-manifold)M. Thus, in
the CGHS model we can think df as defining the ‘area’ associated with any point. (It is
dimensionless because inspace-time dimensions the area of spatial spheres has-dimen
sion [L]P~2.) Therefore it is natural to define a notion of trapped poi#tsgoint in the
CGHS space-timél/, g) is said to befuture trappedif 9, ® andd_<® are both negative
there anduture marginally trappedf 0, ® vanishes and_® is negative there [12, 18].
In the classical solution resulting from the collapse of allsBq. 1.34, all the marginally
trapped points lie on the event horizon and their area is ataat] we only encounter an
isolated horizon [19] (see Fig.1.2). The mean-field theemnuch richer because it incor-
porates the back reaction of quantum radiation. In the casesbell collapse, the field
equations now imply that a marginally trapped point firstrisrat a point on the shell and

has area [2]

Qjpitial = ((I) — 2N Gh>|initial

= —NGh+ NGh 1+M : (1.36)
N N2h2k2 '

As time evolves, this areshrinksbecause of quantum radiation [12]. The world-line of
these marginally trapped points formg@neralized dynamical horizdisDH), ‘general-
ized’ because the world-line is time-like rather than spiéae[19]. (In 4 dimensions these
are called marginally trapped tubes [20].) The area finddhjnks to zero. This is the point
at which the GDH meets the end-point of the (weak) singyltid, 12, 21] (see Fig.1.3).

It is remarkable that all these interesting dynamics ocauply because, unlike in the
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classical theory, the right sides of the dynamical Eqgs.,11228 are non-zero, given by the
trace-anomaly.

We will see in section 3.2 that while the solution is indeeghagtotically flat atZ, in
contrast to the classical solutidfi; is no longer completeéiore precisely, the space-time
(M, g) now has a future boundary at the last ray —the null lin€tofrom the point at
which the singularity ends— and the affine parameter alfhgvith respect tay,;, has a
finite valueat the point where the last ray me#{s. Therefore, in the semi-classical theory,
we cannot even ask if this space-time admits an event hoN¥bie the notion of an event
horizon is global and teleological, the notion of trappedates and GDHs is quasi-local.
As we have just argued, these continue to be meaningful isghme-classical theory. What
forms and evaporates is the GDH.

Next, let us discuss the structure at null infinity [13, 17§ iA the classical theory, we
assume that the semi-classical space-time is asymptgtitzlat Z;; in the sense that, as
one takes the limit™ — oo along the lines~ = const, the fields®, © have the following

behavior:

d = A(z7)e™ +B(z7)+0(e"")

O = A(z7)e™ +B(z7)+0(e), (1.37)

where A, B, A, B are some smooth functions of . Note that the leading order behavior
in Eg. 1.37 is the same as that in the classical solution. Tite difference is thatB, B

are not required to be constant aldhg because, in contrast to its classical counterpart,
the semi-classical space-time is non-stationary neaimfulity due to quantum radiation.
Therefore, as in the classical thedfy, can be obtained by taking the limit — oo along

the linesz~ = const. The asymptotic conditions (1.37) é6n ® imply that curvature —i.e.,
the Ricci scalar of,,,— goes to zero af. We will see in section 3.2 that these conditions

are indeed satisfied in semi-classical space-times thalt fesm collapse of matter from
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Given this asymptotic fall-off, the field equations detammiA and Bin terms of A
and B. The metricg,, admits anasymptotictime translationt® which is unique up to
a constant rescaling and the rescaling freedom can be aliedrby requiring that it be

(asymptotically) unit. The functiorl (=) determines the affine parameter of ¢* via:
e = A(27). (1.38)

Thusy~ can be regarded as the unique asymptotic time parameterespect tay,, (up

to an additive constant). Nedf, the mean-field metrig can be expanded as:
4s% = — (1 + Berv v 4 O(e—%y*)) dy* dy~ (1.39)

whereyt = 2T,

Finally, equations of the mean-field theory imply [13, 17dttkhere is a balance law at

It
d ,dB 2y Ay,
Bl el B+ N )=
dy_[dy_ + kB + hG(dz—2(dz—) )]
_NhG d?y= dy= . _

2 [dz—2 (dz—) 2 }2' (1.40)

In [13], this balance law was used to introduce a new notioBafdi mass and flux. The

left side of (1.40) led to the definition of the Bondi mass:

dB - d?y~ dy~
ATV __ —2
Mg, b = Q- + kB + NhG (dz—2 <—dz—) ), (1.41)
while the right side provided the Bondi flux:
NhG A%y~ dy~ 2
ATV __ —2
= 2 [dz—2 (dz_) I (1.42)
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so that we have:

ATV
d‘]\4Bondi — _FATV ) (143)
dy~

By construction, as in 4 dimensions, the flux is manifestlgifiee so that\/31Y,; decreases
in time. Furthermore, it vanishes on an open region if ang dnl— = Cz~ + C, for
some constant§’, Cs, i.e. if and only if the asymptotic time translations defirsdthe
physical, mean field metrig and by the fiducial metrig agree afZ, or, equivalentlyjf
and only if the asymptotic time translationspbn Z; andZ;; agree Finally, note that
g® =n? fL =0, ®=0 =expr(zt—27),Iisasolution to the full mean-field equations.
As one would expect, both/43TY. and FATY vanish for this solution.

The balance law is just a statement of conservation of enérgyne would expect;
appears as an overall multiplicative constant in Eq. 14 #he classical theory, there is no
flux of energy atZ;}. If we seth = 0, MALY, reduces to the standard Bondi mass formula
in the classical theory (see e.g., [18]). Previous liteea{8, 12, 18, 21, 22, 23, 24] on the
CGHS model used this classical expression also in the skasgical theory. Thus, in the

notation we have introduced here, the traditional defingiof mass and flux are given by

- dB
Mgon(gli = dy_ + KB? (144)
and
- d ,d%y~ dy~
Trad __ ATV -2
Fled = pAY 1 NhG e (dz_2 (dz_) ). (1.45)

We will see in Sec. 3.3 that numerical simulations have shthah /4. can become
. - . V . -y
negative and large even when the horizon area is large, Wifé". remains positive

throughout the evaporation process.
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1.3.5 Scaling and the Planck regime

Finally, we note a scaling property of the mean-field theatyich Ori recently and inde-
pendently also uncovered [25] and which is also observedharauantum gravitational
systems [26]. We were led to it while attempting to interpratnerical results which at first
seemed very puzzling; it is thus a concrete example of hofulidee interplay between
numerical and analytical studies can be. Let us:fixand regard all fields as functions
of z£. Consider any solutio©, ®, N, f}f)) to our field equations, satisfying boundary

conditions (1.32) and (1.33). Then, given a positive numip¢®, &, N, /') given by’

O(zt,27) = X0(zt, 27 + M), N = AN
K
(zF,27) = Aq><z+,z—+%>, Py = £ (2

KA

is also a solution satisfying our boundary conditions, ehess before, we have assumed
that all scalar fields have an identical profjie. Note thatf? is completely general, we
have not restricted ourselves, e.g., to shells. Underthmnstormation, we have
gab N gab

_ 1

Yy — y ——InA
K

Mxpym — AMapm

ATV ATV
MBondi - )\MBondi

FATV S FATV

agDH — )\aGDH (146)

whereagpy denotes the area of the generalized dynamical horizon.syimsnetry implies

that, as far as space-time geometry and energetics are conceamdyl the ratiosM /N

The shift inz~ is needed because we chose to use the initial v@lue e*(z* — 2~) on I; as in the
literature rather tha® = Ne*(=" == See footnote 4.
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matter, not separate values &f and V themselve$where M can either be the ADM or
the Bondi mass). Thus, for example, whether for the evajporgrocess a black hole is
‘macroscopic’ or ‘Planck size’ depends on the ratidgN andagpy /N rather than on the
values ofM or agpy themselves.

We will set

M* = Mspu/N
Mlgondi = M]?;Il‘i\él/]v7 and

m = Mﬁondi“ast ray (1.47)

(We useN = N/24 in these definitions because the dynamical equations featuather
than N.) We will need to compare these quantities with the PlancksnaNow, in 2
dimensions(z, h andc do not suffice to determine Planck mass, Planck length antRla
time uniquely becaus€'h is dimensionless. But in 4 dimensions we have unambiguous
definitions of these quantities and, conceptually, we cgankthe 2-dimensional theory
as obtained by its spherical reduction. In 4 dimensionsn@uhe c=1 units used here)
the Planck mass is given by/3, = h/G4 and the Planck time by = G,h. From
Egs. 1.10 and 1.11, it follows thét, is related to the 2-dimensional Newton’s constant

viaG = G4k2. Therefore we are led to set

hik? Gh
2 _ 2 _
Mg, = and 7p = o

o (1.48)

When can we say that a black hole is macroscopic? One’s fgghat would be to say
that the ADM mass should be much larger thp, in (1.48). But this is not adequate
for the evaporation process because the process dependsnalse number of fieldsv.

In the external field approximation where one ignores the Ipeaction, we know that at

late times the black hole radiates as a black body at a fixegasatureli,, = xh. ©

5Note that this relation is the same as that in 4 dimensionausecthe classical CGHS black hole is
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The Hawking energy flux &} is given by ™ = Nx25h/2. Therefore the evaporation
process will last much longer than 1 Planck time if and onljfifspy / FH2Y) > 7, or,
equivalently

M* > Gh Mp. (1.49)

(Recall thatGh is the Planck number.) So, a necessary condition for a blatk to be
macroscopic is that/* should satisfy this inequality. In section 3.3 we will seatthn the

mean-field theory, quantum evaporation reveals univeéysalieady ifM/* > 4 Gh Mp,.

1.4 Another Look at the Information Loss Problem

Here, we give an alternative view of black hole evaporatibat is well suited for 2 dimen-
sions. It originates from the work of Ashtekar, Taveras aadadarajan (ATV from here
on).

Consider the spacetime in Fig. 1.2. In summary, we send soergyfromZ, which
collapses and forms a singularity. We do not send any eneogy T, , that is, quantum
mechanically, we send in the vacuum state. We are workinlg aviturved spacetime, so
to be more specific, we send in a state which is annihilateld regpect to the annihilation
operators associated with the affine coordinate€pnnamelyz* (we called it|0.) in
Sec. 1.3.1). However, once observers interpret this quarstate onZ;;, they use the
coordinateg;*. In these coordinates, there are different annihilatioeratrs, which do
not annihilate|0,). This means, what was prepared as vacuum is now interpreted a
state with particles which manifests itself as the Hawkiadjation, Eq. 1.24. Even more
importantly for our case, note that the affine coordinatdoecomes infinite at the last ray,
meaning that the physical spacetime ends on the last rayugjper corner of the Penrose

diagram in Fig. 1.2 whose boundary are the dotted lines ipadbf the physical spacetime

stationary to the future of the collapsing matter with scefgravityx. However, there is alsokeydifference:
now « is just a constant, independent of the mass of the black Adierefore, unlike in 4 dimensions, the
temperature of the CGHS black hole is a universal constathisirexternal field approximation. Therefore,
when back reaction is included, one does not expect a CGHR htae to get hotter as it shrinks.
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manifold, even though it is a part of the fiducial manifdlt’. However, part of the state
|0,) is related to the degrees of freedom living on this missirg@j hence, one needs to
take a partial trace over them to interpjet) onZ;;. Partial tracing turns the pure state into
a mixed state, hence information is lost, which can be sesn the thermal nature of the
Hawking radiation [12].

A possible scenario in a theory of exact quantum gravity wde the resolution of the
singularity. Even though there would possibly be strongntua effects in the vicinity of
the classical singularity, the physical spacetime wouldtiooie beyond it. The physical
manifold would coincide with\/?, that is, there is no “missing piece”, unlike the classical
case. The affine coordinates still would not agree, hence theuld be Hawking radiation,
but since there is no partial tracing, the evolution wouldubé&ary and there will be no
information loss.

Unfortunately, we do not have an exact quantum gravity thémrthe CGHS model.
Our aim regarding the information loss problem is finding ddle ground with the MFA
equations as conjectured in [13]. We have already seenhbe ts still a singularity at
the semiclassical level, but it is weakened (see Fig. 1.3)tH@ singularity, the metric is
invertible and the fields are continuous, which means tleagiossibility that the physical
spacetime manifold continues beyond the singularity ardakt ray, that i€;; coincides
with Z3F (remember that the former is a proper subset of the lattdrerclassical case).
This means there is again no need for partial tracing, herfoemation is conserved, even
after the leading quantum contributions.

The quantitative manifestation of this scenario is haviffigiée value ofy— at the last
ray, which means the portion of the null infinity before thstleay is not complete. Hence,
an important piece of information we will try to discover hetfollowing discussion will be
the finiteness of ~ at the last ray. This is a necessary but not sufficient cadigsince we
also need,~(z7) to be a well behaved function for the Bogolubov transforpragito also

be well behaved. Nevertheless, establishing the finiteofegs is an important indication
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that the recipe of ATV resolves the information loss prohlem
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Chapter 2

Numerical Methods

We have seen that, although the full quantum equations &€CHBHS model are too com-
plicated to solve, in the mean field approximation (MFA) thedal reduces to a coupled
set of non-linear partial differential equations, possesa well-posed characteristic ini-
tial value formulation. Unfortunately, even for these egurss, analytical solutions are not
known except in special limiting cases. Therefore, to espldack hole formation and
evaporation, numerical methods are essential.

Numerical studies of the CGHS model already had a quite riehature before our
work [9, 10, 11]. These studies had elucidated the basicesipae picture presented in
Fig. 1.3. However, they missed the crucial fact that the CGht#lel has two distinct
regimes in the parameter spade, > (N/24)Mp, and M < N/24Mp (see Sec. 1.3.5
), where M is the initial mass of the black hole that forms andis the number off
fields. These two regimes have radically different physicaperties and interpretations,
their numerical analysis also presents considerablyréifidevels of challenge. The basic
point is that, in the macroscopic mass case, all of the isterg physics is confined to
a tiny region in the vicinity of the last ray, where a high nuioal accuracy is needed.
Existing numerical studies of the CGHS model focused on ibermediate mass range

M ~ N/24, for example;2. = 1 in [10] and 2L = 2.5 in [11] (Mp, set tol). This

24N 24N
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case is considerably easier to solve numerically, but tive g that many of the interesting
phenomena of the black hole evaporation cannot be obseExath though our main aim
is solving the macroscopic mass black hole spacetimes,s@esalve spacetimes with sub-
Planck masses for completeness, and also to present thastdrgtween the two cases.
Since macroscopic CGHS black holes were not numericalijistibefore, and due to
the challenges we summarized above, we had to use a conobichtiumerical techniques
to achieve roundoff level accuracy in our code. An outlinghaf rest of the chapter is as
follows. In Sec. 2.1 we describe the variable definitions emaventions we use, the ana-
lytical equations that we discretize, and the initial dagawse for the numerical solution.
In Sec. 2.2, we describe some of the issues that would cause diacretization of the
equations to fail to uncover the full spacetime, and how tercome them; this includes
regularization of otherwise asymptotically-divergentdieariables, compactification of the
coordinates, the particular discretization scheme, aadtiRichardson extrapolation ideas
to increase the accuracy of the solution. In Sec. 2.2 we &sosk setting initial conditions
nearZ, and how we extract the desired asymptotic properties ofthgtion. In Sec. 2.3
we describe various tests to demonstrate we have a stahiesrgent numerical scheme to

solve the CGHS equations.

2.1 CGHS Model in the MFA as an Initial Value Problem

Recall that at the semiclassical level, the analysis of tG&IS model is reduced to solving

the evolution equations

84_ 8_ 0] -+ /‘f2® = NGH3+ 8_ In (I)@_l

09, 0_InO = ~NGhO, 0_In ®O~"
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for the geometric fields together with thenstraint equations

—?®+0_99_InO® = G(T__)=0

P D+0, P nO = G(Ty,)=12NG (9, f2)? (2.1)

In a characteristic initial value problem, we specify iaitilata on a pair of intersecting,
null hypersurfaces™(z7) = zJ andz~(z") = z,, to the causal future of their intersec-
tion point(z; , 2, ) as we mentioned in Sec. 1.3.3 (see [27] for a review). Thusanesee
where the constraint equations Eq. 2.1 receive their naoreexample, if we specify the
scalar fieldf (hencel’, ., T__) and metric field® on these surfaces as initial data, we are
not free to choos@, which is then given by integrating Eq. 2.1. The constragquations
arepropagatedoy the evolution equations Eq. 1.14, namely, if the constsaare satisfied
on the initial hypersurfaces, solving for the fields to thasa future using Eq. 1.14 guar-
antees the constraints are satisfied for all tifikis is exactly true at the analytical level,
though in a numerical evolution this property of the field &gons will in general only be
satisfied to within the truncation error of the discretizatischeme.

To present our numerical methods, we will exclusively cdasithe case of the left-

moving shock wave we introduced in Sec. 1.3.1 and 1.3.3

0zt

12N (aﬁ) = M(z") (2.2)

and no incoming matter from the leff.( = 0). This choice reduces the problem to evolving

the fields® and© according to (1.14) with the asymptotic initial conditions

@(z:l:) _ 6/@(2*—2*)

- M
B(zF) = ) G—(em+ -1), (2.3)

K

for z+ > 0, 2~ — —o0, which we had derived. Both fields are trivially given by=" =)
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for 2™ < 0. With these restrictions, any space-time is defined by thejtwaatities) and
N.

In the next chapter, we will also be discussing initial datdnwextended profiles (rather
than ad—function). In terms of numerical methods, this does notdpany other difficul-
ties, and we will not be elaborating on these calculatioms.he

Remember that when the evaporation has proceeded to thewdoene the dynamical
horizon meets the singularity (see Fig. 1.3), it become®dake. visible to observers
atZ;. The MFA equations cannot be solved beyond this Cauchy dwri@hich we call
the last ray. It should be possible to mathematically extend the spaeebeyond the
last ray, in particular as the geometry does not appear tongelar here (except at the
point the dynamical horizon meets the last ray) as we showeser. 1.3.3. However,
since the fields are not differentiable on the singularibe oeeds a prescription about the
relationship between the derivative of the fields on the tidesof the singularity to have
such an extension. There is not a universally agreed up@tgp&on, hence currently
there is no unambiguous way to evolve the fields beyond trgukinty and the last ray.
Even though we give this short discussion of what might hagy@sond the last raye do
not explore this issyand will only calculate the fields in the region before trst lay.

In all our simulations we us& = A = k = 1. We showed the scaling symmetry of
the CGHS model in Sec. 1.3.5, hence we will only use a sindleevaf N = 24 (N = 1),
which covers all the physical parameter spacé/ashanges. Hence, by macroscopic mass,

we mean) > 1, and by sub-Planck-scale mass, we méar< 1.

2.2 The Numerical Calculation

2.2.1 Compactification of the Coordinates

Rather than discretizing the equations with respect tathe coordinates, we introduce a

compactified coordinate systeri € [0, 5] andz_ € [0, 1]. Use of compact coordinates is
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singularity

Y dynamical horizon
o+

Figure 2.1: A schematic view of the positions of the grid firn& the uncompactified space.
Lines are concentrated near the last ray, where we needrhigg@ution. They become
distant as one approaches the null infinities.

important for a couple of reasons, and essential foAthg> 1 case. First, to understand the
asymptotic structure of the spacetime approaciingt is useful to have the computational
domain includeZ;;. We have seen that most of the physics of the CGHS black hatebe
extracted from the field values near this region (see Seal)1 Second, the uncompactified
coordinatez~ is adapted to the flat metric ne@f ; however, it turns out that most of
the interesting features of black hole evaporation neadymamical horizon occur in an
exponentially small regiot\z~ ~ x~'e~“M/* pefore the last ray. One can think of this
as essentially due to gravitational redshift. Classic@dlithout evaporation), the redshift
causes arbitrarily small lengths scales near the horiztwe texpanded to large scales near
7. This can be easily seen from Eq. 1.21 Wh%é — 0o asy~ — oo.

Naively one might have expected that evaporation changegpitttures completely (as

suggested by the Penrose diagram in Fig. 1.3). Instead,wéhfihd is that although there
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is not an arbitrarily large redshift once back-reactiomauded, there is still an exponential
growth of scales, with the growth rate proportional to thesenaf the black hole as indicated
above.

Thus, a uniform discretization it that is able to resolve both the early dynamics near
7., yet can adequately uncover the exponentially small sgakeseasured in~) of the
late-time evaporation, will (for largé/) result in a mesh too large to be able to solve the
equations using contemporary computer systems. To overtoisi\problem, we introduce
a non-uniform compactification in~, schematically illustrated in Fig. 2.1, that provides
sufficient resolution to resolve the spacetime near thedgsyet does not over-resolve the
region neaftZ,. Specifically, the transformation front to 2 we use is as follows. First,

we relate the uncompactified to an auxiliary (hon-compact) coordinate by

N R _
z =z (w) _'_Zs,est (24)

wherez~ € (—o0, 2, ] andz™ € (—o0,0]. 2, ., is an estimate of the™ coordinate of the
last ray. This is also the earliest timezn that we will encounter the spacetime singularity,
and at present we do not continue the computation past tlig (ibe compactification
functions can readily be adjusted to cover € (—oo,o0) ). In these coordinates, the

region near the last ray{ ~ 2., 2~ ~ 0) is resolved by a factor of ; more than the

regions away from the last ray. Next, we convert the auxili@ar to a compact coordinate

Ze

= e St/ L (= ) (2.5)

whereS and L. are constants. This way, the last ray is located nga+ 1. The relation
betweenz~ andz_ is forced to be linear near the last ray through theéerm, which we
will explain next.

Our grid is based on the compact coordinate*, and it is a uniform grid, i.e. it
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has a fixed step sizAz_ = h in the compactified coordinate.. This corresponds to
Az~ =~ L./Lg h in uncompactified coordinates negr = 1. Hence, we can see that, in
order to resolve tiny scales i1, we want a high value fok.; and a very small one fak...
Note that, if there is no linear term with. in Eq. 2.5,Az~ would become arbitrarily small
near the last ray (neaf ~ 1), which would make taking finite differences impossible due
to catastrophic cancellation.

For the highest mass macroscopic black hole discussedMtete 16, we setLp = 107,
while for the lowest mass of/ = 27'°, we useLy = 10%. We useL,. = 4.096 x 107,
which can be adjusted together with; to obtain the desired resolution near the last ray.
Note thatAz~ ~ 10781 for the highest mass case; such a disparity in scales woukl ha
been difficult to achieve if we had used as our coordinate evesith a standard adaptive
mesh refinement algorithm. We chooSdo be between andb5, the particular value of
which is not essential.

In the + direction, forM = 1, we compactify the coordinates using

2t = Mtan(nz)) M2>1, (2.6)

C

with the factor ofM/ ensuring that the singularity is not too close toTheedge of the mesh,
where the resolution in* is lower due to compactification. Faf < 1, the singularity

appears very close to" = 0, so to resolve this region, we employ
2" = C 4 tan®(rz]) M<1, (2.7)

whereC_+ andp are appropriate constants that again keep the singulaéty the middle
of the range ot. For M = 27!, we useC,+ = =55 andp = 7.

Even though we presented specific functions to relate thgaotiied and uncompact-
ified coordinates, none of these are essential. As long asetiien nearZ™ (any other

region where length scales are small) are resolved, andnahissues are avoided (as in
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the use ofL.), any compactification scheme would perform similarly.

2.2.2 Regularization of the Fields

It is clear from Eq. 2.3 that the fields diverge exponentially, and analytical results
show that they also diverge 3¢ (see Sec. 1.3.4). For a numerical solution then, we define

regularized field variables which are finite everywhere

o = ) (14 G) — M(en 1)
= ) (14 6+ o)

0 = ) (140), (2.8)

with g = —M e~ (1 —e"*"). Aside from removing the divergent componefit”™ —= ),
this definition also removes the exact classical solufiffz™>" — 1) from ®. The reason
for doing this came from preliminary studies which showeal theviations in® from its
classical values were small compared to the classical ofetrmacroscopic black holes in

most of the computational domain. In terms of the new vaesEq. 1.14 read

(1+0)*(1+ 0+ ¢o)?

X [&r@_q; — KO, + KO_p — K2 ) + /{2ﬂ —Q(¢p,0) = 0 (2.9)

and

(14 ¢+ ¢0)?[(1 +0)8,0_6 — 9,60 8] + Q(,8) = 0 (2.10)
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with

Q6.0) = et
{ (14 021+ 6+ Bo) 0:0_(3 + b0)]
— (140)*[04(¢ + do) O (¢ + ¢0)] (2.11)

— (1+¢+0)?[(1+ 80,06 —9,00_6] }

There have been numerical studies without regularizationgxample [10]) where the
initial data was not specified dfy;, but rather on a line of~ = const < —1, where the
classical solution that we use @i} is still valid as initial data to high numerical accuracy,
and is finite. We wanted to represent as big a part of the palyspacetime as possible in
our computational grid, including;,, hence chose to regularize the fields. This becomes
even more important when one tries to analyze the asympjoéintities neaf;;, since the
fields diverge there as well, which makes the extraction efasymptotic quantities much

harder for the actuab and®.

2.2.3 Discretization and Algebraic Manipulation

We discretize the compactified coordinate domain as depicteig. 2.2. Afielda (2}, z)

c )¢

is represented by a discrete mesh of valugs where the indices, j are integers, and

related to the null coordinates through

22 =ih  0<i<mn,

b o=jh  0<j <2, (2.12)

whereh = n;l is the step size in both of the compactified null coordindtesrder to solve

the evolution equations numerically, we convert the défeial equations to difference
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equations by using standard, second order accutte?{), centered stencils:

Qij + Qi1+ Q-1+ Q1,51

ol oy, .
9, al N Qg T i1y — Qi1 — Qiclgd
T 2h
O — O _|_a = 1 i
da| ., ~ i1 T Qo1 — 11
A 2h
/o -~ Q5 — Q15 — QG 451 + Q11
5+3_a}i_%7j_% - 12 )
(2.13)
where we have introduced the notation
9 9z 0 0zF
Oh=g== Os - (2.14)

Ozt 0zF 0% a O0zF

Once discretized, Eq. 2.9 and Eq. 2.10 give two polynomiabhéqns which can be nu-
merically solved ford; ; and ¢, ;, if the field values are known at the grid poir{ts;j —
1),(i—1,5),(i—1,j—1). This way, knowing the boundary conditionszat= 0 (j = 0)
andz~ = —oo (i = 0), we can calculate the field values at all points of the grid loyne
one, starting at1, 1).

Instead of solving for the two variables simultaneouslg.(aising a two dimensional
Newton’s method), we sum the equations (2.9, 2.10), whildwalus to explicitly express
¢;; in terms of a rational function of; ;. We then insert this expression for ; into
(2.9%. This way, we obtain a single variabl&)™ order polynomial equation faf; ;. We
solve this equation numerically using Newton's method, treh calculates, ; directly
using the aforementioned rational function. One advant&gieese analytic manipulations
before the numerical solution is that, more techniques @adadle for finding the roots
of a polynomial in one variable, compared to a set of generahlinear equations. For

instance, we also implemented Laguerre’s method, whick gemilar results to Newton'’s

Lany other independent linear combination of the equatiansatso be used
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dynamical horizon

singularity

initial conditions

flat metric

Figure 2.2: The grid structure for the numerical calculatid/e use a fixed-step-size mesh
based on the compactified coordinatgswhere the step sizes in both directions are equal.
The emphasis on the regions where the fields rapidly chargg&ised using the compact-
ification of the coordinates (see Fig. 2.1). The flat regiofoteethe matter pulse and the
region beyond the last ray are not covered by the mesh.

method, in terms of robustness and computation time.

2.2.4 Richardson extrapolation with intermittent error re moval

For any functiomv numerically calculated on a null mesh of step size both directions,

and with central differences as in Eq. 2.13, we have the Rildwa expansion

ap = o+ csh? + csh* + ch® + O(h®) (2.15)

where« is the exact solutiong,, is the numerically obtained solution armg are error
functions «,«y, andc; are all functions of* (we omit the explicit dependence for clarity),

anda, ¢; are independent of. Note that we canngbrove such an expansion exists for
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the class of non-linear equations we are solving, in pddicii no assumptions on the
smoothness of the initial data are made. Furthermore, we khe solutions generically
develop singularities, thus the above series can only héiveited radius of convergence
for generic initial data. Nevertheless, we wabsumehe expansion exists, and then, via
convergence tests, check whether the solutions we obt&aroarsistent with the expansion.

The use of second order finite difference stencils is resptn®or the leading order
guadratic convergence of the above expansion. Howeverg usimerical solutions ob-
tained on meshes with different discretization scales,aameobtain higher order conver-
gence by using the well known Richardson extrapolation. é&s@mple, a fourth order
convergent solutiony, ;» can be obtained from the following superposition of two ap-
proximate second order convergent solutiong, anday, : appe = (dap — ap)/3 =
a + O(h*). In theory (for sufficiently smooth solution)n-th order convergence can be
obtained by an appropriate superpositiomo$econd order accurate solutions, each ob-
tained with a different mesh spacing. As we describe in metaibdbelow, we use four
successively finer meshes to obtain solutions that conter@gh®) on the points of the
coarsest mesh.

Fields in the CGHS model present singular behavior, andedime position where the
singularity first appears on the grid is a (convergent) fimmcdf the mesh size, the method
of superposing solutions of different meshes breaks dowheafirst time the singularity
appears orany of the superposed meshes. Typically, the singularity fipptears on the
coarsest mesh, and thus our domain of integration is fundtaierestricted by our prox-
imity to the singularity on the coarsest mesh. Many of thegitgl phenomena we are
interested in occur in this region, thus a direct use of Ridé@an extrapolation for solutions
over the entire computational domain does not significainigrove our results. To cir-
cumvent this problem, as described in more detail in the feextparagraphs, we instead
break up the computational domain into a series of shogdsstniz_ (see Fig. 2.3). In each

strip we evolve 4 meshes, apply Richardson extrapolatidhdasolution obtained at the
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end of the evolution, then use this corrected solution dmlrdata for all four meshes on
the next, adjacent strip. In this way the mismatch in thetiocaof the singularity amongst
the four resolutions is confined to be less than the size ddtifiyg which we can adjust as
needed.

Our Richardson extrapolation algorithm proceeds as faldive divided the entire grid
into L equal regions along, such that grid pointsalong the corresponding direction with
in, <i < Hlp, 0 <1< L comprise thé' region. Note that regions coincide at the
boundaries, and here indiceand the total number of points, are relative to the coarsest

mesh—for finer meshes these numbers should be scaled apaaaso that thé” strip

spans thesame coordinate volunfer each resolution. In th&" region

1. We evolve the fields independently on four successivebr fineshes of step size

h,h/2,h/4 andh/8, and stop the evolution at the end of the regios: (51 n,).

2. At points coincident with the coarsest resolution, wegldte the appropriate super-
position of the four meshes to give(h?) accurate values of the fields &ndé), and

store these values on the coarsest mesh as our result.

3. Onthe last{= “+!n,) line of the regiorl, we also calculate the functiong(z*) to
accuracyO(h¥~*) on the coarsest mesh. We then interpolate the functipts the
three finer meshes using successive degree four Lagramgpateting polynomials.
Using these interpolated, values, we correct the field values on the finer meshes
using Eq. 2.15, that is we have the highest possible accunatynly on the coarsest
level, but on all four levelsA Lagrange polynomial of degrekintroduces an error
of orderO(1%), so through the, term an error ofd(2") will be introduced into the
finer mesh solutions. A higher order interpolating polynakoould reduce the error,

though we found that a globél(h") scheme is sufficient for our purposes.

4. We use thé@ (") accurate field values on the lastf “tln,) line as the initial data

for the next (I + 1)) region, and repeat the procedure for this region startiow f
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Stepl.

By updating the fields to more accurate values at the end bfregion, the accuracy of the
position of the singularity in the coarsest mesh is imprasigdificantly, and the problem
of the breakdown of the superposition near the singulasitwercome.

We are not aware of any studies on the theoretical stabititi/accuracy of this mod-
ified Richardson extrapolation method, though our convezrgeand independent residual
analysis, described in Sec. 2.3, shows that it works quitk greing (for the most part) the
expected order of convergence.

Implementing this method, we are able to reduce the trumc&tiror down to the level
of round-off error using “modest” resources on a singlektgsstyle CPU. More precisely,
we used0-bit long double precision, which theoretically has a rowrfiderror at the level
of ~ 107 with the compilers we used. However our Newton iteratioryadnverged
if we set the accuracy of the iteration 4@ 1076, which was the ultimate source of the
error in the calculated regularized field values. When we"“saynd-off error” then, we
will mean this latter value rather than the value~ofl0~!° one might expect frons0-bit

precision.

2.2.5 Evolution nearZ

The boundary conditions on™ = 0 are those of the vacuum and translate to

p(zF=0,27)=0(:"=0,27)=0. (2.16)

d(zt, 27 = —00)=0(z",27 = —00) =0. (2.17)

43



The e"# factors in the evolution equations Eq. 2.12 are interpreted if ¢ is less
than the smallest magnitude floating point number allowednlaghine precision, which

occurs forz~ < z—.  for somez

prec prec?

the evolution equations

rec’?

thus, in the region™ < z,
are trivially solved by the initial condition = ¢ = 0. This means it would make no
difference if we imposed thé; boundary conditions on some other constant< z,,..

line rather than at~ = —oco. Moreover, even if we impose tlg, boundary conditions

on a constant™ line with 2= > 2z~

prec?

the error introduced is exponentially small [10]
and negligible compared to the truncation error for a centange ofjz~|. Our numerical
method described in Sec. 2.2.3 sometimes fails to productéutian for the fields in the

early stages of the evolution ne&f if we begin the evolution in the regiorm < We

Zprec'

surmise the failure occurs near the lite = 2

prec*

In such cases of failure, we begin the
evolution atz~ ~ —5 x 10°. This means we could not includg, on our computational
domain, but as we explained, this introduces a completeajligible error.

A related problem is that Newton’s method also sometimesatconverge to a solu-
tion for § nearZ;;, even well before the last ray. In such cases, we evolvedghat®ns as
close toZ;; as possible.We were able to evolve the fields sufficientlgetoZ;; to extract

all the important asymptotic behavior, as described in the section.

2.2.6 Asymptotic Behavior

We have seen how to calculate various physical quantitees fhe values of the fields on

7} in Sec. 1.3.4. Asymptotic coefficients of Eq. 1.40 are reldatethe regularized fields

through
A(z) = e (14 ¢z =00,27)) = M (2.18)
B(z") = lim e (G2 = 00,27) — g(2F,27)) + M

As mentioned in the previous section, we are not able to takethe fields exactly on
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7}, and evaluating the above on a line of constantvill introduce an error of the order
e~"*". However, it is adequate to evaluate the above limits atcseffily largez* such
that this error is less than the truncation error. It turnistbe Newton iteration only breaks
down well into the region where the truncation error donesdtsee the end of the previous
section), which enables us to comput&o high accuracy.

To calculate the limit inB numerically, we need (at least) two valueszof for each
value ofz~. To minimize the error, naively, it is most desirable to pasklarge:* values
as possible . However; is expressed as the asymptotically diverging faetéf multi-
plied by an asymptotically vanishing one, and calculathig Via finite precision numerics
introduce a large relative round-off error for the vanighiactor, due to catastrophic can-
cellation. We thus evaluatB using twoz* = const lines, one of them is the line we
calculatedA on, the other is chosen such that" is large enough that the fields are in
the asymptotic region but it is also sufficiently away frome thitherz* = const line that
catastrophic cancellation is not a major issue. Particidhres of:™ are not important.

Once we havel andB, to obtain)M 5z and the ATV Bondi flux through Eq. 1.40, we use
nine-point finite difference stencils to calculate the fanstl second derivatives with respect
to 2. and apply the chain rule to obtain derivatives with respeett Nine-point stencils
have an accuracy @(h?), keeping the theoretical accuracy of our numerical intigna
scheme.

Note that sinceB is sub-leading relative td in the asymptotic expansion Eq. 2.18,
hencey—, can be calculated more accurately. Thus, in practice vwellzdé the Bondi mass
Mg by numerically integrating the ATV flux rather than direcdyaluating the left hand
side of EqQ. 1.40.
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2.3 Numerical Tests

In this section we present a few sample solutions to the CGld8einin the mean field
approximation, and results from an array of tests we perorto ensure we are solving

the equations correctly.

2.3.1 Sample evolutions

We calculated numerical solutions for initial black holess@s\/ ranging from2~1°to 16
(Eq. 2.3). Here, we present the resultsiér= 8 as the macroscopic case for uniformity of
exposition. All cases show similar convergence behaviotife regularized fields, though
as we approach/ = 16, derived physical quantities start to show irregular cogeace
patterns due to catastrophic cancellation. This is exdeci@ace we already mentioned
that there is a dilution of scales near the last ray that bescemponentially stronger with
increasingV/. The fact that\/ = 8 is sufficiently large to be categorized as “macroscopic”
will be established in the next chapter, when we discuss tineetsality of the solutions.
Spacetimes withl/ > 16 cannot be numerically solved near the last ray in our scheme,
but we will again see in the next chapter that ewén~ 6 is adequate to understand all the
physics of CGHS black holes with MFA.

The regularized field8 and¢ from solutions with two values af/ > 1 andM < 1
are shown in Figs. 2.4 and 2.5. As discussed before, a cestia¢ with the numerical
calculations is to ensure that we get close to the last raytlamdingularity, as many of
the interesting phenomena occur in this region. It is araily known that the singularity
of the CGHS model occurs whein = £. Moreover,® — & evaluated on the dynamical
horizon (determined by, ® = 0) can be interpreted as the quantum corrected area of the
black hole [10]. This way, we can test our proximity to thegsilarity by checking the value
of the area near the singularity—see Fig.2.6. Fbr> 1, the part of our compactification

scheme which emphasizes the region near the last ray istrircthis case, the area when
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the GDH forms for the first time is roughly/. If the region near the last ray is not properly
resolved, one sees ondyfew percentf drop in the area, at which point the singularity is
encountered on the numerical grid. With our numerical méshave could see the area of
the GDH decrease to a tiny fraction of unity, signaling thatawe very close to the last ray
in terms of proper distances.

As explicitly seen in Fig.2.6, had we used a uniform mesh icommpactified:* coor-
dinates, a mesh spacing of order< 10~ would have been needed. Covering a sufficient
region of the spacetime to reveal the asymptotics wouldirecu net coordinate range
Az* of order unity, implying a mesh of ordén? points along both directions, which is
of course impractical to achieve on contemporary comptidgrgrger M. This important
aspect of the problem was not clear in earlier studies, asubeally focused o/ ~ 1
[10, 11]. We will see in the next chapter that the < 1 solutions are drastically different

from the M > 1 solutions, in terms of their physical interpretation aslwel

2.3.2 Convergence of the Fields

We compute convergence factors by comparing solutionsatieabbtained using different
mesh spacings. Note that we are always using the Richardém@pelation scheme de-
scribed in Sec. 2.2, thus in the following when we refer tolatsmn computed with mesh
spacingh, h is the step size of the coarsest one of the four meshes uskd mutmerical
integration.

First, we define

Anf = fo— fue (2.19)

where f, denotes the numerical solution of a functigrobtained on a grid with mesh

spacingh. A, f is thus an estimate, t0(h™), of the truncation error irf, wheren is the
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rate of convergence of the algorithm. From the Richardsqaesion we then get

n = log, {AAQZJ{ + O(h)] = log, {% +0(h)|, (2.20)

where the next-to-leading order term is(@fh) because of the order of interpolating poly-

nomial we use. From the above, we define an estimated comeadactor,. via

f2h - fh

Jn = Jny2 (2.21)

ne = log,

In Figs. 2.7 and 2.8, we show plots of for high and low mass cases respectively. An
“issue” we have with the convergence behavior of the CGHSataojos is it seems arti-
ficially high for coarser meshes. One reason for this may bettie central difference
scheme Eq. 2.13 we use solves the homogeneous part of theegpazigon ¢, 0_ f = 0)
exactly(to within round-off), irrespective of the step size. Fanmore, with our choice
of variables and regularization scheme, it is only the rinedr quantum corrections that
introduce non-trivial evolution, and initially the effecof this will be small. Though re-
gardless, in the limit of zeré we should approach the expected convergence behavior; as
shown in these figures, wao see this trend, though we have not quite reached the limiting
behavior. This is because the truncation error becomesa@ble to the machine roundoff
error, the case of highest accuracy achievable in numearicaputation, before the limit is
reached.

As mentioned, reasons for the anomalous convergence loelmaay be the compactifi-
cation and special initial data we choose, namely reguddrields that are initially adapted
to the classical solution. To check this, we evolved a test gghere we imposed the initial
conditions forM = 11, N = 11 atz] = 0.25 rather tharf . Note that this is not a physi-
cally correct solution as it will violate the constraintsoptigh it is mathematically perfectly
valid non-trivial initial data for the evolution equatiang/e set the domain of computation

to z; € [0.25,0.5] andz € [0.0,0.25] to avoid any singular behavior. Using four meshes
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for the Richardson extrapolation in this test, the trurezagrror was again reduced down
to round-off level for even the coarser meshes, so for tlesdakne, we only employed
three successively finer meshes in the extrapolation schenee the resulting truncation
error is expected to scale A%. The result is shown in Fig. 2.9, where we see the expected
convergence. We also tested two-mesh Richardson exttapofar the same case, and

obtained the expected convergence.

2.3.3 Convergence of Physical Quantities ofi;

The physical quantities we are interested in, includindg=—), Fary and Mg, are all
functions of the fields, thus in theory they should inheré tonvergence behavior of the
fields. Some of these quantities require computing first @aedrsd derivatives of the fields,
and so to maintain the theoretical convergence factdf, @ne should usé-point finite
difference stencils. However, catastrophic cancellaplagues the numerical derivatives
near the last ray, as the regularized fields vary extremelylglin this region, and this
seems to be the limiting factor in the accuracy in which weaanpute physical quantities.
Though in general we do not need high order convergence tfediequantities to achieve
high accuracy. A case-and-pointigz, obtained by integrating'a7v. Fay is dominated
by round-off near the last ray in most cases, though, onegiiated ovey—, this region
contributes insignificantly td/z. Furthermore, simple trapezoidal integration is adequate

to achieve quite accurate estimates\, as illustrated in Fig. 2.10.

2.3.4 Independent Residuals

As a final test of the code, we compute independent residfiie alifferential equations

(2.9) and (2.10). Specifically, we calculate the derivatiusing three-point stencils cen-
tered at the mesh points, rather than the cell centeredreliftes used for the solution.
Three- point stencils limit the convergence of the independesidual to quadratic order,

regardless of the convergence of the numerically calodféds themselves. We observe
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the expected quadratic convergence in all cases.
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Figure 2.3: Richardson extropolation without (left) andhwright) intermittent error re-
moval for two meshes. The thick dashed line is the dynamimatbn, joining onto the last
ray (horizontal arrow) where it meets the spacetime sirgyld_eft: Numerical solutions
are evolved independently over the whole mesh (top two nspsired the results are su-
perposed (bottom mesh) according to the Richardson exatamo after all evolutions are
finished. The superposition is only meaningful where botthefmeshes give meaningful
results, i.e. before the last ray. The calculated positicth® last ray depends on the nu-
merical error, and typically occurs earlierin for coarser meshes. The final superposition
will also only be accurate where the truncation error is $wralall meshes; approaching
the singularity the truncation error grows without bounente there is some finite region
(smaller with increasing resolution) before the last raghl gray) where the Richardson
extrapolation breaks down. Right: We determine severak constant error removal
lines(dark horizontal lines), that divide the computational @éaminto regions. We evolve
the fields in each mesh independently until the first erroronaahline is reached (at the end
of the first region) and stop. We apply Richardson extrapmiab this region and update
all the values on the coarsest mesh with the more accurate dmareoever, on the error
removal line we also updated all finer meshes with the morerate Richardson extrapo-
lated values, using polynomial interpolation. We thenarghe numerical evolution from
the error removal line, continuing independently in eaclsimantil the next error removal
line is reached, where the the procedure is repeated. Innithetleis effectively provides
a more accurate calculation of the position of the last rayalbmeshes, enlarging the
region of spacetime where a more accurate solution can lanebltthrough Richardson
extrapolation.
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Figure 2.4:9 for M = 8, N = 24. Left: Basei0 logarithm of® — . Right: ¢ — & at
lines of constant;,, — 2~ = 107*,107°,10~®. This shows tha® approache$V/12 at the

location of the spacetime singularity, from where the lagtemanates. Specifically, here
Az~ ~ 1078 of the last ray.
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Figure 2.5:® for M = 271, N = 24. Left: Basei0 logarithm of® — & Right: ® — &

at lines of constanty;, , — 2~ = 1072, 10~*,107°. Again, as in Fig. 2.4, this shows that
approache$V/12, and we are close to the location of the last ray. Note thafiekeevalues
are generally quite different from the = 8 case, and the singularity appears very close

to 2™ = 0, which necessitated the special compactification scheplaierd in Sec. 2.2.1.



sing

Figure 2.6: Area of the black hol&(— %) vs. the uncompactified distance from the last
ray in a log-log plot forM = 8,16 and N = 24. Note that in terms of the uncompactified
coordinates, we have to be withinz~ ~ 10~ of the last ray in order to be truly close to
the singularity forA/ = 8, and withinAz~ ~ 10716 for M = 16. This exponential trend
is general and severely limits the upper valuébfve can use in numerical calculations if
we want to reach regions “close” to the singularity.
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Figure 2.7: Convergence offor the M = 8, N = 24 case:n,(z*) for h = 2719 (left) is
mostly in the rang® — 10, and forh = 27! (middle) is around. Forh = 2712 (right) we
reach machine round-off, and thus lose convergence, haaceaoisy” pattern.
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Figure 2.8: Convergence offor the M = 2710, N = 24 case:n.(z*) for h = 2710 (left)

is around10, and forh = 271! (middle) is around’. Again, as with thel/ = 8 case in
Fig. 2.7, forh = 2712 (right) machine round-off error begins to dominate the eience
the “noisy” pattern. This effect is already visible in céntaegions of theh = 27! case.
For lower mass black holes, round-off is reached with coar@shes relative to the higher

mass black holes.
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Figure 2.9: The convergence factar of ¢ for h = 2% where as a test we imposed the
(unphysical) initial conditions fol/ = 11, N = 11 atz} = 0.25 rather thariZ,. We
only evolved the fields in the regiorr € [0.25,0.5], 2 € [0.0,0.25]. This solution is not
physically relevant, though tests the behavior of the nicakcode away from any of the
null infinities or singularities. Here, for each base reohly three meshes where used in
the Richardson extrapolation scheme, which should @iv&°) convergence, and does to
good approximation as shown in the figure.
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Figure 2.10: Ajhvf]‘f for various values of, for M/ = 219 (left) and M = 8 (right). For

most of the range, there is clear quadratic convergence.ddirenant error here is from
the trapezoidal integration method, and not a reflectiorhefttuncation error from the

numerical calculation of the fields.
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Chapter 3

Physics of the CGHS Black Hole

Evaporation

Recall that, all physical predictions of the mean-field tiyearise from the set of 5 equa-
tions Eqg. 1.26 — 1.30. The only difference from the classieabry lies in the fact that,
because of the trace anomaly, right hand sides of the dya&egziations Eq. 1.27) and
Eqg. 1.28 are no longer zero. But this difference has veryifsigmt ramifications. In partic-
ular, it is no longer possible to obtain explicit analytisalutions; one has to take recourse
to numericst

We have established in Chap. 2 that our numerical methods o CGHS equation
with the mean-field approximation accurately and to a higétigion. Now, we can start

answering questions about black hole evaporation.

1There are variants of the CGHS model that are explicitlytsielufor example the RST (Russo-Susskind-
Thorlacius) model [28], and the Bilal-Callan model [29]. Wever, results obtained in these models are not
likely to be generic even in 2 dimensions because of theiaesyimmetries [10, 24]. More importantly, it was
pointed outin [10, 12, 30] that the RST model is inconsisesmn in the largeV limit, and the Bilal-Callan
model has a Hamiltonian that is unbounded from below. Thaadh they exhibit many features of general
2D semi-classical black hole evaporation, they are phigitess interesting than the CGHS model.
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3.1 Overview

Let us first recall the standard paradigm. Literature on tientym evaporation of CGHS
black holes uses a certain definition of Bondi mag52d.. Essentially every preceding pa-
per assumed that: i) The semi-classical approximationdasleent until the horizon shrinks
to Planck size; i) Throughout this long phaseéi®. is non-negative and the process is
quasi-static; iii) Consequently, during this phase thengqus flux atZ7 is given by the
Hawking thermal flux and the semi-classical approximatiolds; and iv) At the end of
this phase the Bondi mass is also of Planck size. This depiiireminiscent of the argu-
ment we mentioned in Sec. 1.1, namely, the fixed backgroundaypécture holds until the
mass of the black hole decreases to Planck scale. It is tffezutlito imagine how purity
of the incoming quantum state could be preserved in the ugggiate. However, our re-
sults show that several features of this scenario fail todsadout by detailed calculations
in the semi-classical theory. In particular, we will show following results for a prompt

collapse of data with large ADM mass:

e The traditional Bondi mass/A4,, in fact becomesegative(and large) even while

ondi?

the horizon area is macroscopic.

e The definition of M3, is taken directly from the classical theory where the black
hole is static. Now, in 4 dimensions one knows [31] that thenida for the Bondi
mass has to be modified in non-stationary space-times (ffaryd*V to ¢ (05 —
05)d?V). Indeed if one were to ignore this modification, one would finat neither
the Bondi mass nor the Bondi flux is always positive. We haxesaly showed that a
quantum corrected Bondi mase€; 1Y, is proposed in [13], in the CGHS mean-field
theory (which, in particular, reduces fd@;'*4. in the classical theory). This mass

remaingoositivethroughout the evaporation process of the mean-field appedon.

e Although the horizon area goes to zero at the end of the eatiporprocess in the

2The meaning of a prompt collapse will be discussed in Chapter
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mean-field approximation\/3 1Y, is notof Planck size at that time (i.e., at the point
where the ‘last ray’ of Fig. 1.3 intersecfs)). For all black holes with large ini-
tial ADM mass, as the horizon area shrinks to z&f@'". approaches aniversal

value= 0.864N in Planck units, withV' = N/24. This end point Bondi mass is

macroscopic sincé’ is necessarily large in the semi-classical theory.

e Dynamicsduring the evolution process also showsiaiversal behaviar For ex-
ample, one can calculaté/ ;Y. as a function of the horizon areaq,,. There is a
transient phase immediately after the horizon is first fattbough after that the

plot of MATY. againsty,, joins a universal curve all the way to zero area.

e The flux of energy radiated acrags departs from the thermal flux whed, Y. and

evenay,,, are macroscopic.

e Although the Ricci scalar of the mean-field metgidiverges at the (weak) singular-
ity, it is regular on the last ray and goes to zero as one aphesd;; along this ray.
Thus, contrary to a wide spread belief, there is no ‘thunolérburvature singularity

in the semi-classical theory.

We will see in Chap. 4 that our results strongly suggest thetmatrix fromZ; to
77 is likely to be unitary. Howevembecause of the universaligf physical quantities at
Z7, itis very unlikely that information in the infalling mattet Z; will be recovered in
the outgoing state & . This is in sharp contrast with a wide-spread expectatioteed,
mechanisms for information recovery have been suggestie ipast (see e.g. [22]). This
expectation illustrates the degree to which universali&g wnanticipated in much of the
CGHS literature.

In the following two sections, we will consider a collapsingfunction shock wave, as

in Eqg. 1.34, which will be followed by a discussion on initgdta with extended profiles.
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3.2 Shell Collapse: Anticipated Behavior

12 16 20

z" z"

Figure 3.1: The Ricci scalak for M* = 8. Left: 2D contour plot ofR'/®> showing the
increase ink as the singularity (dark vertical region near the middl@gproached and the
asymptotically flat regionR — 0) nearZ;; (z* — oc). Right: R'/® as a function of* on
thelinesz™ — 2z, = —107?,—107%,—10~® (marked on the left panel as horizontal lines),
showing a double peak, indicating the divergent behavia@r,of ® at the singularity. The
fact that the peak is narrow rules out a strong thunderbogfudarity. Note that the dark
color at the region of the singularity is due to the high dignsf contour lines, and not
directly due to negative values &. While naive numerical calculation @t very close to
7, does not yield reliable results due to catastrophic catioaldt is already very smallin

the highz* values shown here, and the trend towdrdsclear.

Asymptotic flatness &;: First, ©,® do indeed satisfy the asymptotic conditions
Eq. 1.37. This was also noted in the recent approximateisaltd the CGHS equations by
Ori [25]. The simulations provide values of the functioA&:~), B(z~) andy (z~). As
a consistency check on the simulation, we verified the baléaw Eq. 1.40 by calculating
separately the right and left sides of this equation as dloslee last ray as the numerical
solution gave reliable (convergent) results. We also cdeipthe scalar curvature of the

mean-field metrig;, and it does go to zero d} —see Fig. 3.1 for an example.
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Figure 3.2: Left: Plot ofog,,(dy~/dz~) vs log,, A for M* = 8, N = 1, whereA =
(Zs_ing — z_). Right: Slope of the curve on the left. If locally the function the left behaves
as~ (kA)?, the curve on the right showsp. In the distant past (rightmost region in both
plots),y~ tends toz~. The intermediate region is similar to that in the classsmution
where(dy~/dz7) ~ (kA)~L. As the last ray is further approached (leftmost region), we
see thafdy~/dz~) increases much slower théanA)~!, leading to a finite value foy~— at

the last ray.

Finiteness of;~ at the last ray In the classical solution, the affine parametersajong

77 andz~ alongZ; defined by care related by
ey — et _GM (3.1)

Hencey = oo atkz~ = —In(GM/k). This is the point at which the singularity and the
event horizon meef;; (see Fig 1.2). Thus, in the classical solutifh is complete but,
in a precise sense, smaller than. For a test quantum fieIgfL on the classical solution,
one then has to trace over modes residing on the pdff ofvhich is missing frontZ;; .

This fact is directly responsible for pure statesignto evolve to mixed states df;, i.e.,
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for the non-unitarity of theS-matrix [13, 17] of the test field (recall Sec. 1.4). What is
the situation in the mean-field theory? Our analysis shoaft #s generally expected, the
affine parameter w.r.t. the mean field metyitakes &finite value at the last ray ofi ; a
necessary condition for unitarity of the S-matrix is met.

Our numerical solution cannot reach the last ray, sinceiit the future of the singu-
larity. The best we can do is getting as close to it as posdielere the singularity causes
our numerical evolution to stop. To establish the finiten&fsg—, we need to know the
functional behavior of/~(z™) in the vicinity of the last ra§. Let us return to the classical
solution gand set

Kz —In(GM/k) and Ag=z..,4 —% - (3.2)

sing,cl = sing,cl

(The subscript ‘sing,cl’ just highlights the fact that tiésthe point at which the classical

singularity meetg.) Then we have
— — 1 —KA
y ==z ——ln(l—e Cl). (3.3)
KR

When A, tends to zero, y is dominated by the leading order tera(1/k) In(—rkAy)
which diverges at\,; = 0. This logarithmic divergence is coded in the power in the
expression of the derivatiely /dz"):

dy~

= Aq)~" + finite terms. (3.4)

If we had(x A.)~? on the right side rather tham A,)~, then y” would have been finite

at the future end df of gforp < 1 (astheny = (k Aq)*?/(1 — p)+ finite terms).

In the mean-field theory, the last ray starts at the end pédithteosingularity and meets

Tt of g at its future end point. We will denote it by the line = Zing- FOllowing the

3Note that quantities with an under bar are those of the thesidal case, and the ones without it corre-
spond to the MFA calculation
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above discussion, to show that the affine paramgtew.r.t. ¢ is finite atz— = 2z, we

sing

focus on the behavior dfly~/dz"~) near this future end point &;. More precisely, we

analyze the functional behavior ¢y~ /dz~) and determine a local extracted from the

logarithmic derivative ofdy~/dz~) with respect toA = z; . — 2z~. Results in Fig. 3.2
show that(dy—/dz~) grows much slower near the last ray in the mean-field theawy th
does in the classical theory. In fact, over the entire rarfgéiothe local estimate of is
strictly less thatl, and asymptotes t0® approaching the last ray. This implies that is
finite at the last ray in the mean-field theory.

Note that the above analysis is only valid if we have deteeaithe location of the
singularity with sufficient accuracy such that the numérigzcertainty in its location is

much smaller than the rangedawhere we extract the asymptotic behavior of the function.

From convergence studies, we estimate our precision imrdetg z;;,, to be at the order
of 10713, and hence all the values in Fig. 3.2 are sufficiently far fthemlast ray to provide

a reliable measure of the power

3.3 Shell collapse: Unforeseen Behavior

The numerical calculations also revealed a number of seprivhich we now discuss.
Bondi mass for largeV: Scaling properties discussed in section 1.3.5 imply thitie
Bondi mass at the last ray is non-zero, it will be macrosctgria sufficiently largeV. This
expectation is borne out (in particular the Bondi messon-zero) in all our simulations
with large Mapy and largeN. Fig. 3.3 summarizes the result of a simulation where
N = 720 and Mxpy = 360 (SO N = 30 and M* = 12). The Bondi mass)/id,, that has
been commonly used in the literature [8, 12, 18, 21, 22, 2Bb2domes negative even far
from the last ray when the horizon area is still macroscapid, has a macroscopic negative

value at the last ra¥.On the other hand, the more recédt, 1Y, [13, 17] remains strictly

ondi

4After this work was completed, Javad Taghizadeh Firouzjasiated out to us that the fact that the
traditional Bondi mass can become negative was alreadgetbin [23]. Again though, in our terminology
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Figure 3.3: The ATV Bondi masa/4LY. (solid lines) and the traditional Bondi mass
Mard. (dashed lines) are plotted against— z; _ (left) and the horizon area (right). This

simulation corresponds t&/,py = 360, N = 72g0 (so M* = 12). For high values ofV,
both formulas give a large non-zero Bondi mass at the last¥g§j*4. becomes negative
when the area is still macroscopic. On the other V. remains strictly positive all
the way to the last ray, where the generalized dynamicakbor{(GDH) shrinks to zero
area.

positive. As one would expect from the scaling relationsauseV is large, MALY, is also

macroscopic at the last ray.

Universality of the end statérig 3.4 shows a plot ofn*, the value of (/41Y./N) at
the last ray, against/* = (Mapn/N), for several values of the initidl/* > 1. The curve

that fits the data, shown in the figure, is

m* = a (1 —e PO (3.5)

the numerical simulation in that work corresponds to a nscopic black hole with\/* = 1 Mp,.
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Figure 3.4: The value of* (i.e. M1y, /N at the last ray) is plotted againsf* (which
equalsMapy/N) for M* > 1. For Macroscopid/* (actually, already fod/* > 41) m*
has a universal value, approximately64.

with specific values for the constantss, v

a = 0.864, B~ 1.42, v~ 1.15.

It is visually clear from the plot that there is a qualitatiddference betweed/* > 4
and M* < 4. Physically this can be understood in termsagf;;.,, the area of the first
marginally trapped surface: Eq. 1.36 implies thgt,.., = aiia/N can be greater than a
Planck unit only ifM* is larger thar8. It is therefore not surprising that’* = 4 should
serve as the boundary between macro and Planck regimesedinde Fig 3.4 shows, if
M~* = 4, the value of the end point Bondi mass is universal,~ 0.864. For M* < 4

on the other hand, the value of* depends sensitively o/*. This could have been
anticipated because i#/* < 3, what evaporates is a GDH whidtarts outwith one
Planck unit or less of arest’. Thus, in the mean-field approximation it is natural to regard

CGHS black holes witld/* > 4 as macroscopic and those wifti* < 4 as microscopic.
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Finally, for macroscopic black holes, the end-value of tlaglitional Bondi-mass is also
universal:Mirad. < ay, and (M3 /N) — —2.0 asaye, — 0.

As noted in Chap. 2, there have been a number of previous meahstudies of the
CGHS model [21, 10, 23, 24]. They clarified several importymamical issues. However
they could not unravel universality because they all fodus®cases where the black hole
is microscopic already at its inceptiod/* < 2.5 in [21], M* = 1 in [10] and [23] and
M* = 0.72 in [24]. This limitation was not noticed because the scaggmetry and its
significance was not appreciated.
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Figure 3.5: Left: The affine parametgr (defined in Eq. (1.38) of the physical metgjc

is plotted against the rescaled aega= (agpu/N) of the generalized dynamical horizon
(given by(®/N —2)) at the horizon for values of/* from 4 to 14. Even though the curves
are very similar in shape, they do not coincide. Right: Oreeghifting freedom in,~

is utilized, we see that a properly shifted versignis universal with respect ta* for all
macroscopicl/* values.y_ can be used as a universal coordinate similar to the horizon
area.

Dynamical universality of —: The horizon areagpy (more precisely, its negative) pro-

vides an invariantly defined time coordinate to test dynaimiaiversality of other physical
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quantities. Let us begin with, the affine parameter alodg, with respect to the physical
metric g defined in Eqg. 1.38. Fig. 3.5, left, shows the plotjofagainsta* := (agpu/N)
for various values ofi/*. These plots show that the time dependencegofor various
values ofM* is very similar but not identical. Recall, however, thatrthies some freedom
in the definition of the affine parameter. In particular, iclegpace-time we can shift it
by a constant, and the particular value of the constant cgnfr@n one space-time to the
next (e.g. depend on the ADM mass). This shift does not affiegtof our considerations,
including the balance law Eqg. 1.40.

Let us defingy, by shifting eachy~ so that each solution reaches the same small non-
zero value of the horizon area; = ¢, at the samey. It turns out that this shift has
the remarkable feature that, for initially macroscopicckl&oles, all shifted curves now
coincide forall values ofa*. Thus, we have a universal, monotonic functiorbdplotted
in Fig. 3.5, right. Hence, also serves as an invariant time coordinate. In fact it has an
advantage ovedgpy: Whereasa* is defined only after the first marginally trapped surface

is formed (see Fig 1.3),, is well defined throughout the mean-field space-t{iheg g).

Dynamical Universality of ATV and MATV.: We can repeat the procedure used above
for y~ to investigate if dynamics of other physical quantitiestsas the Bondi fluxt™ :=
(FATV/N) and the Bondi masaf};_, := (MALY,/N) are also universal. Note, however,
that unlikey—, there is no ‘shift’ (or indeed any other) freedom in the défins of FATY
and M3V, So, if there is universality, it should emerge directijthout any adjustments
in the plots of ™~ and M}, ., againsta* = (agpu/N) or y;.

Let us begin with the Bondi flux. Recall, first, that in the ertd field approxima-
tion [12, 32], the energy flux is very small in the distant pases steeply aky~ =
—In(GMapn/x) and then quickly asymptotes to the Hawking valt&™ = (Nhk?/2).
This constant flux is characteristic of thermal radiatioteatperature:/ in two space-time
dimensions. In our simulations (With = 24, or) N = 1 andi = = 1, it corresponds to

FHaY — .5,

69



1.5 15
11 14
1 12
)
| _— 10 |
4 8 |
[ (P 6 1 ,fl-
‘ 4 |
18 /
"‘LL \\ -kLL /,j
\ 0.5}
N :
\
R
\ S~
\ N
0sl | VN
H H 0 i )
0 5 10 15 -30 20 _ 10 0
i y
a sh

Figure 3.6: F* = (FATV/N) is plotted against the horizon area := (agpu/N) (left)
andy, (right) for values ofA/* from 4 to 14. For all M/* values,F™* starts at the value of
0 at the distant pastkf,, < —1), and then joins a universal curve Bf. Note that once
the GDH is formed, (the rightmost beginning of each curveranleft plot) £ is already
slightly larger in magnitude than the Hawking/thermal walu5 and it increases steadily
as one approaches the last ray (i.eag@sy andy,, approacto.

In the mean-field theory, numerical simulations show thatafl initially macroscopic
black holes, the energy fluk* := (FATV/N) is also negligibly small in the distant past
and then rises steeply. But this rise is now associated withaly identifiable dynamical
process: formation of the first marginally trapped surfage.we noted in section 1.3.4 ,
for a shell collapse, analytical calculations show thatttea of this first surface is given by

Eq. 1.36. Assuming that we have a macroscopic initial m&ss;> v Gh Mp, =: Mopy,
Eq. 1.36 simplifies:
M* Mp,
oo~ Ghl— -1
Aipitial G [ MP] + IM*

+...] (3.6)

This relation is borne out in simulations. Assuming thatllteck hole is very large at this

stage, heuristically, one can equate the area of this new®DH with the Bondi mass at
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Figure 3.7: M}, . = (MAIY./N) is plotted against the horizon area := (acpu/N)
(left) andy, (right) for values ofA/* from 4 to 14. For all these macroscopid™*, M, .
starts at the value af/,py In the distant past4y,, < —1), and then joins a universal
curve of My ;- When the dynamical horizon first formig}__,, is quite close to its initial
value of M™*, (This is difficult to see in the left plot where all the cunaewd.) This means
that almost all of the evaporation occurs after the fornmatibthe dynamical horizon.

the retarded instant of time, sgy = v, , at which it is born. This implies that, per scalar

field, only~ 1 Planck unit of M}, has been radiated over the long period of time from

ondi
y~ = —oo till y~ =y, . But once the GDH appears, the flux rises steeply to a valiseclo
to but higher thard).5. Then, it joins a universal curve all the way to the last rayereh
the areaa* shrinks to zero. Thus, after a brief transient phase arduadime the GDH is
first formed, the time-dependence of the Bondi flux is uniakrfig. 3.6, left shows this
universal time dependence wiih as time and Fig. 3.6, right shows it withy as time.

In virtue of the balance law (1.40) one would expect this arsality to imply a uni-

versal time dependence also for the Bondi mags, ;. This is indeed the case. At spatial

infinity <%, we haveMp . = M*. There is a transient phase around the birth of the GDH
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in which the Bondi mass decreases steeply. Quickly after tha time dependence of
M. . Tollows a universal trajectory until the last ray. Fig. 3éft shows this universality
with a* as time while Fig. 3.7, right shows it witlj, as time.

To summarize, using either or y, as an invariant time coordinate, we can track the
dynamics off™* and M ;. In each of the four cases, there is a universal curve desgrib

these dynamics. For definiteness let us arsas time and focus oA/}, (the situation

ondi
is the same in the other three cases). Since both quantiBegositive, let us consider
the time-mass quadrant they span. Fix a very large initedlbhole withA/* = M} and
denote byc, the curve in the quadrant that describes its time evolutidmen, given any
other black hole with\/* < M}, the curvec describing the dynamical evolution of its
MY .4 Starts out at a smaller value of time (i#") marking the birth of the GDH of that
space-time and, after a brief transient phase, joins theeeyall the way until its horizon
shrinks to zero. Here we have focused on the ATV flux and massuse their properties

make them physically more relevant. But this universaliids also for the flux and mass

expressionsk’ 4 Arirad that have been traditionally used in the literature.

Curvature at the last rayThere has been considerable discussion on the nature of the
geometry at the last ray. Since this ray starts out at theukanity, a natural question is
whether a curvature singularity propagates out all aloeddht ray tdZ;; . This would be a
‘thunderbolt’ representing a singular Cauchy horizon [2#i} were to occur, the evolution
across the last ray would not just be ambiguous; it would lpossible. Howeveas priori
it is not clear that a thunderbolt would in fact occur. Foe tetrength’ of the singularity
goes to zero at its right end point where the last ray origisat

Using numerical simulations, Hawking and Stewart [24] adjthat a thunderbolt does
occur in the semi-classical theory. But they went on to sagtf&t it could be softened
by full quantum gravity, i.e., that full quantum gravity efts would tame it to produce
possibly a very intense but finite burst of high energy pkasiin the full theory.

Our calculation of the Ricci scalar very close to the lastshpws that, except for a
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small region near the singularity, the scalar curvaturdéatdst ray isotlarge (Fig. 3.1).
Thus, our more exhaustive and high precision calculatiolesaut a thunderbolt singularity
in the original sense of the term. This overall conclusioreag with the later results in [21].
(Both these calculations were done only for initially miscopic black holes while results
hold also for macroscopic ones.) However, our calculatghwsy that the flux'2™V does
increase very steeply near the last ray (see Fig. 3.6). Nuoatlgr we could not conclude
whether the flux remains finite at the last ray or diverges. élex, the integrated flux
which determines the change M3 ™Y, is indeed finite and in faatot very significantn
the region very near the last ray. For macroscdgicvalues, the total radiated energy after
the point whenF™* reaches the valukeis ~ 1 Planck mass. (see Figs. 3.6, 3.7). Thus, if we
were to associate the thunderbolt idea to the steep incoééis& at the last ray, this would

have to be in quite a weak sense; in particular, there is rgutan Cauchy horizon.

Nature of the Bondi fluxRecall that in the external field approximation, the endhgy
starts out very low, rapidly increases and approad#€§™/N) = hx?/2, the constant
thermal value£ 0.5 in our simulations), from below [32, 12] (see Eqg. 1.24). la thean-
field theory, the flux"ATV also starts out very small and suddenly increases when thé¢ GD
is first formed. However, it overshoots the thermal value egakses to be constant much
before the black hole shrinks to Planck size (Fig. 3.6). Byisubsequent evolutioA ATV
monotonically increases in magnitude and is about 70% grélaan the constant thermal
value F& when MATY. ~ 2N Mp: the standard assumption that the flux is thermal till
the black hole shrinks to Planck size is not borne out in thamfeeld theory. (One’s
4-dimensional intuition may lead one to think that the ias®in the flux merely reflects
that the black hole gets hotter as it evaporates; but thistism because the temperature
of a CGHS black hole is aabsolute constant/y,,, = xh). In the interval between the

formation of the GDH and the time whevi31V, approachesV Mp,, the numerical flux is
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well approximated by

T A ATV
MBondi

NM
FATV — pHaw {1 —In (1 ol )} : (3.7)

Thus, in this interval the flux is close to the constant thénahie only while the area of
the GDH is much greater thai Planck units. We will give the details of the derivation
of Eqg. 3.7 in Appendix. A.

3.4 Universality beyond the shell collapse.

So far, we have focused our attention on a delta distribigiegll collapse (Eq. 1.34). As
we will discuss more in the following section, we expect tbgults to be robust for a large
class of infalling profiles, so long as the GDH forms promplly test this conjecture, we
evolved a 2-parameter family of initial data, parametetilag a characteristic initial mass
M and widthw. Now, it is clear from the form Eq. 1.32), 1.33 of initial datsat what
matters is not the profil¢f) itself but rather the integral df, ff))2. We will specify it

using two parameters/ andw:

(rat-1)*\ "
_M_ T =+ 1
s+ af(o) 12N 1 e w ) xXr >
fom dz* (55 )? = (

(3.8)

0 zt <1

This choice is motivated by the following considerationstst: as in the shell collapse,
there is a neighborhood @i in which the solution represents the vacuum of the theory.

Second, the powef on the right side is chosen to ensure high differentiabdity ™ = 1

5The leading order correction (N Mp1/ Mponq;) to the Hawking flux was obtained by Ori by analytical
approximation methods and served as the point of departurelftaining the fit (3.7). Note also that if
the fluxes differ over a significant time interval, it followsat the quantum radiation is not thermal. But
the converse is not true as there aree states in the outgoing Hilbert space for which the energy &ux
Tt is extremely well approximated by the constant thermalealEor quantum states, what matters is the
comparison between the functigq, () and its classical counterpartyz—) given by (3.1) [13, 17], and
these two functions are very different. Finally, non-theffluxes were also observed in a quantum model of
four-dimensional spherical shell collapse [33]
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Figure 3.8: The value ofn* (i.e. MALY./N at the last ray) plotted againgt* (which
equalsMpy/N) for M* > 1. In addition to points corresponding to shell collapse=
0) the plot now includes points with more general profiles with= 0.25,0.5,1. The
universal valuen* ~ 0.864 persists forM/* > 4.

(i.e. zt = 0). Thus,fff) is C* and furthermore decays faster tharf**" for any C' as
2T — oo. Third, the parametew provides a measure of the width of the matter profile
in z* coordinates, which is roughly the width it for w < 1. Finally, note that we
recover the shell profile in the limib — 0 and expect that the physical requirement of
a ‘prompt collapse’ will be met for sufficiently smadb. In the case of a shell profile
Eq. 1.34, the parametel/ represents the ADM mass. A simple calculation shows that
for a general profile in family (3.8))Mapw IS given by a function of the two parameters:
Mapym = M(1 + 1.39 w). Thus, within this family, the issue of universality of a [ggal
guantity boils down to the question of whether it dependy onlthe specific combination
M (1 + 1.39 w) of the two parameters.

Numerical evolutions were carried out féf* ~ 6,9,11, 13 andw = 0.25,0.5,1. We
find that universality is indeed retained for all these casgecifically, we repeated the

following analysis of section 3.3 for various valuesidfandw:
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Figure 3.9: F* (left) and M}, 4 (right) plotted againsy_, , for various incoming matter
profiles (v and Map\ values), including several shetb(= 0) cases. The time when the
dynamical horizon first forms is marked on each flux curve Qhtis later for largetv). All

the curves with the sam@ sy (6 in this example) are on top of each other and cannot be
distinguished by the eye, showing that they have the samversail behavior throughout the
evolution, including the early times. More generally ak thsymptotic physical quantities
depend only on the combinatiav,py; of the profile parameterd/ andw as long asiw

is small compared to the initial area of the GDH.

i) The relationship between the end-point valuesof M . against\/*; see Fig. 3.8.

ondi
For M* > 4, we again findn* has the same universal value, 864 Mp,.

i) The relationship ofy~ vsa* (once GDH becomes time-like). As before, by an appropri-
ate shift, we find &, that can be used as a universal time coordinate for all cases.

iif) The dependence of™* and My ; ona® andy,, ; see Fig. 3.4. We still retain the same
notion of universality from the shell collapse, that is, tinee evolution ofF™* (andMF, ;)
coincide for all values of\/ andw at late timesas long as\/,py IS macroscopic, and is

not too wide. Moreover, note that for a fixed valueldf p,; the plots are indistinguishable

all the time, including the early times before the formatidthe GDH.That is, asymptotic
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Figure 3.10: Plot ofly~/dz against the separation it from the singularity for various
values ofM andw with a fixed ADM massV/* = 6. The functional dependenge (z™)
determines the physics of the outgoing quantum state caetplg3, 17]. Coincidence
of these curves in the mean-field theory suggests that tlgpmgt quantum state is likely
to be universal within the class of initial data with the safi@M mass, so long as the
collapse is prompt.

physics neaf;; only cares about the “total mass”, not the shape of the csiligpenergy
profile. So, even for this broader class of matter profilestetare two universal curves,

one for the dynamics af* and the other foll/} In particular, for a givenw > 0, the

ondi*

time evolutionf™ and My 4; is identical to that obtained with the shell collapse=€ 0).

ondi
In the classical theory, if the collapsing matfé?) is compactly supported dfy, , to the

future of this support the geometry is universal, deterghimgthe ADM mass\/spy. This

is because stationary, classical, CGHS black holes aracteaized completely by/pi.

Whether the situation would have a direct counterpart irstmai-classical theory is nat

priori clear because the semi-classical solutions are not séayi@nd there is no reason

to expect the solution to be characterized just by one or tararpeters to the future of
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the support off®). Our results provide a precise sense in which universatissgersist.

As long as the black hole is initially macroscopic and thdagse is prompt, we have :
i) a universal asymptotic time translatioioy_, (Fig 3.10); and, soon after the formation
of the GDH, ii) universal dynamics of physical observablethwespect to the physical

asymptotic timey_, .

3.5 Discussion

The CGHS model provides a useful arena to explore the foomathd quantum evap-
oration of black holes. For, the classical action is clogelated to that governing the
spherically symmetric gravitational collapse in 4 dimensi and, at the same time, the
decoupling of matter and dilaton fields in the model intragkusignificant technical sim-
plification. However, in this paper, we were not concernetthwiefull quantum theory of
the CGHS model. Rather, we restricted ourselves to the riielahequations of [13, 17]
and explored their implications using high precision nuoger

Our analysis of universality was carried out in the sameitsghiat drove the inves-
tigation of critical phenomena in classical general reigti[15, 16]. There, one takes
equations of general relativity seriously and shows, f@anegle, that black holes can form
with arbitrarily small mass. From a more complete physi@bspective, these black holes
would have enormous Hawking temperature, whence quantigetefvould be crucial. To
know whether black holes with arbitrarily small masses camfin Nature, one cannot
really rely on the classical Einstein equations. The viewpim those investigations was
rather that, since general relativity is a self-contairveel] defined theory, it is interesting
to explore what it has to say about such conceptual issuesteBults of those explorations
led to the discovery of critical behavior in gravitationallapse, which is of great interest
from a theoretical and mathematical physics perspectiveéhd same vein, in the CGHS

model, it is conceivable [17] that the relative quantum fliations of operator®, &, may
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become of ordeil once the horizon mass is of the order of, sg§}/* .5 Suppose
this were to happen at a poipton the GDH. Then, to the future of the null ray frgm
to Z, solutions©, ® to the mean-field equations discussed in this paper wouldbbe p
approximations of the expectation valuesfd that result from full quantum equations.
That is, our solutions to the mean-field equations would rqthysicallyreliable in this
future region. The scope of this study did not include thssiesof the physical domain of
validity of the mean-field approximation. As in much of theefature on semi-classical
gravity, we considered the entire space-time domain whegartean-field equations have
unambiguous solutions. And as in investigations of crifpd@nomena, our focus was on
exploring non-trivial consequences of these equationsciipally, we wished to explore
two questionsAre standard expectations about predictions of semi-adasgravity borne

out? Do the mean-field dynamics exhibit any universal festir

5Note incidentally that in 4 dimensions, when a black holéwifspy = M, has shrunk down through
guantum radiation to masgM apn Mo, its horizon radius is less than a fermi, and for a super-ivas$ack
hole with M apy = 10° M, this radius is a tenth of an angstrom.
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Chapter 4

Further Discussions and Conclusion

4.1 Semiclassical Theory

We found that some of the standard expectations of sensickgravity are indeed borne

out: The semi-classical space-time is asymptotically fiafiaas in the classical theory,

but in contrast to the classical cagg is nowincomplete Thus, the expectation [4] that

the full quantum space-time would be an extension of the-séssiical one is viable.
However, a number of other expectations underlying thedstiahevaporation paradigm

turned out to be incorrect. Specifically:

a) The traditional Bondi mask/'*. is large and negative at the end of the semi-classical

evaporation rather than of Planck size and positive;

b) The recently introduced Bondi mas£, Y. remains positive but is large, rather than of

Planck size at the end of evaporation;

c) The energy flux"ATV of quantum radiation deviates from the Hawking flux correspo

ing to thermal radiation even when the black hole is macnopisgthe deviation becoming

larger as the evaporation progresses; and,

d) Along the ‘last ray’ from the end of the singularityTg, curvature remains finite; there

is no ‘thunderbolt singularity’ in the metric extendingZg .
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The analysis also brought out some unforeseen univeesalithe most striking among
them are:

i) If M* = Mapy/N is macroscopic, at the end of semi-classical evaporation=
MAZIV. /N assumes a universal value; ~ .864Mp;

i) As long as)M* is greater thai/,,, there is a universal relatiom* = a(1—e M7 Mp),
with o ~ 0.864, [ ~ 1.42, v ~ 1.15;

iii) An appropriately defined affine parametgf alongZ; is a universal function of the
areaagpy Of the generalized dynamical horizon;

iv) The evolution of the Bondi masa/3 1Y, with respect to an invariantly defined time
parametelgpy (or y ) follows a universal curve (and same is true for the energy flu
FATVY,

These results bring out a point that has not drawn the atterttdeserves: the number
N of fields plays an important role in distinguishing betweescnescopic and Planck size
guantities. If semi-classical gravity is to be valid in ateresting regime, we must have
N > 1 and the ADM mass and horizon area are macroscopid /N > AGhMp,
anda/N > Gh. (By contrast, it has generally been assumed that the exttéetd ap-
proximation should hold so long a&xpy > Mp or a > Gh.) Of course the ADM
masses can be much larger and for analogs of astrophysazzd hbles we would have
Mapn/(NM,) > Gh. After a brief transient period around the time the GDH isrhor
dynamics of various physical quantities exhibit univetsahavior till the horizon area
goes to zero. Iy /(N M,) > 1, the universal behavior spans a huge interval of time,
as measured by the physical affine paramgieon Z;; or the horizon area.

All these features are direct consequences of the dynamduadtions Eq. 1.26 and
Eq. 1.27 for infalling profiles Eqg. 3.8 characterized by twargmeters\/, w. Of course,
with numerical analysis one cannot exhaustively coveruli@dnge of solutions, and given
the complete freedom to specify the incoming flux frdmone can always construct initial

data that will not exhibit our universal dynamics —for exdey@fter the GDH is formed,
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send in a steady stream of energy with magnitude comparatie'tV. Here we have
restricted attention to initial data for which tli@H forms promptly, and is then left to
decay quantum mechanically without further interventiOnr intuition is that universality

is associated with aure quantum decagf a GDH, pure in the sense that the decay is
uncontaminated by continued infall of classical matteryaag positive energy. Therefore,
we conjecture that for macroscopic black holes formed byatmimfalling matter profiles

of compact support, these universalities will continue ¢éddrsoon after the GDH turns
time-like. More generally, for profiles in which the posgienergy flux carried across the
GDH by the classical fieldgéf) is negligible compared to the negative quantum flux to the
future of some ray ™ = =, the universality should also hold in the future region> z.
Our extended matter profile Eqg. 3.8 was of this nature.

This scenario provides a number of concrete and intereptisigjems for the geometric
analysis community. Start with initial data Eq. 1.32, E®3latZ~ with ffi) =0anda
smooth profilef¢ with compact support for each of thé fields fff). Evolve them using
Eq. 1.26 and Eq. 1.27. Then, we are led to conjecture thatethdting solution has the
following properties:

1) The maximal solution is asymptotically flat at right fugurull infinity Z1 ;

2) I, is future incomplete;

3) A positive mass theorem holds: The Bondi masg§! Y, is non-negative everywhere on
5

4) Solong asV/apy > N \/h/iGn, the final Bondi mass (evaluated at the last ray) is given
by Ml ~ 0.864N/h/G k;

5) Fix a solutions, with Mapy = M, > N,+/h/G r and consider the curve describing
the time evolution of the Bondi mass in thepy /N, — Mponai /N, plane it defines. Then
the corresponding curvefor a solution withA//N < M, /N, coincides withc, soon after

its GDH becomes time-like.
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4.2 Quantum Theory

Although the mean-field approximation ignores quantumdiatons of geometry, nonethe-
less our results provide some intuition on what is likely &ppen nea in the full
guantum theory. First, because there is no thunderbolukngy along the last ray, the
semi-classical solution admits extensions in a large fEigiood ofZ; to the future of
the last ray. In the mean-field approximation the extenssoambiguous because of the
presence of a singularity along which the metri€isbut notC!. But it is plausible that
these ambiguities will be resolved in the full quantum tlyemnd there is some evidence
supporting this expectation [17, 34]. What features wohld guantum extension have?
Recall that the model hag scalar fields and the black hole emits quantum radiationcéh ea
of these channels. The Bondi mass that is left over at thedgss Mpng; ~ 0.864N Mop.
So we have0.864/24) Mp, units of mass left oveper channelltis generally assumed that
this tiny remainder will be quickly radiated away acrdss the right future null infinity of
the quantum space-time that extends beyond the last raypoSapt is radiated in a finite
affine time. Then, there is a poipton Z;; beyond whichMATY, and FATY both vanish.
The expression Eq. 1.42 6f*TV now implies thatZ;; is ‘as long asZ; . This is sufficient
to conclude that the vacuum state (of right moving fieflti§ onZ; evolves to a pure state
onZy (because there are no modes to trace over). This is pretiseparadigm proposed
in [13]. Thus, the semi-classical results obtained in tlaiggr provide concrete support for
that paradigm and re-enforce the analogous 4-dimensi@rabdgm of [35] (which was
later shown to be borne out also in the asymptotically AdSexinn string theory [36]).

All our analysis was restricted to the 2-dimensional, CGH&lholes. As we men-
tioned in Sec. 1.3, while they mimic several features ofdatisional black holes formed
by a spherical symmetric collapse of scalar fields, theram@some key differences. We
will conclude with a list of the most important of these difaces and briefly discuss their
consequences. (For a more detailed discussion, see [17].)

First, for CGHS black holes, surface gravityand hence, in the external field approx-
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imation, the Hawking temperatufg;,,,, is a constant of the theory; it does not depend
on the specific black hole under consideration. In 4 dimerssiby contrasts and Ty,
depend on the black hole. In the spherical case, they goselyeas the mass so one is led
to conclude that the black hole gets hotter as it evaporé&tegcond important difference
is that, in the CGHS black hole, matter fiel® are decoupled from the dilaton and their
propagation is therefore decoupled from the dynamics ofydmmnetric sector. This then
implies that the right and left moving modes do not talk to anether. In 4 dimensions,
the £ are directly coupled to the dilaton and their dynamics caieoneatly separated
from those of geometric field$, ©. Hence technically the problem is much more diffi-
cult. Finally, in 4 dimensions there is only ofie¢ and only oneZ~ while in 2 dimensions
each of them has two distinct components, right and left. c€ptually, this difference is
extremely important. In 2 dimensions the infalling matteonly in the plus modesﬁf),
and its initial state is specified just @ while the outgoing quantum radiation refers to
the minus modegff), and its final state has support only 8. In 4 dimensions, there is
no such clean separation.

What are the implications of these differences?

Because of the first two differences, analysis of CGHS blamksis technically sim-
pler and this simplicity brings out some features of the evafon process that can be
masked by technical complications in 4 dimensions. Foaimst, since the Hawking tem-
perature€liy,,, is an absolute constant«) for CGHS black holes, the standard paradigm
that the quantum radiation is thermal till the black hole Basunk to Planck size leads
to a clean prediction that the energy flux should be consfafity = %x?/48. We tested
this simple prediction in the mean field approximation anghfbthat it does not hold even
when the horizon area is macroscopic. In 4 dimensions, she¢éemperature varies as
the black hole evaporates, testing the standard paradigmas more delicate. Similarly,
thanks to the underlying technical simplicity in the CGHSe&ave were able to discover

scaling properties and universalities. We believe thatesofthem, such as the ‘end point
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universality’, will have counterparts in 4 dimensions ey will be harder to unravel. The
CGHS results provide hints to uncover them.

The third difference has deeper conceptual implicationglvtve will now discuss in
some detail. In 4 dimensions, since there is a sifigleand a singleZ ™, unitarity of the
guantum S-matrix immediately implies that all the inforroatin the incoming state can be
recovered in the outgoing state. In 2 dimensions, on the ditued, there are two distinct
questions: i) is the S-matrix frofy; to Z; unitary? and ii) is the information about the
infalling matter onZ; recovered in the outgoing stateZt? As discussed above, results
of this paper strongly support the paradigm of [13, 17] inabhihe answer to the first
question is in the affirmative; information &y is faithfully recovered oif;. However,
this doesnot imply that all the infalling information aZ; is imprinted on the outgoing
state afZ;; .

In the early CGHS literature, this second issue was ofterechixith the first one.
Because it was assumed that all (or at least most) of the ADBkrsevaporated away
through quantum radiation, it seemed natural to considensay the possibility that all the
information in the infalling matter &f; can be recovered from the outgoing quantum state
atZ;. The key question was then to find mechanisms that make itipeds transfer the
information in theright-movinginfalling modesff) to theleft-movingnodesfﬁi) going out
to Z . In [22], for example, the 2-dimensional Schwinger modehvai position dependent
coupling constant was discussed in some detail to suggessilgbe mechanism.

However, our universality results strongly suggest thaséhattempts were misdirected.
The physical content of the outgoirguantumstate is encoded entirely in the function
y5(27) [13, 17] onZ, the right future null infinity of the quantum extension oétsemi-
classical space-time. In the family of profile functioﬂ%’ we analyzed in detail, the func-
tion y, (2~) onZ;; has universal behavior, determined just by the total ADMsn&ince
only a tiny fraction of Planck mass is radiated per channéhéportion ofZ; that is not

already inZ;, it seems highly unlikely that the remaining informatiomdze encoded in
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the functional form ofy_, (™) in that portion. Thus, at least for large* we expect the
answer to question ii) to be in the negative: informationtaored in the general infalling
matter profile orZ; will not be fully recovered af;;. From our perspective, this is not
surprising because the structure of null infinity in the CGH&del is rather peculiar from
the standpoint of 4 dimensions where much of our intuitioroted. In 2-dimensional
models,Z; is not thefull future boundary of space-time. Yet discussions of CGHSkblac
holes generally ignoré’* because, as we saw in section 1.3.4, even in the classicaythe
the black hole interpretation holds only with referenc&o Indeed, for this reason, in-
vestigations of quantum CGHS black holes have generallysied on the Hawking effect
and question i) of unitarity, both of which involve dynamisly of / for whichZ: does
effectively serve as the complete future boundary.

In 4 dimensions, the situation is qualitatively differentthis regard: in particular, the
outgoing state is specified on all of future null infinify, not just on half of it. Therefore,
if the singularity is resolved in the full quantum theofy, would be the complete future
boundary of the quantum space-time and there would be nougtish for theS matrix to
be unitary and hence for the full information @n to be imprinted in the outgoing state on

Zt.
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Appendix A

Mass dependence of the energy flux

A.1 Flux-Mass Relationship

In Sec. 3.3, we gave a formula that connectsAf&/ definition of the energy flux with the

Bondi mass, namely

T AJATV
MBondi

FATY = ple {1 ~In (1 Ve )} . (A.1)

Recall that Eq. A.1 only holds in the interval between thenfation of the GDH and the
time whenMA™Y, approachesV Mp,, that is not too early on and not too close to the last
ray. Let us briefly explain how this formula, or rather, canige, was devised.

We start with the idea thaf“™V can be expressed as a series in inverse Bondi mass

o0

Loy (M) ] | n2)

Bondi

FATV — FHaW

Thei = 1 term was suggested to us by Amos Ori in a private communicatnd
was soon confirmed by our numerical results. We found thednigihder coefficients
term by term. Once the!" order term (in the expansion parame%) is deter-

Bondi

mined, let us call the approximation f6*TV that contains these terms FATV. We plot
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_ n+1
a; = (]{4\%1;1 ) [FATV - F(‘jgv] , which should be roughly constant in the range where

Bondi

the series expansion holds, and this was confirmed in our nicathstudies.

For up toi = 4 we made the observation that= % Based on this, rather than going
through a detailed numerical analysis, which is further phcated by the fact that the
formula holds only in a certain interval, we conjectured lya= % not only for the first
few terms, but in general. This is simply the series expansioEqg. A.1. In summary,
Eg. A.1 is a combination of concrete numerical results up-to4, and a conjecture based
on these results for the full series expansion. We should tiatt relative error grows as
one tries to determine; for higheri. i = 4 was the highest value where we could discern

;.

A.2 Flux-Mass Relationship for the “Traditional” Defini-
tions

Dori and Ori (DO from here on) recently gave a series expangawy similar to eq. A.2,
but instead of the ATV definitions, they used the traditiotefinitions of the Bondi mass
and the energy flux [37]. In this section, we show that thesults can be analytically
obtained from Eq. A.1

Before we proceed, let us simplify our notation to avoid aogfasion that might arise
due to the differences between our approach and that of DQvilMgork with dimension-

less quantities and also scale them with the number of quafields presentV = N/24,
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as before

m = Mg/ (NMpy),
f = FV/(NFp),
Mrrad = Mgéigli/(NMpl%

frraa = F™/(NFp), (A.3)

whereFp is the Planck flux given byix2. Using these quantities, eg. A.1 now reads as

f:%[l—ln(l—m_l)] :%

1+Z“1n] . (A.4)
i=1

The result of DO is given by

fTrad -

1+fjc,-( 1 )] (A5)
=1

Mmrrad

N —

where they numerically found that = 0 andc; ~ —0.4, the latter with25% error. We
will call this the DO formula.

Since the “traditional” and ATV definitions of the Bondi maasd the energy flux are
related by analytic expressions, afyn A.5 can be, in principle, calculated from A.4. At

the base of converting the DO formula to ours is the formula

fTrad = f—}—\/ﬁiﬁ
Y

B 1 ~df
1 1—el=2f)?
_ f+23/2\/}( €1€_2f) . (A.6)

The first line is a trivial observation on Eqg.1.42 and Eq. 1@bthe second line we used

eq. 1.43.
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Since in both cases, the Bondi mass is given by integrategahresponding flux, and
both the “Traditional” and ATV Bondi masses agree at the itdipast ¢~ — —o0), simple

integration of the first line of Eq. A.6 gives

MTrad = m_ﬂ\/?

= m-— [1 —In (1 — m_l)}l/Q , (A.7)

where we used Eqg. A.1 in the second line. Thus, “Traditioqakntities can be expressed
in terms of their ATV versions by inverting Eq. A.6 and Eg. ARunctions that relate the
traditional and ATV quantities do not have trivial inverses we will invert their series
expansion order by order up te;.

rad"

We first expressn—! in terms ofm;.!, ,, using Eq. A.7

3 53
m~! = m;iad med +3 3 Tfad 48med + O(med) (A.8)

Using Eq. A.6, we can writgr,.q in terms ofm, sincef is known in terms ofn:
1 13 17
Jrrad = 3 {1 +m 4+ m T+ Em_?’ + 1—6m_4 + O(m_5)] : (A.9)

Inserting Eg. A.8 into Eqg. A.9, we finally reach

5! 3
fTrad = |:1 + mTrad 12 ;fad 16 Trad + O<mTrad):| ) (AlO)

N —

which recovers:, = 0 andc; = —5/12 ~ —0.4, results of DO. We should emphasize
that, even though we only performed our calculation up todtherder, the coefficient at
any order can be calculated with ease. On the other hand hongdsalso remember that
only terms up to the’” order are based on numerical results, higher terms are part o

conjecture.
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Quantitative relations between the energy flux and the nsdsgiortant in establishing
the fact that the energy flux is not thermal, and might be usgaftinding quantitative

measures of the difference from the thermal case in the rielahapproximation.
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