
C
ER

N
-T

H
ES

IS
-2

01
6-

13
4

05
/0

9/
20

16

University of Wuppertal

School of Mathematics and Natural Science

Experimental Particle Physics

Master of Science

Computersimulation in Science

Performance Optimization of the
ATLAS Detector Simulation

Master Thesis

Martin Errenst

1010100

Wuppertal, 05.09.2016

First corrector: Prof. Dr. Christian Zeitnitz

Second corrector: Dr. Torsten Harenberg

III

Abstract

In the thesis at hand the current performance of the ATLAS detector simulation, part

of the Athena framework, is analyzed and possible optimizations are examined. For this

purpose the event based sampling pro�ler VTune Ampli�er by Intel is utilized. As the most

important metric to measure improvements, the total execution time of the simulation of

tt̄ events is also considered. All e�orts are focused on structural changes, which do not

in�uence the simulation output and can be attributed to CPU speci�c issues, especially

front end stalls and vectorization. The most promising change is the activation of pro�le

guided optimization for Geant4, which is a critical external dependency of the simulation.

Pro�le guided optimization gives an average improvement of 8.9% and 10.0% for the two

considered cases at the cost of one additional compilation (instrumented binaries) and

execution (training to obtain pro�ling data) at build time.

IV

Contents

1 Introduction 1

2 Foundation 3
2.1 CPU Architecture and Instruction Decoding 3

2.1.1 Instruction Execution . 3

2.1.2 SIMD Capabilities . 6

2.1.3 Ivy Bridge CPU . 6

2.1.4 Coding Guidelines Based on the CPU Architecture 7

2.2 Physics Background . 7

2.2.1 Standard Model . 8

2.2.2 Interactions of Particles with Matter 9

2.2.3 The ATLAS Detector . 10

2.3 Description of the Athena Framework . 11

2.3.1 Athena Sequence Diagram . 12

2.3.2 Description of Geant4 . 14

2.3.3 Common Data Formats . 15

2.3.4 Remarks on the Detector Geometry 16

2.4 Previous Optimizations . 17

3 Performance Analysis 19
3.1 Utilized Tools . 19

3.1.1 VTune Ampli�er . 19

3.1.2 Run- & Parse Scripts . 20

3.1.3 GCC Compiler Optimizations . 21

3.2 Usage of the Benchmark Test Setup . 22

3.2.1 Pro�ling the Benchmark with VTune 23

3.3 Performance Analysis of the Current Simulation 24

3.3.1 Timing with Taskset . 24

3.3.2 FLOPs Estimation . 25

3.3.3 Analysis of Geant4 Structures . 25

3.3.4 VTune Pro�le Analysis . 28

Contents V

4 Discussion of Possible Improvements 34
4.1 Vectorization . 34

4.1.1 Global Vectorization in Geant4 34

4.1.2 Vectorization of the Magnetic Field 37

4.2 Front End Issues . 42

4.2.1 Pro�le Guided and Link Time Optimization in Geant4 43

4.2.2 Inlining parameterized_sin . 45

4.3 Di�erent Optimization Attempts . 48

4.3.1 Dependency Breaking in parameterized_sin 48

4.3.2 G4AtlasRK4 . 49

5 Conclusion 52
5.1 Performance Analysis After Changes . 52

5.2 Optimization Assessment and Outlook 53

5.3 Summary . 54

Bibliography 55

A Code Examples 61
A.1 jobOptions File . 61

A.2 G4AtlasRK4 . 63

1

1 Introduction

Simulation plays a prominent role in modern physics experiments. It allows scientists to

study the inherent properties of large and complicated measurement devices and to test

theoretical hypotheses against real data. The ATLAS (A Toroidal LHC ApparatuS) detec-

tor is one of four larger experiments at the Large Hadron Collider (LHC), CERN [Col08].

It introduces a great demand for extensive simulation due to its complexity and the ne-

cessity for high statistics.

For this purpose the simulation framework Athena [Col10] was created, which is based

on the Gaudi framework [Bar+01] and utilizes Geant4 [Ago+03] to simulate the physical

processes. Athena allows for a very diverse usage including event generation, simulation

of particles trajectories, deposited energy in active detector material and reconstruction

of particle events, which is done in the same fashion as with real measurement data. This

modularity is achieved by wrapping the C++ core components of the framework with

python scripts that allow for dynamic loading and usage of each component.

Event generation and digitization requires much less computational costs, which mo-

tivates the investigation of optimizations in the simulation step [Col10].

The general aim of this thesis is to analyze the current performance of the Athena

framework and to identify and implement possible ways of optimization. For this purpose

Intel VTune Ampli�er, an event based sampling pro�ler, is utilized. This should be done in

a structural fashion that keeps numerical computations unchanged, such that simulation

results remain the same. If the simulation would change in such ways, new validation of

the physical behavior is necessary.

The focus of this project lies on CPU speci�c topics, especially the investigation of front

end stalls and vectorization. Most promising optimizations are the utilization of pro�le

guided optimization and several smaller changes that arise from following pro�ling re-

sults.

Since there is another student, Tobias Wegner from Hochschule Niederrhein, working

on the same project [Weg16], the project has been divided into two parts, where I am

focusing on CPU issues. Due to the nature of computation, our parts are tightly entangled

and we are therefore working on some aspects together and share results. Those sections

are marked accordingly.

2 1 Introduction

Chapter 2 comprises a brief description of the ATLAS detector and the physical pro-

cesses, as well as hard- and software fundamentals that are needed for the discussion

of optimizations. It also includes a detailed discussion of the Athena framework and of

previous optimization e�orts. Chapter 3 presents the utilized tools, the benchmark test

setup and a detailed discussion of the simulation performance before any optimizations

are applied. In chapter 4 I am explaining several attempts of performance improvements

in a case by case study. Chapter 5 summarizes the changes that are done and includes a

performance analysis with all improvements applied.

3

2 Foundation

This chapter summarizes all essentials to discuss the ATLAS simulation and possible per-

formance optimizations. Section 2.1 gives an introduction to the CPU architecture and

the instruction decoding process, as well as other CPU speci�c topics. This is followed

by a brief introduction to particle physics in section 2.2 and the real ATLAS detector, de-

scribed in 2.2.3. A detailed discussion of the Athena framework in 2.3 is followed by a

brief section on previous optimizations in section 2.4.

2.1 CPU Architecture and Instruction Decoding

In order to discuss performance issues and possible improvements, it is necessary to elab-

orate on the underlying CPU architecture and to show how these performance issues

come about.

The following description is based on the Intel Optimization Reference Manual [Cor16]

and focuses primarily on the instruction pipeline. Figure 2.1 gives an overview of the

Sandy Bridge core. It is divided in the in-order and out-of-order sections. While the in-

order part is comprised of the instruction decoding pipeline and similar functions that

have to respect the order in which instructions are processed, the out-of-order engine can

execute instructions in parallel through several ports that give access to the Arithmetic
Logical Unit (ALU) and other (vector or memory) operations.

Memory data and instructions are cached in separate 32kB level 1 (L1) caches. Both

receive their data from the (uni�ed) 256kB L2 cache. These caches are distinct for each

core of the CPU, and are fed by the global Last Level Cache (LLC). In the following the L1

instruction cache will be abbreviated with ICache.

2.1.1 Instruction Execution

Instructions are processed in several steps:

1. The Branch Prediction Unit (BPU) fetches a block of code from:

• Decoded ICache

• ICache, via decoding pipeline

4 2 Foundation

Figure 2.1: Schematic of the Intel Sandy Bridge core architecture and pipeline function-

ality [Cor16].

• L2 Cache, LLC or memory, if necessary

2. Corresponding micro operations (uOps) are send to the rename/retirement block.

Entering the scheduler in program order, but are processed & deallocated in data

�ow order. Branch mispredictions are signaled at branch execution ⇒ front end

resteers to new branch

3. Memory operations are managed/reordered for parallelism. Cache misses result in

fetches from higher levels in the hierarchy

4. Exceptions are signaled at the (attempted) retirement of the faulting instruction

Most of these stages need further explanation, since the components partly implicate

other features, which can have an impact on the program performance.

The BPU determines the next block of code which has to be executed, thus predicting

the correct path in branching sections of the code. It can e�ciently predict conditional

branches, direct (�xed address) and indirect (computed address) jumps and returns. This

prediction is based on previous branches and their jump addresses. Mispredictions result

in front end resteers, implying that the pipeline has to be �ushed and �lled with new in-

structions from the correct branch. This automatically introduces performance penalties,

2.1 CPU Architecture and Instruction Decoding 5

since a coherent output of decoded instructions is essential to utilize the complete core.

The BPU even allows for execution of branch related code, before the branch is taken and

therefore utilizing the out-of-order engine appropriately.

The ICache, or Instruction Cache, is a 32kB cache to allow for faster access to hot code

sections, i.e. frequently executed functions. If the reused proportions of the program

instructions are compact and completely �t into the ICache, no overhead for access to

higher memory hierarchy levels has to be paid.

The Legacy Decode Pipeline decodes instructions to micro operations, which are stored

in the Decoded ICache and send to the uOps queue. The pipeline consists of the ICache,

Instruction Translation Lookaside Bu�er (ITLB) – translating virtual memory addresses

into physical addresses – Instruction Predecoder, the Instruction Queue and four Decode

Units. A miss during the ITLB lookup results in a seven cycles penalty. The Predecoder

can take 16B of aligned instructions per cycle, meaning that unaligned instruction data

can reduce the throughput.

During this stage two performance improving methods can be applied, Micro- and

Macrofusion. The former describes the process of fusing multiple uOps into a single com-
plex uOp, while the later describes the combination of two instructions into a single uOp.

The Decoded Instruction Cache, also called Micro Operation Cache, is another cache

level, which provides an increased uOp bandwidth at lower latency and power consump-

tion than the legacy pipeline. Intel mentions an average hit rate of 80%, nearly 100% for

hotspots [Cor16]. It also reduces the latency penalty if a branch misprediction occurs,

since it can store decoded instructions for di�erent branches simultaneously. The De-

coded ICache stores its uOps in 32 sets, with 8 ways containing 6 uOps each, resulting in a

total of 1536 micro operations. These sets and ways have to meet certain restrictions, e.g.

only two branches per way, a complex uOp consumes a complete way, etc. If these re-

strictions cannot be met for a speci�c code section, e.g. with heavy and dense branching,

the Legacy Instruction Pipeline has to be used instead.

Both, the Legacy Instruction Pipeline and the Decoded ICache, push micro operations

to the uOp queue, which issues the in-order instructions to the rename/retirement unit.

This queue uncouples the in-order from the out-of-order section and ensures that 4 uops

are delivered each cycle, provided that the front end can supply enough instructions.

On this level, the Loop Stream Detector (LSD) can detect small loops, with less than 28

instructions, and locks these uOps in the queue until a branch misprediction occurs.

The execution core is superscalar and can process instructions out-of-order in the out-
of-order engine (OOE). The OOE can detect dependency chains between instructions and

execute computations out of order, while maintaining correct data �ow. It is comprised

of the rename/retirement block and the Scheduler. The Renamer moves uOps from the

front end to the execution core and eliminates false dependencies among uOps. uOps are

6 2 Foundation

queued in the Scheduler until all source operands are present. Afterwards they are dis-

patched to available execution units as close to a FIFO order as possible. The Retirement
Unit handles faults and exceptions, which occur during execution.

2.1.2 SIMD Capabilities

Modern processors have di�erent instruction sets to o�er parallel, SIMD (Single Instruc-
tion Multiple Data), operations. These packed computations work on separate �oating

point registers, specially designed for this purpose.

The Sandy Bridge architecture provides the SSE, SSE 2, 3, 4.1, 4.2 and AVX instruction

sets, that work on up to 256-bit wide data simultaneously. This is equivalent to four

double �oating point operations per cycle.

To utilize these vector capabilities, critical sections of the program can either be written

in assembly by hand or the autovectorization features of various compilers can be applied.

When using autovectorization, (nested) loops should be arranged in a way that depen-

dencies between intermediate results are avoided. Conditional branches inside loops also

have a negative impact on autovectorization and should be avoided.

Usual gcc �ags are -ftree-vectorize (included in -O3), and

-ftree-vectorizer-verbose=2 to print the output of the autovectorizer, allowing

for veri�cation if certain loops are vectorized or not.

2.1.3 Ivy Bridge CPU

The test computer has an Ivy Bridge XEON CPU, which is essentially a die shrink of the

Sandy Bridge architecture with a few additional features. Changes in the Ivy Bridge ar-

chitecture with respect to Sandy Bridge are:

• Hardware prefetch (of data from memory)

• zero latency register MOV, executed during instruction decoding

• uOp-queue holds 28 entries per logical processor. 56 if hyper threading is disabled

or the other logical core is inactive

• Loop Stream Detector (LSD) (see below) can handle larger loop structures than 28

instructions

• Latency & throughput of some instructions are improved (e.g. 256 bit packed fp

divide, sqrt, . . .)

Given that the analyzed Athena setup is only used in single threaded mode, I do not

discuss multi-threading technologies, e.g. hyper-threading and others.

2.2 Physics Background 7

2.1.4 Coding Guidelines Based on the CPU Architecture

Many features are either automatically used on a hardware level or implemented on an

assembly / compiler level. Spotting or in�uencing this behavior in a high level program-

ming language is very indirect and has to be identi�ed through pro�ling.

There are a few guidelines for the structure in high level code that can be deduced by the

consideration of the architecture. To utilize the Decoded Instruction Cache, hot sections

should not contain more than 500 instructions, 1000 if hyperthreading is disabled or the

program is with 100% certainty single threaded. Loops with many instructions should

not be unrolled if the resulting code exceeds that 500 instruction limit. Dense branching

should be avoided, to meet the way-restrictions of the Decoded ICache. Very small loops

should be analyzed, if they meet the requirements of the LSD.

Long Dependency Chains, sequential computations where each operation depends on

the previous one, should be avoided or reordered, such that out-of-order execution be-

comes more likely.

ICache misses occur when the required instruction is not present in the L1I Cache. This

can be the case when the code is highly fragmented between hot and cold sections or if a

function results in a large working set and is therefore not �tting well in the ICache.

Inlining functions can either degrade or improve the instruction cache performance

[Goo]. This increases code locality, i.e. reduces fragmentation between hot and cold code

sections and therefore makes the code more cache e�cient. On the other hand it increases

the code size that can lead to increased occurence of cache misses. The Google C++ Style
Guide suggests to only inline frequently used functions with ≤ 10 lines of code.

Front end stalls due to instruction decoding issues are a complex and global phenomenon,

that is not easily in�uenced by single changes in a high programming language. It is sug-

gested, that Pro�le guided optimization (PGO), as discussed in section 3.1.3, and other

function reordering compiler options should be investigated in this context [Corc].

2.2 Physics Background

The ATLAS experiment is a fundamental research project in the area of elementary par-

ticle physics. I am following chapters 1 and 2 of Gri�ths’ Introduction to Elementary
Particles [Gri08] to give an overview of the Standard Model. To describe the interactions

of particles with matter I will follow chapter 6, “Energy Deposition in Media”, from Intro-
duction to Nuclear and Particle Physics by Das and Ferbel [DF03].

8 2 Foundation

Figure 2.2: Particles of the Standard Model and their interactions [Dre14].

2.2.1 Standard Model

The Standard Model of elementary particle physics describes all known elementary parti-

cles and their interaction with each other. There are six leptons, six quarks, their antipar-

ticles, four gauge bosons — that act as carriers of the strong, weak and electromagnetic

interactions — and the Higgs particle. Leptons and quarks are sorted into three genera-

tions, where each generation behaves similar in certain characteristics, e.g. same charge,

but with larger masses than the previous generation. Each generation also introduces

special quantum characteristics, for example strangeness and lepton numbers.

Leptons are the electron, muon and tau particle, with an electrical charge of −1 each,

and the corresponding neutral neutrinos. The quark families are: up and down, charm and

strange, bottom and top, with a charge of −1

3
and

2

3
respectively.

In �gure 2.2 you can see that these particles interact through gauge bosons, which are

a representation of the three fundamental forces described by the Standard Model. The

photon, responsible for electromagnetic interactions, couples to leptons, quarks and the

W
±

bosons, i.e. every particle with electrical charge, 0. The gluon, responsible for strong

interactions, couples to all quark families and itself. W
±

and Z are the gauge bosons of

the weak interaction. The Higgs boson is responsible for the mass of elementary particles

through the Higgs Mechanism (chapter 10.9 [Gri08]).

The mentioned anti-particles (e.g. anti-leptons, anti-quarks) are characterized through

2.2 Physics Background 9

opposite behavior with respect to electrical charge and other properties – e.g. lepton

number, color charge – while the characterization through possible interactions etc., stays

the same.

All these particles and their interactions make up every observable matter and describe

our current understanding of particle physics.

2.2.2 Interactions of Particles with Ma�er

Although ideal experiments should not distort the measured process in question, par-

ticle detectors can solely detect particles through interactions. Most deposited and de-

tected energy comes from electromagnetic interactions and is detected through measur-

ing currents or with light sensitive devices. Charged particles can ionize the medium

in their path, which produces a measurable current. Another process is the excitation
of atoms and molecules. In this case the excited atom emits a photon, when dropping

back to ground levels. Lightweight particles, like electrons, can also lose energy through

bremsstrahlung, i.e. emitting photons, when accelerated in the electromagnetic �eld of

atoms in the medium.

Important parameters for these interactions are charge and mass from the penetrating

particles as well as the atomic number and molecule structure of the medium.

The radiation length X0 is de�ned as the distance an electron travels, before its energy

drops to
1

e
-th of it’s original energy. It is a constant which depends on the atomic mass

and atomic number of the medium and can be used to estimate the properties of irradiated

matter.

Photons can interact through three processes, where each one is dominant for a di�er-

ent energy scale. These three e�ects are the photoelectric e�ect, compton scattering and

pair production. The photoelectric e�ect describes the absorption of a photon by a bound

electron, such that its kinetic energy is enough to leave the atomic bound state. Comp-

ton scattering is often described as the interaction of a photon with a free electron. Pair

production is only relevant for photons with a large energy, such that it can produce a

positron-electron pair.

Neutral hadronic particles, e.g. neutrons, can interact with the irradiated matter through

strong interactions, i.e. scattering with nuclei elastically or inelastically. In general hadronic

particles, e.g. protons, neutrons, mesons, interact with other hadronic matter in the irra-

diated medium and can produce very complex cascades with a wide variety of involved

particles, also called hadronic shower.

10 2 Foundation

Figure 2.3: Overview of the ATLAS detector [Col08], p 4.

2.2.3 The ATLAS Detector

The ATLAS detector is one of two general purpose detectors at the LHC, CERN. It is build

to identify a broad range of particles, created by proton-proton collisions at 7 and up to 13TeV .

It is constructed symmetrically around the interaction point in its center and consists of

cylindrical layers around that origin. To give an overview, I am following the �rst chapter

of [Col08].

In �gure 2.3 you can see all major components and the physical dimensions of the

detector. Most components are part of the tracking detector, calorimetry and the muon
spectrometer.

The inner detector, including the Pixel, SCT (silicon microstrip) and Transition Radi-

ation (TRT) detectors, is responsible for tracking the trajectories of traversing particles.

Its main task is to measure the momentum of primary and secondary particles.

The main purpose of calorimeters is particle identi�cation through measurement of

deposited energy. There are separate calorimeters for electromagnetic and hadronic par-

ticle interactions, due to their di�erent behavior in matter. There are Lead-Liquid Argon

(LAr) calorimeters to capture electromagnetic showers and tile calorimeters, as well as

LAr calorimeters to detect hadronic showers.

A good impulse resolution for muons is required for certain physics studies. For that

reason there is a dedicated muon identi�cation system at the outer regions of the detector.

It also implements additional trigger features for automated event selection.

2.3 Description of the Athena Framework 11

Figure 2.4: Gaudi schema of central software components [CM01].

2.3 Description of the Athena Framework

The ATLAS software framework Athena [Col10], adapts the Gaudi framework [Bar+01],

that implements C++ algorithms and objects, which are dynamically loaded and wrapped

with python scripts.

Figure 2.4 gives an overview about the core components of a Gaudi application. Not

necessarily all components are used within Athena, but their central concept and their

roles become clear. Prominent examples are the Application Manager that controls the

program execution, the Algorithms, which implement the operations to be executed on

event data, and services like the Message Service, JobOptions Service and loader services,

which transfer data from persistent storage to transient stores.

The algorithms are combined in one or many Algorithm Sequences, which are applied

to each event once during the eventloop. An event is the collection of all primary particles,

after a generated collision with all immediate decays. Each algorithm has access to tools

and services, which might be called several times during one iteration of the eventloop.

In the context of this thesis, the process of propagating the initial particles through

the detector geometry is called simulation. The resulting trajectories are called tracks.
Each track is computed in many steps, whereat the step length is dependent on the local

material, material boundaries, physics process and accuracy considerations.

Digitization is the simulation of currents and voltages of detector electronics, to pro-

duce a �le format identical to real detector data. This way all following tools, e.g. recon-

struction, work identically on simulated and real data. As a speciality, the simulated data

also contain truth information, which is initially created during the generation and is also

processed throughout the full simulation chain. The truth record holds information of

important interactions that are simulated, such that the reconstruction can be validated

12 2 Foundation

for each process afterwards. For the benchmark setup, I read the generated events from

a precomputed �le and solely focus on the simulation step.

2.3.1 Athena Sequence Diagram

Figure 2.5 illustrates the sequential execution of a typical Athena simulation job. A few

inexact simpli�cations are present, but improve the clarity of the diagram itself. I will

point these out in the following description.

Athena itself is a python script that is dynamically loading necessary libraries and eval-

uates the jobOptions �le, which is used to de�ne the behavior of the current job.

The ApplicationManager (AppMgr) is created afterwards and responsible for bootstrap-

ping the whole execution. It manages the most common services (Svc), but not all services,

which might be the interpretation from the diagram. Every Algorithm can create services

at later times during execution. Some important services are not mentioned in the dia-

gram, e.g. the StoreGateSvc which is responsible for the access to persistent data.

The initialization of the detector geometry is also a simpli�ed process and is in reality

more complicated. The most important part which was omitted in the diagram is the

conversion of the geometry format in a Geant4 format, once the G4AtlasAlgorithm is

created and initialized.

The AppMgr creates the EventLoopManager, which is responsible for managing the

algorithm sequence and its constituents. Each algorithm is created and initialized in the

order of this sequence. Some user controlled variables are set during the initialization

phase, using the JobOptionsSvc, which holds all options de�ned in the beginning by the

jobOptions �le. The G4AtlasAlgorithm is creating the environment for the execution

of the Geant4 part during the eventloop. As another simpli�cation the Geant4 Event-,

Tracking- and Stepping manager are omitted here but further explained in section 2.3.2.

Each algorithm can implement a beginRun() and endRun() function, which are

executed right before and after the eventloop. In the eventloop itself the execute()

is executed for each algorithm on the current event data in the order de�ned by the

algorithm sequence. Data access, e.g. for the geometry data, reading/writing event data,

getting magnetic �eld data, happens solely through corresponding services. After the

eventloop, each parent instance is responsible for the termination of its children, which

is somewhat simpli�ed in this diagram. Every algorithm can implement a finalize()

method that is responsible for its own clean up work.

The algorithm CCAPIAlg is part of a special package that Tobias Wegner and I created

together. It utilizes the Intel Collection Control API [Cora] to start and stop the collection

process of VTune in the already mentioned beginRun() and endRun() functions. This

way the initialization and �nalization of the simulation can be skipped from pro�ling. The

diagram shows a di�erent con�guration which starts and stops the collection process in

2.3 Description of the Athena Framework 13

load libraries; evaluate jobOptions.py

create

create

load Event/Detector data

create

create

create

create

declareProperty()

initialize()

setMyProperties()

setProperty()

log

initialize()

get Evt/Det./BField Data

Data

ProcessEvent

SimulateFADSEvent()

log

execute()

�nalize()

RunTermination()

�nalize()

terminate Services

athena

AppMgr

Svc

MessageSvc,

JobOptionSvc: De�nes Algorithms, Event data

source and detector con�guration

DetectorStore & GeoModelSvc: Detector data

AthenaHepMCInterface: Event Data

MagFieldSvc: Magnetic Field Data

MessageSvc,

JobOptionSvc: De�nes Algorithms, Event data

source and detector con�guration

DetectorStore & GeoModelSvc: Detector data

AthenaHepMCInterface: Event Data

MagFieldSvc: Magnetic Field Data

EventLoopMgr

CCAPIAlg

G4AtlasAlg

G4AtlasRunMgrCCAPI: Start col-

lection

CCAPI: Start col-

lection

Initphase≈ 16% of the time

(3 Events)

≈ 4.5% of the time

(10 Events)

≈ 16% of the time

(3 Events)

≈ 4.5% of the time

(10 Events)

Eventloop

[per event]

≈ 83% of the time

(3 Events)

≈ 95% of the time

(10 Events)

≈ 83% of the time

(3 Events)

≈ 95% of the time

(10 Events)

CCAPI: Stop col-

lection

CCAPI: Stop col-

lection

Figure 2.5: Athena sequence diagram, based on a diagramm in the Gaudi Users Guide

[CM01], page 33.

14 2 Foundation

the initialization and �nalization method. I also implemented time logs to get the included

timing information, using the MessageSvc and <chrono>.

Notes in the diagram show a rough estimation of the relative time the application

spends in each phase. Since the time is only measured after the constructor call of the

CCAPI algorithm all processes before are not measured. This is indicated with the init-

phase box, showing that we only measure the time spent inside this region and in the

eventloop.

With 3 events we spent roughly 16% in the initphase and 83% in the eventloop, com-

pared to the total execution time, which is retrieved from the log �le. For 10 events the

ratio shifts towards the eventloop with 4.5% spent in the initphase and 95% in the event-

loop. Since a typical simulation job consists of 50 or more events [Col10], the importance

of optimizing the eventloop and the execute() functions of the algorithms, as well as

possible service calls, becomes very clear.

2.3.2 Description of Geant4

Geant4 (G4) is a software toolkit to simulate the interaction between particles and matter.

It is widely used in various �elds of science and medical applications. To give an intro-

duction to the core component of the ATLAS simulation, I am following [Ago+03], which

describes the state of Geant4 in the year 2003. Later paragraphs will update this picture

and point more speci�cally to the implementation for Athena.

Geant4 follows an object oriented design, where geometry and materials, particles,

particle interactions, tracking, hits, event- and track managers are represented as classes.

One run can have multiple events. An event is the collection of all primary particles,

produced by the generators, including the option of simulation truth, which stores the

real interactions at each stage, such that the reconstruction can be validated afterwards.

Tracking is the process of transporting (stepping) a particle through the detector. At each

step the particle can go through three di�erent types of actions, which happen at rest (e.g.

decay), along step (e.g. energy loss) and post step, which implement the physical processes.

The user can specify own actions through UserActions.
The G4TrackingManager is an interface class, responsible to handle data between

the event- and the tracklevel. This is done through message passing between the

G4EventManager and hierarchical lower levels. Stepping actually happens in the

G4SteppingManager. A single track is represented as an instance of the G4Track

class and holds information like the current position, passed time since beginning of the

stepping process, identi�cation of the current geometrical volume, etc. Tracks are stacked

on three di�erent stacks, urgent, waiting and postpone, to organize the processing priority

of the tracks during the eventloop.

The geometry is implemented using a voxel based method, dividing the space into cu-

2.3 Description of the Athena Framework 15

bical volume elements (voxels) and a tree based map. The SmartVoxel technique divides

each mother volume into a one dimensional virtual division (sliced along a speci�c axis).

Each slice contains pointers to their subvolumes. The best slicing axis is chosen by heuris-

tics and subdivisions containing the same volumes are merged.

Charged particles have to be transported in an electromagnetic �eld, which is numeri-

cally approximated in the whole detector volume. The trajectory curve is approximated,

while the accuracy parameters can be controlled by the user.

In 2006 some essential features have been implemented and a short description is given

here, following [All06].

The Runmanager allows to control the Geant4 con�guration, and can read preproduced

events from �le.

Regions are implemented to allow for a division of the detector geometry into sub-

detectors. Each region can have di�erent parameters, e.g. the threshold for secondary

particle production or integration accuracy. With the G4Navigator a new abstraction

of the navigation within the detector geometry has been implemented.

To improve the propagation of particles in magnetic �elds, di�erent �elds can be at-

tached to di�erent geometry volumes, allowing for a di�erent accuracy or particle behav-

ior per region.

Since Geant4 is usually a hard compiled C++ application, it has to be wrapped with

python code to provide modi�able parameters during runtime in the Athena framework

[Col10]. The FADS (Framework Atlas Detector Simulation) wraps several Geant4 classes

to allow for a dynamic selection and con�guration without recompilation.

FADS objects can be translated to G4 equivalents and G4 can be accessed through ser-

vices and the G4Algorithm. The eventloop is implemented as a wrapped service that

provides additional handles. To process the input events from the generators, these can

be converted from the HepMC to the default G4 format. After the eventloop is processed

some analysis is done to ensure that the process �nished without any errors.

2.3.3 Common Data Formats

In this thesis I will focus on the simulation step in �gure 2.6. The input to the simulation

is done in the HepMC format and can be �ltered to �t certain needs, e.g. leptonic decays,

missing energy above certain values [Col10]. These are the particles, produced by a simu-

lated particle interaction in an event generator, i.e. simulating the collision process at the

interaction point of the detector. These generated events can be computed in the current

job or read from �le. Filtered particles are processed together with its MCTruth data.

Output of the Geant4 Atlas simulation is given in the hits �le format, e.g.

atlasG4.hits.pool.root, which contains the deposited energy at a certain geome-

try of the detector, packed with the MCTruth data and other meta data, like the simulation

16 2 Foundation

Figure 2.6: Data �ow of Athena. Square boxes indicate operations and rounded boxes

data formats [Col10].

con�guration. Its size is mentioned to be ≈ 2.5 MB/event [Col10]. Own observations are

hinting towards a size of ≈ 1 MB/event. To reduce the �le size, showers in the calorimeter

have been merged.

The digitization step is split from the simulation since the workload per event is much

higher during the simulation than during digitization. A typical digitization job consists

of ∼ 1k Events, while a typical simulation job is working on 50 - 200 events.

2.3.4 Remarks on the Detector Geometry

The simulation supports di�erent layouts of the detector geometry, including test beam

setups and di�erent states throughout the build phase of the detector [Col10]. This data

is loaded into a GeoModel compliant format, which is not only used by the simulation

but also for digitization and reconstruction.

The model consists of solids, logical volumes and physical volumes. Solids are basic

shapes without a position. Logical volumes are solids with properties, e.g. physical mate-

rial and corresponding characteristics. Physical volumes are logical volumes, located at a

speci�ed position. Some approximations for dead materials, cables and cooling pipes, are

done to simplify the model.

To simplify the placement of large structures, a single logical volume can be repeated

several times through volume parametrization. Physical volumes can be nested and can

have de�ned dependencies to create subdetectors as distinct parts of the whole detector.

Each subdetector is responsible for including all of its own materials and elements.

A unique identi�cation of the current location of a particle is necessary and overlaps

between volumes have to be avoided. This can be achieved through small gaps between

2.4 Previous Optimizations 17

volumes, at the additional cost of extra intermediate steps during simulation for each

traversing particle [Rim+08b].

Two databases handle the detector geometry information in every Athena job. The At-
las Geometry DB stores basic constants, volume dimensions, rotations, material, tags and

links to external �les, while the Atlas Condition DB stores the conditions, dead channels

and misalignments of the detector. Both have version controlled data and a tree structure.

During the initialization of the simulation, the GeoModel has to be translated into a

Geant4 compliant format. The GeoModel description can be released afterwards to im-

prove the memory footprint. Each particle stores its location in the G4 geometry descrip-

tion to speed up the lookup time during the stepping loop.

2.4 Previous Optimizations

There have been previous e�orts to improve the performance of Athena. Reports on these

were published in April and December 2008 and evaluate the performance at the start of

ATLAS data taking. Another report was published in 2010. I will brie�y summarize their

�ndings in this chapter and describe the state of the simulation code at previous times.

In First Report of the Simulation Optimization Group [Rim+08b] the main motivation

is justifying the use of Geant4 and to propose possible changes. A good proportion of

the investigation is dealing with di�erent physics models and time-/rangecuts for low

interacting particles. These cuts describe limits after which the corresponding particles

are completely dumped at their current position to reduce computational costs. As an

example, reducing the timecut of thermal neutrons to 150 ns improved the issue that the

HITS �le was signi�cantly larger with the preferred physics model at that time.

The stepper solves an ordinary di�erential equation (ODE) for each next step of a parti-

cle in a magnetic �eld. The parameters for this solver are changeable and adjusted di�er-

ently for each subdetector to reduce computational costs through unnecessary accuracy.

This could be further improved by reducing the order of the solver (4th order Runge

Kutta), but analysis showed that accuracy errors can accumulate to signi�cant o�sets for

muons with ≥ 1200 steps. A di�erent solver could be used for each particle type.

Final Report of the Simulation Optimization Task Force [Rim+08a] discusses optimiza-

tions that were evaluated and implemented. A crucial improvement was the removal of

string comparisons in core and detector packages, which were executed every step. The

total number of steps easily reaches several millions. (see 3.3.3 and table 3.2) Strings have

a more complex structure than simple data types, thus very frequently executed functions

should not contain such operations, if not necessary. Name checks could be implemented

by checks of integer encoded IDs, etc.

The GeoModel representation of the detector is translated to the Geant4 format during

18 2 Foundation

initialization and should be released afterwards. An estimation is that roughly 100 MB of

RAM could be saved by this process, but this was not done at that time.

To improve the output �le size of the HITS �le, the above mentioned neutron timecut of

150 ns was approved and additionally hits in the silicon detectors are stored as a collection

along the minimum ionizing particle (MIP) path, instead of individual hits. This removed

duplicate information and reduced the storage size by a factor of 2.

A new stepper dispatcher allows for the selection of stepping parameters for each par-

ticle type and region. The accuracy of electrons in the calorimeters is relaxed, while high

precision of muons in the tracker and calorimeters is maintained. Up to 20% of the total

simulation time is spend in magnetic �eld functions and a second order RK integrator

would reduce the calls to the magnetic �eld functions from 4 to 2. If a uniform �eld over

the length of one step is assumed, this can be further decreased to only one function call

per step. Therefore decreasing the accuracy of the integration step for particles where it

is possible, can increase the performance signi�cantly.

The benchmarking was done on a silent machine, since the runtime RMS on the CERN

batch system was at 5 − 10%, which makes subsequent tests not very comparable. On

these silent machines the RMS was about 1%. The tool taskset was used to lock the

simulation process to a speci�c core and avoid cache misses due to shifts between di�erent

cores.

Final Report of the ATLAS Detector Simulation Performance Assessment Group [Apo+10]

is the �nal report on another optimization period in 2010. The simulation performance

assessment group lists various methods that consume much CPU/memory resources as

�rst targets for further improvement.

Several Geant4 features are discussed that could reduce the number of simulation steps

and potentially reduce the CPU time, at the cost of a possible impact on the physics.

Allocations and memory usage is an important factor in this discussion. Given that the

focus of this thesis lies on CPU behavior, the description of these �ndings will be skipped.

The most important performance metric mentioned is the CPU time for 50 tt̄ events.

Athena was instrumented with callgrind to count CPU cycles and instruction/function

call rates to isolate hotspots.

Some example hotspots that are found by this approach are the stepping function and

a function to determine the physical step length of the G4SteppingManager class.

As a conclusion the analysis showed that 26% of the time is spent with magnetic �eld

related operations, including G4AtlasRK and the stepper dispatcher. 15% is spent with

geometric functions, dealing with computations of distances between certain points.

The last section of this report suggest that other tools should be utilized to analyze

cache- and instruction misses, identifying frond end stalls as a major topic of interest.

19

3 Performance Analysis

This chapter discusses utilized tools in section 3.1 and the benchmark test setup in section

3.2. Both sections give a necessary foundation for the performance analysis in section 3.3,

which de�nes a reference state for all attempted optimizations.

3.1 Utilized Tools

The most important tools for this project are the pro�ler Intel VTune Ampli�er, own

scripts for log �le parsing and the GCC compiler. Other scripts o�ered by Athena are

discussed later, when �rst needed.

3.1.1 VTune Amplifier

Intels VTune Ampli�er is an Event Based Sampling pro�ler that is capable of analyzing the

run time performance of a compiled program with little overhead. To describe its func-

tionality, I am following an article about the General Exploration pro�ling mode [Mar15].

VTune utilizes the Performance Monitoring Units (PMU) of the CPU to extract hardware
events. These events cover a wide variety of CPU operations and indicate what the CPU

is doing at a speci�c point in time. Examples are counters for taken branches and branch

misprediction, as well as simple counters for instructions, that are retired in the retirement

unit and eventually executed.

VTune uses Event-Based Sampling (EBS) to pro�le the program execution. In this pro-

cess the PMU registers issue an interrupt, when a certain limit in the event counters is

met. At this interrupt the instruction pointer (IP) is read and all hardware events of the pre-

vious interval will be assigned to the corresponding instruction, function call and library.

This is a statistical process which only has signi�cance if enough samples are collected,

i.e. the workload/time of the program execution is large enough.

As a bene�t, EBS introduces only a very small overhead. Intel refers to an average

overhead of 2% [Corb]. Given that the number of PMUs is limited and some metrics —

a computational combination of a range of hardware events — require many hardware

events to be computed, the total number of collected distinct events can easily exceed the

number of present PMUs. This problem is circumvented either through multiple runs,

20 3 Performance Analysis

which might be an issue if the program behavior is not reproducible, or through multi-
plexing. With multiplexing the collected hardware events are periodically swapped, such

that all events can be collected at a smaller rate. This introduces a greater statistical un-

certainty.

Another possible complication is event skid, which describes the wrong assignment

of hardware events to a di�erent IP, several instructions after the original IP. This can

happen due to delays in the interrupt handling.

With hardware events and corresponding metrics, VTune can o�er a lot of information.

It is capable of identifying the hotspots, where most of the time in the application is spent,

as well as o�ering information of more complex nature, such as L1/L2 hits/misses, branch

mispredictions, instruction misses, FPU utilization and so on.

VTune allows for several pro�ling methods that cover di�erent aspects of the program

analysis. These pro�les carry preselected collections of events that are already combined

into complex metrics. In this project two pro�les are used, HPC and General Exploration,

that cover vectorization/�oating point operations and a general overview about CPU and

cache behavior.

Intel o�ers the Collection Control API (CCAPI) to control the data collection process of

VTune, which includes three simple C++ functions that resume, pause or start the col-

lection when called. To utilize the CCAPI, the application must be instrumented by hand

with these function calls and recompiled and linked against VTune supplied libraries.

This allows to selectively pro�le only certain parts of the application in question.

3.1.2 Run- & Parse Scripts

I have written two scripts to automate the timing measurements of the simulation. The

�rst, poetAtiming.sh, is a bash script that takes the corresponding jobOptions �le and

the number of repetitions of the simulation as input parameters. As an output it redirects

the log of each run in a separate text �le, named run<X>.log. It is important to note

that the log level has to be set to INFO within the jobOptions �le. For more details on

how to set up the benchmark test setup, please refer to section 3.2.

The second script, poetTparse.py, is a python script that parses all log�les inside

the folder speci�ed by the only input argument. The log �les contain timing informa-

tion from several services that are already implemented in the Athena simulation. These

metrics are the total time, the total G4 time, spent in Geant4, and the average

time per event for that run.

These values are averaged over all runs and printed together with its maximum and

minimum, as well as its standard deviation. For better interpretation and identi�cation of

unexpected behavior, a plot of the total time and total G4 time is automatically

produced. For this feature the matplotlib package is required.

3.1 Utilized Tools 21

3.1.3 GCC Compiler Optimizations

Many optimization strategies involve compiler options that trigger di�erent behavior dur-

ing compilation. The most important features for this thesis are discussed here. A com-

plete list of all available features is given at [Frec].

The -O �ags are collections of many optimization features of di�erent levels. While

-O2 is usually considered to be unproblematic, and used as the default in all Athena

components, -O3 activates quite aggressive features, that can impact on numerical results

of �oating point computations and potentially change the programs result, for example

-O3 includes autovectorization and -ffast-math.

Autovectorization can be activated individually, like any other feature, through a spe-

cial �ag, which is in this case -ftree-vectorize. The autovectorizer allows for dif-

ferent verbosity levels to evaluate the vectorization of speci�c code sections, settable with

-ftree-vectorizer-verbose=n (e.g. n = 2).

PGO and LTO

Pro�le guided optimization is a method to optimize programs in several steps [Wic+14].

PGO is comprised of 3 steps:

1. Instrumentation

2. Training

3. Optimization

First, -fprofile-generate=<PATH> is used to instrument the program binary to

collect pro�ling data at <PATH>.

In the second step, the instrumented binary is executed with common use cases, to

produce the pro�ling data.

The last step is recompiling the program with -fprofile-use=<PATH> to utilize

the heuristic data and to give the compiler better options for optimization decisions. These

decisions e�ect methods as inlining, block ordering within functions, branch ordering and

cache access when arrays are used within loops [Wic+14]. All PGO �ags must be included

during compilation and linking.

Although this process can produce better binaries, it comes at the cost of a signi�cant

larger compilation time, since at least 2 compilations and one instrumented binary execu-

tion is necessary. The build overhead might be reasonable when the application execution

time is of a large magnitude.

Another possible problem could be the over adaptation to the test case, when the ap-

plication in question is used in a very broad and generic fashion.

22 3 Performance Analysis

Link time optimization (LTO) allows the compiler to optimize the whole program at link

time, meaning that optimization is not only done per module, but also considers relations

between modules [Freb]. To activate LTO the -flto compiler �ag has to be stated during

compilation and linking of the application. It is not activated at any -O level.

3.2 Usage of the Benchmark Test Setup

1 $ cd /path/to/workspace/
2 $ setupATLAS
3 $ asetup 20.3.2.1,here
4 $ athena --preloadlib= \
5 $ATLASMKLLIBDIR_PRELOAD/libintlc.so.5:\
6 $ATLASMKLLIBDIR_PRELOAD/libimf.so \
7 jobOptions.G4Atlas.py &> athenarun.log &

Listing 3.1: Set up of the Athena benchmark test case.

In order to start a simulation job, Athena has to be set up properly, which is presented

in listing 3.1.

The �rst three commands prepare the working directory and set up a local session for

a simulation job. setupATLAS makes several tools and �les from the AFS and CVMFS

([Bun+10]) available. These are distributed �le systems used in CERNs computing envi-

ronments. This is implicitly done by setting certain environment variables and aliases to

commands, including asetup. asetup is responsible for setting up a local – hence the

option ,here – version (20.3.2 with patch 1) of Athena. There are other possible options,

e.g. dbg to make debugging symbols available, which are not present for every release.

After this step the athena command is available, which is just a link to a python

script, placed in the current versions folder hierarchy on the CVMFS. athena starts a

simulation job through the jobOptions �le with possible additional parameters, in this

case to preload di�erent math and C libraries from Intel to improve the performance. The

jobOptions �le provides all necessary information for a well de�ned simulation job, e.g.

which detector condition or what event data should be used. An important aspect of the

jobOptions �le is to de�ne the algorithm sequence, which should work on the event data.

In our benchmark problem the jobOption �le includes the G4Atlas (Geant4) algorithm,

which sets up Geant4 in an Athena compatible way. A more detailed description of the

jobOptions �le can be found in appendix A.1.

To ensure modularity, all of Athenas software is bundled in packages. An Athena release
(e.g. 20.3.2) consists of certain versions of these packages, such that the packages can be

changed and maintained individually. Unless a certain package of the current Athena

release is checked out and altered, the working directory only holds output and auxiliary

�les, while the remote packages on the CVMFS are used.

3.2 Usage of the Benchmark Test Setup 23

cmt is a tool to facilitate the process of package retrieval and compilation. With the

command cmt co a certain version of a package can be checked out and recompiled with

possible code changes. This process creates the InstallArea directory in the working

directory, which has a higher priority in the look up process of �nding libraries. This way

the locally placed versions of all components are preferred over the remote ones on the

AFS/CVMFS. Every requirement of a package is de�ned in its requirements �le, which is

used to de�ne additional dependencies or from the default setup deviating compilation

�ags.

The benchmark problem for this thesis will consist of the Athena version 20.3.2.1 and

the jobOptions �le printed in appendix A.1. This is done through following the steps in

listing 3.1. The jobOptions �le retrieves tt̄-events from the AFS, as well as certain condi-

tion and simulation �ags. It is bene�cial to place the event input �le in a local directory to

avoid unnecessary AFS access. Finally this setup includes the Geant4 algorithm to prop-

agate the particles, read from the events input �le, through the detector. This step does

not include digitization.

3.2.1 Profiling the Benchmark with VTune

To pro�le Athena with VTune, it can either be attached to a running process or it starts

the application itself. For the latter some minor pitfalls should be avoided:

• Choose the correct working directory, otherwise VTune tries to write to read only

paths on the AFS

• Choose a working directory on a local drive, access times to AFS directories can

introduce greater timing �uctuations

• Do not use environmental variables, e.g. in the path to the --preload option.

Write them explicitly

• Avoid the “Basic Hotspot" analysis

To elaborate on the last point, this analysis type gets stuck for an unknown reason on

a ld --verify process. This process can be killed manually and the simulation will

work without further issues, but since the “Basic Hotspot” analysis is not the preferred

type, no further investigations of this issue are done. The main di�erence between this

and other analysis types is that this type does not utilize the kernel module, i.e. runs in

“user”-mode, which could give a hint of why this problem occurs.

24 3 Performance Analysis

Table 3.1: Timings averaged over 10 runs with 50 events each with/without taskset.

without taskset with taskset

Total time 7728.0 ± 52.3 s(≈ 0.68%) 7938.0 ± 100.6 s(≈ 1.17%)
G4 time 7654.9 ± 56.1 s(≈ 0.73%) 7870.0 ± 91.2 s(≈ 1.16%)
average-per-event-time 153.67 ± 1.13 s(≈ 0.74%) 158.03 ± 1.85 s(≈ 1.17%)

3.3 Performance Analysis of the Current Simulation

Every test, mentioned in this thesis, was running on a silent, i.e mostly idle, workstation,

provided by the OpenLab at Cern. This machine has two Ivy Bridge Intel Xeon E5-2695

v2 CPUs, running at 2.4GHz (3.2GHz in turbo mode). The system has therefore 2 × 12

cores with hyperthreading enabled and access to 64GB of memory.

As described in section 3.2, our benchmark problem is using a speci�c Athena version

– and implicitly a speci�c Geant4 version – and the jobOptions �le, described in appendix

A.1.

3.3.1 Timing with Taskset

The most important metric of program execution performance is the total execution time

of the complete simulation process. This time will not be the same on each run, since the

operating system (OS) can randomly interrupt the process and reschedule it in di�erent,

non-deterministic ways. To get a measure of these variances I wrote a script that executes

the same Athena job N times and computes the average total time, its variance and the

same for the Geant4 part of the simulation. The scripts are explained in section 3.1.2.

These timing measurements are collected from the simulation log �les, which are only

gathered, if the INFO log level is set. A potential statistical error of these timing values

is represented in the variance over all runs, together with other statistical disrupters, e.g.

the in�uence of the OS scheduler. Possible systematic errors should not be relevant, since

I am only interested in relative improvements with respect to a reference measurement.

As mentioned in section 2.4, previous performance measurements were done using the

linux tool taskset [Rim+08a]. To evaluate the necessity of this, 10 runs with 50 events

each are executed, using the Athena version 20.3.5.1. Through comparisons it can be

shown that taskset is in fact not needed and the Linux process scheduler can be trusted.

The execution time as well as the variance increase signi�cantly, using taskset, as shown

in table 3.1.

10 runs are not a large sample set to estimate the standard deviation, but even with a

corrected (unbiased) sample standard deviation of the total time, sunbiased =
100.6
c4 (10) ≈ 102.8,

the di�erence to the reference without taskset is still ≥ 2σ [Wik].

3.3 Performance Analysis of the Current Simulation 25

3.3.2 FLOPs Estimation

Tobias Wegner made a detailed analysis to roughly estimate the GFLOPs (giga �oating
point operations per second) during the Athena simulation job [Weg16]. I will reproduce

his considerations here to give a certain perspective of the CPU performance.

With a theoretical maximum RAM bandwidth of 59.7GB/s , eight Byte can be trans-

ferred in

t8B =
8 B

59.7 × 10
9 B

s

= 1.34 × 10
−10

s

Since one clockcycle, in turbo mode, takes

tclockcycle =
1

3.2 GHz

= 3.125 × 10
−10

s

a maximum of 3.2GFLOPs is possible, assuming that one operation per cycle is possible.

When using the SIMD capabilities of the processor, 4 double or 8 single operations, 256

bit wide registers, 4 or 8 ops per cycle are feasible. In this case the data transfer rate would

be the limiting factor.

Tobias Wegner also computed the GFLOPs, based on hardware events, collected with

the pro�ler perf[Weg16]. 90% of all �oating point operations are unpacked, i.e. no SIMD

operations. The events indicate a rate of 853MFLOPs , which is ∼ 25% of the theoretical

maximum, ∼ 6% if four �ops per cycle are considered. VTune pro�les give a FLOPs value

of 860MFLOPs , which can be seen as in good agreement with Tobias Wegners result,

since this is just a rough estimation.

The theoretical maximal FLOPs is a poor metric to measure the performance of a given

program, since it is never reachable and always limited by practical issues. A few percent

of that maximum is already considered to be “good”. This estimation also does not include

the information value of the computation. Redundant operations can perform well w.r.t

the FLOPs, but a program that does a lot of redundant operations is not considered to

have good general performance.

Nevertheless does this estimation substantiate the impression that Athenas simulation

process is already with good performance.

3.3.3 Analysis of Geant4 Structures

To gather information on the behavior of Geant4 structures, especially the number of

tracks per event as well as steps and time per track, Tobias Wegner instrumented the G4

code to retrieve this data and store it in a binary format [Weg16]. I wrote a python script,

poetRAWparse.py, to recollect this data and produce histograms that can characterize

the typical behavior of the simulation in a descriptive fashion.

Figure 3.1 is showing the computation time in µs and number of steps per track, as a 2D

26 3 Performance Analysis

Figure 3.1: 2D logarithmic histogram of all tracks w.r.t. step count & computation time

histogram for the �rst event of the test data. The second �gure shows a zoomed fraction

of the graph above, to focus on the active region.

This histogram is highly dependant on the physical characteristics of the underlying,

generated event, since di�erent collisions are expected to produce di�erent secondary

particles.

Nevertheless two �ndings become clear:

• The largest fraction of all tracks are processed in a very short time (< 200 µs) for a

few steps (< 40).

• The computation time per track has di�erent correlations with respect to the num-

ber of steps.

In �gure 3.2 the same data is presented, separated by particle type, as a scatter plot.

The data is summed along both axis into two 1D histograms over the step count and the

duration per track.

The 1D histograms clarify that in fact most tracks have a duration < 20 µs and only a

single step. These are most probably all secondary particles, which are produced with an

energy below a lower bound, i.e. being dumped at their position in their �rst step.

By coloring the data with respect to the particle type one can see that charged particle

tracks (e.g. leptons (red)) take more computational time than uncharged particles (e.g.

photons (magenta)). This is expected, since access to the magnetic �eld data takes time,

which is not necessary for neutral particle tracks.

3.3 Performance Analysis of the Current Simulation 27

Figure 3.2: 2D Histogram of all tracks w.r.t. stepcount & time, colored by particletype:

red: leptons, green: baryons, blue: mesons, cyan: nuclei, magenta: gamma

28 3 Performance Analysis

Table 3.2: Durations and track / step counts.

Event 1 Event 2

Primary tracks 298 361

Total secondary tracks 1506605 1383613

Average steps per track 8.970 10.506

Total steps 13487189 14512911

As discussed in the previous section 3.3.2, one clock cycle takes 3.125×10
−10

s ≈ 0.3 ns.

Assuming one operation per clock cycle, this would imply that a 20 µs track invokes at

most
20

0.0003
≈ 66667 operations. This could be an indication that these type of tracks

introduce mostly organizational work.

Assuming an execution time of 105 s for the �rst event, as found in an example run log,

and 1000000 tracks with ≈ 10 µs each, representing the fraction of single step secondary

particles, these particles already take up
1

105
≈ 0.95% of the total execution time.

Tobias Wegner also extracted accurate data about the track and step count of the �rst

two events, which is given in table 3.2 [Weg16].

3.3.4 VTune Profile Analysis

The Intel VTune pro�ler is used for a better hotspot identi�cation and a more in depth

analysis of the code issues. For all pro�les discussed below, the Athena version 20.3.2.1,

with 20 events is used.

Pro�les can be collected with and without call stack information, helping to under-

stand the caller / callee structure of the program. Collecting the call stacks introduces a

signi�cant data and time overhead (e.g. ∼ 3400s instead of 2653s for 20 events).

Each pro�le is controlled with the CCAPI, as discussed in section 2.3.1. This helps to

limit the data taking to scaling portions of the program and avoid pro�ling constant parts

during initialization. Depending on the order of the algorithm sequence and the con�g-

uration of the CCAPI algorithm, some initialization code could be included, during the

G4 algorithm instance creation, as it is shown in the sequence diagram 2.5. To circum-

vent this the VTune collection process is started in the beginRun() and stopped in the

endRun() method, which are executed directly before and after the eventloop.

Several abbreviations appear in the discussions of VTune pro�les that should be ex-

plained beforehand:

• CPI: Clockticks per instruction retired – Gives the ratio of how many instructions

are issued per clocktick. A CPI of 0.25 is the theoretical maximum of 4 instructions

per clock cycle

3.3 Performance Analysis of the Current Simulation 29

• FE Bound: Front End Bound – Fraction of time the CPU stalls because of issues

with instruction decoding and throughput

• BEBound: Back End Bound – Fraction of time the CPU stalls because of data/mem-

ory access problems

• Bad Speculation: Fraction of time the CPU stalls because of branch mispredictions

• Retired: Last fraction compared to the three mentioned above. It gives the frac-

tion of time where the CPU does not stall and instructions are retired (executed

necessary instructions)

• I$ misses: ICache misses – Misses in the L1 instruction cache

• FPU utilization: Fraction of (�oating point) operations with scalar and packed

(vectorized) instructions per cycle

• MITE: Micro instruction translation engine – Translates instructions into corre-

sponding uOps

To focus on separate CPU speci�cs, two pro�ling types are chosen: General Exploration
(GE) for a general overview over a wide range of hardware metrics and HPC Performance
for a focus on vectorization and overall �oating point computation performance.

Table 3.3 lists a selection of functions, which are either identi�ed as hotspots, i.e. con-

suming a large proportion of the overall CPU time, or exhibiting a pathological compu-

tational behavior of some sort.

In the following I will give a few remarks on each mentioned metric and how this

hints towards certain optimization strategies. These indications should be understood as

a starting points and each investigation probably leads to its own unique insights.

A CPI rate below 1 can be considered as quite performant. A high CPI rate (> 2) could

indicate wasteful and unnecessary operations, but could also be attributed to memory

bandwidth issues.

If low, the packed �oating point operation metric can hint at the possibility for vector-

ization.

High ICache miss rates suggest that the structure of the executable code can be im-

proved, i.e. moving hot code sections and reduce general instruction code size of that

section.

Bad speculation can be avoided by reordering the if/else branches in the order of their

execution probability or by making the data more predictable, e.g. through sorting.

Not all cells in table 3.3 are populated due to di�erent focus on certain aspects or be-

cause of missing information in di�erent pro�ling modes.

Table 3.3: Selection of noticible functions, found in Athena pro�les and their assigned characteristic behavior

Function CPU time CPI Rate
FPU utilization
(scalar/packed �op)

I$ misses FE BW (MITE) Bad Spec.

LArWheelCalculator_Impl

::DistanceCalculatorSaggingOff

::DistantceToTheNeutralFibre

165.866 s 0.718 7.6% (0.541/0.084) 0.038 - -

LArWheelCalculator::parameterized_sin 119.178 s 0.534 7.6% (0.648 / 0.011) 0.049 - -

MagField::AtlasFieldSvc::getField 107.016 s 1.007 3.9% (0.407 / 0.035) 0.082 - -

sincos 49.811 s 1.028 15.9% (0.115 / 1.170) 0.139 - -

G4PolyconeSide::Inside 39.854 s 0.537 5.7% (0.537 / 0.000) 0.046 - -

G4AtlasRK4::Stepper 32.094 s 0.671 5.1% (0.427 / 0.000) 0.166 - -

G4PolyconeSide::DistanceAway 31.86 s 0.825 3.2% (0.294 / 0.000) 0.091 - 10%

G4PhysicsVector::SplineInterpolation 24.993 s 1.390 3.8% (0.342 / 0.000) 0.298 - -

LArWheelSolid::search_for_nearest_point 24.125 s 0.820 7.8% (0.667 / 0.000) - - 17.4%

G4CrossSectionDataStore::GetCrossSection 23.248 s 1.708 0.8% (0.079 / 0.000) 0.557 - -

G4Navigator::LocateGlobalPointAndSetup 21.769 s 1.744 0.9% (0.069 / 0.000) 0.056 14.6% (0.188) -

G4Transportation::AlongStepGetPhysicalInteractionLength 18.419 s 1.569 0.9% (0.078 / 0.000) 0.467 - -

LArWheelCalculator_Impl::WheelFanCalculator

<LArWheelCalculator_Impl::SaggingOff_t>:: DistanceToTheNearestFan
17.35 s 0.694 10.2% (0.355 / 0.468) - - -

G4VEmProcess::PostStepGetPhysicalInteractionLength 13.516 s 2.301 0.8% (0.070 / 0.000) 0.586 13.3% (0.231) -

G4VProcess::SubtractNumberOfInteractionLengthLeft 12.605 s 3.465 0.5% (0.052 / 0.000) - - -

G4ParticleChange::CheckIt - - - 0.509 - -

G4Navigator::ComputeStep - - - 0.464 - -

G4NormalNavigation::ComputeStep - - - 0.280 22.1% (0.177) -

G4SteppingManager::InvokeAlongStepDoItProc - - - - 24.9% (0.123) -

LArWheelSolid::out_iteration_process - 0.820 - 0.126 - 22.6%

G4UnionSolid::Inside - 0.725 - - - 15.6%

3.3 Performance Analysis of the Current Simulation 31

The selection of functions in table 3.3 allows for general statements about the behavior

of the Athena simulation.

Even the largest hotspots still take less than 170 s , which is less than 7% of the total

execution time, 2653 s . This shows that the simulation is a complex composition of many

di�erent functions, which are all involved in the inner level of the eventloop.

The LArWheel* functions are, together with MagField::AtlasFieldSvc ::

getField and sincos, the only non-Geant4 functions present. Since sincos is a

math library function, included in libimf, it can be considered to be already well op-

timized. This observation only allows for a division of work, where the focus either lies

on the Athena packages involved in LarWheel* or MagField* operations on the one

side, or on Geant4 code on the other side.

The presented Geant4 functions mostly cover geometry and particle operations. Their

behavior could be very dependent on the input data, since di�erent particles could exhibit

di�erent on average behavior and typically traverse di�erent sections of the geometry.

Most functions have a quite good CPI rate, suggesting that there is not much potential

for improvement, implying that no redundant and unnecessary computations are done.

Exceptions are G4VEmProcess::PostStepGetPhysicalInteractionLength

and G4VProcess::SubtractNumberOfInteractionsLengthLeft, which have

a relatively high CPI value of 2.301 and 3.465 respectively.

It should be noted, that none of the mentioned G4 function utilizes packed �oating point

instructions, which becomes also clear by comparing the amount of packed �oating point

operations per cycle, for each module in �gure 3.3. This is suggesting that vectorization

could improve the situation. sincos is an example of a highly vectorized function with

1.170 packed FLOP.

Most of the G4 functions have a rather high rate of instruction cache misses, e.g.

G4CrossSectionDataStore::GetCrossSection (0.557). This metric is computed

as the ratio of stalls due to instruction fetching problems divided by the total count of CPU

clocks spend in this function (minus minor correction term). A rate of ∼ 0.5 means that

the function spends half of its clockticks with stalls due to ICache misses. Together with

the mentioned front end bandwidth issues, this is suggesting that FE stalls in G4 functions

are a serious limitation to the simulation performance, as already stated in section 2.4.

Four methods are shown with a bad speculation value of 10% and above, indicating

the percentage a function deals with consequences of bad branch predictions. All four

are geometry functions computing distances or evaluating if a particle is currently inside

a given shape or not. This process involves very unpredictable input data, since their

branching behavior is solely dependent on the current trajectory of the particle, which

may be considered as random in this case.

32 3 Performance Analysis

Figure 3.3: FPU utilization per module according to VTune HPC pro�le. Red squares

mark modules with a high count of vectorized functions.

Most of these results are not to be read too literally. Due to the nature of event based

sampling, hardware counters can be assigned to wrong functions and statistical �uctua-

tions in�uence each measurement observably.

To roughly estimate the �uctuations of VTune metrics, 10 identical Athena runs with

no additional changes have been pro�led. Table 3.4 gives the average of the global metrics

from the general exploration summary view, averaged over all runs.

It becomes clear that the front end bound and back end bound metrics are heavily �uc-

tuating and not very reliable in this context. Interestingly they are observed to change

anti-proportionally to each other, which is obvious when considering the average of both

values summed together and its corresponding standard deviation. This is hinting to-

wards a non deterministic e�ect that is in�uencing the caching hierarchy. That in�uenc-

ing factor is not identi�ed, but it could be linked to the fact that access to remote �le

systems is common during the simulation.

Other metrics, e.g. ICache misses, are more reliable on the global scale. This is some-

what di�erent on a local scale, e.g. for the instruction cache misses of the G4AtlasRK4

::Stepper method. The average of this metric is 0.212 ± 0.037, which displays with

∼ 17.4% larger �uctuations than the global ICache miss rate of 0.278 ± 0.004 (∼ 1.4%).

It is likely that undeterministic e�ects cause the hardware events to be assigned to dif-

ferent functions in each run, thus local �uctuations occur, while the global count of the

corresponding events remains more or less constant. This is also an unproven conjecture.

3.3 Performance Analysis of the Current Simulation 33

Table 3.4: Average result and standard deviation of 10 VTune pro�les for the reference

simulation.

Metric Average ±σ

Clockticks 8, 233, 950M ± 47, 220M
Instruction retired 7, 894, 664M ± 1, 134M
CPI rate 1.043 ± 0.006

Front end bound 35.18% ± 6.24%

Back end bound 34.96% ± 6.32%

FE + BE 70.14% ± 0.34%

I$ misses 0.278 ± 0.004

Bad speculation 3.93% ± 0.08%

Retiring 25.81% ± 0.31%

34

4 Discussion of Possible
Improvements

In this chapter I will discuss all attempted performance improvements. Each section in-

cludes the motivation for a proposed change, which is tested and evaluated on a case by

case basis.

Based on the analysis in section 3.3.4, two major optimization approaches are identi�ed:

1. Investigate stalls due to front end issues, especially because of ICache misses

2. Investigate the possibility of vectorization

4.1 Vectorization

Vectorization adds a layer of parallelization in the central processing unit and is typically

several times faster than the serial equivalent, if it can be applied to critical code sections.

These code sections have to be of a certain form, to be formulated in the single instruction
multiple data (SIMD) pattern, which is common to parallelization on that level. The fol-

lowing subsections cover the global autovectorization of Geant4 and a example problem

to discuss a common approach to prepare a code section for the autovectorizer.

4.1.1 Global Vectorization in Geant4

Continuing on the realization that no vectorization is done within Geant4 functions, it is

an obvious �rst step to activate autovectorization and recompile Geant4 to see if anything

can be gained that way without any further adjustment.

Approaches in this manner have the inherent assumption that enough code sections

are easily vectorizable in their current state. This might not be the case if the program

structure is dominated by high abstraction patterns with only few vectorizable loops and

dominating access to changing memory data. Simulating the trajectories of particles in

the detector geometry might very well fall in the later category.

The VTune HPC pro�le states, that no AVX instructions are utilized, which are present

on the local test machine. This could be due to compatibility reasons of the binary, such

4.1 Vectorization 35

that Athena uses SSE2 as a largest common denominator between all involved computing

systems. Nevertheless it might be pro�table to investigate potential improvements by

utilizing higher instruction sets.

The considered Geant version is4.10.1.patch01.atlas02, with additional minor

patches by the ATLAS project, also used in Athena 20.3.2.1. It can be build using the

cmake build system by choosing a (separate) build folder and call cmake /path/to/

G4source.

The cmake con�guration is stored in a local �le, CMakeCache.txt, which can be

altered directly, although the usage of con�guration tools like ccmake /path/to/

G4source is recommended to retain a coherent con�guration. Alternative compile-

/linker �ags can be set for the complete project in this way.

GCC autovectorization is implicitly activated with -O3, which also includes other ag-

gressive optimization methods. This could alter the simulation results by reordering �oat-

ing point operations, e.g. with -ffast-math, and is therefore potentially dangerous. If

the default optimization level, -O2, is kept, the autovectorization can be activated through

-ftree-vectorize and -ftree-vectorizer-verbose=2, which increases the

verbosity level to include loop speci�c output, allowing for an in-depth analysis of each

code section.

To possibly improve the performance on AVX capable hardware, the -mavx �ag can

be included. This could allow for more advanced usage of the available hardware, which

is not possible if the binary is compiled for SSE2 compatibility (default case).

After compilation, shared object �les are stored in the subfolder outputs/library

/Linux-g++/ of the build directory and can be copied to the InstallArea of the Athena

test session, as described in section 3.2.

Listing 4.1 gives an example selection of log messages of successful and failed autovec-

torization for G4PhysicsVector. The functions located at lines 163 and 129 of that �le

are ::Store and ::CopyData. Both contain easy vectorizable loops that iterate over

all elements of a vector. Notes of non vectorized proportions are mainly referring to small

preparation sections in front of the loops that access remote object data.

This log �le contains over 6.5 million lines and requires automated evaluation with

grep and regular expressions for quick extraction of meaningful global data. Otherwise it

o�ers detailed descriptions, if one is searching for information on the autovectorization

of speci�c code sections.

A total of 1989 loops are vectorized throughout Geant4 and external compiled depen-

dencies. This does not tell much about the potential gain, since the vectorized loops can

be insigni�cant in execution time, compared to other sections of not vectorized code.

To test the naive vectorization approach against a reference measurement, Geant4

has been compiled with -O2 -mavx -ftree-vectorize -ftree-vectorizer

36 4 Discussion of Possible Improvements

1 ...
2 .../global/management/src/G4PhysicsVector.cc:163: note:

vectorized 1 loops in function.
3 .../global/management/src/G4PhysicsVector.cc:166: note: not

vectorized: not enough data-refs
4 in basic block.
5 ...
6 .../global/management/src/G4PhysicsVector.cc:129: note:

vectorized 3 loops in function.
7 .../global/management/src/G4PhysicsVector.cc:131: note: can’

t determine dependence between
8 vec_9(D)->type and this_11(D)->type
9 ...

Listing 4.1: Examples of the verbose vectorizer output for G4PhysicsVector.

1 acmd.py diff-root BEFORE.hits.pool.root AFTER.hits.pool.root
2 --ignore-leaves
3 RecoTimingObj_p1_EVNTtoHITS_timings
4 RecoTimingObj_p1_HITStoRDO_timings
5 RecoTimingObj_p1_RAWtoESD_timings
6 --error-mode resilient

Listing 4.2: Script to show di�erences in HITS �les

-verbose=2 and only with -O2. All libraries are copied into the local InstallArea

folder for both versions, to generate a mostly identical setup.

Measured timings are printed in table 4.1 and show that there is no signi�cant improve-

ment. In fact the vectorized version appears to take longer than the reference version, but

this cannot be validated with the present data, since the mean values lie within each oth-

ers error intervals and are not clearly distinguishable.

The resulting HITS �le of the AVX and the SSE2 version are identical to the Geant4

version with default compile options. This can be checked by invoking the command in

listing 4.2.

Table 4.1 also includes the timings for a -mSSE2 version, to estimate a possible per-

formance di�erence between both vector instruction sets. It appears to take a little more

time than the AVX version, but it is also only 1.5σ from the reference. For this reason a

Table 4.1: 25 runs for the AVX version, 30 runs for the reference.

Vectorized AVX Vectorized SSE2 Reference

Total time 2692.1 ± 18.1 s 2705.4 ± 17.8 s 2679.2 ± 18.2 s

G4 time 2617.2 ± 18.2 s 2625.0 ± 17.3 s 2603.5 ± 18.2 s

average / event 131.7 ± 0.9 s 132.2 ± 0.9 s 131.2 ± 0.9 s

4.1 Vectorization 37

naive vectorization of Geant4 version is not a suited test to compare di�erences between

AVX and SSE2.

I see two reasons why a naive vectorization of Geant4 might not improve the total

performance:

1. Memory access is the limiting factor

2. Current design is not suited for autovectorization

Regarding 1, it is possible that most of Geant4 function are already limited by memory

operations and data throughput. Vectorization does not really help in this situation since

the data access to caches and memory is not improved with packed operations.

The second point refers to the possibility that current design patterns result in bad

vectorizable loops. Currently, 21519 loops are not vectorized because of “bad loop form”.

In this case it would be most bene�cial to identify the largest hotspots of the not vectorized

loops and to bring them into a autovectorizable form.

VTune general exploration pro�les of the AVX, SSE2 and reference version show that

the global amount of packed �oating point operations per cycle does not increase sig-

ni�cantly. All the changes appear to be in the range of statistical �uctuations. This also

indicates that naive activation of autovectorization does not e�ect global performance

and only a small fraction of the Geant4 code is e�ected.

4.1.2 Vectorization of the Magnetic Field

When looking through the simulation hotspots I encountered theBFieldCache::getB

method, which is part of MagField::AtlasFieldSvc::getField, the ATLAS

magnetic �eld service. A selection of the function is printed in listing 4.3. Since this

particular function takes ∼ 107 s, ∼ 4% of the total time, I found this to be a good example

case to discuss vectorization.

The selected loop is only accessing data of the current iteration i and has therefore

no dependencies between iterations. Additionally several multiplications of subsequent

array values are required in each step. Both of these characteristics are hinting towards

vectorization.

After discussing this example in the ATLAS Simulation Software meeting, one of the

participants, Elmar Ritsch, mentioned that he investigated exactly this function before

and provided me with his test setup. I am reproducing a selection of his approaches

here for a step by step case study. Unfortunately it turns out, that the conversion from

float m_field to const short field is the most critical part of this loop and

that vectorization plays only a minor role.

The di�erent considered cases are:

38 4 Discussion of Possible Improvements

1 /* ... */
2 for (int i = 0; i < 3; i++) { // z, r, phi components
3 const short *field = m_field[i];
4 Bzrphi[i] = m_scale*(
5 gz*(gr*(gphi*field[0] + fphi*field[1])
6 + fr*(gphi*field[2] + fphi*field[3]))
7 + fz*(gr*(gphi*field[4] + fphi*field[5])
8 + fr*(gphi*field[6] + fphi*field[7])));
9 }

10 /* ... */

Listing 4.3: BFieldCache::getB reference.

1 for (unsigned i = 0; i < loop_count; i++) {
2 field[i] = gphi*m_field[i*2] + fphi*m_field[i*2+1];
3 }
4

5 for (unsigned i = 0; i < 3; i++) {
6 // z, r, phi components
7 Bzrphi[i] = m_scale*(
8 gz*(gr*(field[i*4+0]) + fr*(field[i*4+1])) +
9 fz*(gr*(field[i*4+2]) + fr*(field[i*4+3])));

10 }

Listing 4.4: BFieldCache::getB with split loops.

1. Default code for Athena 20.3.2.1 as a reference

2. Split loop into two loops, such that one can be vectorized

3. Same loop split with additional combined multiplications

4. Vectorized �rst loop and unrolled bzrphi computation

5. float->short conversion outside of the loop

A VTune pro�le of the reference implementation shows that ::getField utilizes

only ∼ 0.005 packed and ∼ 0.294 scalar �oating point operations per cycle. This suggests

that vectorization could in fact improve the performance.

Listing 4.4 shows the second case with a split loop, such that �eld values can be com-

puted in a vectorized fashion. Compilation with -ftree-vectorize successfully vec-

torizes the �rst loop and other parts of the package. The second loop is not vectorized

due to a small iteration count. It is important to note that the conversion from float to

short is also removed, by changing the type of field, in this example.

Figure 4.1 presents the VTune comparison of the reference and the split case for the

speci�c function as well as for the total module. BFieldCache::getB now uses 0.332

4.1 Vectorization 39

Figure 4.1: VTune comparison of reference and split case.

Figure 4.2: VTune comparison between reference and split & combined multiplication

case.

instead of 0.078 packed FLOP per cycle. The time spent in this function is reduced from

∼ 61.0s to ∼ 38.2s.

Interestingly the global metrics changed signi�cantly. The simulation is 48% (before

40%) stalled due to FE issues and the BE bound decreased in a similar manner from∼ 29.8%

to ∼ 21.6%. For getB the same change becomes visible by a increasing ICache miss rate

from ∼ 0.06 to ∼ 0.11. These metrics can be misleading, as it is discussed in section 3.3.4.

Nevertheless they could be an indication, that this function su�ers more from memory

issues than missing vectorization, i.e. the removed conversion of field from float to

short is the signi�cant improvement here.

Vectorization can have an impact on the instruction decoding procedure, since autovec-

torization produces di�erent code that can in general behave worse or better in terms of

code size and alignment.

To make the second loop more predictable and possibly vectorizable, combined mul-

tiplications of the coe�cients gz, gr, fz and fr are precomputed. This is shown in

listing 4.5 and it can be seen that in each iteration of the second loop 4 multiplications

and additions have to be done with sequential data in field.

The log �le shows that the �rst loop is vectorized, but the second one is not due to a

small iteration count.

Figure 4.2 is a screenshot of the VTune results of the corresponding pro�le. The ratio

of packed operations as well as the time is roughly the same as in the previous case,

including the statistical �uctuation of the VTune collection process.

The global metrics change once again. According to the VTune pro�le this version has

∼ 32% FE stalls instead of the usual ∼ 40% of the reference. The BE bound metric rises

accordingly. Local metrics for that function are very comparable to the previous case.

The retired instructions for that section increases from ∼ 32% to ∼ 49%, while the ICache

misses increase from ∼ 0.06 to ∼ 0.09.

40 4 Discussion of Possible Improvements

1 const float gzgr = gz*gr;
2 const float gzfr = gz*fr;
3 const float fzgr = fz*gr;
4 const float fzfr = fz*fr;
5

6 // autovectorizable loop over 3 components (z, r, phi)
7 // and 4 corner pairs to compute intermediate result
8 const unsigned loop_count = 3*4;
9 float field[loop_count];

10 for (unsigned i = 0; i < loop_count; i++) {
11 field[i] = gphi*m_field[i*2] + fphi*m_field[i*2+1];
12 }
13

14 for (unsigned i = 0; i < 3; i++) { // z, r, phi components
15 Bzrphi[i] = m_scale*(
16 gzgr*field[i*4+0] + gzfr*field[i*4+1] +
17 fzgr*field[i*4+2] + fzfr*field[i*4+3]);
18 }

Listing 4.5: BFieldCache::getB with split loops and combined multi-

plications.

Figure 4.3: VTune comparison of reference and unrolled case.

As a third case, the coe�cients of the computation can be considered as constants in

the field computation (see Listing 4.6). The for loop is again vectorized and the second

loop was unrolled by hand, since it has too few iterations to be vectorized.

Loop unrolling can improve the performance, when the loop count is low or if the loop

can be partially unrolled, i.e. computing two or more iterations at once. Removing the

loop reduces the usual loop overhead, which introduces branching implicitly. It is also

possible that unrolled loops are better at utilizing the out of order execution engine.

Figure 4.3 shows the VTune pro�le results for this case. The fraction of packed FP

operations has increased to 0.516, while the time spent in::getB is reduced by 2 seconds.

The reduction in time might be attributed to the �uctuation of VTune measurements.

Global metrics for FE stalls are reduced and for BE stalls are increased by ∼ 30%, which

is very hard to explain by such a small change in the code. It is likely that some un-

determined in�uences, e.g. �le access, memory organization and OS processes, have a

signi�cant impact on these metrics. Other metrics, e.g. execution time per function, are

observed to be more consistent.

4.1 Vectorization 41

1 // autovectorizable loop over 3 components (z, r, phi)
2 // and 4 corner pairs to compute intermediate result
3 const unsigned loop_count = 3*4;
4 const float coeff[loop_count] =
5 { gzgr, gzfr, fzgr, fzfr,
6 gzgr, gzfr, fzgr, fzfr,
7 gzgr, gzfr, fzgr, fzfr };
8 float field[loop_count];
9 for (unsigned i = 0; i < loop_count; i++) { // line 79

10 field[i] = coeff[i] * (gphi*m_field[i*2] + fphi*m_field
[i*2+1]);

11 }
12

13 Bzrphi[0] = m_scale * (field[0] + field[1] + field[2] +
field[3]);

14 Bzrphi[1] = m_scale * (field[4] + field[5] + field[6] +
field[7]);

15 Bzrphi[2] = m_scale * (field[8] + field[9] + field[10] +
field[11]);

Listing 4.6: BFieldCache::getB with vectorization and unrolled loop.

A repetition of the VTune pro�le for this case shows that the di�erences can be large

even for the same test case. Front end stalls are now∼ 47% instead of the∼ 6% measured in

the �rst pro�le. The BE bound is reduced by the same proportion. I expect that a parallel

process has in�uenced the memory access behavior during pro�ling, thus shifting the

percentage of stalls towards the BE bound metric.

The above changes reorder the present �oating point computations. Due to �nite pre-

cision of computer arithmetic, reordered �oating point operations can lead to di�erent

results. Since the underlying “cascade”-like nature of the simulation is very sensible to

such small di�erences, a reordering may result in totally di�erent numerical behavior and

requires new validation of physical correctness.

As a test it is su�cient to compare the resulting HITS �les with the Athena auxiliary

tool acmd.py diff-root <HITS1> <HITS_reference>. The vectorization and

loop unrolling really produces a di�erent simulation output in this case.

To identify the impact of the conversion between float and short, a last test case is

implemented as given in listing 4.7. This case is identical to the reference case, except for

the type change of field.

The VTune result in �gure 4.4 clearly shows that the time improvement in that function

can only be attributed to the removed type conversion. A conversion between �oating

point and integer types in such a critical part is very expensive. The global metrics are

almost identical to the �rst pro�le of the unrolled case, which could indicate, that the in-

�uencing parallel process was still present during the pro�ling of this case. This, however,

42 4 Discussion of Possible Improvements

1 for (int i = 0; i < 3; i++) { // z, r, phi components
2 const float *field = m_field[i]; // not short, but float

!
3 Bzrphi[i] = m_scale*(
4 gz*(gr*(gphi*field[0] + fphi*field[1]) +
5 fr*(gphi*field[2] + fphi*field[3])) +
6 fz*(gr*(gphi*field[4] + fphi*field[5]) +
7 fr*(gphi*field[6] + fphi*field[7])));
8 }

Listing 4.7: BFieldCache::getB with no conversion of field

Figure 4.4: VTune comparison of reference and no-conversion case.

could not be veri�ed.

A smaller proportion of packed FP operations per cycle, 0.037 instead of 0.078 for the

reference, shows that vectorization is not critical for this function. It also gives an im-

pression of the magnitude of �uctuations in this metric type, since both versions should

have the same amount of packed operations.

The total time spent in this function is again ∼ 36 seconds, which also shows that the

improved timing of 2 seconds in �gure 4.3 is most likely caused by �uctuations. Addi-

tionally this change does not in�uence the numerical computation and thus produces the

exact same HITS output �le.

The presented example is unfortunately not measurably improved by vectorization, but

bene�ts from the removal of an unnecessary type conversion. It is nevertheless a good

show case example to discuss the step by step approach of identifying important parts of

the program and shows common techniques, that aim for easy autovectorization during

compilation.

4.2 Front End Issues

The performance analysis in section 3.3 revealed that front end stalls are a major problem

of the Athena simulation. In this section, PGO and other approaches are discussed to deal

with that issue.

4.2 Front End Issues 43

Table 4.2: List of test cases for PGO & LTO. All timing data collected with 20 runs, 200

runs for the 300µ. 20* marks di�erent tt̄ events, that are obtained by introduc-

ing an o�set of 50 events to the same event �le.

Nr. PGO LTO #Ev. Trained w/ HITS Total Time (% of ref) Time ref

1a X 20 20 Ev. X 2429.7 ± 17.9 s (∼ 91.3%) 2660.7 ± 17.9 s

2a X 20 50 Ev. X 2373.6 ± 10.8 s (∼ 89.2%) 2660.7 ± 17.9 s

3 X 20 20 Ev. X 2697.6 ± 13.5 s (∼ 101.4%) 2660.7 ± 17.9 s

4 X X 20 20 Ev. X 2458.2 ± 12.6 s (∼ 92.4%) 2660.7 ± 17.9 s

1b X 50 20 Ev. X 6171 ± 44 s (∼ 91.4%) 6750 ± 45 s

2b X 50 50 Ev. X 6069 ± 22 s (∼ 89.9%) 6750 ± 45 s

1c X 20* 20 Ev. X 2817.3 ± 11.5 s (∼ 90.6%) 3109.5 ± 14.8 s

2c X 20* 50 Ev. X 2823.6 ± 22.6 s (∼ 90.8%) 3109.5 ± 14.8 s

5 X 300µ 20 Ev. X 138.3 ± 1.2 s (∼ 94.9%) 145.8 ± 1.3 s

4.2.1 Profile Guided and Link Time Optimization in Geant4

Pro�le guided optimization and link time optimization are two compiler technologies that

can improve the front end performance (see section 2.1.1 and 3.1.3). Since PGO and LTO

are e�ecting the inlining, branch and block order, it is likely that the front end stall rate

decreases and the overall performance improves measurably.

In this discussion the Geant version 4.10.1.patch01.atlas02 will be evaluated

in many possible combinations of PGO, LTO and training data to investigate the in�uence

on performance metrics as the total execution time, ICache misses and branch mispredic-

tion.

Table 4.2 gives a list of all the considered test cases in this discussion. Test 1 and 2

a,b and c are runs with 20, 50 and 20* tt̄-events, respectively. The executed binary is

trained with 20 and 50 tt̄-events, as marked in the table. These tests cover the situation

of over adaptation during training and should allow for a better understanding if this is

happening for the same type of input data (tt̄-events). All timings are given in seconds

and compared to the reference measurement, which is the same Geant4 version compiled

with default �ags.

Tests 3 and 4 evaluate the e�ects of LTO and its combination with PGO. A last case

tests the with 20tt̄ events trained simulation with single muon events.

The HITS �le is checked for equality between the reference and alternative versions of

all test cases.

It becomes clear that PGO and LTO do not e�ect the resulting HITS �le of the simula-

tion. This is expected, given that only features like inlining and branch / block orders are

applied.

The average time improvement by applying PGO is ∼ 91.1% for the 20 event trained

version and ∼ 90.0% for the 50 event trained version, relative to the corresponding ref-

44 4 Discussion of Possible Improvements

erence. The 50 event trained version is therefore measurably faster than the 20 event

trained application.

All test cases bene�t from PGO, regardless of the applied training data. 20 di�erent tt̄

events bene�t even better from the 20 event trained binary, than the 20 original events.

The fact that the original 20 events also bene�t from including additional 30 events indi-

cates that more pro�ling data could be considered as better. There is no over adaptation

observable for these test cases.

The µ events exhibit also a better performance with the PGO binary. It should be noted

that this optimization is with ∼ 94.9% of its reference less e�ective, compared to the tt̄

events. This could hint at an over adaptation to the tt̄ type events. Another interpretation

could be single tracks o�er less potential for these kind of optimizations and multi track

events bene�t from them at a higher rate. This can be tested by comparing the total time

spent in the Geant4 section of the simulation, what is also collected by the log �le and

parse scripts. That comparison yields an improvement of
58.5 s

63.2 s
≈ 92.6%, which con�rms

this assumption to some extent. The �rst 20tt̄ test case has a ratio of
2353.7
2581.0 ≈ 91.2% for

the total G4 time and does not really grow as much as the single muon case.

Single muon events have a much smaller count of tracks to be processed. For this reason

the execution time in the Geant4 part of the simulation is also much smaller and shrinks

to the same magnitude of time spent in the initialization phase. The initialization phase

is independent of improvements in Geant4 binaries and therefore has a more dominant

impact on the total execution time.

A VTune pro�le of the 20tt̄ event trained Geant4 version shows that the overall met-

rics di�er clearly. The percentage of stalls due to front end issues drops from 46.5% to

10.2%, which should not be taken as the best metric to indicate a signi�cant change, since

this metric �uctuated a lot in previous pro�les. Interesting is the increase of retired in-

structions from 26.3% to 28.2%. Most �uctuations appeared between the FE and BE bound

metric, while “Bad Speculation” and the percentage of retired instruction remained stable.

The CPI rate for the complete simulation is reduced from 1.031 to 0.955.

Table 4.3 shows a selection of expensive Geant4 functions with their assigned metrics.

The reference value is given in parenthesis for each case. Even when the values are con-

sidered to be very uncertain, a general trend of improvement is observable. The VTune

pro�le con�rms the assumption that PGO does improve the front end characteristics of a

given application. Branch prediction seems to work better and instruction cache misses

are reduced.

In general is PGO an e�ective feature to address front end issues and increase the overall

performance of Athena signi�cantly. LTO alone and in combination with PGO seems to

have a negative e�ect and increases the total time for both test cases.

4.2 Front End Issues 45

Table 4.3: Function and assigned metrics for a VTune pro�le of the 20tt̄ trained Geant4

version. Reference values of a previous pro�le are given in parenthesis for

comparison.

Function CPI Rate I$ misses Branch Misprediction

G4PhysicsVector::Value 1.475 (1.659) 0.243 (0.300) 6.1% (7.0%)
G4Navigator::ComputeStep 1.161 (1.409) 0.441 (0.445) 2.3% (2.1%)
-"-::LocateGlobalPointAndSetup 1.664 (1.753) 0.240 (0.331) 3.4% (4.4%)
G4PolyconeSide::Inside 0.515 (0.575) 0.061 (0.048) 0.0% (0.0%)
G4SteppingManager::Stepping 1.122 (1.048) 0.362 (0.509) 4.5% (6.5%)
-"-::DefinePhysicalStepLength 0.968 (1.182) 0.197 (0.290) 3.7% (10.6%)
G4AtlasRK4::Stepper 0.590 (0.628) 0.143 (0.242) 0.0% (0.0%)
G4PropagatorInField::ComputeStep 1.607 (1.813) 0.401 (0.433) 0.0% (0.0%)

4.2.2 Inlining parameterized_sin

To investigate the e�ects of inlining and de�ning macro functions on front end stalls,

the implementation of LArWheelCalculator::parameterized_sin is examined

more closely (see listing 4.8), which is with ∼ 3.6% of the execution time one of the iden-

ti�ed hotspots. This function is used in geometry approximations of the liquid argon

calorimeter wheel. Given that the sine and cosine are required very often, but are not

needed in high precision, their computation can be replaced by a 5th order polynomial

with a smaller impact on the computation time. The function also computes the cosine

by the relation

cos (α) =
√

1 − sin(α)2 .

Since this function is executed very frequently even a tiny improvement might have a

measurable impact on the total execution time. For this reason the total execution time is

measured for an inlined, a macro and a reference version. A version where each approxi-

mated sine and cosine is replaced by std::sin and std::cos resulted in signi�cantly

longer times for the �rst two events of a run and did not terminate during the third event.

For this reason this approach has not been investigated further.

Inlining a function replaces the function call with the function body in place, thus

removing the function call overhead. A macro is a preprocessor directive that replaces

the function call before compilation with the function body. The macro version of the

function is expected to be as fast as the inlined function [Frea] and both versions could

in�uence the total performance.

For the inlined version, the function is annotated with the inline keyword and placed

in the corresponding header �le, as usually done with inlined functions. This keyword

does not force the compiler to inline, but should be considered as a suggestion. Usually

46 4 Discussion of Possible Improvements

1 void LArWheelCalculator::parameterized_sin(
2 const double r,
3 double &sin_a,
4 double &cos_a) const {
5 const double r2 = r*r;
6 const double r3 = r2*r;
7 const double r4 = r2*r2;
8 #if LARWC_SINCOS_POLY > 4
9 const double r5 = r4*r;

10 #endif
11 sin_a = m_sin_parametrization[0]
12 + m_sin_parametrization[1]*r
13 + m_sin_parametrization[2]*r2
14 + m_sin_parametrization[3]*r3
15 + m_sin_parametrization[4]*r4
16 #if LARWC_SINCOS_POLY > 4
17 + m_sin_parametrization[5]*r5
18 #endif
19 ;
20 cos_a = sqrt(1. - sin_a*sin_a);
21 }

Listing 4.8: LArWheelCalculatorGeometry.cxx - parameterized_sin

Table 4.4: 20 runs for the macro and inlined version, 65 runs for the reference.

Inline Macro Reference

Total time 2631.9 ± 22.7 s 2688.6 ± 21.5 s 2644.3 ± 20.8 s

G4 time 2552.0 ± 22.5 s 2609.4 ± 22.3 s 2565.3 ± 20.9 s

average / event 128.5 ± 1.2 s 131.6 ± 1.1 s 129.2 ± 1.1 s

the compiler is very good at deciding if a function should be inlined or not. It can be

forced with the __attribute__((always_inline)) annotation, which is is done

here.

-Winline can be used to activate warnings, if a function could not be inlined during

compilation, what is not observed for the inlined parameterized_sin.

Listing 4.9 shows the macro implementation that still allows for a selection of the 4th

or 5th order polynomial during compilation. A 5th order polynomial is the default.

VTune pro�les of the inlined and reference version exhibit too small di�erences, which

are most likely to be covered by the statistical �uctuations of the metrics. The macro

version cannot be pro�led with VTune at all, since the code for that speci�c function is

placed everywhere, where it is called, thus the time spent “in” this function is distributed

between all callers. For that reason the total execution time is considered, given in table

4.4.

4.2 Front End Issues 47

1 #if LARWC_SINCOS_POLY > 4
2 #define PSIN(r,sin_a,cos_a) \
3 const double r2 = r*r; \
4 const double r3 = r*r*r; \
5 const double r4 = r*r*r*r; \
6 const double r5 = r*r*r*r*r; \
7 sin_a = lwc()->m_sin_parametrization[0] \
8 + lwc()->m_sin_parametrization[1]*r \
9 + lwc()->m_sin_parametrization[2]*r2 \

10 + lwc()->m_sin_parametrization[3]*r3 \
11 + lwc()->m_sin_parametrization[4]*r4 \
12 + lwc()->m_sin_parametrization[5]*r5; \
13 cos_a = sqrt(1. - sin_a*sin_a);
14 #else
15 #define PSIN(r,sin_a,cos_a) \
16 const double r2 = r*r; \
17 const double r3 = r*r*r; \
18 const double r4 = r*r*r*r; \
19 sin_a = lwc()->m_sin_parametrization[0]; \
20 + lwc()->m_sin_parametrization[1]*r; \
21 + lwc()->m_sin_parametrization[2]*r2; \
22 + lwc()->m_sin_parametrization[3]*r3; \
23 + lwc()->m_sin_parametrization[4]*r4; \
24 cos_a = sqrt(1. - sin_a*sin_a);
25 #endif

Listing 4.9: Macro version of parameterized_sin

48 4 Discussion of Possible Improvements

It can be seen, that the macro implementation is measurably slower than the original

one. The inlined function appears to be faster than the reference, but uncertainties of

the measurements do not allow for a de�nitive judgement. Front end stalls are already

a present issue and inlining can both improve or worsen the situation. While inlining

improves code locality, i.e. less fragmented hot code sections, it also increases the total

code size, which again can induce ICache misses. The behavior has to be evaluated for

each case uniquely through pro�ling. In this case a negative impact is observed.

4.3 Di�erent Optimization A�empts

This section holds minor optimization attempts that cover the discussion of dependency

breaking inparameterized_sin and the investigation of theG4AtlasRK4::Stepper

method.

4.3.1 Dependency Breaking in parameterized_sin

The functionLArWheelCalculator::parameterized_sin, listing 4.8, as discussed

in the previous section 4.2.2, is also an interesting example to discuss dependency chains.

The computation of the 5th order polynomial is done in one C++ statement and it is inter-

esting to test, if a dependency chain is present and if intermediate variables can improve

the behavior of this function.

The e�ect of dependency chains is discussed in section 2.1.

In listing 4.8, this dependency chain could be split by adding intermediate variables for

each term of the polynomial and possibly compute the exponents of r only using r. I have

implemented this version, and a second, where the dependency between the computation

of r2,r3 etc., is maintained.

The resulting times and metrics of the changes can be seen in table 4.5. The total and G4

time are obtained by the log-parse script for 20 runs with 20 events each. The values for

the VTune metrics are also produced with 20 events and should not be taken too literally,

due to its sample based nature.

The total time clearly shows that these changes are in fact no improvement to the code

and increase the computation time instead. Introduced variables probably increase the

memory footprint of this code section and prevent the compiler from doing optimiza-

tions which are otherwise applicable. It is likely that the compiler is capable to detect

dependency chains on this scale and introduces changes, like the above mentioned only

increase the complexity with no potential gain at all.

4.3 Di�erent Optimization Attempts 49

Table 4.5: Timings for parameterized_sin with changes vs. reference. No timings

taken for the second version, since it is already clear that no improvement is

made.

Dep. breaking Dep. breaking in r Reference

Total time 2761.5 ± 12.9 s - 2644.3 ± 20.8 s

G4 time 2682.9 ± 13.7 s - 2565.3 ± 20.9 s

Clockticks 494, 114M 470, 590M 462, 803M
Instructions Retired 526, 767M 491, 857M 492, 239M
CPI Rate 0.938 0.957 0.940

4.3.2 G4AtlasRK4

G4AtlasRK4::Stepper, given in listing A.2, appendix A.2, is a special implementation

of the stepper function, used during the Geant4 stepping process in the ATLAS Athena

simulation. This method implements the in�uence of a magnetic �eld on a charged par-

ticle trajectory. It is a special implementation of a 4th order Runge Kutta integrator, that

evaluates the magnetic �eld at the 2nd and 4th intermediate step.

The simulation spends ∼ 1% of the total time in this function and a huge improvement

by any changes is not to be expected, since it already has a quite good CPI rate of ∼ 0.6,

executing almost two instructions per cycle.

Given that this function was investigated in previous optimization e�orts, see section

2.4, and because of its essential position in the simulation – being executed for every step

of a charged particle – it is still interesting for further investigation. The call count for

this function could easily exceed the millions, as is shown in section 3.3.

The present Runge Kutta implementation requires certain fractions of the step length

S , which is computed as
S
2
= 0.5∗S ,

S
4
= 0.25∗S . This way an expensive division operation

can be replaced with a less costly multiplication, while maintaining the exact same �oat-

ing point operation. That is not possible for
S
6
, which has to involve a explicit division,

given that no exact �nite representation of the inverse exists. A naive replacement with

the inexact multiplication
S
6
≈ 0.1666666666666666 ∗ S resulted in a di�erent HITS �le,

thus changing the results of the simulation, while not giving a measurably speed up. The

digits of precision are chosen to achieve the closest 64 bit (double) representation of the

fraction
S

6.0 .

Another attempt to in�uence the computation on this level, is to de�ne the fraction
1

6

as a static variable of this function. This way the division has to be done only once and

S
6

can be implemented using a multiplication, which should behave identical to the naive

implementation above.

Listings 4.10 and 4.11 show two example functions and their compiled assembler code,

which has been obtained with an online compiler for gcc version 4.4.7 [God]. Even for this

50 4 Discussion of Possible Improvements

1 double Stepper (const double S) {
2 static double os = 1/6.0;
3 double S6 = S * os;
4 return S6;
5 }
6 double Stepper2 (const double S) {
7 double S6 = S *(1/6.);
8 return S6;
9 }

Listing 4.10: Example implementation in C++

1 Stepper(double):
2 pushq %rbp
3 movq %rsp, %rbp
4 movsd %xmm0, -24(%rbp)
5 movsd Stepper(double)::os(%rip), %xmm0
6 movsd -24(%rbp), %xmm1
7 mulsd %xmm1, %xmm0
8 movsd %xmm0, -8(%rbp)
9 movq -8(%rbp), %rax

10 movq %rax, -32(%rbp)
11 movsd -32(%rbp), %xmm0
12 leave
13 ret
14 Stepper2(double):
15 pushq %rbp
16 movq %rsp, %rbp
17 movsd %xmm0, -24(%rbp)
18 movsd -24(%rbp), %xmm1
19 movsd .LC0(%rip), %xmm0
20 mulsd %xmm1, %xmm0
21 movsd %xmm0, -8(%rbp)
22 movq -8(%rbp), %rax
23 movq %rax, -32(%rbp)
24 movsd -32(%rbp), %xmm0
25 leave
26 ret
27 Stepper(double)::os:
28 .LC0:
29 .long 1431655765
30 .long 1069897045

Listing 4.11: Example implementation as compiled assembler

4.3 Di�erent Optimization Attempts 51

older gcc version, the two implementations behave exactly the same. For this reason it can

be assumed, that such optimizations are already applied by the compiler and readability

should be valued above similar optimization attempts in the high level language.

Two changes addressing other sections of the Runge Kutta implementation involves

reformulating certain sections to allow for packed/vectorized instructions and fusing cer-

tain computation of intermediate values, that are done several times (∼ 2 − 5 times), into

an intermediate variable. Both attempts result in longer execution times.

The impression of an already well performing function proves to be true and no signif-

icant improvement can be done with small structural changes to this section. Replacing a

division by a multiplication with a static variable of the fraction could in�uence the per-

formance positively, but such a change has to be done in many frequent called routines

to show its e�ect on a large scale.

52

5 Conclusion

To summarize the improvement, a �nal performance analysis is done, where the VTune

pro�le and total execution time of the improved Athena version is compared to the ref-

erence version.

This evaluation is assessed afterwards to motivate and discuss the potential usage of

these methods in future Athena releases. A short section on the outlook and potential

follow up projects embeds this thesis further in the context of the Athena Simulation.

5.1 Performance Analysis A�er Changes

The performance analysis of the reference version in section 3.3 is identifying front end

stalls and missing vectorization as the two major points of interest for this project. Given

that PGO is the only considered optimization feature that successfully improves the total

execution time, the following summarizing performance analysis is solely based on PGO

(4.2.1). It improves the total execution time by roughly 8.9% to 10.0%, depending on the

amount of training data, as it can be seen in table 5.1.

The reference version exhibits a FLOP rate of 853 MFLOPs from Tobias Wegners perf
estimation and 860 MFLOPs in previous VTune pro�les (see section 3.3.2). A VTune pro-

�le of the improved simulation shows a value of 970 MFLOPs, which appears to be a

signi�cant improvement.

A HPC pro�le of the PGO variant shows a similar low rate of packed instruction uti-

lization within Geant4 libraries, as observed in reference pro�les. Nevertheless, the rate

of scalar �oating point instructions has increased in comparison to the reference pro�le,

which is in agreement with the increased global FLOP rate.

Table 5.1: Timing results for the 20 tt̄/50 tt̄ events trained PGO version, executed with 20

events, averaged over 20 runs.

20 tt̄ 50 tt̄ Reference

Total time 2429.7 ± 17.9 s 2373.6 ± 10.8 s 2660.7 ± 17.9 s

G4 time 2353.7 ± 18.6 s 2297.0 ± 11.3 s 2581.0 ± 17.6 s

average per event 118.5 ± 0.9 s 115.7 ± 0.6 s 130.0 ± 0.9 s

5.2 Optimization Assessment and Outlook 53

The general exploration pro�le took 2452.5 s, which is ∼ 200 s faster than the reference

version, discussed in section 3.3.4. Table 4.3 shows a selection of Geant4 functions and

their CPI rate, ICache misses and occurrences of branch mispredictions for the improved

and reference version. These values substantiate the impression that PGO achieves the

better execution times by improving the front end performance.

5.2 Optimization Assessment and Outlook

Previous optimization e�orts and an ongoing development process left Athena in an al-

ready high performance state. Simple errors, that cause costly performance penalties and

happen in every development process, are likely to be discovered already.

I expect that any performance optimization at this state is either obtained through

new, or unused, technology or through time-consuming refactoring to better incorporate

modern software architecture concepts, e.g. mutli-threading and vectorization.

The enhancement of applying PGO to Geant4 appears to be signi�cant enough that its

application to the Athena project should be further investigated. With PGO, a selection

of functions showed much better CPI rates and fewer ICache misses. This technology is

therefore one method to address the front end stalls, which are observed in the reference

case.

The dual compilation and training process of PGO introduces a non negligible over-

head to the build process. It involves at least 2× the compilation time and one additional

simulation run. If the simulation is executed on a much larger scale, compared to its build

time, it could still be viable to introduce that overhead and bene�t from better adapted

binaries. This is especially true when PGO is only applied to external dependencies, e.g.

Geant4, which are not recompiled with each Athena release, but only each time a new

Geant4 version is implemented.

Another potential problem is the selection of the best test data that is used during

training. It has to represent the most common simulations, but should also improve the

performance for a very broad and generic usage. Given that worse performance for un-

common use cases is not to be expected, this is only another parameter to optimize the

simulation as much as possible.

This leads to a proposition for follow up work to this thesis project, which is the inves-

tigation of the PGO training data. This study should answer questions of the best type

and number of events that produce the fastest binaries for a diverse set of application data

(di�erent primary particles). In this thesis 50tt̄ provided the best results, but it could be

also worthwhile to optimize the build process as well and reduce the number events, used

for training, as much as possible.

Another topic that could lead to further insight is a more extensive comparison of

54 5 Conclusion

AVX and SSE2 instruction sets with di�erent code sections, that are more suitable for

vectorization. A more comprehensive study of LTO, inlining of critical functions and bad

speculation could also lead to better performing code.

Currently there are new versions of Athena and Geant under development, that incor-

porate multi-threading (AthenaMT [Ste+16]) and vectorization (GeantV [Ama+15]).

Multi-threading Athena could introduce better memory management between simula-

tion jobs and reduce the overall memory footprint.

GeantV could improve the simulation performance per job by refactoring Geant code to

better implement vectorization and make use of SIMD capabilities in modern processors.

5.3 Summary

The primary goals of this thesis are to analyze the CPU performance of the ATLAS sim-

ulation framework Athena and investigate potential optimizations. Because of the six

month time frame of this project, these changes are focusing on structural, local, changes

to the code and do not involve physical or architectural modi�cations that require inten-

sive physics validation or larger development live cycles.

The performance analysis reveals most promising gains by examining vectorization

and reasons for front end stalls due to ICache misses. This analysis also shows that the

performance is already in a good state, due to previous optimization e�orts and an ongo-

ing development process.

Intel VTune Ampli�er, an event based sampling pro�ler, is used to analyze the applica-

tion on a detailed level, but is also prone to large statistical �uctuations. These unreliabil-

ities are attributed to the large complex structure of the Athena simulation and to the fact

that the “silent” test system is never behaving fully deterministically and can in�uence

the measurements signi�cantly.

The most reliable metric for improvement is the total execution time, that is collected

for each test setup N times to get an average total time. This method is only accurate

enough to reveal changes that di�er by at least ∼ 1% from the reference data.

Pro�le guided optimization is the most prominent investigated method, that allows for

an improvement of 8.9% / 10.0%. It is technically easy to implement, but introduces an

overhead during the build process, that might not be negligible. Additionally an instru-

mented version of the application has to be trained in a way to represent the most common

use case of the simulation, which potentially is not trivial to decide. Nevertheless does

PGO o�er a good improvement and should be included in future Athena development

cycles. Minor changes to various components of Athena and Geant4 are discussed that

barely in�uence the total performance at all.

55

Bibliography

[Ago+03] S. Agostinelli et al. “GEANT4: A Simulation toolkit”. In: Nucl. Instrum. Meth.
A506 (2003), pp. 250–303. doi: 10.1016/S0168-9002(03)01368-8.

[All06] J Allison. “Geant4 developments and applications”. In: IEEE Trans. Nucl. Sci.
53 (2006), p. 270. url: http://cds.cern.ch/record/1035669.

[Ama+15] G Amadio et al. “The GeantV project: preparing the future of simulation”.

In: J. Phys.: Conf. Ser 664.FERMILAB-CONF-15-598-CD. 7 (2015), 072006. 8

p. url: https://cds.cern.ch/record/2134619.

[Apo+10] J. Apostolakis et al. Final Report of the ATLAS Detector Simulation Perfor-
mance Assessment Group. Tech. rep. 2010-03. url:http://lcgapp.cern.

ch/project/docs/reportATLASDetectorSimulationPerformance2010.

pdf.

[Bar+01] G. Barrand et al. “GAUDI - A software architecture and framework for build-

ing HEP data processing applications”. In:Comput. Phys. Commun. 140 (2001),

pp. 45–55. doi: 10.1016/S0010-4655(01)00254-5.

[Bun+10] P Buncic et al. “CernVM – a virtual software appliance for LHC applications”.

In: J. Phys.: Conf. Ser. 219 (2010), p. 042003. url: https://cds.cern.ch/

record/1269671.

[CM01] M. Cattaneo and P. Maley. Gaudi; LHCb Data Processing Applications Frame-
work; Users Guide. 9th ed. 2001. url: http://lhcb-comp.web.cern.

ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v9/GUG/GUG.pdf

(visited on 2016-05-10).

[Col08] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large Hadron

Collider”. In: JINST 3 (2008), S08003. doi: 10.1088/1748-0221/3/08/

S08003.

[Col10] The ATLAS Collaboration. “The ATLAS Simulation Infrastructure”. In: Eur.Phys.J.
C70 (2010), pp. 823–874. arXiv: 1005.4568 [physics.ins-det].

[Cora] Intel Corporation. Collection Control API. url: https : / / software .

intel.com/en-us/node/596660 (visited on 2016-08-04).

http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://cds.cern.ch/record/1035669
https://cds.cern.ch/record/2134619
http://lcgapp.cern.ch/project/docs/reportATLASDetectorSimulationPerformance2010.pdf
http://lcgapp.cern.ch/project/docs/reportATLASDetectorSimulationPerformance2010.pdf
http://lcgapp.cern.ch/project/docs/reportATLASDetectorSimulationPerformance2010.pdf
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
https://cds.cern.ch/record/1269671
https://cds.cern.ch/record/1269671
http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v9/GUG/GUG.pdf
http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v9/GUG/GUG.pdf
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://arxiv.org/abs/1005.4568
https://software.intel.com/en-us/node/596660
https://software.intel.com/en-us/node/596660

56 Bibliography

[Corb] Intel Corporation. Hardware Event-based Sampling Collection. url: https:

//software.intel.com/en-us/node/544067 (visited on 2016-05-19).

[Corc] Intel Corporation. ICache Misses. url: https://software.intel.

com/en-us/node/544435 (visited on 2016-08-05).

[Cor16] Intel Corporation. Intel 64 and IA-32, Architectures Optimization Reference
Manual. 2016-01. url: http://www.intel.com/content/www/us/

en/architecture-and-technology/64-ia-32-architectures-

optimization-manual.html.

[DF03] A. Das and T. Ferbel. Introduction to Nuclear and Particle Physics. 2nd ed.

Singaproe 596224: World Scienti�c, 2003.

[Dre14] Eric Drexler. Elementary Particle Interactions in the Standard Model. Image

File. 2014. url:https://en.wikipedia.org/wiki/File:Elementary_

particle_interactions_in_the_Standard_Model.png (visited

on 2016-05-13).

[Frea] Inc. Free Software Foundation. An Inline Function Is As Fast As a Macro. url:

https://gcc.gnu.org/onlinedocs/gcc-4.0.1/gcc/Inline.

html (visited on 2016-08-15).

[Freb] Inc. Free Software Foundation.GCCWiki: Link TimeOptimization. url:https:

//gcc.gnu.org/wiki/LinkTimeOptimization (visited on 2016-08-16).

[Frec] Inc. Free Software Foundation.Options That Control Optimization. url:https:

//gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

(visited on 2016-08-16).

[God] Matt Godbolt. GCC Explorer. url: https://gcc.godbolt.org (visited

on 2016-08-20).

[Goo] Google. Google C++ Style Guide. url: https://google.github.io/
styleguide/cppguide.html (visited on 2016-08-08).

[Gri08] David Gri�ths. Introduction to Elementary Particles. 2nd ed. Weinheim: Wiley-

VCH, 2008.

[Mar15] Jackson Marusarz. Understanding How General Exploration Works in Intel®
VTune™ Ampli�er XE. 2015-02-09. url: https://software.intel.

com/en-us/articles/understanding-how-general-exploration-

works-in-intel-vtune-amplifier-xe (visited on 2016-05-19).

https://software.intel.com/en-us/node/544067
https://software.intel.com/en-us/node/544067
https://software.intel.com/en-us/node/544435
https://software.intel.com/en-us/node/544435
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://en.wikipedia.org/wiki/File:Elementary_particle_interactions_in_the_Standard_Model.png
https://en.wikipedia.org/wiki/File:Elementary_particle_interactions_in_the_Standard_Model.png
https://gcc.gnu.org/onlinedocs/gcc-4.0.1/gcc/Inline.html
https://gcc.gnu.org/onlinedocs/gcc-4.0.1/gcc/Inline.html
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.godbolt.org
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://software.intel.com/en-us/articles/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe
https://software.intel.com/en-us/articles/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe
https://software.intel.com/en-us/articles/understanding-how-general-exploration-works-in-intel-vtune-amplifier-xe

Bibliography 57

[Rim+08a] A Rimoldi et al. Final Report of the Simulation Optimization Task Force. Tech.

rep. ATL-SOFT-PUB-2008-004. ATL-COM-SOFT-2008-023. Follow up to note

ATL-SOFT-PUB-2008-002. Geneva: CERN, 2008-12. url: http://cds.

cern.ch/record/1151298.

[Rim+08b] A Rimoldi et al. First Report of the Simulation Optimization Group. Tech.

rep. ATL-SOFT-PUB-2008-002. ATL-COM-SOFT-2008-004. Geneva: CERN,

2008-04. url: http://cds.cern.ch/record/1097789.

[Ste+16] Graeme Stewart et al. “Multi-threaded Software Framework Development

for the ATLAS Experiment”. In: (2016-01). url: https://cds.cern.ch/

record/2120835.

[Weg16] Tobias Wegner. “Laufzeitoptimierung der Detektorsimulation des ATLAS Ex-

periments am CERN”. Thesis of simultaneous project, unreleased during cre-

ation of bibilography. MA thesis. HS Niederrhein, 2016.

[Wic+14] Baptiste Wicht et al. “Hardware Counted Pro�le-Guided Optimization”. In:

(2014). arXiv: 1411.6361.

[Wik] Wikipedia. Unbiased Estimation of Standard Deviation. url: https://en.

wikipedia.org/wiki/Unbiased_estimation_of_standard_

deviation (visited on 2016-08-05).

http://cds.cern.ch/record/1151298
http://cds.cern.ch/record/1151298
http://cds.cern.ch/record/1097789
https://cds.cern.ch/record/2120835
https://cds.cern.ch/record/2120835
http://arxiv.org/abs/1411.6361
https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
https://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation

58

List of Figures

2.1 Schematic of the Intel Sandy Bridge core architecture and pipeline func-

tionality [Cor16]. 4

2.2 Particles of the Standard Model and their interactions [Dre14]. 8

2.3 Overview of the ATLAS detector [Col08], p 4. 10

2.4 Gaudi schema of central software components [CM01]. 11

2.5 Athena sequence diagram, based on a diagramm in the Gaudi Users Guide

[CM01], page 33. 13

2.6 Data �ow of Athena. Square boxes indicate operations and rounded boxes

data formats [Col10]. 16

3.1 2D logarithmic histogram of all tracks w.r.t. step count & computation time 26

3.2 2D Histogram of all tracks w.r.t. stepcount & time, colored by particletype:

red: leptons, green: baryons, blue: mesons, cyan: nuclei, magenta: gamma 27

3.3 FPU utilization per module according to VTune HPC pro�le. Red squares

mark modules with a high count of vectorized functions. 32

4.1 VTune comparison of reference and split case. 39

4.2 VTune comparison between reference and split & combined multiplica-

tion case. 39

4.3 VTune comparison of reference and unrolled case. 40

4.4 VTune comparison of reference and no-conversion case. 42

59

List of Tables

3.1 Timings averaged over 10 runs with 50 events each with/without taskset. 24

3.2 Durations and track / step counts. 28

3.3 Selection of noticible functions, found in Athena pro�les and their as-

signed characteristic behavior . 30

3.4 Average result and standard deviation of 10 VTune pro�les for the refer-

ence simulation. 33

4.1 25 runs for the AVX version, 30 runs for the reference. 36

4.2 List of test cases for PGO & LTO. All timing data collected with 20 runs,

200 runs for the 300µ. 20* marks di�erent tt̄ events, that are obtained by

introducing an o�set of 50 events to the same event �le. 43

4.3 Function and assigned metrics for a VTune pro�le of the 20tt̄ trained

Geant4 version. Reference values of a previous pro�le are given in paren-

thesis for comparison. 45

4.4 20 runs for the macro and inlined version, 65 runs for the reference. . . . 46

4.5 Timings for parameterized_sin with changes vs. reference. No tim-

ings taken for the second version, since it is already clear that no improve-

ment is made. 49

5.1 Timing results for the 20 tt̄/50 tt̄ events trained PGO version, executed

with 20 events, averaged over 20 runs. 52

60

List of Listings

3.1 Set up of the Athena benchmark test case. 22

4.1 Examples of the verbose vectorizer output for G4PhysicsVector. . . 36

4.2 Script to show di�erences in HITS �les 36

4.3 BFieldCache::getB reference. 38

4.4 BFieldCache::getB with split loops. 38

4.5 BFieldCache::getB with split loops and combined multi-plications. 40

4.6 BFieldCache::getB with vectorization and unrolled loop. 41

4.7 BFieldCache::getB with no conversion of field 42

4.8 LArWheelCalculatorGeometry.cxx - parameterized_sin 46

4.9 Macro version of parameterized_sin 47

4.10 Example implementation in C++ . 50

4.11 Example implementation as compiled assembler 50

A.1 Example jobOptions �le. 62

A.2 G4AtlasRK4::Stepper . 63

61

A Code Examples

A.1 jobOptions File

An example jobOptions �le is shown in listing A.1. This python script is used to de�ne

how an Athena job is executed. This includes options for services and algorithms, as well

as the input and output data. An important concept is the algorithm sequence, which is

executed on all events during the Eventloop. This sequence is initialized in line 3, while

line 4 sets the log level of the MassageSvc. To gather timing information the log level

should be set to “INFO”.

The following lines de�ne detector �ags and condition tags, describing the state of the

detector. Line 18 and following set the input �le for previously generated events and

the output of the HITS �le, as well as the maximum number of events to be used in the

Eventloop. Additional simulation �ags control additional simulation data, e.g. the physics

list and random number generators. In the end, at line 40 and 41, the Geant4 Algorithm

is inserted in the algorithm sequence.

The jobOptions �le collects all external controllable con�gurations for a simulation job.

For this reason listing A.1 should only be considered as an example, which is very close

to the discussed benchmark problem in this thesis.

Lines 47 to 49 show the additional implementation of the VTune CCAPI algorithm, that

controls the collection process to only gather data during the eventloop.

62 A Code Examples

Job options file for Geant4 ATLAS detector simulations
2 from AthenaCommon.AlgSequence import AlgSequence

topSeq = AlgSequence()
4 ServiceMgr.MessageSvc.OutputLevel = WARNING #FATAL, INFO,

DEBUG

6 ## Detector flags
from AthenaCommon.DetFlags import DetFlags

8 DetFlags.ID_setOn()
DetFlags.Calo_setOn()

10 DetFlags.Muon_setOn()
DetFlags.Truth_setOn()

12

Global conditions tag
14 from AthenaCommon.GlobalFlags import jobproperties

jobproperties.Global.ConditionsTag = "OFLCOND-RUN12-SDR-21"
16

AthenaCommon flags
18 from AthenaCommon.AthenaCommonFlags import athenaCommonFlags

remote AFS event input file:
20 # athenaCommonFlags.PoolEvgenInput = [’/afs/cern.ch/atlas/

offline/ProdData/16.6.X/16.6.7.Y/ttbar_muplusjets-
22 # pythia6-7000.evgen.pool.root’]

local copy:
24 athenaCommonFlags.PoolEvgenInput = [’../ttbar_muplusjets-

pythia6-7000.evgen.pool.root’]
26 athenaCommonFlags.PoolHitsOutput = "atlasG4.hits.pool.root"

athenaCommonFlags.EvtMax = 50
28 #athenaCommonFlags.SkipEvents = 50

30 ## Simulation flags
from G4AtlasApps.SimFlags import simFlags

32 simFlags.load_atlas_flags()
simFlags.RandomSvc = ’AtDSFMTGenSvc’

34 simFlags.SimLayout=’ATLAS-R2-2015-03-01-00_VALIDATION’
simFlags.PhysicsList = ’FTFP_BERT’

36 simFlags.EventFilter.set_On()
simFlags.CalibrationRun.set_Off()

38

Frozen showers in the FCAL
40 simFlags.LArParameterization=3

42 # Use the new magnetic field service
simFlags.MagneticField.set_Value_and_Lock(’AtlasFieldSvc’)

44

from G4AtlasApps.PyG4Atlas import PyG4AtlasAlg
46 topSeq += PyG4AtlasAlg()

from VTune_CCAPI.VTune_CCAPIConf import CCAPI_Alg
48 topSeq += CCAPI_Alg("VTune_CCAPI")

topSeq.VTune_CCAPI.resumeAtBeginRun = True
50 print topSeq

Listing A.1: Example jobOptions �le.

A.2 G4AtlasRK4 63

A.2 G4AtlasRK4

The G4AtlasRK4::Stepper function is given in listing A.2. It is a special Geant4

implementation of the integrator that estimates the trajectory of a charged particle in a

magnetic �eld. Only two evaluations of the magnetic �eld are required in the intermediate

points 2 and 4.

1 void G4AtlasRK4::Stepper
2 (const G4double P[],const G4double dPdS[],G4double Step,

G4double Po[], G4double Err[]) {
3 G4double R[3] = { P[0], P[1] , P[2]};
4 G4double A[3] = {dPdS[0], dPdS[1], dPdS[2]};
5

6 m_iPoint[0]=P[0]; m_iPoint[1]=P[1]; m_iPoint[2]=P[2];
7 G4double S = Step ;
8 G4double S5 = .5*Step ;
9 G4double S4 = .25*Step ;

10 G4double S6 = Step/6.;
11

12 // John A added, in order to emulate effect of call to
changed/derived RHS

13 m_mom = sqrt(P[3]*P[3]+P[4]*P[4]+P[5]*P[5]);
14 m_imom = 1./m_mom;
15 m_cof = m_fEq->FCof()*m_imom;
16

17 // Point 1
18 G4double K1[3] = {m_imom*dPdS[3],m_imom*dPdS[4],m_imom*

dPdS[5]};
19

20 // Point2
21 G4double p[4] = {R[0]+S5*(A[0]+S4*K1[0]),
22 R[1]+S5*(A[1]+S4*K1[1]),
23 R[2]+S5*(A[2]+S4*K1[2]),
24 P[7] }; getField(p);
25 G4double A2[3] = {A[0]+S5*K1[0],A[1]+S5*K1[1],A[2]+S5*K1

[2]};
26 G4double K2[3] = {(A2[1]*m_field[2]-A2[2]*m_field[1])*

m_cof,
27 (A2[2]*m_field[0]-A2[0]*m_field[2])*

m_cof,
28 (A2[0]*m_field[1]-A2[1]*m_field[0])*

m_cof};
29

30 m_mPoint[0]=p[0]; m_mPoint[1]=p[1]; m_mPoint[2]=p[2];
31 // Point 3 with the same magnetic field
32 G4double A3[3] = {A[0]+S5*K2[0],A[1]+S5*K2[1],A[2]+S5*K2

[2]};
33 G4double K3[3] = {(A3[1]*m_field[2]-A3[2]*m_field[1])*

m_cof,
34 (A3[2]*m_field[0]-A3[0]*m_field[2])*

64 A Code Examples

m_cof,
35 (A3[0]*m_field[1]-A3[1]*m_field[0])*

m_cof};
36

37 // Point 4
38 p[0] = R[0]+S*(A[0]+S5*K3[0]);
39 p[1] = R[1]+S*(A[1]+S5*K3[1]);
40 p[2] = R[2]+S*(A[2]+S5*K3[2]); getField(p);
41 G4double A4[3] = {A[0]+S*K3[0],A[1]+S*K3[1],A[2]+S*K3[2]};
42 G4double K4[3] = {(A4[1]*m_field[2]-A4[2]*m_field[1])*

m_cof,
43 (A4[2]*m_field[0]-A4[0]*m_field[2])*

m_cof,
44 (A4[0]*m_field[1]-A4[1]*m_field[0])*

m_cof};
45

46 // New position
47 Po[0] = R[0]+S*(A[0]+S6*(K1[0]+K2[0]+K3[0]));
48 Po[1] = R[1]+S*(A[1]+S6*(K1[1]+K2[1]+K3[1]));
49 Po[2] = R[2]+S*(A[2]+S6*(K1[2]+K2[2]+K3[2]));
50

51 m_fPoint[0]=Po[0]; m_fPoint[1]=Po[1]; m_fPoint[2]=Po[2];
52

53 // New direction
54 Po[3] = A[0]+S6*(K1[0]+K4[0]+2.*(K2[0]+K3[0]));
55 Po[4] = A[1]+S6*(K1[1]+K4[1]+2.*(K2[1]+K3[1]));
56 Po[5] = A[2]+S6*(K1[2]+K4[2]+2.*(K2[2]+K3[2]));
57

58 // Errors
59 Err[3] = S*fabs(K1[0]-K2[0]-K3[0]+K4[0]);
60 Err[4] = S*fabs(K1[1]-K2[1]-K3[1]+K4[1]);
61 Err[5] = S*fabs(K1[2]-K2[2]-K3[2]+K4[2]);
62 Err[0] = S*Err[3] ;
63 Err[1] = S*Err[4] ;
64 Err[2] = S*Err[5] ;
65 Err[3]*= m_mom ;
66 Err[4]*= m_mom ;
67 Err[5]*= m_mom ;
68

69 // Normalize momentum
70 G4double N = m_mom/sqrt(Po[3]*Po[3]+Po[4]*Po[4]+Po[5]*Po

[5]);
71 Po[3]*=N ;
72 Po[4]*=N ;
73 Po[5]*=N ;
74 Po[7] =P[7];
75 }

Listing A.2: G4AtlasRK4::Stepper

	Abstract
	Contents
	Introduction
	Foundation
	CPU Architecture and Instruction Decoding
	Instruction Execution
	SIMD Capabilities
	Ivy Bridge CPU
	Coding Guidelines Based on the CPU Architecture

	Physics Background
	Standard Model
	Interactions of Particles with Matter
	The ATLAS Detector

	Description of the Athena Framework
	Athena Sequence Diagram
	Description of Geant4
	Common Data Formats
	Remarks on the Detector Geometry

	Previous Optimizations

	Performance Analysis
	Utilized Tools
	VTune Amplifier
	Run- & Parse Scripts
	GCC Compiler Optimizations

	Usage of the Benchmark Test Setup
	Profiling the Benchmark with VTune

	Performance Analysis of the Current Simulation
	Timing with Taskset
	FLOPs Estimation
	Analysis of Geant4 Structures
	VTune Profile Analysis

	Discussion of Possible Improvements
	Vectorization
	Global Vectorization in Geant4
	Vectorization of the Magnetic Field

	Front End Issues
	Profile Guided and Link Time Optimization in Geant4
	Inlining parameterized_sin

	Different Optimization Attempts
	Dependency Breaking in parameterized_sin
	G4AtlasRK4

	Conclusion
	Performance Analysis After Changes
	Optimization Assessment and Outlook
	Summary

	Bibliography
	List of Figures
	List of Tables

	Code Examples
	jobOptions File
	G4AtlasRK4

