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Résumé en français
Une percée importante dans l’étude de la correspondance AdS4/CFT4 a été faite par Aharony, Bergman,
Jafferis et Maldacena [1] qui a trouvé une famille des théories de jauge superconformes à 3 dimensions
marquées par k ∈ Z et qui ont été conjecturées être les théories de volume d’universe d’une pile de N
branes M2 sondant C4/Zk. Une théorie de cette famille est donc duale à la théorie M dans AdS4×S7/Zk
ou, pour k grand, à la théorie des cordes de type IIA dans AdS4×CP3. Cette théorie est communément
appelé la théorie ABJM. Plus tard elle a été généralisée à d’autres exemples de ce qu’on appelle les
théories Chern–Simons–matter (CSM), qui ont été conjecturé pour décrire N branes M2 sondant une
variété de Calabi-Yau Y8. Pour N grandes la géométrie à cause de back-reaction devient AdS4 ×X7 de
sorte que Y8 est un cône sur X7 qui est alors une variété tri-Sasaki-Einstein. Ainsi, on peut déclarer la
correspondance

théorie CSM←→ M-théorie dans AdS4 ×X7 (1)

Les données nécessaires pour définir une théorie CSM sont un groupe de jauge G et sa représentation
R pour les champs de matière. Il faut également fixer les niveaux de CS, c.-à-d. un entier pour chaque
composant simple de G. Kapustin, Willett et Yaakov dans [2] à l’aide du procédé de localisation ont
réduit l’intégrale de chemin pour une théorie Chern–Simons–matter à une intégrale de matrice de la
forme suivante:

Z ∝
∫

dae
i

4πTra2 detAd 2 sinh a
2

detR 2 cosh a
2

(2)

où l’intégration est effectuée sur la sous-algèbre de Cartan de l’algèbre de Lie g du groupe de jauge G,
et Tr est un certain produit invariant interne de g qui dépend du choix des niveaux de CS, et

detR f(a) ≡
∏
ρ

f(ρ(a)) (3)

où le produit est effectuée sur les poids de la représentation R (dans le cas de la représentation adjointe
(R = Ad) nous excluons les poids nuls). Le but principal de cette thèse est une analyse détaillée des
modèles de matrices de type (3) et l’application des résultats obtenus à la vérification explicite non triviale
de la correspondance AdS4/CFT3. Le premier chapitre de la thèse donne une revue des connaissances
de base qui sont utilisé dans la partie principale de la thèse.

Dans le deuxième chapitre nous effectuons une analyse détaillée des modèles de matrice CSM dans
la limite de ’t Hooft. Dans le cas du modèle de matrice ABJM cette limite est définie comme suit:

N →∞, λ ≡ N

k
est fixé. (4)

Alors les observables ont des séries asymptotiques en gs ≡ 2πi/k qui sont appelées les développements
de genre, ou topologiques. Par exemple, pour l’énergie libre on a

F ≡ logZ =
∑
g≥0

g2g−2
s Fg(λ). (5)

Il y a une approche universelle pour étudier ces développements dans les modèles de matrice basée sur la
notion d’une courbe spectrale. Dans cette approche la solution d’un modèle de matrice est entièrement
déterminée par une courbe complexe C, appelée courbe spectrale, une 1-forme méromorphe ω sur cette
courbe et un choix d’une base dans H1(C,Z). D’abord nous établissons la relation entre le modèle
de matrice ABJM et le modèle de matrice pour la théorie de Chern–Simons sur l’espace lenticulaire
L(2, 1) ∼= RP3:

ZABJM(N1, N2, gs) = ZL(2,1)(N1,−N2, gs) (6)

où l’on considère la généralisation [3] de la théorie originale de ABJM au cas avec le groupe de jauge
U(N1) × U(N2). En utilisant cette relation et la solution connue du modèle de matrice de l’espace
lenticulaire nous construisons explicitement la solution du modèle de matrice ABJM en termes de la
courbe spectrale. En utilisant en outre le fait que la théorie de CS sur L(2, 1) est un grand-N double des
cordes topologiques sur P1 × P1 local, nous concluons que l’espace des modules de la théorie ABJM est
un sous-espace réel certain de l’espace des modules des structures de Kähler complexifiées de P1 × P1.

Dans le cas de la théorie ABJM nous avons trouvé les expressions explicites exactes pour l’énergie
libre et les boucle de Wilson BPS pour quelques premiers genres. Le développement de couplage faible
(λ → 0) peut être vérifiée pour être en accord avec les calculs dans la théorie des perturbations de la
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théorie quantique des champs. Et nous vérifions que l’expansion de couplage fort (λ→∞) est en accord
avec la prédiction du côté de la théorie des cordes par la correspondance AdS/CFT. En particulier, nous
trouvons qu’au premier ordre

F0 ≈
4π3
√

2
3

λ3/2, λ→∞. (7)

qui fournit une dérivation de la mystérieuse loi de N3/2 pour l’énergie libre prédite à partir de la théorie
des cordes [4]. En outre, nous montrons que le coefficient coïncide avec celui qui peut être obtenu à
partir du calcul de la supergravité. Nous trouvons aussi que les limites de couplage fort des boucles de
Wilson 1/2 et 1/6 BPS sont en accord avec le comportement prédit par la correspondance AdS/CFT.
Nous avons également étudié en détail les corrections sous-dominantes et trouvé qu’elles sont aussi en
accord avec le côté de la théorie des cordes de la dualité. En particulier, les corrections non-perturbatives
peuvent être interprétées comme les contributions des instantons de feuille d’univers.

Dans les sections 2.8 - 2.11, nous développons une méthode géométrique permettant le calcul direct
de la limite de couplage fort sans obtenir d’abord les expressions exactes. La caractéristique principale
de cette méthode est que l’ordre dominant des observables du modèle de matrice au couplage fort peut
être calculé en termes de la version tropicale de la courbe spectrale. En utilisant cette méthode, nous
vérifions la relation générale

F ≈ −
√

2π6

27vol(X7)
N3/2, N →∞ (8)

prédite par la correspondance (1) dans le cas de la théorie ABJM avec des saveurs.
Dans la section 2.12, nous utilisons les équations d’anomalie holomorphe pour trouver les expressions

explicites de Fg(λ) pour grand genre g dans le cas de la théorie ABJM pure. Dans la section 2.13, nous
analysons le comportement de Fg(λ) à grande genre et on trouve

Fg(λ) ∼ Γ(2g − 1) (A(λ))−2g, g � 1. (9)

d’où on déduit la forme des instantons de grand N , les contributions non-perturbatives à l’énergie libre
qui ne peuvent pas être vues directement dans la série asymptotique (5):

∼ e−
A(λ)
gs . (10)

Nous montrons que A(λ), l’action de l’instanton, est déterminée par une période de ω sur la courbe
spectrale. Dans la dernière section, nous montrons que, dans la limite de couplage fort l’action coïncide
avec l’action de D2-brane enveloppant RP3 dans CP3 dans le double de type IIA fournissant une autre
vérification non triviale de la correspondance AdS/CFT. Le deuxième chapitre est basé sur les papiers
originaux [5, 6, 7, 8].

Dans le troisième chapitre, nous développons une approche complètement différente pour étudier les
modèles de matrice CSM. Nous constatons que la fonction de partition du modèle de matrice d’une
théorie N ≥ 3 peut être interprétée comme la fonction de partition d’un gaz parfait de Fermi avec une
certaine hamiltonien à une particule à une dimension. En utilisant cette approche, nous étudions la
fonction de partition dans la limite

N →∞, les niveaux de CS sont fixés. (11)

Cette limite peut être dénommée la limite de théorie M, tandis que (4) peut être considéré comme la limite
de type IIA. Du point de vue de gaz de Fermi, la limite (11) est la limite thermodynamique ordinaire qui
est déterminé par le comportement asymptotique des valeurs propres de l’hamiltonien. Cela permet une
dérivation élémentaire de la loi N3/2 (8) dans le cadre standard de la mécanique statistique. Il s’avère
que à l’aide de l’analyse semi-classique du spectre il est possible de trouver une expression fermée de la
partie perturbative complète de la fonction de partition:

Z(N) ∝ Ai
[
C−1/3(N −B)

]
·
(
1 +O(e−cN )

)
, N →∞ (12)

où les constantes C et B varient avec la théorie CSM et dépendent des niveaux de CS. Nous étudions
également la structure des contributions non perturbatives en N dans la description de gaz de Fermi et
les interprétons comme les instantons de membrane sur le côté de la théorie des cordes. Le troisième
chapitre est basé sur le papier original [9].
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Chapter 0

Introduction and summary

0.1 Motivation
Understanding the nonperturbative dynamics of gauge theories is one of the most challenging problems
of theoretical physics. As usual in physics, there are essentially two ways: either one can try to study
a real-life theory by some approximate methods (e.g. considering QCD on a lattice), or one can study
a different theory (e.g. supersymmetric gauge theory) which has better properties, more controllable
from mathematical point of view, and can be solved exactly to some extent but its non-trivial part of
the dynamics is believed to be the same as in the real-life theory. Such simplified theories can also be
considered as toy models where one can develop some new techniques which could be useful later for
solving real-life theories.

A lot of progress has been made over the last 20 years in studying supersymmetric gauge theories.
Ones of the most important breakthroughs were the solution of N = 2 theories by Seiberg and Witten
[10] (and the subsequent direct calculation by Nekrasov [11]) and the discovery of the AdS/CFT corre-
spondence by Maldacena [12]. The AdS/CFT correspondence is a conjecture that states that observables
in d-dimensional supersymmetric gauge theories are related to certain observables in string theory with
background geometry involving AdSd+1 space so that the space–time of the gauge theory is associated to
the boundary of AdSd+1. From the string theory point of view the U(N) gauge theory can be understood
as a world-volume theory of N coincident d-dimensional branes. When N is large the geometry of the
ambient string theory target space backreacts and deforms into AdSd+1. The direct verification of the
AdS/CFT correspondence is hard since the string theory side is well understood only in the supergravity
limit which corresponds to the strong coupling limit of gauge theory where one cannot use the standard
perturbation theory. For example the AdS/CFT correspondence implies that the strong coupling limit
of a Wilson loop observable in gauge theory is related to a string whose world-sheet boundary lies in the
boundary of AdSd+1 and coincides with the loop. In particular this implies automatically the famous
area-law behavior for the Wilson loop which is equivalent to the statement that there is a linear confining
potential between probe quarks.

An important result concerning Wilson loop in supersymmetric gauge theories was made by Pestun
[13] who showed that the vacuum expectation value of a certain Wilson loops in N = 4 and N = 2
4-dimensional super Yang–Mills (SYM) theories can be reduced to a matrix integral, and thus can be
calculated exactly, and the strong coupling limit is in agreement with the AdS/CFT prediction.

The AdS/CFT correspondence was mostly studied in its original formulation which states that N = 4
SYM theory is dual to type IIB string theory in AdS5×S5. For a long time it was a problem to construct
a proper 3-dimensional gauge theory that would have enough amount of supersymmetry and participate
in AdS4/CFT3 duality. A breakthrough was made by Aharony, Bergman, Jafferis and Maldacena [1]
who found a family of theories labeled by k ∈ Z and which were conjectured to be the world-volume
theories for a stack of N M2 branes probing C4/Zk and thus dual to M-theory in AdS4 × S7/Zk or, for
large k, to type IIA string theory in AdS4 × CP3. A theory of this family is commonly referred to as
ABJM theory. For the case N = 2 it is equivalent to the previously constructed BLG theory [14, 15]. It
was later generalized to other examples of so-called Chern–Simons–matter (CSM) theories (described in
detail in the next chapter) which were conjectured to describe N M2-branes probing a Calabi-Yau 4-fold
Y8. For large N the geometry backreacts into AdS4 ×X7 so that Y8 is a cone over X7 which is then a
tri-Sasaki-Einstein manifold. Thus one can state the correspondence

CSM theory←→ M-theory in AdS4 ×X7 (0.1.1)

9
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Apart from a manifold X7 one also needs to fix a 3-form torsion flux, an element of H3(X7,Z), to define
completely the background of M-theory. The data needed to define a CSM theory is a gauge group G
and its representation R for matter fields. One also needs to fix the CS levels, an integer for each simple
component of G.

An important progress was made by Kapustin, Willett and Yaakov in [2]. Similarly to localization
for 4 dimension theories considered by Pestun [13], one can perform localization in the path integral
for Chern–Simons–matter and reduce it to a matrix integral. For a general supersymmetric N ≥ 3
Chern–Simons–theory the matrix integral reads as follows in condensed notations:

Z ∝
∫

dae
i

4πTra2 detAd 2 sinh a
2

detR 2 cosh a
2

(0.1.2)

where the integration is performed over the Cartan subalgebra of the Lie algebra g of the gauge group
G, Tr defines some invariant inner product on g which depends on the choice of CS levels, and

detR f(a) ≡
∏
ρ

f(ρ(a)) (0.1.3)

where the product runs over the weights of the representation R (in the case of the adjoint representation
(R = Ad) we exclude zero weights). Note that localization to a matrix model can be performed for a
general N = 2 CSM theory, however such theory does not always have an M-theory dual of type
AdS4 ×X7.

The main purpose of this thesis is detailed analysis of matrix models of type (0.1.3) and application
of the obtained results to explicit non-trivial verification of the AdS4/CFT3 correspondence.

0.2 Organization of the thesis and summary of the results
In the first chapter we give a review of background knowledge that is used in the main part of the thesis.
Namely, we consider Chern–Simons–matter theories, their string theory duals and localization. This
chapter follows the lectures [16]1.

In the second chapter we perform detailed analysis of CSM matrix models in the so-called ’t Hooft
limit. In the case of ABJM matrix model it is defined as follows:

N →∞, λ ≡ N

k
is fixed. (0.2.1)

Then the observables have asymptotic series in gs ≡ 2πi/k which are called genus, or topological,
expansions. For example, for the free energy one has

F ≡ logZ =
∑
g≥0

g2g−2
s Fg(λ). (0.2.2)

There is a universal approach to study such expansions in matrix models based on the notion of a spectral
curve. In this approach solution to a matrix model is determined completely by a complex curve C, called
a spectral curve, a meromorphic 1-form ω on this curve (which for a special choice of variables reads as
ω = ydx while the curve is determined by P (y, x) = 0) and also a choice of a basis in H1(C,Z). First we
establish the relation between the ABJM matrix model and the matrix model for ordinary Chern–Simons
theory on the lens space L(2, 1) ∼= RP3:

ZABJM(N1, N2, gs) = ZL(2,1)(N1,−N2, gs) (0.2.3)

where we consider the generalization [3] of the original ABJM theory to the case with the gauge group
U(N1) × U(N2). Using this relation and the known solution of the lens space matrix model we build
explicitly the solution of the ABJM matrix model in terms of the spectral curve. Using further the
fact that Chern–Simons theory on L(2, 1) is large-N dual to the topological strings on local P1 × P1 we
conclude that the real 2-dimensional moduli space of the ABJM theory is a certain real subspace of the
complex 2-dimensional moduli space of complexified Kähler structures on P1 × P1. In particular, the
weak coupling limit of ABJM theory corresponds to the orbifold point of local P1 × P1 while the strong
coupling limit corresponds to the large radius limit.

1The author of this thesis is grateful to his supervisor, Professor Mariño, for allowing to use the notes of his lectures for
the introductory chapter.
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In the case of ABJM theory we found exact explicit expressions for the free energy and Wilson loop
for the first few genera. They can be considered as exact interpolation functions of λ between the weak
(λ→ 0) and strong (λ→∞) expansions. The weak expansion can be checked to be in agreement with
the perturbation theory calculations in the quantum field theory. And we verify that the strong coupling
expansion is in agreement with the prediction by the AdS/CFT correspondence from the string theory
side. In particular we find that in the leading order

F0 ≈
4π3
√

2
3

λ3/2, λ→∞. (0.2.4)

which provides a derivation of the mysterious N3/2 scaling of the free energy predicted from the string
theory [4]. Furthermore we show that the coefficient coincides with the one that can be obtained from
the supergravity calculation. For 1/2 and 1/6 BPS Wilson loops we find

〈W 〉 ∼ eπ
√

2λ, λ→∞. (0.2.5)

which is in agreement with the area law behavior predicted by AdS/CFT. We also study in detail
the subleading corrections and find that they are also in agreement with the string theory side of the
duality. In particular, non-perturbative corrections can be interpreted as contributions from world-sheet
instantons.

In sections 2.8–2.11 we consider a generalization of the ABJM theory with additional matter multiplets
in the (anti)fundamental representation [17]. Although it is again possible to find the spectral curve
of the corresponding matrix model exactly, its explicit expression is no longer algebraic and contains
special functions. Therefore finding the exact explicit expressions for the free energy and the Wilson
loops becomes extremely hard. To avoid this problem we develop a geometrical method allowing direct
calculation of the strong coupling limit without obtaining first the exact expressions. The key feature of
this method is that the strong coupling limit is related to the tropical, or ultradiscretization, limit of the
spectral curve. In this limit the original complex curve in C∗×C∗ can be described by a piece-wise linear
graph in R2. The leading order of matrix model observables at the strong coupling can be calculated in
terms of this graph. Using this method we verify the general relation

F ≈ −
√

2π6

27vol(X7)
N3/2, N →∞ (0.2.6)

implied by the correspondence (0.1.1) in the case of flavored ABJM theory. For the theory with Nf
flavors the dual space is the so-called Eschenburg space that can be constructed as the hyper-Kähler
quotient of H3 ∼= C12 by the action of U(1) with the weights (Nf , Nf , k). Its volume was computed in
[18]:

vol(X7) =
k +Nf/2
(k +Nf )2

vol(S7). (0.2.7)

We also calculate the strong coupling limit of the 1/2 and 1/6 BPS Wilson loops:

〈W 〉 ∼ exp

(
2πN1/2√
Nf + 2k

)
(0.2.8)

and argue that it agrees with the prediction from the string theory side.
In section 2.12 we use holomorphic anomaly equations to find explicit expressions of Fg(λ) for large

genus g in the case of pure ABJM theory. In section 2.13 we analyze the large genus behavior of Fg(λ)
and we find

Fg(λ) ∼ Γ(2g − 1) (A(λ))−2g, g � 1. (0.2.9)

from which we deduce the form of large N instantons, non-perturbative contributions to the free energy
that cannot be seen directly in the asymptotic series (0.2.2):

∼ e−
A(λ)
gs . (0.2.10)

We show that A(λ), the instanton action, is determined by a period on the spectral curve:

A(λ) =
1
2

∫
γ

ω (0.2.11)
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where the choice of the contour γ varies with the region of the moduli space. In the last section we show
that in the strong coupling limit

− iA(λ) ≈ 2π2
√

2λ, λ→∞ (0.2.12)

the instanton action coincides with the action of D2-brane wrapping RP3 inside CP3 in the type IIA dual
thus providing another nontrivial check of the AdS/CFT correspondence. Conceptually, this approach
to study nonperturbative effects is similar to what had been pursued in the case of noncritical strings
[19, 20, 21, 22]. The second chapter is based on the original papers [5, 6, 7, 8].

In the third chapter we develop a completely different approach to study CSM matrix models. We
find that the partition function of the matrix model of a N ≥ 3 theory can be interpreted as the partition
function of an ideal Fermi gas with a certain 1-particle Hamiltonian in one dimension. This defines the
correspondence

CSM theory←→ 1-dim Hamiltonian H (0.2.13)

Using this approach we study the partition function in the limit

N →∞, CS levels fixed. (0.2.14)

In this limit one can verify AdS/CFT directly in the M-theory picture and not in the type IIA picture
as one should do for the limit (0.2.1) as the latter assumes the expansion w.r.t. the small string coupling
gs. The limit (0.2.14) can be referred to as the M-theory limit while (0.2.1) can be considered as the type
IIA limit. From the Fermi gas point of view the limit (0.2.14) is the ordinary thermodynamical limit
which is determined by the asymptotics of the eigenvalues of the Hamiltonian. This allows an elementary
derivation of the N3/2 scaling (0.2.6) in the standard framework of statistical mechanics. It turns out
that using the semi-classical analysis of the spectrum it is possible to find a closed expression of the full
perturbative part of the partition function:

Z(N) ∝ Ai
[
C−1/3(N −B)

]
·
(
1 +O(e−cN )

)
, N →∞ (0.2.15)

where the constants C and B vary with CSM theory and depend on CS levels. This generalizes the
result of [23] obtained for the case of ABJM theory. We also study the structure of contributions non-
perturbative in N in the Fermi gas picture and interpret them as membrane instantons on the string
theory side. The third chapter is based on the original paper [9].

0.3 Current state of the field and open problems
In this section we point out advantages and disadvantages of three known approaches (two of which are
considered in detail in this thesis) to study CSM matrix models and indicate some open problems.

1) In the first approach one considers the ’t Hooft limit and uses the standard tools of matrix models.
This is the approach described and used in the second chapter of this thesis. The main advantage of this
approach is that, once the spectral curve is found, it is in principle possible to find the free energy and
the Wilson loops exactly in terms of integrals over cycles on the spectral curve. This approach works
very well in the case of ABJM theory but it is difficult to find explicit expression for the spectral curve
for other CSM theories. However, when one is interested in the strong coupling limit, as we show in
the second chapter on the example of the flavored ABJM theory, it is sufficient to find only the tropical
version of the spectral curve.

It would be interesting to have a general scheme of studying CSM theories in terms of tropical
geometry. There also arises an interesting mathematical problem of constructing a “tropical” version of
topological recursion of Eynard and Orantin [24].

Since our description of matrix model instantons in section 2.13 is made in the language of special
geometry, it should determine the large order behavior of the genus g amplitudes in general topological
string models, not necessarily encoded in matrix integrals. It would be interesting to study simple models
with a spectral curve description, like topological string theory on local P2, in order to test the method
and learn about possible non-perturbative structures in topological strings. The general picture we have
developed might shed further light in related contexts, like the models studied in [25].

It is puzzling that the connection between ABJM theory and topological strings discussed in the
second chapter seems to be accidental and lack a generalization for other CSM theories.

2) The second approach is the Fermi gas approach described in the third chapter of the thesis. In
this approach one considers CSM theory in the M-theory limit and it allows the systematic study of 1/N
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corrections. However in the case of N = 2 CSM theories the corresponding Fermi gas is no longer free
and it becomes very hard to go beyond the leading order of the strong coupling limit. It is also unclear
whether it is possible to generalize this approach to the theories defined by D,E quivers considered in
[26] and quivers with the gauge groups of different ranks in the nodes.

It would be interesting to understand the Fermi gas picture at a deeper level and find out if it has some
direct interpretation in the string theory picture. Since D-branes behave as fermions (see for example
[27]), and the gauge theories we have considered have D-brane realizations, one might be able to derive
this picture directly from the D-branes underlying the gauge theory.

The exact perturbative partition function (0.2.15) found with the Fermi gas approach should provide
a lot of information about M-theory dual. It is an interesting problem to check that the subleading 1/N
terms are in agreement with M-theory.

Fermi gas formalism seems appropriate to study the strong-coupling regime of matrix models and
topological strings. For example, as shown in the second chapter, the ABJM matrix model corresponds
to a submanifold of the moduli space of topological strings on local P1 × P1. However, by looking at
for example (3.4.80), it is clear that the grand canonical potential of ABJM theory seems to be directly
related to the topological string free energy in the large radius frame. Therefore, our calculation of J(µ)
for the ABJM theory can be interpreted as a concrete strong coupling expansion of this topological string
free energy, including non-perturbative effects. The worldsheet instantons of the topological string at
large radius would appear then as quantum-mechanical instantons of the Fermi gas. Notice also that
the grand canonical partition function, which is the focus of this paper, involves the sum over fluxes first
considered in the context of topological strings in [27], and studied from the matrix model point of view
in [28, 29, 30]. Our formalism gives a concrete approach to calculate this object at strong coupling, but
one should clarify the relation between the picture proposed here and the non-perturbative approach of
[28, 29] involving theta functions on the spectral curve. It would be very interesting to develop further
all these relationships to topological string theory.

Although the equivalence between the matrix models and the Fermi gas partition function is an exact
statement at finite N and k, in this paper we have worked in the thermodynamic limit (large N) and
in the semiclassical limit (expansion in powers of k around k = 0). Fortunately, as we have seen, the
expansion in 1/N satisfies some sort of “non-renormalization" property and we can determine it at finite
k by a next-to-leading computation in the WKB expansion. An obvious challenge is to solve the Fermi
gas problem at finite k, say k = 1, to make full contact with the M-theory expansion. This would
amount to a resummation of the non-perturbative effects computed in this paper order by order in k.
One possible route to achieve this is to find the exact eigenvalue spectrum of the quantum Hamiltonian,
or equivalently, of the density matrix ρ̂. In the case of ABJM theory, this means solving the integral
equation (3.2.19), which can be written as∫

dx′ρ(x, x′)φn(x′) = λnφn(x), (0.3.1)

where the kernel can be written in the form

ρ(x, x′) =
e−

1
2U(x)− 1

2U(′x)

4πk cosh
(
x−x′

2k

) . (0.3.2)

This type of kernel appears in other contexts, like the O(2) matrix model [31] (albeit with a different
U(x)), and it is connected to both the Hirota hierarchy [31, 32] and to the Thermodynamic Bethe
Ansatz [33, 34]. At least for k = 1, 2 (where supersymmetry is enhanced), we anticipate a nice solution
to the eigenvalue problem in terms of an integrable system. In particular, the relation to differentiable
hierarchies of the Hirota type suggests that the propery 0.2.15 might be proved by performing a suitable
double-scaling limit in the hierarchy.

It would be also very interesting to develop further the relationship between worldsheet instantons and
quantum mechanical instantons of the Fermi gas sketched in section 3.4.4. It is clear that the solution of
the ABJM theory found in the second chapter, in the ’t Hooft expansion, is extremely powerful in order
to capture these corrections, but it would be important for the development of the Fermi gas approach
to have a better understanding of this issue.

Finally, there might be a connection between the Fermi gas of this paper and two other pictures
for string/M-theory based on fermions: the droplet picture proposed in [35, 36] to analyze 1/2 BPS
operators in N = 4 SYM theory, and the Fermi liquid picture of non-critical M-theory proposed in [37].

3) There is also another approach which is not used in this thesis and was first developed in [38]
and was later successfully applied for a very large class of N ≥ 2 CSM theories [26, 38, 39, 40, 41, 42].
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This approach considers CSM matrix model directly in the M-theory limit. The leading term of the free
energy is determined in terms of variational principle w.r.t. the limiting distribution of eigenvalues:

F (N) = −N3/2 min
ρ,ya
F [ρ, ya] (0.3.3)

The disadvantage of this approach is that it is very hard to study 1/N corrections and go beyond the
leading term in the strong coupling limit.
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Chapter 1

Chern–Simons–matter theories and
their gravity duals

The purpose of this chapter is to provide some background knowledge about Chern–Simons–matter
theories underlying the calculations performed in the rest of the thesis. This chapter is heavily based
on the lectures [16]. The organization of the chapter is as follows. Section 1.1 introduces Euclidean
supersymmetric Chern–Simons–matter theories on the three-sphere and their classical properties. In
section 1.2 we analyze perturbative Chern–Simons theory in some detail and in some generality. In
section 1.3 we calculate the free energy of Chern–Simons–matter theories on S3 at one-loop. Next, in
section 1.4, we look at the free energy at strong coupling by using the AdS dual, and we explain the
basics of holographic renormalization of the gravitational action. In section 1.5 we review the localization
computation of [2] (incorporating some simplifications in [43]), which leads to a matrix model formulation
of the free energy of ABJM theory.

1.1 Supersymmetric Chern–Simons–matter theories
In this section we will introduce the basic building blocks of supersymmetric Chern–Simons–matter
theories. We will work in Euclidean space, and we will put the theories on the three-sphere, since we
are eventually interested in computing the free energy of the gauge theory in this curved space. In this
section we will closely follow the presentation of [43].

1.1.1 Conventions
Our conventions for Euclidean spinors follow essentially [44]. In Euclidean space, the fermions ψ and
ψ̄ are independent and they transform in the same representation of the Lorentz group. Their index
structure is

ψα, ψ̄α. (1.1.1)

We will take γµ to be the Pauli matrices, which are hermitian, and

γµν =
1
2

[γµ, γν ] = iεµνργρ. (1.1.2)

We introduce the usual symplectic product through the antisymmetric matrix

Cαβ =
(

0 C
−C 0

)
. (1.1.3)

In [44] we have C = −1 and the matrix is denoted by εαβ . The product is

ε̄λ = ε̄αCαβλ
β . (1.1.4)

Notice that
ε̄γµλ = ε̄βCβγ (γµ)γα λ

α. (1.1.5)

It is easy to check that
ε̄λ = λε̄, ε̄γµλ = −λγµε̄, (1.1.6)

15
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and in particular
(γµε̄)λ = −ε̄γµλ. (1.1.7)

We also have the following Fierz identities

ε̄ (εψ) + ε (ε̄ψ) + (ε̄ε)ψ = 0 (1.1.8)

and
ε (ε̄ψ) + 2 (ε̄ε)ψ + (ε̄γµψ) γµε = 0. (1.1.9)

1.1.2 Vector multiplet and supersymmetric Chern–Simons theory

We first start with theories based on vector multiplets. The three dimensional Euclidean N = 2 vector
superfield V has the following content

V : Aµ, σ, λ, λ̄, D, (1.1.10)

where Aµ is a gauge field, σ is an auxiliary scalar field, λ, λ̄ are two-component complex Dirac spinors,
and D is an auxiliary scalar. This is just the dimensional reduction of the N = 1 vector multiplet in 4
dimensions, and σ is the reduction of the fourth component of Aµ. All fields are valued in the Lie algebra
g of the gauge group G. For G = U(N) our convention is that g are Hermitian matrices. It follows that
the gauge covariant derivative is given by

∂µ + i[Aµ, .] (1.1.11)

while the gauge field strength is

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]. (1.1.12)

The transformations of the fields are generated by two independent complex spinors ε, ε̄. They are
given by,

δAµ =
i
2

(ε̄γµλ− λ̄γµε),

δσ =
1
2

(ε̄λ− λ̄ε),

δλ = −1
2
γµνεFµν −Dε+ iγµεDµσ +

2i
3
σγµDµε,

δλ̄ = −1
2
γµν ε̄Fµν +Dε̄− iγµε̄Dµσ −

2i
3
σγµDµε̄,

δD = − i
2
ε̄γµDµλ−

i
2
Dµλ̄γ

µε+
i
2

[ε̄λ, σ] +
i
2

[λ̄ε, σ]− i
6

(Dµε̄γ
µλ+ λ̄γµDµε),

(1.1.13)

and we split naturally
δ = δε + δε̄. (1.1.14)

Here we follow the conventions of [43], but we change the sign of the gauge connection: Aµ → −Aµ.
The derivative Dµ is covariant with respect to both the gauge field and the spin connection. On all the
fields, except D, the commutator [δε, δε̄] becomes a sum of translation, gauge transformation, Lorentz
rotation, dilation and R-rotation:

[δε, δε̄]Aµ =ivν∂νAµ + i∂µvνAν −DµΛ,
[δε, δε̄]σ =ivµ∂µσ + i[Λ, σ] + ρσ,

[δε, δε̄]λ =ivµ∂µλ+
i
4

Θµνγ
µνλ+ i[Λ, λ] +

3
2
ρλ+ αλ,

[δε, δε̄]λ̄ =ivµ∂µλ̄+
i
4

Θµνγ
µν λ̄+ i[Λ, λ̄] +

3
2
ρλ̄− αλ̄,

[δε, δε̄]D =ivµ∂µD + i[Λ, D] + 2ρD +
1
3
σ(ε̄γµγνDµDνε− εγµγνDµDν ε̄),

(1.1.15)
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where
vµ =ε̄γµε,

Θµν =D[µvν] + vλωµνλ ,

Λ =vµiAµ + σε̄ε,

ρ = i
3 (ε̄γµDµε+Dµε̄γ

µε),

α = i
3 (Dµε̄γ

µε− ε̄γµDµε).

(1.1.16)

Here, ωµνλ is the spin connection. As a check, let us calculate the commutator acting on σ. We have,

[δε, δε̄]σ = δε

(
1
2
ε̄λ

)
− δε̄

(
−1

2
λ̄ε

)
=

1
2
ε̄

(
−1

2
γµνεFµν −Dε+ iγµεDµσ

)
+

i
3
ε̄γµ (Dµε)σ

+
1
2

(
−1

2
γµν ε̄Fµν +Dε− iγµε̄Dµσ

)
ε− i

3
γµ (Dµε̄) εσ

= iε̄γµεDµσ + ρσ,

(1.1.17)

where we have used (1.1.7).
In order for the supersymmetry algebra to close, the last term in the right hand side of [δε, δε̄]D must

vanish. This is the case if the Killing spinors satisfy

γµγνDµDνε = hε, γµγνDµDν ε̄ = hε̄ (1.1.18)

for some scalar function h. A sufficient condition for this is to have

Dµε =
i

2r
γµε, Dµε̄ =

i
2r
γµε̄ (1.1.19)

and
h = − 9

4r2
(1.1.20)

where r is the radius of the three-sphere. This condition is satisfied by one of the Killing spinors on the
three-sphere (the one which is constant in the left-invariant frame). Notice that, with this choice, ρ in
(1.1.16) vanishes.

The (Euclidean) SUSY Chern–Simons (CS) action, in flat space, is given by

SSCS = −
∫

d3xTr
(
A ∧ dA+

2i
3
A3 − λ̄λ+ 2Dσ

)
= −

∫
d3xTr

(
εµνρ

(
Aµ∂νAρ +

2i
3
AµAνAρ

)
− λ̄λ+ 2Dσ

)
.

(1.1.21)

Here Tr denotes the trace in the fundamental representation. The part of the action involving the gauge
connection A is the standard, bosonic CS action in three dimensions. This action was first considered
from the point of view of QFT in [45], where the total action for a non-abelian gauge field was the sum
of the standard Yang–Mills action and the CS action. In [46], the CS action was considered by itself and
shown to lead to a topological gauge theory.

We can check that the supersymmetric CS action is invariant under the supersymmetry generated
by δε (the proof for δε̄ is similar).The supersymmetric variation of the integrand of (1.1.21) is

(2δAµ∂νAρ + 2iδAµAνAρ) εµνρ − λ̄δλ+ 2(δD)σ + 2Dδσ
= −iλ̄γµε∂νAρεµνρ + λ̄γµεAνAρε

µνρ

− λ̄
(
−1

2
γµνFµν −D + iγµDµσ

)
ε− 2i

3
λ̄γµDµεσ

− i
(
Dµλ̄

)
γµσε+ i[λ̄ε, σ]σ − i

3
λ̄γµDµεσ − λ̄εD.

(1.1.22)

The terms involving D cancel on the nose. Let us consider the terms involving the gauge field. After
using (1.1.2) we find

1
2
λ̄γµνFµνε = iλ̄γρεεµνρ∂µAν − λ̄γρεεµνρAµAν (1.1.23)
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which cancel the first two terms in (1.1.22). Let us now look at the remaining terms. The covariant
derivative of λ̄ is

Dµλ̄ = ∂µλ̄+
i

2r
γµλ̄+ i[Aµ, λ̄]. (1.1.24)

If we integrate by parts the term involving the derivative of λ we find in total

iλ̄γµε∂µσ + iλ̄γµ∂µεσ +
1
2r
(
γµλ̄

)
γµε+ [Aµ, λ̄]γµεσ

= iλ̄γµε∂µσ + iλ̄γµDµεσ + [Aµ, λ̄]γµεσ,
(1.1.25)

where we used that (
γµλ̄

)
γµε = −λ̄γµγµε. (1.1.26)

The derivative of σ cancels against the corresponding term in the covariant derivative of σ. Putting all
together, we find

iλ̄γµ (Dµε)σ − iλ̄γµ (Dµε)σ + [Aµ, λ̄]γµεσ + λ̄γµε[Aµ, σ] + i[λ̄ε, σ]σ. (1.1.27)

The last three terms cancel due to the cyclic property of the trace. This proves the invariance of the
supersymmetric CS theory.

In the path integral, the supersymmetric CS action enters in the form

exp
(

ik
4π
SSCS

)
(1.1.28)

where k plays the role of the inverse coupling constant and it is referred to as the level of the CS theory.
In a consistent quantum theory, k must be an integer [45]. This is due to the fact that the Chern–Simons
action for the connection A is not invariant under large gauge transformations, but changes by an integer
times 8π2. The quantization of k guarantees that (1.1.28) remains invariant.

Of course, there is another Lagrangian for vector multiplets, namely the Yang–Mills Lagrangian,

LYM = Tr
[

1
4
FµνF

µν +
1
2
DµσD

µσ +
1
2

(
D +

σ

r

)2

+
i
2
λ̄γµDµλ+

i
2
λ̄[σ, λ]− 1

4r
λ̄λ

]
. (1.1.29)

In the flat space limit r →∞, this becomes the standard (Euclidean) super Yang–Mills theory in three
dimensions. The Lagrangian (1.1.29) is not only invariant under the SUSY transformations (1.1.13), but
it can be written as a superderivative,

ε̄εLYM = δε̄δεTr
(1

2
λ̄λ− 2Dσ

)
. (1.1.30)

This will be important later on.

1.1.3 Supersymmetric matter multiplets

We will now add supersymmetric matter, i.e. a chiral multiplet Φ in a representation R of the gauge
group. Its components are

Φ : φ, φ̄, ψ, ψ̄, F, F̄ . (1.1.31)

The supersymmetry transformations are

δφ =ε̄ψ,
δφ̄ =εψ̄,

δψ =iγµεDµφ+ iεσφ+
2∆i
3
γµDµεφ+ ε̄F,

δψ̄ =iγµε̄Dµφ̄+ iφ̄σε̄+
2∆i
3
φ̄γµDµε̄+ F̄ ε,

δF =ε(iγµDµψ − iσψ − iλφ) +
i
3

(2∆− 1)Dµεγ
µψ,

δF̄ =ε̄(iγµDµψ̄ − iψ̄σ + iφ̄λ̄) +
i
3

(2∆− 1)Dµε̄γ
µψ̄,

(1.1.32)
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where ∆ is the possible anomalous dimension of φ. For theories with N ≥ 3 supersymmetry, the field
has the canonical dimension

∆ =
1
2
, (1.1.33)

but in general this is not the case.
The commutators of these transformations are given by

[δε, δε̄]φ = ivµ∂µφ+ iΛφ+ ∆ρφ−∆αφ,
[δε, δε̄]φ̄ = ivµ∂µφ̄− iφ̄Λ + ∆ρφ̄+ ∆αφ̄,

[δε, δε̄]ψ = ivµ∂µψ + 1
4Θµνγ

µνψ + iΛψ +
(

∆ +
1
2

)
ρψ + (1−∆)αψ,

[δε, δε̄]ψ̄ = ivµ∂µψ̄ + 1
4Θµνγ

µνψ̄ − iψ̄Λ +
(

∆ +
1
2

)
ρψ̄ + (∆− 1)αψ̄,

[δε, δε̄]F = ivµ∂µF + iΛF + (∆ + 1)ρF + (2−∆)αF,
[δε, δε̄]F̄ = ivµ∂µF̄ − iF̄Λ + (∆ + 1)ρF̄ + (∆− 2)αF̄ . (1.1.34)

The lowest components of the superfields are assigned the dimension ∆ and R-charge ∓∆. The super-
symmetry algebra closes off-shell when the Killing spinors ε, ε̄ satisfy (1.1.18) and h is given by (1.1.20).
As a check, we compute

[δε, δε̄]φ = δε (ε̄ψ)

= ε̄

(
iγµεDµφ+ iεσφ+

2i∆
3
γµ (Dµε)φ

)
= ivµDµφ+ iσε̄ε+

2i∆
3

(ε̄γµDµε) ,
(1.1.35)

which is the wished-for result.
Let us now consider supersymmetric Lagrangians for the matter hypermultiplet. If the fields have

their canonical dimensions, the Lagrangian

L = Dµφ̄D
µφ− iψ̄γµDµψ +

3
4r2

φ̄φ+ iψ̄σψ + iψ̄λφ− iφ̄λ̄ψ + iφ̄Dφ+ φ̄σ2φ+ F̄F (1.1.36)

is invariant under supersymmetry if the Killing spinors ε, ε̄ satisfy (1.1.18), with h given in (1.1.20). The
quadratic part of the Lagrangian for φ gives indeed the standard conformal coupling for a scalar field.
We recall that the action for a massless scalar field in a curved space of n dimensions contains a coupling
to the curvature R given by

S =
∫

dnx
√
g
(
gµν∂µφ∂νφ+ ξRφ2

)
, (1.1.37)

where ξ is a constant. The wave equation is then

(gµνDµDν + ξR)φ = 0. (1.1.38)

This equation is conformally invariant when

ξ =
1
4
n− 2
n− 1

. (1.1.39)

If the spacetime is an n-sphere of radius r, the curvature is

R =
n(n− 1)

r2
, (1.1.40)

and the conformal coupling of the scalar leads to an effective mass term of the form

n(n− 2)
4r2

φ2 (1.1.41)

which in n = 3 dimensions gives the quadratic term for φ in (1.1.36).
If the fields have non-canonical dimensions, the Lagrangian

Lmat =Dµφ̄D
µφ+ φ̄σ2φ+

i(2∆− 1)
r

φ̄σφ+
∆(2−∆)

r2
φ̄φ+ iφ̄Dφ+ F̄F

− iψ̄γµDµψ + iψ̄σψ − 2∆− 1
2r

ψ̄ψ + iψ̄λφ− iφ̄λ̄ψ
(1.1.42)
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U(N2)

Φi=1,··· ,4

U(N1)

Figure 1.1: The quiver for ABJ(M) theory. The two nodes represent the U(N1,2) Chern–Simons theories
(with opposite levels) and the arrows between the nodes represent the four matter multiplets in the
bifundamental representation.

is supersymmetric, provided the parameters ε, ε̄ satisfy the Killing spinor conditions (1.1.19). The La-
grangian (1.1.42) is not only invariant under the supersymmetries δε,ε̄, but it can be written as a total
superderivative,

ε̄εLmat = δε̄δε

(
ψ̄ψ − 2iφ̄σφ+

2(∆− 1)
r

φ̄φ

)
. (1.1.43)

1.1.4 ABJM theory
The theory proposed in [1, 3] to describe N M2 branes is a particular example of a supersymmetric
Chern–Simons theory. It consist of two copies of Chern–Simons theory with gauge groups U(N1), U(N2),
and opposite levels k, −k. In addition, we have four matter supermultiplets Φi, i = 1, · · · , 4, in the
bifundamental representation of the gauge group U(N1) × U(N2). This theory can be represented as
a quiver, with two nodes representing the Chern–Simons theories, and four edges between the nodes
representing the matter supermultiplets, see Fig. 1.1. In addition, there is a superpotential involving the
matter fields, which after integrating out the auxiliary fields in the Chern–Simons–matter system, reads
(on R3)

W =
4π
k

Tr
(

Φ1Φ†2Φ3Φ†4 − Φ1Φ†4Φ3Φ†2
)
, (1.1.44)

where we have used the standard superspace notation for N = 1 supermultiplets [44].

1.2 A brief review of Chern–Simons theory
Since one crucial ingredient in the theories we are considering is Chern–Simons theory, we review here
some results concerning the perturbative structure of this theory on general three-manifolds. These
results were first obtained in the seminal paper by Witten [46] and then extended and refined in various
directions in [47, 48, 49, 50, 51, 52]. Chern–Simons perturbation theory on general three-manifolds is
a important subject in itself, hence we will try to give a general presentation which might be useful in
other contexts. This will require a rather formal development, and the reader interested in the result for
the one-loop contribution might want to skip some of the derivations in the next two subsections.

1.2.1 Perturbative approach
In this section, we will denote the bosonic Chern–Simons action by

S = − 1
4π

∫
M

Tr
(
A ∧ dA+

2i
3
A ∧A ∧A

)
(1.2.1)

where we use the conventions appropriate for Hermitian connections, and we included the factor 1/4π
in the action for notational convenience. The group of gauge transformations G acts on the gauge
connections as follows,

A→ AU = UAU−1 − iU dU−1, U ∈ G. (1.2.2)
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Ω0(M,g) Ω1(M,g)

Im d†
A(c)

Im dA(c)Ker dA(c) Ker d†
A(c)

d†
A(c)

dA(c)

Figure 1.2: The standard elliptic decomposition of Ω0(M,g) and Ω1(M,g).

We will assume that the theory is defined on a compact three-manifold M . The partition function is
defined as

Z(M) =
1

vol(G)

∫
[DA]eikS (1.2.3)

where we recall that k ∈ Z.
There are many different approaches to the calculation of (1.2.3), but the obvious strategy is to use

perturbation theory. Notice that, since the theory is defined on a compact manifold, there are no IR
divergences and we just have to deal with UV divergences, as in standard QFT. Once these are treated
appropriately, the partition function (1.2.3) is a well-defined observable. In perturbation theory we
evaluate (1.2.3) by expanding around saddle–points. These are flat connections, which are in one-to-one
correspondence with group homomorphisms

π1(M)→ G (1.2.4)

modulo conjugation. For example, if M = S3/Zp is the lens space L(p, 1), one has π1(L(p, 1)) = Zp, and
flat connections are labelled by homomorphisms Zp → G. Let us assume that these are a discrete set
of points (this happens, for example, if M is a rational homology sphere, since in that case π1(M) is a
finite group). We will label the flat connections with an index c, and a flat connection will be denoted
by A(c). Each flat connection leads to a covariant derivative

dA(c) = d + i[A(c), ·], (1.2.5)

and flatness implies that
d2
A(c) = iFA(c) = 0. (1.2.6)

Therefore, the covariant derivative leads to a complex

0→ Ω0(M,g)
d
A(c)−−−→ Ω1(M,g)

d
A(c)−−−→ Ω2(M,g)

d
A(c)−−−→ Ω3(M,g). (1.2.7)

The first two terms in this complex have a natural interpretation in the context of gauge theories:
Ω0(M,g) is the Lie algebra of the group of gauge transformations, and we can write a gauge transfor-
mation as

U = eiφ, φ ∈ Ω0(M,g). (1.2.8)

The elements of Ω0(M,g) generate infinitesimal gauge transformations,

δA = −dAφ. (1.2.9)

The second term, Ω1(M,g), can be identified with the tangent space to the space of gauge connections.
The first map in the complex (1.2.7) is interpreted as (minus) an infinitesimal gauge transformation in
the background of A(c).

We recall that the space of g-valued forms on M has a natural inner product given by

〈a, b〉 =
∫
M

Tr (a ∧ ∗b), (1.2.10)

where ∗ is the Hodge operator. With respect to this product we can define an adjoint operator on
g-valued p-forms in the same way that is done for the usual de Rham operator,

d†
A(c) = (−1)3(1+p)+1 ∗ dA(c) ∗ . (1.2.11)
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We then have the orthogonal decompositions (see Fig. 1.2)

Ω0(M,g) =Ker dA(c) ⊕ Im d†
A(c) ,

Ω1(M,g) =Ker d†
A(c) ⊕ Im dA(c) .

(1.2.12)

These decompositions are easily proved. For the first one, for example, we just note that

a ∈ Ker dA(c) ⇒ 〈dA(c)a, φ〉 = 〈a,d†
A(c)φ〉 = 0, ∀φ (1.2.13)

therefore
(Ker dA(c))⊥ = Im d†

A(c) . (1.2.14)

One also has the analogue of the Laplace–Beltrami operator acting on p-forms

∆p
A(c) = d†

A(c)dA(c) + dA(c)d†
A(c) . (1.2.15)

In the following we will assume that
H1(M,g) = 0. (1.2.16)

This means that the connection A(c) is isolated. However, we will consider the possibility that A(c) has
a non-trivial isotropy group Hc. We recall that the isotropy group of a connection A(c) is the subgroup
of gauge transformations which leave A(c) invariant,

Hc = {φ ∈ G|φ(A(c)) = A(c)}. (1.2.17)

The Lie algebra of this group is given by zero-forms annihilated by the covariant derivative (1.2.5),

Lie(Hc) = H0(M,g) = Ker dA(c) , (1.2.18)

which is in general non-trivial. A connection is irreducible if its isotropy group is equal to the center of
the group. In particular, if A(c) is irreducible one has

H0(M,g) = 0. (1.2.19)

It can be shown that the isotropy group Hc consists of constant gauge transformations that leave A(c)

invariant,
φA(c)φ−1 = A(c). (1.2.20)

They are in one-to-one correspondence with a subgroup of G which we will denote by Hc.
In the semiclassical approximation, Z(M) is written as a sum of terms associated to saddle-points:

Z(M) =
∑
c

Z(c)(M), (1.2.21)

where c labels the different flat connections A(c) onM . Each of the Z(c)(M) will be a perturbative series
in 1/k of the form

Z(c)(M) = Z
(c)
1−loop(M) exp

{ ∞∑
`=1

S
(c)
` k−`

}
, (1.2.22)

where S(c)
` is the (`+ 1)-loop contribution around the flat connection A(c). In order to derive this expan-

sion, we split the connection into a “background", which is the flat connection A(c), plus a “fluctuation"
B:

A = A(c) +B. (1.2.23)

Expanding around this, we find
S(A) = S(A(c)) + S(B), (1.2.24)

where
S(B) = − 1

4π

∫
M

Tr (B ∧ dA(c)B +
2i
3
B3). (1.2.25)

The first term in (1.2.24) is the classical Chern–Simons invariant of the connection A(c). Since Chern–
Simons theory is a gauge theory, in order to proceed we have to fix the gauge. We will follow the detailed
analysis of [51]. Our gauge choice will be the standard, covariant gauge,

gA(c)(B) = d†
A(c)B = 0 (1.2.26)
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where gA(c) is the gauge fixing function. We recall that in the standard Fadeev–Popov (FP) gauge fixing
one first defines

∆−1
A(c) (B) =

∫
DU δ

(
gA(c)

(
BU
))
, (1.2.27)

and then inserts into the path integral

1 =
[∫
DU δ

(
gA(c)

(
BU
))]

∆A(c) (B) . (1.2.28)

The key new ingredient here is the presence of a non-trivial isotropy groupHc for the flat connection A(c).
When there is a non-trivial isotropy group, the gauge-fixing condition does not fix the gauge completely,
since

gA(c)(Bφ) = φgA(c)(B)φ−1, φ ∈ Hc, (1.2.29)

i.e. the basic assumption that g(A) = 0 only cuts the gauge orbit once is not true, and there is a residual
symmetry given by the isotropy group. Another way to see this is that the standard FP determinant
vanishes due to zero modes. In fact, the standard calculation of (1.2.27) (which is valid if the isotropy
group of A(c) is trivial) gives

∆−1
A(c) (B) =

∣∣∣∣det
δgA(c)(BU )

δU

∣∣∣∣−1

=
∣∣∣∣det d†

A(c)dA

∣∣∣∣−1

. (1.2.30)

But when Hc 6= 0, the operator dA(c) has zero modes due to the nonvanishing of (1.2.18), and the FP
procedure is ill-defined. The correct way to proceed in the calculation of (1.2.27) is to split the integration
over the gauge group into two pieces. The first piece is the integration over the isotropy group. Due to
(1.2.29), the integrand does not depend on it, and we obtain a factor of Vol(Hc). The second piece gives
an integration over the remaining part of the gauge transformations, which has as its Lie algebra

(Ker dA(c))⊥. (1.2.31)

The integration over this piece leads to the standard FP determinant (1.2.30) but with the zero modes
removed. We then find,

∆−1
A(c) (B) = Vol(Hc)

∣∣∣∣det d†
A(c)dA

∣∣∣∣−1

(Ker d
A(c) )⊥

(1.2.32)

This phenomenon was first observed by Rozansky in [48], and developed in this language in [51]. As
usual, the determinant appearing here can be written as a path integral over ghost fields, with action

Sghosts(C,C,B) = 〈C,d†
A(c)dAC〉, (1.2.33)

where C,C are Grassmannian fields taking values in

(Ker dA(c))⊥. (1.2.34)

The action for the ghosts can be divided into a kinetic term plus an interaction term between the ghost
fields and the fluctuation B:

Sghosts(C,C,B) = 〈C,∆0
A(c)C〉+ i〈C,d†

A(c) [B,C]〉. (1.2.35)

The modified FP gauge–fixing leads then to the path integral

Z(c)(M) =
eikS(A(c))

vol(G)

∫
Ω1(M,g)

DB eikS(B)∆A(c)(B)δ
(

d†
A(c)B

)
=

eikS(A(c))

Vol(Hc)

∫
Ω1(M,g)

DB δ
(

d†
A(c)B

)∫
(Ker d

A(c) )⊥
DCDC eikS(B)−Sghosts(C,C,B).

(1.2.36)

Finally, we analyze the delta constraint on B. Due to the decomposition of Ω1(M,g) in (1.2.12), we can
write

B = dA(c)φ+B′, (1.2.37)
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where
φ ∈ (Ker dA(c))⊥ , B′ ∈ Ker d†

A(c) . (1.2.38)

The presence of the operator dA(c) in the change of variables (1.2.37) leads to a non-trivial Jacobian.
Indeed, we have

‖B‖2 = 〈φ,∆0
A(c)φ〉+ ‖B′‖2, (1.2.39)

and the measure in the functional integral becomes

DB =
(
det′∆0

A(c)

) 1
2 DφDB′, (1.2.40)

where the ′ indicates, as usual, that we are removing zero modes. Notice that the operator in (1.2.40) is
positive–definite, so the square root of its determinant is well–defined. We also have that

δ
(

d†
A(c)B

)
= δ

(
∆0
A(c)φ

)
=
(
det′∆0

A(c)

)−1
δ(φ), (1.2.41)

which is a straightforward generalization of the standard formula

δ(ax) =
1
|a|δ(x). (1.2.42)

We conclude that the delta function, together with the Jacobian in (1.2.40), lead to the the following
factor in the path integral: (

det′∆0
A(c)

)− 1
2 . (1.2.43)

In addition, the delta function sets φ = 0. It only remains the integration over B′, which we relabel
B′ → B. The final result for the gauge-fixed path integral is then

Z(c)(M) =
eikS(A(c))

Vol(Hc)
(
det′∆0

A(c)

)− 1
2

∫
Ker d†

A(c)

DB
∫

(Ker d
A(c) )⊥

DCDC eikS(B)−Sghosts(C,C,B). (1.2.44)

This is starting point to perform gauge-fixed perturbation theory in Chern–Simons theory.

1.2.2 The one–loop contribution

We now consider the one-loop contribution of a saddle-point to the path integral. This has been studied
in many papers [47, 48, 49, 50]. We will follow the detailed presentation in [52].

Before proceeding, we should specify what is the regularization method that we will use to define the
functional determinants appearing in our calculation. A natural and useful regularization for quantum
field theories in curved space is zeta-function regularization [53]. We recall that the zeta function of a
self-adjoint operator T with eigenvalues λn > 0 is defined as

ζT (s) =
∑
n

λ−sn . (1.2.45)

Under appropriate conditions, this defines a meromorphic function on the complex s-plane which is
regular at s = 0. Since

− ζ ′T (0) =
∑
n

log λn (1.2.46)

we can define the determinant of T as
det(T ) = e−ζ

′
T (0). (1.2.47)

This is the regularization we will adopt in the following. It has the added advantage that, when used in
Chern–Simons theory, it leads to natural topological invariants like the Ray–Singer torsion, as we will
see.

The main ingredients in the one-loop contribution to the path integral (1.2.44) are the determinants
of the operators appearing in the kinetic terms for B, C and C. Putting together the determinant
(1.2.43) and the determinant coming from the ghost fields, we obtain(

det′∆0
A(c)

)1/2 (1.2.48)
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since the ghosts are restricted to (1.2.34) and their determinant is also primed. The operator appearing
in the kinetic term for B is iQ/2, where

Q = − k

2π
∗ dA(c) (1.2.49)

is a self-adjoint operator acting on Ω1(M,g) which has to be restricted to

Ker d†
A(c) = (Im dA(c))⊥ (1.2.50)

due to the gauge fixing. Notice that, if (1.2.16) holds, one has

H1(M,g) = 0⇒ Ker dA(c) = Im dA(c) , (1.2.51)

and due to the restriction to (1.2.50), Q has no zero modes. However, the operator Q is not positive
definite, and one has to be careful in order to define its determinant. We will now do this following the
discussion in [46, 57]. A natural definition takes as its starting point the trivial Gaussian integral∫ ∞

−∞
dx exp

(
i
λx2

2

)
=

√
2π
|λ| exp

(
iπ
4

signλ
)
. (1.2.52)

If we want to have a natural generalization of this, the integration over B should be

exp
(

iπ
4

sign(Q)
) ∣∣∣∣det

(
Q

2π

)∣∣∣∣−1/2

. (1.2.53)

In order to compute the determinant in absolute value, we can consider the square of the operator
− ∗ dA(c) , which is given by

∗ dA(c) ∗ dA(c) = d†
A(c)dA(c) , (1.2.54)

and it is positive definite when restricted to (1.2.50). It is the Laplacian on one-forms, restricted to
(1.2.50). We then define ∣∣∣∣det

Q

2π

∣∣∣∣2 = det′
[(

k

4π2

)2

d†
A(c)dA(c)

]
(1.2.55)

where we have subtracted the zero–modes (i.e., we consider the restriction to (1.2.50)). In order to take
into account the sign in (1.2.53), we need the η invariant of the operator − ∗ dA(c) . We recall that the η
invariant is defined as

ηT (s) =
∑
j

1(
λ+
j

)s −∑
j

1(
−λ−j

)s (1.2.56)

where λ±j are the strictly positive (negative, respectively) eigenvalues of T . The regularized difference of
eigenvalues is then ηT (0). In our case, this gives

η(A(c)) ≡ η−∗d
A(c) (0). (1.2.57)

Finally, we have to take into account that for each eigenvalue of the operator (1.2.54) we have a factor of(
k

4π2

)−1/2

(1.2.58)

appearing in the final answer. The regularized number of eigenvalues of the operator is simply

ζ(A(c)) ≡ ζd†
A(c)d

A(c)
(0), (1.2.59)

restricted again to (1.2.50). Putting all together we obtain,(
det

iQ
2π

)− 1
2

=
(

k

4π2

)−ζ(A(c))/2

exp
(

iπ
4
η(A(c))

)(
det′ d†

A(c)dA(c)

)− 1
4
. (1.2.60)

Here we assumed that k > 0. For a negative level −k < 0 the answer is still given by (1.2.60), but the
phase involving the eta invariant has the opposite sign. We can now combine this result with (1.2.48).
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The quotient of the determinants of the Laplacians gives the square root of the so-called Ray–Singer
torsion of the flat connection A(c) [54],

(det′∆0
A(c))

1
2(

det′ d†
A(c)dA(c)

) 1
4

=
√
τ ′R(M,A(c)). (1.2.61)

This was first observed by Schwarz in the Abelian theory [55]. When the connection A(c) is isolated
and irreducible, this quotient is a topological invariant of M , but in general it is not. However, for a
reducible and isolated flat connection, the dependence on the metric is just given by an overall factor,
equal to the volume of the manifold M :

τ ′R(M,A(c)) = (vol(M))dim(Hc) τR(M,A(c)). (1.2.62)

where τR(M,A(c)) is now metric-indepedendent. For an explanation of this fact, see for example Ap-
pendix B in [56]. However, this volume, metric-dependent factor cancels in the final answer for the
one-loop path integral [52]. The isotropy group Hc is the space of constant zero forms, taking values in
a subgroup Hc ⊂ G of the gauge group. Each generator of its Lie algebra has a norm given by its norm
as an element of g, times (∫

M

∗1
)1/2

= (vol(M))1/2
. (1.2.63)

Therefore,
vol(Hc) = (vol(M))dim(Hc)/2 vol(Hc), (1.2.64)

and √
τ ′R(M,A(c))
vol(Hc)

=

√
τR(M,A(c))
vol(Hc)

(1.2.65)

which does not depend on the metric of M . Finally, in order to write down the answer, we take into
account that, for isolated flat connections, ζ(A(c)) can be evaluated as [58]

ζ(A(c)) = dimH0(M,g). (1.2.66)

Putting everything together, we find for the one–loop contribution to the path integral

Z
(c)
1−loop(M) =

1
vol(Hc)

(
k

4π2

)− 1
2 dimH0(M,g)

eikS(A(c))+ iπ
4 η(A(c))

√
τR(M,A(c)). (1.2.67)

As noticed above, this expression is valid for k > 0. For a negative level −k < 0, the phase involving the
gravitational η invariant has the opposite sign. It was pointed out in [46] that this phase can be written
in a more suggestive form by using the Atiyah–Patodi–Singer theorem, which says that

η(A(c)) = η(0) +
4y
π
S(A(c)). (1.2.68)

Here y is the dual Coxeter number of G (for U(N), y = N), and η(0) is the eta invariant of the trivial
connection. Let us denote by

dG = dim(G), (1.2.69)

the dimension of the gauge group. The operator involved in the calculation of η(0) is just dG copies of
the “gravitational" operator − ∗ d, which is only coupled to the metric. We can then write

η(0) = dG ηgrav, (1.2.70)

where ηgrav is the “gravitational" eta invariant of − ∗ d . We then find,

Z
(c)
1−loop(M) =

1
vol(Hc)

(
k

4π2

)− 1
2 dimH0(M,g)

ei(k+y)S(A(c))+ iπ
4 dGηgrav

√
τR(M,A(c)). (1.2.71)

This formula exhibits a one–loop renormalization of k

k → k + y (1.2.72)
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which is simply a shift by the dual Coxeter number [46]. However, different regularizations of the theory
seem to lead to different shifts [59].

When A(c) = 0 is the trivial flat connection, one has that Hc = G, where G is the gauge group,
and the cohomology twisted by A(c) reduces to the ordinary cohomology. The Ray–Singer torsion is the
torsion τR(M) of the ordinary de Rham differential, to the power dG. We then obtain, for the trivial
connection,

Z1−loop(M) =
1

vol(G)

(
k

4π2

)−dG/2
e

iπ
4 dGηgrav (τR(M))dG/2 . (1.2.73)

As explained in detail in [46], the phase in (1.2.71) and (1.2.73) involving the η invariant is metric-
dependent. In constructing a topological field theory out of Chern–Simons gauge theory, as in [46], one
wants to preserve topological invariance, and an appropriate counterterm has to be added to the action.
The counterterm involves the gravitational Chern–Simons action S(ω), where ω is the spin connection.
However, this action is ambiguous, and it depends on a trivialization of the tangent bundle toM . Such a
choice of trivialization is called a framing of the three-manifold. The difference between two trivializations
can be encoded in an integer s, and when one changes the trivialization the gravitational Chern–Simons
action changes as

S(ω)→ S(ω) + 2πs, (1.2.74)

similarly to the gauge Chern–Simons action. According to the Atiyah–Patodi–Singer theorem, the com-
bination

1
4
ηgrav +

1
12
S(ω)
2π

(1.2.75)

is a topological invariant. It depends on the choice of framing of M , but not on its metric. Therefore, if
we modify (1.2.73) by including in the phase an appropriate multiple of the gravitational Chern–Simons
action,

exp
(

iπ
4
dGηgrav

)
→ exp

[
iπdG

(
ηgrav

4
+

1
12
S(ω)
2π

)]
, (1.2.76)

the resulting one-loop partition function is a topological invariant of the framed three-manifold M . If we
change the framing of M by s units, the above factor induces a change in the partition function which
at one-loop is of the form

Z(M)→ exp
(

2πis · dG
24

)
Z(M). (1.2.77)

One of the most beautiful results of [46] is that Chern–Simons theory is exactly solvable on any
three-manifold M , and its partition function can be computed exactly as a function of k, for any gauge
group G, by using current algebra in two dimensions. In particular, one can compute the exact change
of the partition function under a change of framing, and one finds

Z(M)→ exp
(

2πis · c
24

)
Z(M), (1.2.78)

where
c =

kdG
k + y

. (1.2.79)

A detailed explanation of the exact solution of CS theory would take us too far, and we refer the reader
to the original paper [46] or to the presentation in [60] for more details. We will however list later on
the relevant results when M = S3.

1.3 The free energy at weak coupling
The partition function of a CFT on S3 should encode information about the number of degrees of
freedom of the theory, in the sense that at weak coupling it should scale as the number N of elementary
constituents. This follows simply from the factorization property of the partition function in the absence
of interactions:

Z(S3,N ) ≈
(
Z(S3, 1)

)N
. (1.3.1)

For example, a gauge theory with gauge group U(N) has at weak coupling N2 degrees of freedom, and
we should expect the free energy on the three-sphere to scale in this regime as

F (S3) ∼ O(N2). (1.3.2)
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Of course, at strong coupling this is not necessarily the case.
In this section we will compute the partition function on S3 of supersymmetric Chern–Simons–matter

theories in the weak coupling approximation, i.e. at one loop. First, we will do the computation in Chern–
Simons theory, and then we will consider the much simpler case of supersymmetric matter multiplets.

1.3.1 Chern–Simons theory on S3

In the previous section we presented the general procedure to calculate the one-loop contribution of
Chern–Simons theory on any three-manifold, around an isolated flat connection. This procedure can be
made very concrete when the manifold is S3. In this case there is only one flat connection, the trivial one
A(c) = 0, and we can use (1.2.73). Therefore, we just have to compute the Ray–Singer torsion τ(S3) for
the standard de Rham differential, i.e. the quotient of determinants appearing in (1.2.61) with A(c) = 0
(a similar calculation was made in Appendix A of [56]).

We endow S3 with its standard metric (the one induced by its standard embedding in R4 with
Euclidean metric), and we choose the radius r = 1 (it is easy to verify explicitly that the final result
is independent of r). The determinant of the scalar Laplacian on the sphere can be computed very
explicitly, since its eigenvalues are known to be (see the Appendix)

λn = n(n+ 2), n = 0, 1, · · · (1.3.3)

where n is related to j in (A.45) by n = 2j. The degeneracy of this eigenvalue is

dn = (n+ 1)2. (1.3.4)

Removing the zero eigenvalue just means that we remove n = 0 from the spectrum. To calculate the
determinant we must calculate the zeta function,

ζ∆0(s) =
∞∑
n=1

dn
λsn

=
∞∑
n=1

(n+ 1)2

(n(n+ 2))s
=
∞∑
m=2

m2

(m2 − 1)s
. (1.3.5)

This zeta function can not be written in closed form, but its derivative at s = 0 is easy to calculate. The
calculation can be done in many ways, and general results for the determinant of Laplacians on Sm can
be found in for example [61, 62]. We will follow a simple procedure inspired by [63]. We split

m2

(m2 − 1)s
=

1
m2(s−1)

+
s

m2s
+R(m, s), (1.3.6)

where

R(m, s) =
m2

(m2 − 1)s
− 1
m2(s−1)

− s

m2s
(1.3.7)

which decreases as m−2s−2 for large m, and therefore leads to a convergent series for all s ≥ −1/2 which
is moreover uniformly convergent. Therefore, it is possible to exchange sums with derivatives. The
derivative of R(m, s) at s = 0 can be calculated as

dR(m, s)
ds

∣∣∣∣
s=0

= −1−m2 log
(

1− 1
m2

)
. (1.3.8)

The sum of this series can be explicitly calculated by using the Hurwitz zeta function, and one finds

−
∞∑
m=2

[
1 +m2 log

(
1− 1

m2

)]
=

3
2
− log(π). (1.3.9)

We then obtain

ζ∆0(s) = ζ(2s− 2)− 1 + s (ζ(2s)− 1) +
∞∑
m=2

R(m, s), (1.3.10)

where ζ(s) is Riemann’s zeta function, and

− ζ ′∆0(0) = log(π)− 2ζ ′(−2). (1.3.11)
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The final result can be expressed in terms of ζ(3), since

ζ ′(−2) = −ζ(3)
4π2

. (1.3.12)

We conclude that the determinant of the scalar Laplacian on S3 is given by

log det′∆0 = log(π) +
ζ(3)
2π2

. (1.3.13)

We now compute the determinant in the denominator of (1.2.61). We must consider the space of
one-forms on S3, and restrict to the ones that are not in the image of d. These forms are precisely the
vector spherical harmonics, whose properties are reviewed in the Appendix A. The eigenvalues of the
operator d†d are given in (A.52), and they read

λn = (n+ 1)2, n = 1, 2, · · · , (1.3.14)

with degeneracies
dn = 2n(n+ 2). (1.3.15)

The zeta function associated to this Laplacian (restricted to the vector spherical harmonics) is

ζ∆1(s) =
∞∑
n=1

2n(n+ 2)
(n+ 1)2s = 2

∞∑
m=1

m2 − 1
m2s

= 2ζ(2s− 2)− 2ζ(2s), (1.3.16)

and
log det′∆1 = −4ζ ′(−2)− 2 log(2π) = −2 log(2π) +

ζ(3)
π2

. (1.3.17)

Here we have used that
ζ ′(0) = −1

2
log(2π). (1.3.18)

We conclude that
log τ ′R(S3) = log det′∆(0) − 1

2
log det′∆(1) = log(2π2). (1.3.19)

This is in agreement with the calculation of the analytic torsion for general spheres in for example [64].
In view of (1.2.62), and since

vol(S3) = 2π2, (1.3.20)

we find
τR(S3) = 1. (1.3.21)

One can also calculate the invariant (1.2.59) directly, since this is dG times

ζ∆1(0) = −2ζ(0) = 1, (1.3.22)

and it agrees with (1.2.66). Since the eigenvalues of ∗d on the vector spherical harmonics come in pairs
with the same absolute value but opposite signs (see (A.51)), ηgrav = 0. We conclude that, for k > 0,

Z1−loop(S3) =
1

vol(G)

(
k

4π2

)− dG2
. (1.3.23)

In particular, for G = U(N) we have

Z1−loop(S3) =
1

vol(U(N))

(
k

4π2

)−N2
2

(1.3.24)

The volume of U(N) is given by

vol(U(N)) =
(2π)

1
2N(N+1)

G2(N + 1)
, (1.3.25)

where G2(z) is the Barnes function, defined by

G2(z + 1) = Γ(z)G2(z), G2(1) = 1. (1.3.26)
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Notice that
G2(N + 1) = (N − 1)!(N − 2)! · · · 2!1!. (1.3.27)

As we mentioned before, the partition function of Chern–Simons theory on S3 can be computed
exactly for any gauge group. In the case of U(N), the answer is, for k > 0 [46]

Z(S3) =
1

(k +N)N/2

N−1∏
j=1

(
2 sin

πj

k +N

)N−j
. (1.3.28)

Here an explicit choice of framing has been made, but one can compute the partition function for any
choice of framing by simply using (1.2.78). The expansion for large k should reproduce the perturbative
result, and in particular the leading term should agree with the result (1.3.24). Indeed, we have for k
large

Z(S3) ≈ k−N/2
N−1∏
j=1

(
2πj
k

)N−j
= (2π)

1
2N(N−1)

k−N
2/2G2(N + 1), (1.3.29)

which is exactly (1.3.24).

1.3.2 Matter fields

The supersymmetric multiplet contains a conformally coupled complex scalar and a fermion, both in a
representation R of the gauge group. The partition function at one loop is just given by the quotient of
functional determinants

Zmatter
1−loop =

(
det (−iD/ )

det ∆c

)dR
(1.3.30)

where dR is the dimension of the representation, and

∆c = ∆0 +
3
4

(1.3.31)

is the conformal Laplacian (we have set again r = 1). We now compute these determinants.
The eigenvalues of the conformal Laplacian are simply

n(n+ 2) +
3
4
, n = 0, 1, · · · , (1.3.32)

with the same multiplicity as the standard Laplacian, namely (n+ 1)2. We then have

ζ∆c(s) =
∑
n=0

(n+ 1)2(
n(n+ 2) + 3

4

)s =
∞∑
m=1

m2(
m2 − 1

4

)s . (1.3.33)

As in the case of the standard Laplacian, we split

m2(
m2 − 1

4

)s =
1

m2(s−1)
+

s

4m2s
+Rc(m, s), (1.3.34)

where

Rc(m, s) =
m2(

m2 − 1
4

)s − 1
m2(s−1)

− s

4m2s
. (1.3.35)

The derivative of Rc(m, s) at s = 0 is

dRc(m, s)
ds

∣∣∣∣
s=0

= −1
4
−m2 log

(
1− 1

4m2

)
. (1.3.36)

The sum of this series can be explicitly calculated as

−
∞∑
m=1

[
1
4

+m2 log
(

1− 1
4m2

)]
=

1
8
− 1

4
log(2) +

7ζ(3)
8π2

. (1.3.37)
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We then find

ζ∆c
(s) = ζ(2s− 2) +

s

4
ζ(2s) +

∞∑
m=1

Rc(m, s), (1.3.38)

and we conclude that the determinant of the conformal Laplacian on S3 is given by

log det ∆c = −ζ ′∆c
(0) =

1
4

log(2)− 3ζ(3)
8π2

. (1.3.39)

This is in agreement with the result quoted in the Erratum to [65]1.
Let us now consider the determinant (in absolute value) for the spinor field. We have, using (A.66),

ζ|D/ |(s) = 2
∞∑
n=1

n(n+ 1)(
n+ 1

2

)s . (1.3.40)

After a small manipulation we can write it as

ζ|D/ |(s) =2 · 2s−2

∑
m≥1

1
(2m+ 1)s−2

−
∑
m≥1

1
(2m+ 1)s


=2
(
2s−2 − 1

)
ζ(s− 2)− 1

2
(2s − 1) ζ(s),

(1.3.41)

where we have used that∑
m≥0

1
(2m+ 1)s

=
∑
n≥1

1
ns
−
∑
k≥1

1
(2k)s

=
(
1− 2−s

)
ζ(s). (1.3.42)

The regularized number of negative eigenvalues of this operator is given by ζ|D/ |(0)/2 and it vanishes, so
the determinant of the Dirac operator equals its absolute value. We deduce

log det (−iD/ ) = −ζ ′|D/ |(0) = − 3
8π2

ζ(3)− 1
4

log 2. (1.3.43)

Combining the conformal scalar determinant with the spinor determinant we obtain,

log det (−iD/ )− log det ∆c = −1
2

log 2. (1.3.44)

This can be seen directly at the level of eigenvalues. The quotient of determinants is

∞∏
m=1

(
m+ 1

2

)m(m+1) (
m− 1

2

)m(m−1)(
m2 − 1

4

)m2 =
∞∏
m=1

(
m+ 1

2

)m(
m− 1

2

)m (1.3.45)

and its regularization leads directly to the result above (see Appendix C). We conclude that

Zmatter
1−loop = 2−dR/2. (1.3.46)

1.3.3 ABJM theory at weak coupling
We can now calculate the free energy on S3 of ABJM theory. We will restrict ourselves to the “ABJM
slice" where the two gauge groups have the same rank, i.e. the theory originally considered in [1]. We
have two copies of CS theory with gauge group U(N) and opposite levels k, −k, together with four chiral
multiplets in the bifundamental representation of U(N) × U(N). Keeping the first term (one-loop) in
perturbation theory we find, at one-loop,

FABJM(S3) ≈ −N2 log
(

k

4π2

)
− 2 log (vol(U(N)))− 2N2 log(2) (1.3.47)

where the first two terms come from the CS theories, and the last term comes from the supersymmetric
matter. Here we assume k > 0. Notice that the theory with opposite level −k gives the same contribution

1Beware: the arXiv version of this paper gives a wrong result for this determinant.
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as the theory with level k. In order to obtain the planar limit of this quantity, we have to expand the
volume of U(N) at large N . Using the asymptotic expansion of the Barnes function

log G2(N + 1) =
N2

2
log N − 1

12
log N − 3

4
N2 +

1
2
N log 2π + ζ ′(−1)

+
∞∑
g=2

B2g

2g(2g − 2)
N2−2g, (1.3.48)

where B2g are the Bernoulli numbers, we finally obtain the weakly coupled, planar result

FABJM(S3) ≈ N2

{
log(2πλ)− 3

2
− 2 log(2)

}
. (1.3.49)

1.4 Strong coupling and AdS duals
Some SCFTs in three dimensions have AdS duals given by M-theory/string theory on backgrounds of
the form

X = AdS4 ×X6,7, (1.4.1)

where X6,7 is a six-dimensional or seven-dimensional compactification manifold, depending on whether
we consider a superstring or an M-theory dual, respectively. One of the consequences of the AdS/CFT
duality is that the partition function of the Euclidean gauge theory on S3 should be equal to the partition
function of the Euclidean version of M-theory/string theory on the dual AdS background [66], i.e.

ZCFT(S3) = Z(X). (1.4.2)

In the large N limit, we can compute the r.h.s. in classical (i.e. genus zero) string theory, and at
strong coupling it is sufficient to consider the supergravity approximation. This means that the partition
function of the strongly coupled gauge theory on S3 in the planar limit should be given by

ZCFT(S3) ≈ e−I(AdS4) (1.4.3)

where I is the classical gravity action evaluated on the AdS4 metric. This gives a prediction for the
strongly coupled behavior of the gauge theory. However, the gravitational action on AdS4 is typically
divergent, and it has to be regularized in order to obtain finite results. We will now review the method
of holographic renormalization and its application to the calculation of the free energy of ABJM theory
on S3.

1.4.1 Holographic renormalization
The gravitational action in an Euclidean space with boundary has two contributions. The first contri-
bution is the bulk term, given by the Einstein–Hilbert action

Ibulk = − 1
16πGN

∫
M

dn+1x
√
G (R− 2Λ) (1.4.4)

where GN is Newton’s constant in n+1 dimensions and G is the (n+1)-dimensional metric. The second
contribution is the surface term [67]

Isurf = − 1
8πGN

∫
∂M

K|γ|1/2dnx, (1.4.5)

where ∂M is the boundary of spacetime, γ is the metric induced by G on the boundary, and K is the
extrinsic curvature of the boundary. K satisfies the useful relation (see for example [68])

√
γK = Ln

√
γ (1.4.6)

where n is the normal unit vector to ∂M , and Ln is the Lie derivative along this vector. Both actions,
when computed on an AdS background, diverge due to the non-compactness of the space. For example,
after using Einstein’s equations, the bulk action of an AdS space of radius L can be written as

Ibulk =
n

8πGNL2

∫
dn+1x

√
G (1.4.7)
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which is proportional to the volume of space-time, and it is divergent.
In order to use the AdS/CFT correspondence, we have to regularize the gravitational action in an

appropriate way. The procedure which has emerged in studies of the AdS/CFT correspondence is to
introduce a set of universal counterterms, depending only on the induced metric on the boundary, which
lead to finite values of the gravitational action, energy-momentum tensor, etc. This procedure gives
values for the gravitational quantities in agreement with the corresponding quantities computed in the
CFT side, and we will adopt it here. It is sometimes called “holographic renormalization" and it has
been developed in for example [69, 70, 71, 72]. We now present the basics of holographic renormalization
in AdS. Useful reviews, focused on AdS5, can be found in for example [73, 74].

An asymptotically AdS metric in n+ 1 dimensions with radius L and cosmological constant

Λ = −n(n− 1)
2L2

(1.4.8)

can be written near its boundary at u = 0 as

ds2 = L2

[
du2

u2
+

1
u2
gij(u2, x)dxidxj

]
. (1.4.9)

The metric gij(u2, x) can be expanded in a power series in u near u = 0,

gij(u2, x) = g
(0)
ij (x) + u2g

(2)
ij (x) + u4

[
g(4)(x) + log(u2)h(4)(x)

]
+ · · · (1.4.10)

where the first term, g(0)
ij , is the metric of the CFT on the boundary. The coefficients g(2n)

ij appearing
here can be solved recursively in terms of g(0)

ij by plugging (1.4.10) in Einstein’s equations. One finds,
for example [72]2

g
(2)
ij = − 1

n− 2

(
Rij −

1
2(n− 1)

Rg
(0)
ij

)
, (1.4.11)

where Rij and R are the Ricci tensor and curvature of g(0)
ij . The resulting metric is then used to compute

the gravitational action with a cut-off at u = ε which regulates the divergences,

Iε = − 1
16πGN

∫
Mε

dn+1x
√
G

(
R+

n(n− 1)
L2

)
− 1

8πGN

∫
∂Mε

K|γ|1/2dnx. (1.4.12)

Here, Mε is the manifold with u ≥ ε and a boundary ∂Mε at u = ε. To calculate the boundary term, we
consider the normal vector to the hypersurfaces of constant u,

nu = − u
L
. (1.4.13)

The minus sign is due to the fact that the boundary is at u = 0, so that the normal vector points towards
the origin. The induced metric is

γijdxidxj =
L2

u2
gij(u2, x)dxidxj , (1.4.14)

with element of volume
√
γ =

(
L

u

)n√
g. (1.4.15)

The intrinsic curvature of the hypersurface at constant u is then

√
γK = Ln

√
γ = − u

L
∂u

[(
L

u

)n√
g

]
=
nLn−1

un

(
1− 1

n
u∂u

)√
g. (1.4.16)

We then find,

Iε =
nLn−1

8πGN

∫
dnx

∫
ε

du
un+1

√
g − nLn−1

8πGN εn

∫
dnx

(
1− 1

n
u∂u

)√
g
∣∣∣
u=ε

. (1.4.17)

2The sign in the curvature is opposite to the conventions in [72], which give a positive curvature to AdS.
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The singularity structure of this regulated action is [69, 72]

Iε =
Ln−1

16πGN

∫
dnx

√
g(0)

(
ε−na(0) + ε−n+2a(2) + · · · − 2 log(ε)a(n)

)
+O(ε0). (1.4.18)

The logarithmic divergence appears only when n is even. In order to regularize power-type divergences
in n = 3 and n = 4, it suffices to calculate the first two coefficients, a(0) and a(2). Let us now calculate
these coefficients (the next two are computed in [72]). We first expand,

det g = det g(0)
(

1 + u2Tr
(
g(0)−1g(2)

)
+ · · ·

)
, (1.4.19)

so that √
g(u2, x) =

√
g(0)

(
1 +

u2

2
Tr
(
g(0)−1g(2)

)
+ · · ·

)
,(

1− 1
n
u∂u

)√
g(u2, x) =

√
g(0)

(
1 +

n− 2
2n

u2Tr
(
g(0)−1g(2)

)
+ · · ·

)
.

(1.4.20)

The regulated Einstein–Hilbert action gives

nLn−1

8πGN

∫
dnx

√
g(0)

[
1
nεn

+
1

2(n− 2)εn−2
Tr
(
g(0)−1g(2)

)
+ · · ·

]
, (1.4.21)

while the regulated Gibbons–Hawking term gives

− nLn−1

8πGN

∫
dnx

√
g(0)

[
1
εn

+
n− 2

2nεn−2
Tr
(
g(0)−1g(2)

)
+ · · ·

]
. (1.4.22)

In total, we find

Iε =
Ln−1

16πGN

∫
dnx

√
g(0)

[
2(1− n)

εn
− n2 − 5n+ 4

(n− 2)εn−2
Tr
(
g(0)−1g(2)

)
+ · · ·

]
, (1.4.23)

and we deduce,
a(0) = 2(1− n),

a(2) = − (n− 4)(n− 1)
n− 2

Tr
(
g(0)−1g(2)

)
, n 6= 2.

(1.4.24)

The counterterm action is obtained by using a gravitational analogue of the minimal subtraction scheme,
and it is given by minus the divergent part of Iε,

Ict =
Ln−1

16πGN

∫
dnx

√
g(0)

[
2(n− 1)

εn
+

(n− 4)(n− 1)
(n− 2)εn−2

Tr
(
g(0)−1g(2)

)
+ · · ·

+ 2 log(ε)a(n)

]
.

(1.4.25)

As pointed out in [70], we should re-write this in terms of the induced metric in the boundary (1.4.14),
evaluated at u = ε. From (1.4.20) we deduce

√
g(0) =

( ε
L

)n(
1− ε2

2
Tr
(
g(0)−1g(2)

)
+O(ε4)

)√
γ. (1.4.26)

On the other hand, from (1.4.11) we obtain

Tr
(
g(0)−1g(2)

)
= − 1

n− 2

(
g

(0)
ij R

ij − 1
2(n− 1)

Rg
(0)
ij g

(0)ij

)
= − 1

2(n− 1)
R

= − L2

2(n− 1)ε2
R[γ] + · · · ,

(1.4.27)

where in the first line the Ricci tensor and curvature are computed for g(0)
ij , while in the second line the

curvature is computed for the induced metric γ. Plugging these results into the counterterm action we
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find

Ict =
1

16πGNL

∫
dnx
√
γ

(
1 +

L2

4(n− 1)
R[γ] + · · ·

)
×
[
2(n− 1)− n− 4

2(n− 2)
L2R[γ] + 2 log(ε)a(n)[γ] + · · ·

]
=

1
8πGN

∫
dnx
√
γ

(
2 log(ε)a(n)[γ] +

n− 1
L

+
L

2(n− 2)
R[γ] + · · ·

)
,

(1.4.28)

which is the result written down in [71, 72] (for Euclidean signature). This is the counterterm action
which is relevant for AdS in four and five dimensions, and the dots denote higher order counterterms (in
the Riemann tensor of the induced metric) which are needed for higher dimensional spaces [70, 71, 72].
The total, regularized gravitational action is then

I = Ibulk + Isurf + Ict (1.4.29)

and it yields a finite result by construction. The removal of these IR divergences in the gravitational
theory is dual to the removal of UV divergences in the CFT theory. It can be verified in examples that
the gravity answers obtained by holographic renormalization match the answers obtained in CFT on a
curved background after using zeta-function regularization [70]. In the next subsection we work out a
beautiful example of this matching closely related to the techniques developed here, namely the Casimir
energy for N = 4 super Yang–Mills on R× S3, which was first derived in [70].

1.4.2 Free energy in AdS4

We are interested in studying CFTs on Sn. Therefore, in the AdS dual we need the Euclidean version of
the AdS metric with that boundary, which can be written as [71]

ds2 =
dr2

1 + r2/L2
+ r2dΩ2

n (1.4.30)

so that the boundary is at r →∞. This metric can be also written as [66, 71]

ds2 = L2
(
dρ2 + sinh2(ρ)dΩ2

n

)
. (1.4.31)

Let us compute the regularized gravitational action (1.4.29), with a cutoff at the boundary ∂M located
at constant r. The element of volume of the metric G given in (1.4.30) is

√
G =

rn√
1 + r2/L2

√
gSn , (1.4.32)

where gSn is the metric on an n-sphere of unit radius. The bulk action is just (1.4.7), i.e.

Ibulk =
nvol(Sn)
8πGNL

∫ r

0

dρ
ρn√
L2 + ρ2

. (1.4.33)

To calculate the surface action, we notice that the unit normal vector to ∂M is

n =
√

1 + r2/L2
∂

∂r
(1.4.34)

while the induced metric is
γ = r2gSn (1.4.35)

which has the element of volume √
γ = rn

√
gSn (1.4.36)

and scalar curvature

R[γ] =
RSn

r2
=
n(n− 1)

r2
. (1.4.37)

We then obtain
Ln
√
γ = nrn−1

√
1 + r2/L2

√
gSn , (1.4.38)
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and the surface term is

Isurf = −nr
n−1

8πGN

√
1 + r2/L2vol(Sn). (1.4.39)

Finally, the first two counterterms are given by

vol(Sn)
8πGN

[
n− 1
L

rn +
Lrn−2n(n− 1)

2(n− 2)

]
=

vol(Sn)
8πGN

rn(n− 1)
L

[
1 +

n

2(n− 2)
L2

r2

]
. (1.4.40)

Putting everything together we obtain,

I =
vol(Sn)
8πGNL

[
nLn

∫ r/L

0

du
un√

1 + u2
− nrn−1

√
r2 + L2

+ rn(n− 1)
(

1 +
n

2(n− 2)
L2

r2

)]
.

(1.4.41)

We should now take the limit of this expression when r →∞. For n = 3 we find

I =
vol(S3)
8πGNL

(
2L3 +O(r−1)

)
, (1.4.42)

therefore we obtain a finite action given by

I =
πL2

2GN
. (1.4.43)

This will give us the strong coupling prediction for the free energy on S3 of supersymmetric Chern–
Simons–matter theories with an AdS dual.

1.4.3 ABJM theory and its AdS dual
In order to compute the free energy of ABJM theory at strong coupling we have to be more precise
about the gauge/gravity dictionary. We will now write down this dictionary for supersymmetric Chern–
Simons–matter theories, which was first established for ABJM theory in [1]. We will not attempt here
to review the derivation of the duality. A pedagogical introduction can be found in [75].

The AdS duals to the theories we will consider are given by M-theory on

AdS4 ×X7, (1.4.44)

where X7 is a seven-dimensional manifold. In the case of ABJM theory,

X7 = S7/Zk. (1.4.45)

The eleven-dimensional metric and four-form flux are given by the Freund–Rubin background (see [76]
for a review)

ds2
11 = L2

X7

(
1
4

ds2
AdS4

+ ds2
X7

)
,

F =
3
8
L3
X7
ωAdS4 ,

(1.4.46)

where ωAdS4 is the volume form with unit radius. The radius LX7 is determined by the flux quantization
condition

(2π`p)6Q =
∫
X7

?11F = 6L6
X7

vol(X7). (1.4.47)

In this equation, `p is the eleven-dimensional Planck length. The charge Q is given, at large radius, by
the number of M2 branes N , but it receives corrections [77, 78]. In ABJM theory we have

Q = N − 1
24

(
k − 1

k

)
. (1.4.48)

This extra term comes from the coupling ∫
C3 ∧ I8 (1.4.49)
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in M-theory, which contributes to the charge of M2 branes. Here, I8 is proportional to the Euler density
in eight dimensions, and it satisfies ∫

M8

I8 = − χ

24
(1.4.50)

where M8 is a compact eight-manifold. In ABJM theory, the relevant eight-manifold is C4/Zk, with
regularized Euler characteristic

χ
(
C4/Zk

)
= k − 1

k
. (1.4.51)

This leads to the shift in (1.4.48).
One final ingredient that we will need is Newton’s constant in four dimensions. It can be obtained

from the Einstein–Hilbert action in eleven dimensions, which leads to its four-dimensional counterpart
by standard Kaluza–Klein reduction,

1
16πG11

∫
d11x

√
g11R11 →

1
4
· L7

X7

16πG11
vol (X7)

∫
d4x
√
g4R4 =

1
16πGN

∫
d4x
√
g4R4, (1.4.52)

where G11, GN denote the eleven-dimensional and the four-dimensional Newton’s constant, respectively,
and the volume of X7 is calculated for unit radius. In the resulting Einstein–Hilbert action in four
dimensions, the metric and scalar curvature refer to an AdS4 space of radius LX7 , and not LX7/2 as in
(1.4.46). This is the source for the extra factor of 1/4 in the second term. Recalling that

16πG11 =
1

2π
(2π`p)

9
, (1.4.53)

we obtain
1
GN

=
2
√

6π2Q3/2

9
√

vol(X7)
1
L2
X7

. (1.4.54)

It follows that the regularized gravitational action (1.4.43) is given by

I =
πL2

X7

2GN
= Q3/2

√
2π6

27vol(X7)
. (1.4.55)

In particular, for ABJM theory we have

I =
π
√

2
3

k1/2Q3/2. (1.4.56)

In the supergravity and planar approximation we can just set Q = N , and we find indeed that the planar
free energy is given by

− 1
N2

F (S3) ≈
√

2π6

27vol(X7)
1

N1/2
. (1.4.57)

In the next chapter we will reproduce this strong coupling result from the gauge theory side.

1.5 Localization
Localization is an ubiquitous technique in supersymmetric QFT which makes possible to reduce an
infinite-dimensional path integral to a finite dimensional integral. It features prominently in Witten’s
topological quantum field theories of the cohomological type, where one can argue that the semiclassical
approximation is exact, see [79, 83] for reviews and a list of references.

The basic idea of localization is the following. Let δ be a Grassmann-odd symmetry of a theory with
action S(φ), where φ denotes the set of fields in the theory. We assume that the measure of the path
integral is invariant under δ as well (i.e. δ is not anomalous), and that

δ2 = LB (1.5.1)

where LB is a Grassmann-even symmetry. In a Lorentz-invariant, gauge invariant theory, LB could be
a combination of a Lorentz and a gauge transformation. Consider now the perturbed partition function

Z(t) =
∫
Dφ e−S−tδV , (1.5.2)
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where V is a Grassmann-odd operator which is invariant under LB . It is easy to see that Z(t) is
independent of t, since

dZ
dt

= −
∫
Dφ δV e−S−tδV = −

∫
Dφ δ

(
V e−S−tδV

)
= 0. (1.5.3)

Here we have used the fact that δ2V = LBV = 0. In the final step we have used the fact that δ is a
symmetry of the path integral, in order to interpret the integrand as a total derivative. In some cases,
the integral of the total derivative does not vanish due to boundary terms (a closely related example
appears in section 11.3 of [80]), but if the integral decays sufficiently fast in field space one expects the
perturbed partition function Z(t) to be independent of t. This means that it can be computed at t = 0
(where one recovers the original partition function) but also for other values of t, like t → ∞. In this
regime, simplifications typically occur. For example, if δV has a positive definite bosonic part (δV )B ,
the limit t→∞ localizes the integral to a submanifold of field space where

(δV )B = 0. (1.5.4)

It turns out that, in many interesting examples, this submanifold is finite-dimensional. This leads to a
“collpase" of the path integral to a finite-dimensional integral. It is easy to see that this method also
makes it possible to calculate the correlation functions of δ-invariant operators.

In order to see how the method of localization works, let us briefly review a beautiful and simple
example, namely the field theoretical version of the Poincaré–Hopf theorem.

1.5.1 A simple example of localization
The Poincaré–Hopf theorem has been worked out from the point of view of supersymmetric localization
in many references, like for example [79, 81, 83]. Let X be a Riemannian manifold of even dimension
n, with metric gµν , vierbein eaµ, and let Vµ be a vector field on X. We will consider the following
“supercoordinates" on the tangent bundle TX

(xµ, ψµ) ,
(
ψ̄µ, Bµ

)
, (1.5.5)

where the first doublet represents supercoordinates on the base X, and the second doublet represents
supercoordinates on the fiber. ψµ and ψ̄µ are Grasmann variables. The above supercoordinates are
related by the Grasmannian symmetry

δxµ = ψµ,

δψµ = 0,
δψ̄µ = Bµ,

δBµ = 0,
(1.5.6)

which squares to zero, δ2 = 0. With these fields we construct the “action"

S(t) = δΨ, Ψ =
1
2
ψ̄µ
(
Bµ + 2itV µ + Γστνψ̄σψ

νgµτ
)
, (1.5.7)

and we define the partition function of the theory as

ZX(t) =
1

(2π)n

∫
X

dx dψ dψ̄ dB e−S(t). (1.5.8)

Using that
∂gµσ

∂xτ
= −Γµτσg

τσ − Γστνg
τµ, (1.5.9)

one finds that, in the resulting theory, Bµ is a Gaussian field with mean value

Bµ = −itV µ − gµτΓστνψ̄σψ
ν . (1.5.10)

If we integrate it out, we obtain an overall factor

(2π)n/2√
g

, (1.5.11)

and the action becomes

t2

2
gµνV

µV ν − 1
4
Rρσµνψ̄ρψ̄σψ

µψν − it∇µV νψ̄νψµ. (1.5.12)
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We can define orthonormal coordinates on the fiber by using the inverse vierbein,

χa = Eµa ψ̄µ, (1.5.13)

so that the partition function reads

ZX(t) =
1

(2π)n/2

∫
X

dxdψ dχ e−
t2
2 gµνV

µV ν+ 1
4R

ab
µνχaχbψ

µψν+it∇µV νeaνχaψµ . (1.5.14)

It is clear that this partition function should be independent of t, since the action can be written as

S(t) = S(0) + tδV, V = iψ̄µV µ. (1.5.15)

We can then evaluate it in different regimes: t→ 0 or t→∞. The calculation when t = 0 is very easy,
since we just have

ZX(0) =
1

(2π)n/2

∫
X

dxdψ dχ e
1
4R

ab
µνχaχbψ

µψν =
1

(2π)n/2

∫
X

dxPf(R), (1.5.16)

where we have integrated over the Grassmann variables χa to obtain the Pfaffian of the matrix Rab. The
resulting top form in the integrand,

e(X) =
1

(2π)n/2
Pf(R) (1.5.17)

is nothing but the Chern–Weil representative of the Euler class, therefore the evaluation at t = 0 produces
the Euler characteristic of X,

ZX(0) = χ(X). (1.5.18)

Let us now calculate the partition function in the limit t → ∞. We will now assume that V µ has
isolated, simple zeroes pk where V µ(pk) = 0. These are the saddle–points of the “path integral," so
we can write ZX(t) as a sum over saddle–points pk, and for each saddle–point we have to perform a
perturbative expansion. Let ξµ be coordinates around the point pk. We have the expansion,

V µ(x) =
∑
n≥1

1
n!
∂µ1 · · · ∂µnV µ(pk)ξµ1 · · · ξµn . (1.5.19)

After rescaling the variables as

ξ → t−1ξ, ψ → t−1/2ψ, χ→ t−1/2χ, (1.5.20)

the theory becomes Gaussian in the limit t→∞, since higher order terms in the fluctuating fields ξ, ψ, χ
contain at least a power t−1/2. Interactions are suppressed, and the partition function is one-loop exact:

lim
t→∞

ZX(t) =
∑
pk

1
(2π)n/2

∫
X

dξ dψ dχ e−
1
2 gµνH

(k)µ
α H

(k)ν
β ξαξβ+iH(k)ν

µ eaνχaψ
µ

(1.5.21)

where we denoted,
H(k)µ
σ = ∂σV

µ
∣∣
pk
. (1.5.22)

Each term in this sum can now be computed as a product of a bosonic Gaussian integral, times a
Grassmann integral, and we obtain

lim
t→∞

ZX(t) =
∑
pk

1√
g|det H(k)|det(eaµ)detH(k) =

∑
pk

det H(k)

|det H(k)| . (1.5.23)

The equality between (1.5.18) and (1.5.23) is the famous Poincaré–Hopf theorem.
Conceptually, the localization analysis in [2] that we will review now is not very different from this

example, although technically it is more complicated. The key common ingredient in the analysis of the
t → ∞ limit is that the localization locus becomes very simple, and all Feynman diagrams involving at
least two loops are suppressed by a factor t−1/2, so that the one-loop approximation is exact.
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1.5.2 Localization in Chern–Simons–matter theories: gauge sector
We are now ready to use the ideas of localization in supersymmetric Chern–Simons–matter theories
on S3, following [2]. The Grassmann-odd symmetry is simply Q, defined by δε = εQ, where ε is the
conformal Killing spinor satisfying (1.1.19). This symmetry satisfies Q2 = 0, and then it is a suitable
symmetry for localization. To localize in the gauge sector, we add to the CS-matter theory the term

− tSYM, (1.5.24)

which thanks to (1.1.30) and (1.1.15) is of the form QV , and its bosonic part is positive definite. By
the localization argument, the partition function of the theory (as well as the correlators of Q-invariant
operators) does not depend on t, and we can take t→∞. This forces the fields to take the values that
make the bosonic part of (1.1.29) to vanish. Since this is a sum of positive definite terms, they have to
vanish separately. We then have the localizing locus,

Fµν = 0, Dµσ = 0, D +
σ

r
= 0. (1.5.25)

The first equation says that the gauge connection Aµ must be flat, but since we are on S3 the only flat
connection is Aµ = 0. Plugging this into the second equation, we obtain

∂µσ = 0⇒ σ = σ0, (1.5.26)

a constant. Finally, the third equation says that

D = −σ0

r
. (1.5.27)

The localizing locus is indeed finite-dimensional: it is just the submanifold where σ and D are constant
Hermitian matrices, and Aµ = 0.

Let us now calculate the path integral over the vector multiplet in the limit t → ∞. We have
to perform a gauge fixing, and we will choose the standard covariant gauge (1.2.26) as in the case of
Chern–Simons theory. The path integral to be calculated is

1
Vol(G)

(det′∆0)−
1
2

∫
Ker d†

DA
∫

(Ker d)⊥
DCDC e

ik
4πSSCS−tSYM(A)+Sghosts(C,C,A), (1.5.28)

where C,C are ghosts fields. As in the example of the Poincaré–Hopf theorem, we expand the fields
around the localizing locus, and we set

σ = σ0 +
1√
t
σ′,

D = −σ0

r
+

1√
t
D′,

A, λ, C → 1√
t
A,

1√
t
λ,

1√
t
C,

(1.5.29)

where the factors of t are chosen to remove the overall factor of t in the Yang–Mills action. In the
Yang–Mills Lagrangian, only the terms which are quadratic in the fluctuations survive in this limit,
namely,

1
2

∫ √
g d3xTr

(
−Aµ∆Aµ − [Aµ, σ0]2 + ∂µσ

′∂µσ′ + (D′ + σ′)2

+ iλ̄γµ∇µλ+ iλ̄[σ0, λ]− 1
2
λ̄λ+ ∂µC∂

µC

)
,

(1.5.30)

where we set r = 1. We are then left with a Gaussian theory, but with non-trivial quadratic operators
for the fluctuations. In the same way, when we expand (1.1.21) around the fixed-point limit (1.5.29), we
obtain

ik
4π
SSCS =

ik
π

Tr(σ2
0)vol(S3) +O(t−1/2), (1.5.31)

so only the first term survives in the t→∞ limit.
Let us now calculate the path integral when t → ∞. Like in the example of the Poincaré–Hopf

theorem, we just have to compute the one–loop determinants. In this calculation we will only take
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into account the factors which depend explicitly on σ0. The remaining, numerical factors (which might
depend on N , but not on the coupling constant k) can be incorporated afterwards by comparing to the
weak coupling results. The integral over the fluctuation D′ can be done immediately. It just eliminates
the term (D′ + σ′)2. The integral over σ′ and over the ghost field C,C gives

(det′∆0)
1
2 (1.5.32)

which cancels the overall factor in (1.5.28).
Before proceeding, we just note that due to gauge invariance we can diagonalize σ0 so that it takes

values in the Cartan subalgebra. This introduces the usual Vandermonde factor in the integral over σ0,
namely ∏

α>0

(α(σ0))2
, (1.5.33)

where α denote the roots of the Lie algebra g, and α > 0 are the positive roots. Using the Cartan
decomposition of g, we can write Aµ as

Aµ =
∑
α

AαµXα + hµ (1.5.34)

In this equation, Xα are representatives of the root spaces of G, normalized as

Tr(XαXβ) = δα+β , (1.5.35)

where δα+β is one if α + β = 0, and zero otherwise. In (1.5.34), hµ is the component of Aµ along
the Cartan subalgebra. Notice that this part of Aµ will only contribute a σ0-independent factor to the
one-loop determinant, so we will ignore it. We have

[σ0, Aµ] =
∑
α

α(σ0)AαµXα (1.5.36)

and a similar equation for λ. Plugging this into the action, we can now write it in terms of ordinary (as
opposed to matrix valued) vectors and spinors

1
2

∫ √
gd3x

∑
α

(
gµνA−αµ

(
−∆ + α(σ0)2

)
Aαν + λ̄−α

(
iγµ∇µ + iα(σ0)− 1

2

)
λα
)
. (1.5.37)

We now have to calculate the determinants of the above operators. The integration over the fluctuations
of the gauge field is restricted, as in the Chern–Simons case, to the vector spherical harmonics. Using
the results (1.3.14), (1.3.15), we find that the bosonic part of the determinant is:

det(bosons) =
∏
α

∞∏
n=1

(
(n+ 1)2 + α(σ0)2

)2n(n+2)
. (1.5.38)

For the gaugino, we can use (A.66) to write the fermion determinant as:

det(fermions) =
∏
α

∞∏
n=1

(
(n+ iα(σ0))(−n− 1 + iα(σ0))

)n(n+1)

, (1.5.39)

and the quotient gives

Zgauge
1-loop[σ0] =

∏
α

∞∏
n=1

(n+ iα(σ0))n(n+1)(−n− 1 + iα(σ0))n(n+1)

((n+ 1)2 + α(σ0)2)n(n+2)

=
∏
α

∞∏
n=1

(n+ iα(σ0))n(n+1)(−n− 1 + iα(σ0))n(n+1)

(n+ iα(σ0))(n−1)(n+1)(n+ 1− iα(σ0))n(n+2)
,

(1.5.40)

up to a σ0-independent sign. We see there is partial cancellation between the numerator and the denom-
inator, and this becomes:

Zgauge
1-loop[σ0] =

∏
α

∞∏
n=1

(n+ iα(σ0))n+1

(n− iα(σ0))n−1
=
∏
α>0

∞∏
n=1

(n2 + α(σ0)2)n+1

(n2 + α(σ0)2)n−1

=
∏
α>0

∞∏
n=1

(n2 + α(σ0)2)2,

(1.5.41)



42 CHAPTER 1. CHERN–SIMONS–MATTER THEORIES AND THEIR GRAVITY DUALS

where we used the fact that the roots split into positive roots α > 0 and negative roots −α, α > 0. We
finally obtain

Zgauge
1-loop[σ0] =

( ∞∏
n=1

n4

)∏
α>0

∞∏
n=1

(
1 +

α(σ0)2

n2

)2

. (1.5.42)

We can regularize this infinite product with the zeta function. This will lead to a finite, numerical result
for the infinite product

∞∏
n=1

n4. (1.5.43)

On the other hand, we can use the well-known formula

sinh(πz)
πz

=
∏
n=1

(
1 +

z2

n2

)
(1.5.44)

to write

Zgauge
1-loop[σ0] ∝

∏
α>0

(
sinh(πα(σ0))
πα(σ0)

)2

, (1.5.45)

where the proportionality factor is independent of σ0. We conclude that the localization of the vector
multiplets leads to a total contribution to the partition function∫

dµ
∏
α>0

(
2 sinh

(
α
(µ

2

)))2

e−
1

2gs
Tr(µ2) (1.5.46)

where we defined the convenient coupling,

gs =
2πi
k

(1.5.47)

and we wrote
σ0 =

µ

2π
, (1.5.48)

where µ takes values in the Cartan subalgebra.

1.5.3 Localization in Chern–Simons–matter theories: matter sector
Let us now consider the matter sector. We will follow the computation in [43], which simplifies a little
bit the original computation in [2]. As shown in (1.1.43), the matter Lagrangian is in itself a total
superderivative, so we can introduce a coupling t in the form

− tSmatter. (1.5.49)

By the by now familiar localization argument, the partition function is independent of t, as long as t > 0,
and we can compute it for t = 1 (which is the original case) or for t → ∞. We can also restrict this
Lagrangian to the localization locus of the gauge sector. The matter kinetic terms are then

Lφ =gµν∂µφ̄∂νφ+ φ̄σ2
0φ+

2i(∆− 1)
r

φ̄σ0φ+
∆(2−∆)

r2
φ̄φ,

Lψ =− iψ̄γµ∂µψ + iψ̄σ0ψ −
∆− 2
r

ψ̄ψ.

The real part of the bosonic Lagrangian is positive definite, and it is minimized (and equal to zero) when

φ = 0. (1.5.50)

Like before, in the t→∞ limit, only quadratic terms in the matter fields contribute to the localization
computation. In particular, there is no contribution from the superpotential terms involving the matter
multiplets, like (1.1.44). After using (A.43) and (A.61), we find that the operators governing the quadratic
fluctuations around this fixed point are given by the operators

Oφ =
1
r2

{
4L2 − (∆− irσ0)(∆− 2− irσ0)

}
,

Oψ =
1
r
{4L · S + irσ0 + 2−∆} . (1.5.51)
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Their eigenvalues are, for the bosons,

λφ(n) = r−2(n+ 2 + irσ0 −∆)(n− irσ0 + ∆), n = 0, 1, 2, · · · , (1.5.52)

with multiplicity (n+ 1)2, and for the fermions

λψ(n) = r−1(n+ 1 + irσ0 −∆), r−1(−n+ irσ0 −∆), n = 1, 2, · · · , (1.5.53)

with multiplicity n(n+ 1). We finally obtain, after setting r = 1,

|det∆ψ|
det∆φ

=
∏
m>0

(m+ 1 + irσ0 −∆)m(m+1)(m− irσ0 + ∆)m(m+1)

(m+ 1 + irσ0 −∆)m2(m− 1− irσ0 + ∆)m2 , (1.5.54)

and we conclude
Zmatter

1-loop [σ0] =
∏
m>0

(m+ 1−∆ + irσ0

m− 1 + ∆− irσ0

)m
. (1.5.55)

As a check, notice that, when ∆ = 1/2 and σ0 = 0, we recover the quotient of determinants (1.3.45) of
the free theory. The quantity (1.5.55) can be easily computed by using ζ-function regularization [43, 82].
Denote

z = 1−∆ + irσ0 (1.5.56)

and
`(z) = logZmatter

1-loop [σ0]. (1.5.57)

We can regularize this quantity as

`(z) = − ∂

∂s

∣∣∣∣
s=0

∞∑
m=1

(
m

(m+ z)s
− m

(m− z)s
)
. (1.5.58)

On the other hand,

∞∑
m=1

(
m

(m+ z)s
− m

(m− z)s
)

= ζH(s− 1, z)− zζH(s, z)− ζH(s− 1,−z)− zζH(s,−z), (1.5.59)

where

ζH(s, z) =
∞∑
m=0

1
(m+ z)s

(1.5.60)

is the Hurwitz zeta function. Using standard properties of this function (see for example [63]), one finally
finds the regularized result

`(z) = −z log
(
1− e2πiz

)
+

i
2

(
πz2 +

1
π
Li2(e2πiz)

)
− iπ

12
. (1.5.61)

As a check of this, notice that

`

(
1
2

)
= −1

2
log 2 (1.5.62)

in agreement with (1.3.44).
There is an important property of `(z), namely when ∆ = 1/2 (canonical dimension) one has

1
2

(`(z) + `(z∗)) = −1
2

log (2 cosh(πrσ0)) . (1.5.63)

To prove this, we write

z =
1
2

+ iθ, (1.5.64)

and we compute

1
2

(`(z) + `(z∗)) = −1
2

log (2 cosh(πθ)) +
1
2
πiθ2 +

iπ
24

+
i

4π
(
Li2(−e−2πθ) + Li2(−e2πθ)

)
. (1.5.65)
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After using the following property of the dilogarithm,

Li2(−x) + Li2(−x−1) = −π
2

6
− 1

2
(log(x))2

, (1.5.66)

we obtain (1.5.63).
When the matter is in a self-conjugate representation of the gauge group, the set of eigenvalues of

σ0 is invariant under change of sign, therefore we can calculate the contribution of such a multiplet by
using (1.5.63). We conclude that for such a matter multiplet,

Zmatter
1-loop [µ] =

∏
Λ

(
2 cosh

Λ(µ)
2

)−1/2

, (1.5.67)

where we set r = 1 and we used the variable µ in the Cartan defined in (1.5.48). The product is over
the weights Λ of the representation of the matter multiplet. For general representations and anomalous
dimensions, one has to use the more complicated result above for `(z).

1.5.4 The Chern–Simons matrix model
As a first application of the results of localization, let us consider pure supersymmetric Chern–Simons
theory, defined by the action (1.1.21). If we don’t add matter to the theory, the fields D, σ and λ, λ̄ are
auxiliary and they can be integrated out. In other words, supersymmetric Chern–Simons theory on S3

should be equivalent to pure (bosonic) Chern–Simons theory. There is however an important difference:
in super-Chern–Simons theories with at least N = 2 supersymmetry, there is no renormalization of the
coupling k due to the extended supersymmetry [84]. The localization argument developed above says
that the partition function of Chern–Simons theory on S3 with gauge group G should be proportional
to the matrix model (1.5.46):

ZCS(S3) ∝
∫

dµ
∏
α>0

(
2 sinh

α · µ
2

)2

e−
1

2gs
µ2
, (1.5.68)

where we regard µ as a weight and we use the standard Cartan–Killing inner product in the space of
weights. For example, in the case of G = U(N), if we write µ and the positive roots in terms of an
orthonormal basis ei of the weight lattice,

µ =
N∑
i=1

µiei, αij = ei − ej , i < j, (1.5.69)

we find

ZCS(S3) ∝
∫ N∏

i=1

dµi
∏
i<j

(
2 sinh

µi − µj
2

)2

e−
1

2gs

PN
i=1 µ

2
i . (1.5.70)

The proportionality constant appearing in (1.5.68) should be independent of the coupling constant k,
and it is only a function of N . The matrix model (1.5.46) is a “deformation" of the standard Gaussian
matrix model. It has a Gaussian weight, but instead of displaying the standard Vandermonde interaction
between eigenvalues (1.5.33) it has a “trigonometric" deformation involving the sinh. This interaction
reduces to the standard one for small α · µ, which corresponds in the U(N) case to a small separation
between eigenvalues.

The matrix model (1.5.46), with a sinh kernel, was first introduced in [85]. It was later rederived using
geometric localization techniques in [86], and abelianization techniques in [87]. As we have seen following
[2], it can be derived in an elegant and simple way by using supersymmetric localization. Actually, the
matrix integral appearing in the r.h.s. of (1.5.68) can be calculated in a very simple way by using Weyl’s
denominator formula, as pointed out in for example [88]. This formula reads,∑

w∈W
ε(w)ew(ρ)·u =

∏
α>0

2 sinh
α · u

2
. (1.5.71)

In this formula, W is the Weyl group of G, ε(w) is the signature of w, and ρ is the Weyl vector, given
by the sum of the fundamental weights. Using this formula, the matrix integral reduces to a sum of
Gaussian integrals which can be calculated immediately, and one finds

(det(C))1/2 (2πgs)
r/2 |W| egsρ2 ∑

w∈W
ε(w)egsρ·w(ρ), (1.5.72)
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where C is the inverse matrix of the inner product in the space of weights (for simply connected G, this
is the Cartan matrix), and r is the rank of G. Using again Weyl’s denominator formula we find,∑

w∈W
ε(w)egsρ·w(ρ) = i|∆+|

∏
α>0

2 sin
(πα · ρ

k

)
(1.5.73)

where |∆+| is the number of positive roots of G. The matrix integral then gives,

(det(C))1/2 (2π)r |W| i
|∆+|−r/2

kr/2
e
πi
6k dGy

∏
α>0

2 sin
(πα · ρ

k

)
(1.5.74)

where we have used Freudenthal–de Vries formula

ρ2 =
1
12
dGy. (1.5.75)

The result (1.5.74) is indeed proportional to the partition function of Chern–Simons theory on S3, and we
can use the result to fix the normalization, N -dependent factor in the matrix integral. Let us particularize
for G = U(N). Then, the matrix integral is

i−
N2
2 (2π)NN ! e

πi
6kN(N2−1)k−N/2

N∏
j=1

[
2 sin

(
πj

k

)]N−j
, (1.5.76)

which is indeed proportional to (1.3.28) (after changing k → k −N), up to an overall factor

i−
N2
2 (2π)NN ! e

πi
6kN(N2−1). (1.5.77)

The phase appearing here depends on k, and it has the right dependence on k, N to be understood as a
change of framing of S3 in the result (1.3.28). We can now use the above result to fix the normalization
in the matrix model describing supersymmetric Chern–Simons theory, and we find

ZCS

(
S3
)

=
i−

N2
2

N !

∫ N∏
i=1

dµi
2π

∏
i<j

(
2 sinh

µi − µj
2

)2

e−
1

2gs

PN
i=1 µ

2
i . (1.5.78)

We will refer to this model as the Chern–Simons matrix model. Later on we will study its large N limit.
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Chapter 2

’t Hooft limit and genus expansion

In this chapter we investigate in detail the matrix model of ABJM theory using the standard and powerful
tools of matrix models such as spectral curve and genus expansion. The organization of the chapter is as
follows. First section 2.1 we give a review the standard matrix model techniques for conventional matrix
models. In section 2.2 we relate ABJM matrix model to the lens space matrix model and construct the
planar solution. In section 2.3 we consider the moduli space of the ABJM theory and its relation to
topological strings in local P1 × P1. Then in the sections 2.4-2.6 we analyze the behavior near three
different special points of the moduli space. In particular in section 2.5 find the asympotics of the free
energy and Wilson loops in the strong coupling limit which agrees with the predicitons from the string
theory side. In section 2.7 we find non-planar corrections to the v.e.v.’s of Wilson loops and also consider
generalization to giant Wilson loops. In sections 2.8-2.11 we study the ABJM theory with flavors and we
develop a geometrical method to analyze the strong coupling behavoir without finding exact interpolation
functions. In section 2.12 we find higher genus free energies of ABJM theory. In section 2.13, from the
analysis of their lagre order behaviour, we are able to find instanton-type corrections which are otherwise
invisible in the ’t Hooft expansion. In section 2.14 we argue that they are related to membrane instantons
on the string theory side.

2.1 Matrix models at large N

In this section we will review some standard techniques of conventional matrix models, and in the next
sections we will use them to analyze the matrix models appearing in supersymmetric Chern–Simons–
matter theories. A more detailed treatment of matrix models in the large N expansion, as well as a
complete list of references, can be found in [24, 89, 90].

2.1.1 Saddle-point equations and one-cut solution
Let us consider the matrix model partition function

Z =
1
N !

1
(2π)N

∫ N∏
i=1

dλi ∆2(λ)e−
1
gs

PN
i=1 V (λi). (2.1.1)

V (λ), called the potential of the matrix model, will be taken to be a polynomial

V (λ) =
1
2
λ2 +

∑
p≥3

gp
p
λp (2.1.2)

where the gp are coupling constants of the model. In (2.1.1),

∆2(λ) =
∏
i<j

(λi − λj)2 (2.1.3)

is the Vandermonde determinant (1.5.33) for the group U(N). The integral (2.1.1) is typically obtained
as a reduction to eigenvalues of integrals over the space of N × N Hermitian matrices, see [89, 90] for
more details. We want to study Z in the so-called ’t Hooft limit, in which

gs → 0, N →∞, (2.1.4)

47
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but the ‘t Hooft parameter of the matrix model

t = gsN (2.1.5)

is fixed. In particular, we want to study the leading asymptotic behavior of the free energy

F = logZ (2.1.6)

in this limit. Let us write the partition function (2.1.1) as follows:

Z =
1
N !

∫ N∏
i=1

dλi
2π

eg
−2
s Seff (λ) (2.1.7)

where the effective action is given by

Seff(λ) = − t

N

N∑
i=1

V (λi) +
2t2

N2

∑
i<j

log |λi − λj |. (2.1.8)

We can now regard g2
s as a sort of ~, in such a way that, as gs → 0 with t fixed, the integral (2.1.7) will

be dominated by a saddle-point configuration that extremizes the effective action. Notice that, since a
sum over N eigenvalues is roughly of order N , in the ’t Hooft limit the effective action is of order O(1),
and the free energy scales as

F (gs, t) ≈ g−2
s F0(t). (2.1.9)

F0(t) is called the genus zero, or planar, free energy of the matrix model, and it is obtained by evaluating
the effective action at the saddle point. This dominant contribution is just the first term in an asymptotic
expansion around gs = 0,

F =
∞∑
g=0

F0(t)g2g−2
s . (2.1.10)

In order to obtain the saddle-point equation, we just vary Seff(λ) w.r.t. the eigenvalue λi. We obtain
the equation

1
2t
V ′(λi) =

1
N

∑
j 6=i

1
λi − λj

, i = 1, · · · , N. (2.1.11)

This equation can be given a simple interpretation: we can regard the eigenvalues as coordinates of a
system of N classical particles moving on the real line. (2.1.11) says that these particles are subject to
an effective potential

Veff(λi) = V (λi)−
2t
N

∑
j 6=i

log |λi − λj | (2.1.12)

which involves a logarithmic Coulomb repulsion between eigenvalues. For small ’t Hooft parameter, the
potential term dominates over the Coulomb repulsion, and the particles tend to be at a critical point x∗
of the potential: V ′(x∗) = 0. As t grows, the logarithmic Coulomb interaction will force the eigenvalues
to repel each other and to spread out away from the critical point.

To encode this information about the equlibrium distribution of the particles, it is convenient to
define an eigenvalue distribution (for finite N) as

ρ(λ) =
1
N

N∑
i=1

〈δ(λ− λi)〉, (2.1.13)

where the λi solve (2.1.11) in the saddle-point approximation. In the large N limit, it is reasonable to
expect that this distribution becomes a continuous distribution ρ0(λ). As we will see in a moment, this
distribution has a compact support. The simplest case occurs when ρ0(λ) vanishes outside a connected
interval C = [a, b]. This is the so-called one-cut solution. Based on the considerations above, we expect
C to be centered around a critical point x∗ of the potential. In particular, as t→ 0, the interval C should
collapse to the point x∗.

We can now write the saddle-point equation in terms of continuum quantities, by using the rule

1
N

N∑
i=1

f(λi)→
∫
C
f(λ)ρ0(λ)dλ. (2.1.14)
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Notice that the distribution of eigenvalues ρ0(λ) satisfies the normalization condition∫
C
ρ0(λ)dλ = 1. (2.1.15)

The equation (2.1.11) then becomes

1
2t
V ′(λ) = P

∫
C

ρ0(λ′)dλ′

λ− λ′ (2.1.16)

where P denotes the principal value of the integral. The above equation is an integral equation that
allows one in principle to compute ρ0(λ), given the potential V (λ), as a function of the ’t Hooft parameter
t and the coupling constants. Once ρ0(λ) is known, one can easily compute F0(t), since the effective
action in the continuum limit is a functional of ρ0:

Seff(ρ0) = −t
∫
C

dλ ρ0(λ)V (λ) + t2
∫
C×C

dλ dλ′ ρ0(λ)ρ0(λ′) log |λ− λ′|. (2.1.17)

The planar free energy is given by
F0(t) = Seff(ρ0). (2.1.18)

We can obtain (2.1.11) directly in the continuum formulation by computing the extremum of the
functional

S(ρ0,Γ) = Seff(ρ0) + Γ
(
t

∫
C

dλ ρ0(λ)− t
)

(2.1.19)

with respect to ρ0. Here, Γ is a Lagrange multiplier that imposes the normalization condition of the
density of eigenvalues (times t). This leads to

V (λ) = 2t
∫

dλ′ ρ0(λ′) log |λ− λ′|+ Γ, (2.1.20)

which can be also obtained by integrating (2.1.16) with respect to λ. It is convenient to introduce the
effective potential on an eigenvalue as

Veff(λ) = V (λ)− 2t
∫

dλ′ρ0(λ′) log |λ− λ′|. (2.1.21)

This is of course the continuum counterpart of (2.1.12). In terms of this quantity, the saddle–point
equation (2.1.20) says that the effective potential is constant on the interval C:

Veff(λ) = Γ, λ ∈ C. (2.1.22)

The Lagrange multiplier Γ appears in this way as an integration constant that only depends on t and
the coupling constants. As in any other Lagrange minimization problem, the multiplier is obtained by
taking minus the derivative of the target function w.r.t. the constraint, which in this case is t. We then
find the very useful equation

∂tF0(t) = −Γ = −Veff(b). (2.1.23)

where b is the endpoint of the cut C.
The density of eigenvalues is obtained as a solution to the saddle-point equation (2.1.16). This

equation is a singular integral equation which has been studied in detail in other contexts of physics (see,
for example, [91]). The way to solve it is to introduce an auxiliary function called the resolvent. The
resolvent is defined, at finite N , as

ω(p) =
1
N

〈
N∑
i=1

1
p− λi

〉
, (2.1.24)

and we will denote its large N limit by ω0(p), which is also called the genus zero resolvent. This can be
written in terms of the eigenvalue density as

ω0(p) =
∫
dλ
ρ0(λ)
p− λ. (2.1.25)
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The genus zero resolvent (2.1.25) has three important properties. First of all, due to the normalization
property of the eigenvalue distribution (2.1.15), it has the asymptotic behavior

ω0(p) ∼ 1
p
, p→∞. (2.1.26)

Second, as a function of p it is an analytic function on the whole complex plane except on the interval
C, where it has a discontinuity as one crosses the interval C. This discontinuity can be computed by
standard contour deformations. We have

ω0(p+ iε) =
∫

R
dλ

ρ0(λ)
p+ iε− λ =

∫
R−iε

dλ
ρ0(λ)
p− λ = P

∫
dλ
ρ0(λ)
p− λ +

∫
Cε

dλ
ρ0(λ)
p− λ, (2.1.27)

where Cε is a contour around λ = p in the lower half plane, and oriented counterclockwise. The last
integral can be evaluated as a residue, and we finally obtain,

ω0(p+ iε) = P
∫

dλ
ρ0(λ)
p− λ − πiρ0(p). (2.1.28)

Similarly

ω0(p− iε) =
∫

R+iε

dλ
ρ0(λ)
p− λ = P

∫
dλ
ρ0(λ)
p− λ + πiρ0(p). (2.1.29)

One then finds the key equation

ρ0(λ) = − 1
2πi
(
ω0(λ+ iε)− ω0(λ− iε)

)
. (2.1.30)

From these equations we deduce that, if the resolvent at genus zero is known, the planar eigenvalue
distribution follows from (2.1.30), and one can compute the planar free energy. On the other hand, by
using again (2.1.27) and (2.1.29) we can compute

ω0(p+ iε) + ω0(p− iε) = 2P
∫

dλ
ρ0(λ)
p− λ (2.1.31)

and we then find

ω0(p+ iε) + ω0(p− iε) =
1
t
V ′(p), p ∈ C, (2.1.32)

which determines the resolvent in terms of the potential. In this way we have reduced the original
problem of computing F0(t) to the Riemann-Hilbert problem of computing ω0(λ). In order to solve
(2.1.32), we write it as a sum of an analytic or regular part ωr(p), and a singular part ωs(p),

ω0(p) = ωr(p) + ωs(p), (2.1.33)

where

ωr(p) =
1
2t
V ′(p). (2.1.34)

It follows that the singular part satisfies

ωs(p+ iε) + ωs(p− iε) = 0, p ∈ C. (2.1.35)

This is automatically satisfied if ωs(p) has a square-root branch cut across C, and we find

ωs(p) = − 1
2t
M(p)

√
(p− a)(p− b), (2.1.36)

where a, b are the endpoints of C, andM(p) is a polynomial, which is fully determined by the asymptotic
condition (2.1.26). There is in fact a closed expression for the planar resolvent in terms of a contour
integral [92] which reads

ω0(p) =
1
2t

∮
C

dz
2πi

V ′(z)
p− z

(
(p− a)(p− b)
(z − a)(z − b)

)1/2

, (2.1.37)
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a bC

Figure 2.1: The contour C encircling the support of the density of eigenvalues, which can be regarded as
a contour in the spectral curve y(p).

where C denotes now a contour encircling the interval. The r.h.s. of (2.1.37) behaves like c+d/p+O(1/p2).
Requiring the asymptotic behavior (2.1.26) imposes c = 0 and d = 1, and this leads to∮

C

dz
2πi

V ′(z)√
(z − a)(z − b)

= 0,∮
C

dz
2πi

zV ′(z)√
(z − a)(z − b)

= 2t.
(2.1.38)

These equations are enough to determine the endpoints of the cuts, a and b, as functions of the ’t Hooft
coupling t and the coupling constants of the model. Equivalently, after deforming the contour in (2.1.37)
to infinity, we pick a pole at z = p, which gives the regular piece, and we find the equation

ω0(p) =
1
2t
V ′(p)− 1

2t
M(p)

√
(p− a)(p− b), (2.1.39)

where
M(p) =

∮
∞

dz
2πi

V ′(z)
z − p

1√
(z − a)(z − b)

. (2.1.40)

A useful way to encode the solution to the matrix model is to define the spectral curve of the matrix
model by

y(p) = V ′(p)− 2t ω0(p) = M(p)
√

(p− a)(p− b). (2.1.41)

Notice that, up to a constant, ∫ λ

dp y(p) = Veff(λ). (2.1.42)

If we regard ω0(p)dp as a differential on the spectral curve, the ’t Hooft parameter can be written as a
contour integral

t =
∮
C

dp
4πi

2tω0(p). (2.1.43)

This contour on the spectral curve (regarded as a complex curve) is represented in Fig. 2.1.

Example 2.1.1. The Gaussian matrix model. Let us now apply these results to the simplest case, the
Gaussian model with V (z) = z2/2. We first look for the position of the endpoints from (2.1.38). After
deforming the contour to infinity and changing z → 1/z, the first equation in (2.1.38) becomes∮

0

dz
2πi

1
z2

1√
(1− az)(1− bz)

= 0, (2.1.44)

where the contour is now around z = 0. Therefore a + b = 0, in accord with the symmetry of the
potential. Taking this into account, the second equation becomes:∮

0

dz
2πi

1
z3

1√
1− a2z2

= 2t, (2.1.45)

and gives
a = 2

√
t. (2.1.46)
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We see that the interval C = [−a, a] = [−2
√
t, 2
√
t] opens as the ’t Hooft parameter grows up, and as

t→ 0 it collapses to the minimum of the potential at the origin, as expected. We immediately find from
(2.1.39)

ω0(p) =
1
2t

(
p−

√
p2 − 4t

)
, (2.1.47)

and from the discontinuity equation we derive the density of eigenvalues

ρ0(λ) =
1

2πt

√
4t− λ2. (2.1.48)

The graph of this function is a semicircle of radius 2
√
t, and the above eigenvalue distribution is the

famous Wigner-Dyson semicircle law. Notice also that the equation (2.1.41) is in this case

y2 = p2 − 4t. (2.1.49)

This is the equation for a curve of genus zero, which resolves the singularity y2 = p2. We then see that
the opening of the cut as we turn on the ’t Hooft parameter can be interpreted as a deformation of a
geometric singularity.

2.1.2 Multi–cut solutions

So far we have considered the so-called one-cut solution to the one-matrix model. This is not, however,
the most general solution, and we will now consider the so-called multi-cut solution, in the saddle-point
approximation. Recall from our previous discussion that the cut appearing in the one-matrix model was
centered around a critical point of the potential. If the potential has many critical points, one can have
a saddle–point solution with various cuts, centered around different critical points. The most general
solution has then n cuts (where n is lower or equal than the number of critical points), and the support
of the eigenvalue distribution is a disjoint union of n intervals

C =
n⋃
i=1

Ci. (2.1.50)

The total number of eigenvalues N splits into n integers Ni,

N = N1 + · · ·+Nn, (2.1.51)

where Ni is the number of eigenvalues in the interval Ci. We introduce the filling fractions

εi =
Ni
N

=
∫
Ci

dλ ρ0(λ), i = 1, · · · , n. (2.1.52)

Notice that
n∑
i=1

εi = 1. (2.1.53)

A closely related set of variables are the partial ’t Hooft parameters

ti = tεi = gsNi, i = 1, · · · , n. (2.1.54)

Notice that there are only g = n − 1 independent filling fractions, but the partial ’t Hooft parameters
are all independent.

The multi-cut solution is just a more general solution of the saddle-point equations that we derived
above. It can be found by extremizing the functional (2.1.17) with the condition that the partial ’t Hooft
parameters are fixed,

S(ρ0, ε
I) = Seff(ρ0) +

n∑
i=1

Γi

(
t

∫
Ci

dλ ρ0(λ)− ti
)
, (2.1.55)

where Γi are Lagrange multipliers. If we take the variation w.r.t. the density ρ0(λ) we find the equation

V (λ) = 2t
∫
C

dλ′ρ0(λ′) log |λ− λ′|+ Γi, λ ∈ Ci (2.1.56)
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C1 C2
D1

Figure 2.2: A two-cut spectral curve, showing two contours C1,2 around the cuts where N1,2 eigenvalues
sit. The “dual" cycle D1 goes from C2 to C1.

which can be rewritten as
Veff(λ) = Γi, λ ∈ Ci. (2.1.57)

The planar resolvent still solves (2.1.32), and the way to implement the multi–cut solution is to require
ω0(p) to have 2n branch points. Therefore we have

ω0(p) =
1
2t
V ′(p)− 1

2t
M(p)

√√√√ 2n∏
k=1

(p− xk), (2.1.58)

which can be solved in a compact way by

ω0(p) =
1
2t

∮
C

dz
2πi

V ′(z)
p− z

(
2n∏
k=1

p− xk
z − xk

)1/2

. (2.1.59)

In order to satisfy the asymptotics (2.1.26) the following conditions must hold:

δ`n =
1
2t

∮
C

dz
2πi

z`V ′(z)∏2n
k=1(z − xk)

1
2
, ` = 0, 1, · · · , n. (2.1.60)

In contrast to the one-cut case, these are only n+ 1 conditions for the 2n variables xk representing the
endpoints of the cut. The remaining n − 1 conditions are obtained by fixing the values of the filling
fractions through (2.1.52) (or, equivalently, by fixing the partial ’t Hooft parameters). The multipliers
in (2.1.55) are obtained, as before, by taking derivatives w.r.t. the constraints, and we find the equation

∂F0

∂ti
− ∂F0

∂ti+1
= Γi+1 − Γi, (2.1.61)

which generalizes (2.1.23) to the multi–cut situation.
We can write the multi-cut solution in a very elegant way by using contour integrals. First, the

partial ’t Hooft parameters are given by

ti =
1

4πi

∮
Ci

2tω0(p)dp. (2.1.62)

We now introduce dual cycles Di cycles, i = 1, · · · , n − 1, going from the Ci+1 cycle to the Ci cycle
counterclockwise, see Fig. 2.2. In terms of these, we can write (2.1.61) as

∂F0

∂ti
− ∂F0

∂ti+1
= −1

2

∮
Di

2tω0(p)dp. (2.1.63)

2.2 The ABJM matrix model and Wilson loops

In this section we consider the relation of the ABJM matrix model to the lens space matrix model and
discuss in detail the planar solution.
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2.2.1 Relation to the lens space matrix model

Using the localization procedure reviewed in the previous chapter let us now consider the matrix model
calculating the partition function on S3 of ABJM theory, or rather its generalization [3] to the gauge
group U(N1)× U(N2). The contribution of the vector multiplets gives in the integrand

∏
1≤i<j≤N1

(
2 sinh

µi − µj
2

)2

e−
1

2gs

PN1
i=1 µ

2
i

∏
1≤a<b≤N2

(
2 sinh

νa − νb
2

)2

e
1

2gs

PN2
a=1 ν

2
a , (2.2.1)

where the opposite signs in the Gaussian exponents are due to the opposite signs in the levels. Since there
are four hypermultiplets in the bifundamental representation, we have an extra factor due to (1.5.67),

N1∏
i=1

N2∏
a=1

(
2 cosh

µi − νa
2

)−2

. (2.2.2)

The normalization of the matrix model can be fixed by using the normalization for the Chern–Simons
matrix model (1.5.78), and by comparing to the perturbative one-loop result. In this way we find,

ZABJM(S3) =
i−

1
2 (N2

1−N2
2 )

N1!N2!

∫ N1∏
i=1

dµi
2π

N2∏
a=1

dνa
2π

∏
1≤i<j≤N1

(
2 sinh

(
µi − µj

2

))2

×
∏

1≤a<b≤N2

(
2 sinh

(
νi − νj

2

))2∏
i,a

(
2 cosh

(
µi − νa

2

))−2

e−
1

2gs (P
i µ

2
i−

P
a ν

2
a).

(2.2.3)

This model is closely related to a matrix model that computes the partition function of Chern–Simons
theory on lens spaces L(p, 1), in particular to the model with p = 2. These models were introduced in
[85], and the case p = 2 was extensively studied in [88]. The matrix integral for p = 2 is given by,

ZCS(L(2, 1)) =
i−

1
2 (N2

1 +N2
2 )

N1!N2!

∫ N1∏
i=1

dµi
2π

N2∏
a=1

dνa
2π

∏
1≤i<j≤N1

(
2 sinh

(
µi − µj

2

))2

×
∏

1≤a<b≤N2

(
2 sinh

(
νi − νj

2

))2∏
i,a

(
2 cosh

(
µi − νa

2

))2

e−
1

2gs (P
i µ

2
i+

P
a ν

2
a).

(2.2.4)

We will refer to this matrix model as the lens space matrix model. We will now use our knowledge of
the solution of the lens space matrix model to solve the ABJM model. It is clear that the matrix models
(2.2.3) and(2.2.4) are very similar, but there are some obvious differences: in (2.2.3) the interaction
between the µ and the ν eigenvalues is in the denominator, and the Gaussian action for the νs has the
opposite sign. These ingredients are precisely the ones needed to make (2.2.3) a supergroup extension
of (2.2.4). We will now quickly review some results on supermatrix models, following [93, 94, 95]. A
Hermitian supermatrix has the form

Φ =
(
A Ψ
Ψ† C

)
(2.2.5)

where A (C) are N1×N1 (N2×N2) Hermitian, Grassmann even matrices, and Ψ is a complex, Grassmann
odd matrix. The supermatrix model is defined by the partition function

Zs(N1|N2) =
∫
DΦ e−

1
gs

StrV (Φ) (2.2.6)

where we consider a polynomial potential V (Φ), and Str is the supertrace

Str Φ = TrA− TrC. (2.2.7)

There are two types of supermatrix models with supergroup symmetry U(N1|N2): the ordinary super-
matrix model, and the physical supermatrix model [94]. The ordinary supermatrix model is obtained
by requiring A, C to be real Hermitian matrices, while the physical model is obtained by requiring that,
after diagonalizing Φ by a superunitary transformation, the resulting eigenvalues are real. Here we will
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be interested in the physical supermatrix model. Its partition function reads, in terms of eigenvalues
[94, 95]

Zs(N1|N2) =
∫ N1∏

i=1

dµi
N2∏
j=1

dνj

∏
i<j (µi − µj)2 (νi − νj)2∏

i,j (µi − νj)2 e−
1
gs

(P
i V (µi)−

P
j V (νj)). (2.2.8)

When the two groups of eigenvalues µi, νj are expanded around two different critical points, the partition
function (2.2.8) is well-defined as an asymptotic expansion in gs. It is easy to show that (2.2.8) is related
to the partition function of the corresponding bosonic, two-cut matrix model

Zb(N1, N2) =
∫ N1∏

i=1

dµi
N2∏
j=1

dνj
∏
i<j

(µi − µj)2 (νi − νj)2
∏
i,j

(µi − νj)2 e−
1
gs

(P
i V (µi)+

P
j V (νj)) (2.2.9)

after changing N2 → −N2:
Zs(N1|N2) = Zb(N1,−N2). (2.2.10)

Such a flip of sign is trivially performed if one knows the exact solution of the model in the 1/N expansion.
The relation (2.2.10) can be proved diagramatically by introducing Faddeev–Popov ghosts as in [95, 96].

We now see that the relationship between the ABJM matrix model and the lens space matrix model
is identical to the one we have between supergroup matrix models and multi-cut bosonic matrix models,
with the only difference that the interaction between the eigenvalues has been promoted to the sinh
interaction typical of Chern–Simons matrix models. Indeed, the lens space matrix model is a two-cut
matrix model where the µ, ν eigenvalues are expanded around two different saddle points, z = 0 and
z = πi. The ABJM matrix model is just its supergroup version. We then conclude that

ZABJM(N1, N2, gs) = ZL(2,1)(N1,−N2, gs). (2.2.11)

The appearance of a hidden supergroup structure in the matrix model of [2] is not surprising, since
N = 4 Chern–Simons–matter theories are classified by supergroups [97]. In fact, the ABJM theory can
be constructed as an N = 4 theory with supergroup U(N1|N2) and containing both hypermultiplets and
twisted hypermultiplets [98]. This hidden supergroup structure in the ABJM theory is explicitly used in
the construction of half-BPS Wilson loops in [99].

2.2.2 The planar solution of the lens space matrix model
Let us now discuss the large N solution of the lens space matrix model, following [88, 100, 101]. At
large N , the two sets of eigenvalues, µi, νj , condense around two cuts. The cut of the µi eigenvalues is
centered around z = 0, while that of the νi eigenvalues is centered around z = πi. We will write the cuts
as

C1 = (−A,A), C2 = (πi−B, πi +B), (2.2.12)

in terms of the endpoints A,B. It is also useful to use the exponentiated variable

Z = ez, (2.2.13)

In the Z plane the cuts (2.2.12) get mapped to

(1/a, a), (−1/b,−b), a = eA, b = eB , (2.2.14)

which are centered around Z = 1, Z = −1, respectively, see Fig. 2.3. We will use the same notation C1,2
for the cuts in the Z plane. The large N solution is encoded in the total resolvent of the matrix model,
ω(z). It is defined as [100]

ω(z) = gs

〈
Tr
(
Z + U

Z − U

)〉
= gs

〈
N1∑
i=1

coth
(
z − µi

2

)〉
+ gs

〈
N2∑
j=1

tanh
(
z − νj

2

)〉
(2.2.15)

where
U =

(
eµi 0
0 −eνj

)
. (2.2.16)
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πi + Bπi−B

1/a a−1/b−b

z

Z = ez

A−A

Figure 2.3: The cuts for the CS lens space matrix model in the z plane and in the Z = ez plane.

We will denote by ω0(z) the planar limit of the resolvent, which was found in explicit form in [100]. It
reads,

ω0(z) = 2 log
(

e−t/2

2

[√
(Z + b)(Z + 1/b)−

√
(Z − a)(Z − 1/a)

])
, (2.2.17)

where
t = t1 + t2 (2.2.18)

is the total ’t Hooft parameter. It is useful to introduce the variables

ζ =
1
2

(
a+

1
a
− b− 1

b

)
, β =

1
4

(
a+

1
a

+ b+
1
b

)
. (2.2.19)

β is related to the total ’t Hooft parameter through

β = et. (2.2.20)

All the relevant planar quantities can be expressed in terms of period integrals of the one-form ω0(z)dz.
The ’t Hooft parameters are given by

ti =
1

4πi

∮
Ci
ω0(z)dz, i = 1, 2. (2.2.21)

The planar free energy F0 satisfies the equation

I ≡ ∂F0

∂t1
− ∂F0

∂t2
− πit

2
= −1

2

∮
D
ω0(z)dz, (2.2.22)

where the D cycle encloses, in the Z plane, the interval between −1/b and 1/a (see Fig. 2.3).1
The derivatives of these periods can be calculated in closed form by adapting a trick from [102]. One

finds,
∂t1,2
∂ζ

= − 1
4πi

∮
C1,2

dZ√
(Z2 − ζZ + 1)2 − 4β2Z2

= ±
√
ab

π(1 + ab)
K(k), (2.2.23)

and similarly
∂t1
∂β

= −2

√
ab

π(1 + ab)

(
K(k)− 2ab

1 + ab
Π(n1|k)− 2

1 + ab
Π(n2|k)

)
, (2.2.24)

1Likewise one can calculate the second “B-cycle” period, and it will arise when solving the Picard-Fuchs equations at
strong coupling in Section 2.3.2.
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where

k2 = 1−
(
a+ b

1 + ab

)2

, n1 =
1− a2

1 + ab
, n2 =

b(a2 − 1)
a(1 + ab)

. (2.2.25)

Likewise for the period integral in (2.2.22) we find

∂I
∂ζ

= −2

√
ab

1 + ab
K(k′),

∂I
∂β

= 4

√
ab

1 + ab

(
K(k′) +

2a(1− b2)
(1 + ab)(a+ b)

(Π(n′1|k′)−Π(n′2|k′))
)
,

(2.2.26)

where
k′ =

a+ b

1 + ab
, n′1 =

a+ b

b(1 + ab)
, n′2 =

b(a+ b)
1 + ab

. (2.2.27)

We can now use the dictionary between the lens space matrix model and the ABJM matrix model
given by (2.2.11) to get the planar solution of the latter model. In particular, the natural ’t Hooft
parameters in the ABJM theory

λj =
Nj
k

(2.2.28)

are obtained from the planar solution of the lens space matrix model by the replacement

t1 = 2πiλ1, t2 = −2πiλ2. (2.2.29)

Since in the ABJM theory the couplings λ1,2 are real, the matrix model couplings t1,2 are pure imaginary.
Thanks to (2.2.20) we know that β is of the form

β = e2πi(λ1−λ2) (2.2.30)

i.e., it must be a phase.
For later convenience we introduce yet another parameterization of the couplings in terms of B and

κ

B = λ1 − λ2 +
1
2
, κ = e−πiBζ . (2.2.31)

B is identified as the B-field in the dual type IIA background [78]. Notice that it has a shift by −1/2
as compared to the original prescription in [3]. Clearly, all calculations in the matrix model are periodic
under B → B+ 1, up to possible monodromies (see (2.5.25) below). As we shall see later, the parameter
κ is real for physical values of λ1,2.

2.2.3 Wilson loops
A family of Wilson loops in this theory has been constructed in [103, 104, 105], with the structure

W
1/6
R = gsTrR P exp

∫ (
iAµẋµ +

2π
k
|ẋ|M I

JCIC̄
J

)
ds (2.2.32)

where Aµ is the gauge connection in the U(N1)k gauge group, xµ(s) is the parametrization of the loop,
and MJ

I is a matrix determined by supersymmetry. It can be chosen so that, if the geometry of the loop
is a line or a circle, four real supercharges are preserved. Therefore, we will call (2.2.32) the 1/6 BPS
Wilson loop. A similar construction exists for a loop based on the other gauge group,

Ŵ
1/6
R = gsTrR P exp

∫ (
iÂµẋµ +

2π
k
|ẋ|M I

J C̄IC
J

)
ds (2.2.33)

where Aµ is the U(N2)−k gauge connection. The planar limit of the vev of (2.2.32) was computed in
[103, 104, 105], for N1 = N2 = N , in the fundamental representation R = , and in the weak coupling
regime λ� 1, where

λ =
N

k
(2.2.34)

is the ’t Hooft parameter. The result is

〈W 〉 = 2πiλ
(

1 +
5π2

6
λ2 +O

(
λ3
))

. (2.2.35)
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On the other hand, in the strong coupling regime λ� 1, the Wilson loop vev can be calculated by using
the large N string dual, i.e. type IIA theory on AdS4 × P3 [103, 104, 105]. This gives the prediction

〈W 〉 ∼ eπ
√

2λ. (2.2.36)

As in the case of the 1/2 BPS Wilson loop in N = 4 Yang–Mills theory, the exact answer for the planar
limit of this vev should interpolate between the weak coupling behavior (2.2.35) and the strong coupling
prediction of the large N string dual, (2.2.36).

One of the main results of [2] is that the VEV of the 1/6 BPS Wilson loop in ABJM theory, labelled
by a representation R or U(N1), can be obtained by calculating the VEV of the matrix eµi in the matrix
model (2.2.3), i.e.,

〈W 1/6
R 〉 = gs 〈TrR (eµi)〉ABJM MM , (2.2.37)

A 1/2 BPS loop W
1/2
R was constructed in [99] , where R is a representation of the supergroup

U(N1|N2). in [99] it was also shown that it localizes to the matrix model correlator in the ABJM matrix
model

〈W 1/2
R 〉 = gs 〈StrR U〉ABJM MM , (2.2.38)

with the same U as in (2.2.16). Though at first sight the minus sign on the lower block of U , may look
surprising, it can be attributed to the fact that the νj eigenvalues are shifted by πi from the real line.
Due to the relation between the ABJM matrix model and the lens space matrix model, these correlators
can be computed in the lens space matrix model as follows:

〈W 1/6
R 〉 = gs 〈TrR (eµi)〉L(2,1)

∣∣∣
N2→−N2

,

〈W 1/2
R 〉 = gs 〈TrR U〉L(2,1)

∣∣∣
N2→−N2

,
(2.2.39)

where the super-representation R is regarded as a representation of U(N1 +N2).
To evaluate the Wilson loop one uses the resolvent, or equivalently, the eigenvalue densities

ρ(1)(Z)dZ = − 1
4πit1

dZ
Z

(ω(Z + iε)− ω(Z − iε)) , Z ∈ C1,

ρ(2)(Z)dZ =
1

4πit2
dZ
Z

(ω(Z + iε)− ω(Z − iε)) , Z ∈ C2.
(2.2.40)

which are each normalized in the planar approximation to unity∫
Ci
ρ

(i)
0 dZ = 1. (2.2.41)

For the 1/6 BPS Wilson loop in the fundamental representation one needs to integrate ez = Z over the
first cut 〈

W
1/6
〉

= t1

∫
C1
ρ(1)(Z)ZdZ =

∮
C1

dZ
4πi

ω(Z). (2.2.42)

The correlator relevant for the 1/2 BPS Wilson loop (again in the fundamental representation) is
much easier, since 〈

W
1/2
〉

= t1

∫
C1
ρ(1)(Z)ZdZ − t2

∫
C2
ρ(2)(Z)ZdZ =

∮
∞

dZ
4πi

ω(Z) (2.2.43)

and it can be obtained by expanding ω(Z) around Z →∞.
The comparison to the case of the 1/2 BPS Wilson loop in N = 4 SYM in 4d is straight-forward. In

that case the matrix model is Gaussian and the eigenvalue density in the planar approximation follows
Wigner’s semi-circle law. Doing the integral with the insertion of ez gives a modified Bessel function
[106]

ρ0(z) =
2
πλ

√
λ− z2 ⇒ 〈W 1/2

4d N = 4〉planar =
∫ √λ
−
√
λ

ρ0(z) ez dz =
2√
λ
I1(
√
λ). (2.2.44)

For the ABJM matrix model all the expressions are more complicated.
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The densities ρ(1)(µ) and ρ(2)(ν) can be explicitly calculated from (2.2.40) and (2.2.17). We find,

ρ(1)(X)dX =
1
πt1

tan−1

[√
αX − 1−X2

δX + 1 +X2

]
dX
X

,

ρ(2)(Y )dY = − 1
πt2

tan−1

[√
δY + 1 + Y 2

αY − 1− Y 2

]
dY
Y
.

(2.2.45)

In terms of the variable x = logX we have

ρ(1)(x) =
1
πt1

tan−1

[√
α− 2 coshx
δ + 2 coshx

]
, (2.2.46)

and a similar expression for ρ(2)(y). Notice that, if t2 = 0, one has δ = 2, α = 4et − 2, and ρ(1)(x)
becomes the density of eigenvalues for the matrix model of Chern–Simons theory on S3 [90]

ρ(1)(x) =
1
πt

tan−1


√

et − cosh2
(
x
2

)
cosh

(
x
2

)
 . (2.2.47)

The integral (2.2.42) is then given by

〈W 1/2〉 =
1
π

∫ a

1/a

tan−1

[√
αX − 1−X2

βX + 1 +X2

]
dX. (2.2.48)

This integral is not easy to calculate in closed form, but its derivatives w.r.t. ζ and β can be written in
closed form, like the integrals (2.2.23) and (2.2.24)

∂ζ〈W 1/6〉 = − 1
π

1√
ab(1 + ab)

(aK(k)− (a+ b) Π(n2|k))

∂β〈W 1/6〉 = − 2
π

√
ab

a+ b
E(k) .

(2.2.49)

For the 1/2 BPS Wilson loop of [99] the situation is much simpler and in the planar approximation one
needs only the large Z behavior of ω0 (2.2.17)

ω0 = t+
ζ

Z
+
ζ2 + 2β2 − 2

2Z2
+
ζ(ζ2 + 6β2 − 3)

3Z3
+O(Z−4). (2.2.50)

One finds

〈W 1/2〉planar =
ζ

2
, (2.2.51)

which can then be expanded in different regimes. We will elaborate on the weak and strong coupling
expansions of the above expression in the next sections and will also turn to the non-planar corrections
in Section 2.7.

As a simple generalization, by the replacement Z → Zl on the right hand side of (2.2.43), the
higher order terms in the expansion (2.2.50) give the expectation values of multiply wrapped 1/2 BPS
Wilson loops where U → U l in (2.2.38). For even winding the sign in the lower block of the matrix
U (2.2.16) is absent. This is consistent with the gauge theory calculation [99], where this sign arose
from the requirement of supersymmetry invariance in the presence of the fermionic couplings which are
antiperiodic, as should be the case for a singly-wound contractible cycle (see also the discussion in [107]).

The normalization of the Wilson loop as given by (2.2.42) and (2.2.43) is not the same as in the 4d
N = 4 case (2.2.44). For the 1/6 BPS loop, the leading term at weak coupling is t1 = 2πiN1/k. This
means that the trace in the fundamental is normalized by a factor of gs. For the 1/2 BPS loop the
leading term is t1± t2 = gs(N1∓N2), where the sign depends on the winding number. We will comment
more about this normalization in Section 2.5.3.
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2.3 Moduli space, Picard–Fuchs equations and periods
In this section we present the tools for solving the lens space matrix model using special geometry. We
present three special points in the moduli space of the theory and write explicit expressions for the four
periods of ω0 at the vicinity of these points.

In [88] it was shown that the lens space Chern–Simons matrix model is the large N dual of topolog-
ical string theory on a certain class of local Calabi–Yau geometries, providing in this way a nontrivial
generalization of the Gopakumar–Vafa duality [108]. In particular, the L(2, 1) lens space matrix model
is equivalent to topological string theory on local F0 = P1 × P1. The 1/N expansions of the free energy
and of the 1/2 BPS Wilson loop VEV are the genus expansions of closed and open topological string
amplitudes. The planar content of the theory is encoded in the periods of the mirror geometry described
by the family of elliptic curves Σ in C∗ × C∗, which can be written as

Y +
Z2

Y
−
√
z1

z2

(
Z2 − 1√

z1
Z + 1

)
= 0, (2.3.1)

Here, z1, z2 parametrize the moduli space of complex structures, which is the mirror to the enlarged
Kähler moduli space of local F0. This moduli space has a very rich structure first uncovered in [88] and
further studied in, for example, [102, 109] by using the standard techniques of mirror symmetry.

Notice that the mirror geometry (2.3.1) is closely related to the resolvent ω0(Z). Indeed, one finds
that

log Y = ω0(Z) (2.3.2)

and
ζ =

1√
z1
, β =

√
z2

z1
. (2.3.3)

This can also be expressed as (2.2.31)

z1 =
e−2πiB

κ2
, z2 =

e2πiB

κ2
. (2.3.4)

Let us now discuss in some detail the moduli space of (2.3.1), since it will play a fundamental role in
the following. It has complex dimension two, corresponding to the two complexified Kähler parameters
of local F0. The coordinates z1, z2 (or ζ, β) are global coordinates in this moduli space. Another way of
parametrizing it is to use the periods of the meromorphic one-form

ω = log Y
dZ
Z

(2.3.5)

As it is well-known, these periods are annihilated by a pair of differential operators called Picard–Fuchs
operators. In terms of z1, z2, the operators are

L1 = z2(1− 4z2)ξ2
2 − 4z2

1ξ
2
1 − 8z1z2ξ1ξ2 − 6z1ξ1 + (1− 6z2)ξ2,

L2 = z1(1− 4z1)ξ2
1 − 4z2

2ξ
2
2 − 8z1z2ξ1ξ2 − 6z2ξ2 + (1− 6z1)ξ1,

(2.3.6)

where
ξi =

∂

∂zi
. (2.3.7)

These operators lead to a system of differential equations known as Picard–Fuchs (PF) equations. An
important property of the moduli space is the existence of special points, generalizing the regular singular
points of ODEs on C. The PF system can be solved around these points, and the solutions give a basis
for the periods of the meromorphic one-form. We can use two of the solutions to parametrize the moduli
space near a singular point, and the resulting local coordinates, given by periods, are usually called flat
coordinates.

2.3.1 Orbifold point, or weak coupling
There are three types of special points in the moduli space. The first one is the orbifold point discovered
in [88], which is the relevant one in order to make contact with the matrix model. To study this point
one has to use the global variables

x1 = 1− z1

z2
, x2 =

1
√
z2

(
1− z1

z2

) . (2.3.8)
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The orbifold point is then defined as x1 = x2 = 0, and in terms of these variables the Picard–Fuchs
system is given by the two operators

L1 =
1
4

(8− 8x1 + x2
1)x2∂x2 −

1
4
(
4− (2− x1)2x2

2

)
∂2
x2
− x1(2− 3x1 + x2

1)x2∂x1∂x2

− (1− x1)x2
1∂x1 + (1− x1)2x2

1∂
2
x1
,

L2 = (2− x1)x2∂x2 − (1− (1− x1)x2
2)∂2

x2
− x2

1∂x1 − 2(1− x1)x1x2∂x1∂x2 + (1− x1)x2
1∂

2
x1
.

(2.3.9)

A basis of periods near the orbifold point was found in [88]. It reads,

σ1 = − log(1− x1),

σ2 =
∑
m,n

cm,nx
m
1 x

n
2 ,

Fσ2 = σ2 log x1 +
∑
m,n

dm,nx
m
1 x

n
2 ,

(2.3.10)

where the coefficients cm,n and dm,n vanish for non-positive n or m as well as for all even n. They satisfy
the following recursion relations with the seed values c1,1 = 1, d1,1 = 0 and d1,3 = −1/6:

cm,n =
(n+ 2− 2m)2

4(m− n)(m− 1)
cm−1,n,

cm,n =
(n− 2)2(m− n+ 2)(m− n+ 1)

n(n− 1)(2m− n)2
cm,n−2,

dm,n =
(n+ 2− 2m)3dm−1,n + 4(n2 − n− 2m+ 2)cm,n

4(m− 1)(m− n)(n+ 2− 2m)
,

dm,n =
(n− 2)2(m− n+ 1)(m− n+ 2)

n(n− 1)(2m− n)2
dm,n−2 +

(
1

m− n+ 2
+

1
m− n+ 1

+
4

n− 2m

)
cm,n.

(2.3.11)
The ’t Hooft parameters of the matrix model are period integrals of the meromorphic one-form, therefore
they must be linear combinations of the periods above, and one finds [88]

t1 =
1
4

(σ1 + σ2), t2 =
1
4

(σ1 − σ2). (2.3.12)

An expansion around the orbifold point leads to a regime in which t1, t2 are very small. In view of
(2.2.29) this corresponds, in the ABJM model, to the weakly coupled theory

λ1, λ2 � 1. (2.3.13)

The remaining period in (2.3.10) might be used to compute the genus zero free energy of the matrix
model. Using the normalization appropriate for the ABJM matrix model, we find

I = 4
∂F0

∂σ2
− πit

2
=

1
2
Fσ2 − log(4)σ2 −

πi
2
σ1. (2.3.14)

2.3.2 Large radius, or strong coupling
The second point that we will be interested in is the so-called large radius point corresponding to z1 =
z2 = 0. This is the point where the Calabi–Yau manifold is in its geometric phase, and the expansion
of the genus zero free energy near that point leads to the counting of holomorphic curves with Gromov–
Witten invariants. The solutions to the Picard–Fuchs equations (2.3.6) near this point can be obtained
in a systematic way by considering the so-called fundamental period

$0(z1, z2; ρ1, ρ2) =
∑
k,l≥0

Γ(2k + 2l + 2ρ1 + 2ρ2)Γ(1 + ρ1)2 Γ(1 + ρ2)2

Γ(2ρ1 + 2ρ2)Γ(1 + k + ρ1)2 Γ(1 + l + ρ1)2
zk+ρ1

1 zl+ρ2
2 . (2.3.15)

As reviewed in for example [110], a basis of solutions to the PF equations can be obtained by acting on
the fundamental period with the following differential operators

D
(1)
i = ∂ρi , D

(2)
i =

1
2
κijk∂ρj∂ρk . (2.3.16)
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Here κijk are the classical triple intersection numbers of the Calabi–Yau. This leads to the periods

Ti(z1, z2) = −D(1)
i $0(z1, z2; ρ1, ρ2)

∣∣∣
ρ1=ρ2=0

,

Fi(z1, z2) = D
(2)
i $0(z1, z2; ρ1, ρ2)

∣∣∣
ρ1=ρ2=0

.
(2.3.17)

These periods should be linearly related to those defined in the matrix model in equations (2.2.21) and
(2.2.22). We present now some explicit expressions for them that we will use in Sections 2.5.2 and 2.5.4
to solve for these relations (see equations (2.5.16) and (2.5.38)).

In general, one normalizes these periods and divides them by the fundamental period evaluated at
ρ1 = ρ2 = 0. But in local mirror symmetry we have [111]

$0(z1, z2; ρ1, ρ2)
∣∣∣
ρ1=ρ2=0

= 1. (2.3.18)

The Ti are single-logarithm solutions, and they are identified in standard mirror symmetry with the
complexified Kähler parameters, while the Fi are double-logarithm solutions and they are identified with
the derivatives of the large radius genus zero free energy w.r.t. the Ti. In our case, we find the explicit
expressions

−T1 = log z1 + ω(1)(z1, z2),

−T2 = log z2 + ω(1)(z1, z2),
(2.3.19)

where

ω(1)(z1, z2) = 2
∑
k,l≥0,

(k,l) 6=(0,0)

Γ(2k + 2l)
Γ(1 + k)2Γ(1 + l)2

zk1z
l
2 = 2z1 + 2z2 + 3z2

1 + 12z1z2 + 3z2
2 + · · · (2.3.20)

In order to obtain the Fi we have to compute the double derivatives w.r.t. the parameters ρ1, ρ2. We
find

∂2
ρ1
$0(z1, z2; ρ1, ρ2)

∣∣∣
ρ1=ρ2=0

= log2 z1 + 2 log z1 ω
(1)(z1, z2) + ω

(2)
1 (z1, z2), (2.3.21)

where
ω

(2)
1 (z1, z2) = 8

∑
k,l≥0,

(k,l)6=(0,0)

Γ(2k + 2l)
Γ(1 + k)2Γ(1 + l)2

(ψ(2k + 2l)− ψ(1 + k)) zk1z
l
2. (2.3.22)

Similarly,
∂2
ρ2
$0(z1, z2; ρ1, ρ2)

∣∣∣
ρ1=ρ2=0

= log2 z2 + 2 log z2 ω
(1)(z1, z2) + ω

(2)
2 (z1, z2) (2.3.23)

where

ω
(2)
2 (z1, z2) = 8

∑
k,l≥0,

(k,l)6=(0,0)

Γ(2k + 2l)
Γ(1 + k)2Γ(1 + l)2

(ψ(2k + 2l)− ψ(1 + l)) zk1z
l
2 = ω

(2)
1 (z2, z1). (2.3.24)

Finally,

∂ρ1∂ρ2$0(z1, z2; ρ1, ρ2)
∣∣∣
ρ1=ρ2=0

= log z1 log z2 + (log z1 + log z2)ω(1)(z1, z2)

+
1
2

(
ω

(2)
1 (z1, z2) + ω

(2)
2 (z1, z2)

)
.

(2.3.25)

The double log periods are obtained as linear combinations of the above, by using the explicit expressions
for the classical intersection numbers that can be found in for example [109]

κ111 =
1
4
, κ112 = −1

4
, κ122 = −1

4
, κ222 =

1
4
. (2.3.26)

We find:

F1(z1, z2) = −1
8
(
D2
ρ1
ω0 − 2Dρ1ρ2ω0 −D2

ρ1
ω0

)
= −1

8
(
log2 z1 − 2 log z1 log z2 − log2 z2

)
+

1
4

log z2 ω
(1)(z1, z2) +

1
8
ω

(2)
2 (z1, z2),

F2(z1, z2) = −1
8
(
D2
ρ1
ω0 − 2Dρ1ρ2ω0 −D2

ρ1
ω0

)
= −1

8
(
− log2 z1 − 2 log z1 log z2 + log2 z2

)
+

1
4

log z1 ω
(1)(z1, z2) +

1
8
ω

(2)
1 (z1, z2).

(2.3.27)
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They satisfy the symmetry property

F1(z1, z2) = F2(z2, z1). (2.3.28)

The reason why we are interested in the large radius point is because it describes the structure of the
ABJM theory at strong coupling. In the region where z2 is small, x2 is large and the periods t1,2 grow.
In general, the expansions of the periods around the special points have a finite radius of convergence,
but they can be analytically continued to the other “patches". Since their analytic continuation satisfies
the PF equation, we know for example that the analytic continuation of the orbifold periods to the large
radius patch must be linear combinations of the periods at large radius. This provides an easy way to
perform the analytic continuation which will be carried out in detail in the Section 2.5, where we will
verify that indeed the region near the large radius point corresponds to

λ1, λ2 � 1. (2.3.29)

2.3.3 Conifold locus

Finally, the third set of special points is the conifold locus. This is defined by ∆ = 0, where

∆ = 1− 8(z1 + z2) + 16(z1 − z2)2. (2.3.30)

In terms of the variables ζ, β, this locus corresponds to the four lines

ζ = −2β ± 2, ζ = 2β ± 2. (2.3.31)

The conifold locus is the place where cycles in the geometry collapse to zero size. The first two lines
correspond to a = ±1, i.e., the collapse of the C1 cycle, while the second set of lines corresponds to
b = ∓1, i.e., to the collapse of the C2 cycle. In principle we can solve the PF system near any point in
the conifold locus, but in practice it is useful to focus on the point

z1 = z2 =
1
16

(2.3.32)

which has been studied in [109]. We will call it the symmetric conifold point. Appropriate global
coordinates around this point are2

y1 = 1− z1

z2
, y2 = 1− 1

16z1
. (2.3.33)

In terms of these coordinates, the PF system reads

L1 = ∂y2 − 2(1− y2)∂2
y2
− 8(1− y1)2∂y1 + 8(1− y1)3∂2

y1
,

L2 = − (7− 8y2)∂y2 + 2(3− 7y2 + 4y2
2)∂2

y2
− 8(1− y1)∂y1

− 16(1− y1)(1− y2)∂y1∂y2 + 8(1− y1)2∂2
y1
.

(2.3.34)

Notice that, strictly speaking, the orbifold point does not belong to the conifold locus, once the moduli
space is compactified and resolved [88]. A generic point in the conifold locus has then t1 = 0 or t2 = 0,
but not both, and expanding around the conifold locus means, in the ABJM theory, an expansion in the
region

λ1 � 1, λ2 ∼ 1, (2.3.35)

or in the region with λ2 exchanged with λ1. This regime of the ABJM theory has been considered in
[112].

It was observed in [113] that the moduli space of the local F0 surface can be mapped to a well-known
moduli space, namely the Seiberg–Witten (SW) u-plane [10]. This plane is parametrized by a single
complex variable u. The relation between the moduli is

u =
1
2
(
β + β−1

)
− ζ2

8β
. (2.3.36)

2These are slightly different from the ones used in [109].
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B = 0

B =
1
2

λ1

λ2

z1 = z2 =
1
16

z1, z2 →∞

x1, x2 → 0

orbifold

1
2

B = 1

Figure 2.4: The moduli space of the ABJM theory, describing the possible values of the ’t Hooft couplings
λ1,2, can be parametrized by a real submanifold of the moduli space of local F0, here depicted as a sphere.
The orbifold point maps to the origin, while the conifold locus (which is represented by a dashed line)
maps to the two axes.

The three singular points that we have discussed (large radius, orbifold, and symmetric conifold) map
to the points u = ∞,+1,−1. These are the semiclassical, monopole and dyon points of SW theory. As
we will see, they can be identified with interesting points in ABJM theory.

An important set of quantities in the study of moduli spaces of CY threefolds are the three-point
couplings or Yukawa couplings, Czizjzk . These are the components of a completely symmetric degree
three covariant tensor on the moduli space. When expressed in terms of flat coordinates they give the
third derivatives of the genus zero free energy. In terms of the coordinates z1, z2, the Yukawa couplings
are given by [88, 109]

C111 =
(1− 4z2)2 − 16z1(1 + z1)

4z3
1∆

,

C112 =
16z2

1 − (1− 4z2)2

4z2
1z2∆

,

C122 =
16z2

2 − (1− 4z1)2

4z1z2
2∆

,

C222 =
(1− 4z1)2 − 16z2(1 + z2)

4z3
2∆

.

(2.3.37)

2.3.4 The moduli space of the ABJM theory

The matrix model of ABJM is closely related to the lens space matrix model, and therefore so are also
the moduli spaces of the theories. Some of the explicit relations needed for this identification will be
presented only in the following sections, but we would still like to present here the main points on the
moduli space.

We can think about the moduli space of the planar ABJM theory as the space of admissible values
of the ’t Hooft parameters λ1, λ2. We will assume for simplicity that k > 0. The theory with negative
values of k can be obtained from this one by a parity transformation. In the gauge theory λ1,2 must be
rational and non-negative (for k > 0). Moreover, according to [3], any value of λ1,2 is admissible as long
as

|λ1 − λ2| ≤ 1. (2.3.38)

This moduli space can be parametrized by the B field and κ, which from the explicit expressions derived
below (2.4.1) and (2.5.22) has to be real and positive. It can be identified as a real submanifold of the
moduli space of local F0. Moreover, we can identify the singular points of this moduli space with natural
limits of ABJM theory (see Fig. 2.4):
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u = 1u = −1

weakly coupled
ABJM theory

strongly coupled
ABJM theory

conifold point

u→∞

Figure 2.5: The moduli space of the ABJM theory for B = 1/2 can be mapped to the line [1,∞) in the
u plane of Seiberg–Witten theory, which is here shown in red. The monopole point corresponds to the
weakly coupled ABJM theory, while the semiclassical limit corresponds to the strongly coupled theory.

1. The weak coupling regime λ1,2 → 0 corresponds to the orbifold point of the local F0 geometry
κ = 0, B = 1/2. In terms of type IIA theory, this is also an orbifold geometry with a small radius
but a nonzero value for the B field.

2. The strong coupling regime λ1,2 →∞ (where also κ→∞) corresponds to the large radius limit of
the local F0 geometry.

3. Out of the four lines (2.3.31) in the conifold locus ∆ = 0, only two lead to κ ∈ R. They are
the curves in the (κ,B) plane with κ = ±4 cosπB, which correspond respectively to a = 1 and
b = 1, therefore to λ1 = 0 or λ2 = 0. Hence, the boundary of the ABJM moduli space given by
min(λ1, λ2) = 0 corresponds to

κ(B) =
{
−4 cosπB , B > 1/2
4 cosπB , B < 1/2 (2.3.39)

In particular, the symmetric conifold point z1 = z2 = 1/16 corresponds to B = n ∈ Z, κ = ±4.
Along the curve (2.3.39), one of the two gauge groups of the ABJM theory is absent, so the theory
reduces to topological CS theory. We examine this regime in Section 2.6.

Given a fixed value of the B field, we can describe the real one-dimensional moduli space of the ABJM
theory as a real submanifold of the u-plane of Seiberg–Witten theory, by using (2.3.36) in the form

u = − cos(2πB) +
κ2

8
. (2.3.40)

Singular points in moduli space become then the well-known singularities of SW theory. For example,
when B = 1/2, the moduli space, described by κ ∈ [0,∞), becomes the region u ∈ [1,∞). The orbifold
point (weakly coupled ABJM theory) maps to the monopole point, while the large radius point (strongly
coupled ABJM theory) corresponds to the semi-classical region (see Fig. 2.5). Notice that the conifold
point would map to the dyon point of Seiberg–Witten theory, but this does not belong to the moduli
space of ABJM theory with B = 1/2. We can however realize it by making an analytic continuation of
the ’t Hooft coupling to complex values. The dyon point corresponds then to the point κ2 = −16, which
leads by (2.5.9) to an imaginary value

λ = −2iK
π2

, (2.3.41)

where K is Catalan’s number.
As usual, string dualities lead to a full complexification of the moduli space of ’t Hooft parameters.

In the case of ABJM theory, the complexified moduli space for the variables λ1,2 is simply the moduli
space of the parameters β, ζ, which is a Z2 × Z2 covering of the moduli space parametrized by z1,2.
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2.4 Weak coupling
In principle, to study the matrix model at weak coupling one does not need the sophisticated tools
presented in the previous section. One can do perturbative calculations directly in the integral expressions
(2.2.3) or (2.2.4) for the matrix model. A calculation of the 1/6 BPS Wilson loop to three loop order
was indeed done in this way in the original paper [2].

Still, the explicit expressions for the periods σ1,2 (2.3.10) and their relation to t1,2 (2.3.12) gives a
much more efficient way to obtain perturbative, planar expansions. Inverting these relations we find the
weak coupling expression for κ (2.2.31)

κ = − 2i(t1 − t2)− i
12
(
t31 + 3t21t2 − 3t1t22 − t32

)
− i

960
(
t51 + 5t41t2 − 10t31t

2
2 + 10t21t

3
2 − 5t1t42 − t52

)
+O(t7).

(2.4.1)

This agrees with the weak coupling expansion of the inverse of the exact mirror map (2.5.9).
Using the dictionary relating the ’t Hooft couplings (2.2.29) we immediately get the result for the

1/2 BPS Wilson loop in the planar approximation (2.2.51)

〈W 1/2〉 = eπiB κ

2
= eπi(λ1−λ2) 2πi(λ1 + λ2)

[
1− π2

6
(
λ2

1 − 4λ1λ2 + λ2
2

)
+

π4

120
(
λ4

1 − 6λ3
1λ2 − 4λ2

1λ
2
2 − 6λ1λ

3
2 + λ4

2

)
+O(λ6)

]
.

(2.4.2)

In this expression we factored out the term 2πi(λ1 + λ2), which depends on the overall normalization
of the Wilson loop, as mentioned after (2.2.51). There is also the extra phase factor, which appears
also at strong coupling and can be attributed to framing. Note that so far this expansion has not been
reproduced directly in the gauge theory, as even the two-loop graphs are quite subtle.

For the 1/6 BPS Wilson loop, using the explicit expression (2.2.49) and expanding at low orders one
finds〈

W
1/6
〉

= eπiλ12πiλ1

(
1− π2

6
λ1(λ1 − 6λ2)− π3i

2
λ1λ

2
2 +

π4

120
λ1

(
λ3

1 − 10λ2
1λ2 − 20λ3

2

)
+O(λ5)

)
.

(2.4.3)
Again the exponent is a framing factor and the factor of 2πiλ1 is due to the normalization chosen in
(2.2.42). This expression agrees with the 2-loop calculations in [103, 104, 105]. Note that the 3-loop
analysis in [105], done for λ1 = λ2, misses the next term, due to a projection which essentially removes
all terms at odd orders in perturbation theory.

Next we turn to the free energy. Here we notice that the period in (2.2.22) gives only the derivative
of the free energy. Indeed, within the formalism of special geometry developed above, the planar free
energy of the matrix model is only determined up to quadratic terms in the ’t Hooft couplings. These
have to be fixed by direct calculation in the matrix model

F =
N2

1

2
log
(

2πN1

k

)
+
N2

2

2
log
(

2πN2

k

)
− 3

4
(N2

1 +N2
2 )− log(4)N1N2 + · · · (2.4.4)

The last term comes from the normalization of the cosh term in (2.2.3), while the remaining terms are
just the free energies for two Gaussian matrix models with couplings ±2πi/k. Notice that the above free
energy has an imaginary piece given by

πi
6k

(N1 −N2)((N1 −N2)2 − 1). (2.4.5)

Using the identification of the periods at weak coupling (2.3.14) we write down the next term in the
perturbative expansion

π2

72k2

(
N4

1 − 6N3
1N2 + 18N2

1N
2
2 − 6N1N

3
2 +N4

2

)
. (2.4.6)

It would be interesting to try to reproduce these expressions directly from studying perturbative ABJM
theory on S3.
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2.5 Strong coupling expansion and the AdS dual
We turn now to the strong coupling limit of the matrix model, where we have to find the analytic con-
tinuation of the ’t Hooft parameters to the strong coupling region, as functions of the global parameters
of moduli space. We will see how the shift of the charges discussed in [77, 78] emerges naturally from
our computation. We will also evaluate the free energy in this regime and compare with the classical
action of the vacuum AdS dual, deriving in this way the N3/2 behavior of the degrees of freedom.

2.5.1 ABJM slice

In the original ABJM theory with N1 = N2 = N (the case N1 6= N2 was considered in [3]) we should
look at the slice

t1 = −t2 = 2πiλ, λ =
N

k
(2.5.1)

in the moduli space of the dual topological string. From the point of view of the periods σ1, σ2 in (2.3.10)
this means that we should set

σ1 = 0, (2.5.2)

therefore x1 = 0. In order to have a nontrivial σ2, we must consider the double-scaling limit

x1 → 0, x1x2 = ζ fixed. (2.5.3)

The one-dimensional subspace (2.5.1) corresponds, in terms of the variables ζ, ξ, to ξ = 2. As in [30], we
can find simplified expressions for the periods in this subspace. It is easy to see from the structure of σ2

that, in the limit (2.5.3), one has

σ2 =
∞∑
m=0

amζ
2m+1, am = c2m+1,2m+1, (2.5.4)

and from the recursion relation (2.3.11) we find

am =
2−4mΓ

(
m+ 1

2

)2
π(2m+ 1)Γ (m+ 1)2 . (2.5.5)

We then obtain
dσ2

dζ
=

2
π
K

(
ζ

4

)
, (2.5.6)

which is in fact a particular case of (2.2.23), as it can be easily seen by using the transformation properties
of the elliptic integral K(k). The period t1 itself can be written as a generalized hypergeometric function:

t1(ζ) =
ζ

4 3F2

(
1
2
,

1
2
,

1
2

; 1,
3
2

;
ζ2

16

)
. (2.5.7)

In the physical ABJM theory, t1 is purely imaginary. This means that ζ is purely imaginary as well, so
we set

ζ = iκ (2.5.8)

and we finally obtain

λ(κ) =
κ

8π 3F2

(
1
2
,

1
2
,

1
2

; 1,
3
2

;−κ
2

16

)
. (2.5.9)

As a check, we can perform a weak coupling expansion. The weakly coupled region corresponds to

κ� 1, λ� 1, (2.5.10)

and in this region the variables are related as

κ

8π
= λ+

π2λ3

3
− 7π4λ5

60
+

173π6λ7

1260
− 37927π8λ9

181440
+O

(
λ10
)
, (2.5.11)

which is obtained from the inversion of (2.5.9). This is in agreement with (2.4.1).
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Of course, the main advantage of having analytic expressions is that one can perform a weak-strong
coupling interpolation easily. The strong coupling region is

κ� 1, λ� 1 (2.5.12)

and (2.5.9) leads to the asymptotic expansion

λ(κ) =
log2(κ)

2π2
+

1
24

+O
(

1
κ2

)
. (2.5.13)

2.5.2 Analytic continuation and shifted charges

In order to perform the analytic continuation of the ’t Hooft parameters, we use the explicit representation
of the periods in terms of integrals given in (2.2.21) as well as their derivatives (2.2.23)-(2.2.24). Let us
start by discussing t1. We study its behavior at large ζ but fixed β, which is the large radius region. We
find

∂t1
∂ζ

=
i
πζ

log
(
−ζ

2

β

)
+ o(ζ−1),

∂t1
∂β

= − i
2πβ

(
log(−ζ2) + πi

)
+ o(1), (2.5.14)

and this gives the leading behavior

t1 = − i
2π
(
log(−ζ2) + πi

)
log

β

ζ
+ · · · (2.5.15)

In the physical theory t1 should be imaginary and β a phase. By examining (2.5.15), this implies that κ
is real. From (2.3.4) we then see that z1 = z̄2 and henceforth we label it z1 = z.

We know also that t1 must be a linear combination of the periods at large radius. Using that z1 = 1/ζ2

and z2 = (β/ζ)2, and comparing (2.5.15) to the behavior of the periods (2.3.19) and (2.3.27), we find

t1 =
i

2π
(F1 + F2)− 1

2
T2 −

πi
6
,

t2 = − i
2π

(F1 + F2) +
1
2
T1 +

πi
6
.

(2.5.16)

The constants ±πi/6 cannot be fixed by using the above information, but they can be fixed by specializing
to the ABJM slice z1 = z2, as we will see in a moment.

A simple calculation leads to the following explicit expression

λ1(κ,B) =
1
2

(
B2 − 1

4

)
+

1
24

+
log2 κ

2π2
− log κ

2π2
ω(1) (z, z̄) +

1
16π2

(
ω

(2)
1 + ω

(2)
2

)
(z, z̄) . (2.5.17)

This expansion is valid in the region κ → +∞. Notice that it is manifestly real when κ is real and
positive.

As a check of the above expression, we can particularize to the ABJM slice λ1 = λ2 = λ, (B = 1/2),
which corresponds in the gauge theory, to having identical gauge groups in the two nodes of the quiver,
i.e., N1 = N2. The mirror map for this case was obtained in the previous section and its strong coupling
expansion (2.5.13) in agreement with (2.5.17). This also fixes the constants in (2.5.16).

The observables of the model are naturally functions of ζ, β (alternatively κ, B), and we have to
re-express them in terms of λ1,2. Equation (2.5.17) shows that the natural variable at strong coupling is
not λ1, but rather

λ̂ = λ1 −
1
2

(
B2 − 1

4

)
− 1

24
=

1
2

(λ1 + λ2)− 1
2

(λ1 − λ2)2 − 1
24
. (2.5.18)

In particular, it is only when expressed in terms of this variable that κ is a periodic function of λ̂, B.
Remarkably, the above shift is precisely the one found in [78]. In the type IIA realization of the ABJ

theory U(M2)k × U(M2 + M4)−k, where M2 corresponds to the number of D2 branes and M4 to the
number of D4 branes, the Maxwell charge of the D2 branes is not M2, but rather

Q2 = M2 −
k

2

(
B2 − 1

4

)
− 1

24

(
k − 1

k

)
, (2.5.19)
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where
B = −M4

k
+

1
2
. (2.5.20)

After dividing by k and taking the large k limit, we recover (2.5.18) with

λ̂ =
Q2

k
. (2.5.21)

The relation between λ̂ and κ can be inverted at strong coupling and it is of the form

κ(λ̂, B) = eπ
√

2λ̂

1 +
∑
`≥1

c`

(
1

π
√

2λ̂
, β

)
e−2`π

√
2λ̂

 (2.5.22)

where

c`(x, β) =
2`−1∑
k=0

c
(`)
k (β)xk. (2.5.23)

The coefficients c(`)k (β) are Laurent polynomials in β, β−1, of degree `, and symmetric under the exchange
β ↔ β−1. In other words, they can be written as polynomials in cos(2πmB), so they are periodic in B,
with period 1. We find, for example,

c1(x, β) = −
(
β + β−1

) (
1− x

2

)
,

c2(x, β) = 3 +
x

8
(
3β2 − 8 + 3β−2

)
− 3x2

8
(
β + β−1

)2 − x3

8
(
β + β−1

)2
.

(2.5.24)

The fact that c`(x, β) are polynomials in x of degree 2` − 1, rather than power series, comes out from
an explicit calculation of the first few cases, and we have not established it.

From the explicit expression (2.5.17) we can implement the symmetries of the model as a function of
κ and B (or equivalently, z1 and z2). For example, the transformation

N1 → 2N1 + k −N2, N2 → N1 (2.5.25)

simply corresponds to periodicity in the B field

B → B + 1 (2.5.26)

while κ remains unchanged. From the point of view of the z1,2 variables, this is simply a monodromy
transformation z1,2 → e∓2πiz1,2. Notice that not all the values of κ lead to admissible values of λ1,2,
since min(λ1, λ2) ≥ 0. This means that the boundary of moduli space is the conifold locus (2.3.39).

2.5.3 Wilson loops at strong coupling and semi–classical strings
On the ABJM slice the planar 1/6-BPS Wilson loop is determined by the single equation

d
dκ
〈W 1/6〉 = − i

π

1√
ab(1 + ab)

(aK(k)− (a+ b) Π(n2|k)) . (2.5.27)

Then it is easy to check that

d〈W 1/6〉
dκ

= − 1
2π

log κ+
i
4

+O
(

1
κ2

)
⇒ 〈W 1/6〉 = − 1

2π
κ log κ+

(
1

2π
+

i
4

)
κ+O

(
1
κ

)
(2.5.28)

It follows that

〈W 1/6〉 ∼ −
√

2λ
2

eπ
√

2λ, λ� 1. (2.5.29)

The leading exponential is in perfect agreement with the AdS prediction (2.2.36), and the exact answer
interpolates between the weak and the strong coupling behaviors.

As an application of the explicit expression for κ (2.5.22), we can use (2.2.31) to immediately obtain
the VEV of the 1/2 BPS Wilson loop (2.2.51) at strong coupling

〈W 1/2〉g=0 =
1
2

eπiBκ(λ̂, B). (2.5.30)
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Note that this is a real function of λ̂, B, up to the overall phase involving the B field. This is the same
phase that appears also in the weak-coupling result (2.4.2) and arises also in field theory calculations as
a framing-dependant term [46, 147, 148]. The matrix model always gives the answer for framing=1.

At strong coupling we have,

〈W 1/2〉g=0 ∼ −
1
2

eπiBeπ
√

2λ. (2.5.31)

which displays the same leading exponential behavior predicted by the large N dual.
The computations at strong coupling can be easily extended to the case N1 6= N2, but they depend

on the direction in which we take the limit in the space of ’t Hooft parameters. For ξ fixed and ζ large
(therefore λ1 ∼ λ2), we find the same exponential behavior

〈W 〉 ∼ eπ
√

2λ1 ∼ eπ
√
λ1+λ2 . (2.5.32)

We would like to comment about the normalization of the operators. As mentioned after (2.2.51),
the normalization chosen there is such that the trace of the identity in the fundamental of U(N1)
gives t1 = 2πiN1/k and for the fundamental of U(N1|N2) (with a minus sign as in (2.2.16), it gives
t1 − t2 = 2πi(N1 + N2)/k. In CS theory these normalizations are quite common, but they may be not
the most natural ones in the ABJM theory.

An alternative normalization is to divide by this term, such that at weak coupling the expansion of
the Wilson loop will be 〈W 〉 ∼ 1 + · · · . This is the normalization chosen in [5], and hence the slight
differences in the preceding equations from that reference. Note, though, that with such a normalization,
one would have to divide the doubly-wound 1/2 BPS Wilson loop in the fundamental representation by
the super-trace of the identity, which is 2πi(N1 −N2)/k and is singular for N1 = N2.

There should be a natural choice of normalization that would reproduce the correct normalization
fo the one-loop partition function of the classical string in AdS4 × CP3. To this day, though, a fully
satisfactory calculation for the analog string in AdS5 × S5 giving the factor of λ−3/4 derived from the
the Gaussian matrix model does not exist. One argument, based on world-sheet arguments was given
in [202], but it is not clear why this argument would be modified for ABJM theory. Direct calculations
of the determinant [149, 200] were not conclusive. A possible trick to derive it was proposed in [152]
by considering a 1/4 BPS generalization of the circular Wilson loop, where three zero modes of the
the Wilson loop of [153] are explicitly broken and the integral over them gives this factor. It would be
interesting to construct such generalization to the Wilson loop of [99] and see if a similar argument can
be derived from that.

Regardless of the overall normalization, one can compare those of the 1/2 BPS loop and the 1/4 BPS
loop. Ignoring numerical constants and the framing factor, the ratio is

〈W 1/6〉g=0

〈W 1/2〉g=0

≈
√
λ, (2.5.33)

which is proportional to the volume of a CP1 inside CP3. Indeed, it was argued in [103, 105] that the
string description of the 1/6 BPS Wilson loop should be in terms of a string smeared over such a cycle.

2.5.4 The planar free energy and a derivation of the N3/2 behaviour

In this section we study the free energy at strong coupling. We derive the N3/2 behavior characteristic
of M2 branes [4], and we match the exact coefficient with a gravity calculation in type IIA superstring
on AdS4 × CP3.

The free energy of the matrix model has a large N expansion of the form

F = logZ =
∞∑
g=0

g2g−2
s Fg(λ1, λ2). (2.5.34)

This is the way the genus expansion is typically expressed in topological string theory. To compare with
the gauge theory and the AdS dual one may choose to rewrite this series as an expansion in powers of
1/N by absorbing factors of λ into Fg.

As mentioned in Section 2.4, the formalism of special geometry determines the planar free energy
only up to quadratic terms in the ’t Hooft couplings, and these have to be fixed from the explicit weak
coupling calculation in the matrix model (2.4.4).
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Let us now consider the derivative of the genus zero free energy (2.2.22), and study its analytic
continuation to strong coupling as we have done for ti at the top of Section 2.5.2. Expanding (2.2.26)
for large κ we find

∂I
∂ζ

= −πi
ζ

+O(ζ−2),
∂I
∂β

= O(ζ−1), (2.5.35)

so
I = −πi log ζ +O(ζ0) = −πi log κ+ π2B +O(κ0, B0), κ→∞, (2.5.36)

From this leading large κ behavior we have that in the ABJM slice

∂F0

∂λ
≈ 2π3

√
2λ, (2.5.37)

which can be integrated to give the leading term in (2.5.49) and the match with the supergravity calcu-
lation presented below.

But to get the full series of corrections we should proceed more carefully. We know that the result
of the continuation should be a linear combination of periods, and comparing to (2.3.19) we see that we
can express the period as

I +
πit
2

=
∂F0

∂t1
− ∂F0

∂t2
= −πi

4
(T1 + T2 + 2πi) . (2.5.38)

The constant term can be fixed by looking at the solution on the ABJM slice N1 = N2, which can be
obtained as follows. Since on the slice we effectively have a one-parameter model, there is only one
Yukawa coupling, which we can integrate to obtain F0. From (2.3.37) we easily obtain

∂3
λF0(λ) =

1
4
Cλλλ

∣∣∣
λ1=−λ2

= − 128π6

κ(κ2 + 16)
1

K
(

iκ
4

)3 (2.5.39)

where the factor of 4 is introduced to match the normalization of the matrix model, and we used that

dλ
dκ

=
1

4π2
K

(
iκ
4

)
. (2.5.40)

Integrating once, we find

∂2
λF0(λ) = 4π3K

′ ( iκ
4

)
K
(

iκ
4

) + a1, (2.5.41)

where a1 is an integration constant and we have used the Legendre relation

E′K + EK ′ −KK ′ =
π

2
. (2.5.42)

A further integration leads to the following expression in terms of a Meijer function

∂λF0(λ) =
κ

4
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, − 1
2

∣∣∣∣−κ2

16

)
+ a1λ+ a2. (2.5.43)

Comparison with the matrix model free energy at weak coupling (2.4.4) fixes a1 = 4π3i, a2 = 0, so we
can write

∂λF0(λ) =
κ

4
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, − 1
2

∣∣∣∣−κ2

16

)
+
π2iκ

2 3F2

(
1
2
,

1
2
,

1
2

; 1,
3
2

;−κ
2.

16

)
. (2.5.44)

If we integrate this expression with the following choice of integration constant,

F0(λ) =
∫ λ

0

dλ′ ∂λ′F0(λ′) (2.5.45)

we obtain the correct weak coupling expansion.
We can now analytically continue the r.h.s. of (2.5.44) to κ =∞, and we obtain

∂λF0(λ) = 2π2 log κ+
4π2

κ2 4F3

(
1, 1,

3
2
,

3
2

; 2, 2, 2;−16
κ2

)
(2.5.46)
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This agrees with (2.5.38) on the ABJM slice. To see this, one notices that

ω(1)(z, z) = 2
∞∑
n=1

∑
k+l=n

(2k + 2l − 1)!
(k!)2(l!)2

zn = 2
∞∑
n=1

4n(2n− 1)!Γ
(
n+ 1

2

)
√
πΓ(n+ 1)3

zn

= 4z 4F3

(
1, 1,

3
2
,

3
2

; 2, 2, 2; 16z
) (2.5.47)

is precisely the generalized hypergeometric function appearing in (2.5.46).
We are now ready to discuss the calculation of the planar free energy at strong coupling. We have,

∂λ̂F0(λ1, λ2) = 2π2 log κ− π2ω(1)(z, z̄). (2.5.48)

After plugging the value of κ in terms of λ̂ given by the series expansion (2.5.22), and integrating w.r.t.
λ̂, we obtain

F0(λ̂, B) =
4π3
√

2
3

λ̂3/2 +
ζ(3)

2
+
∑
`≥1

e−2π`
√

2λ̂f`

(
1

π
√

2λ̂
, β

)
− 2π3i

3

(
B − 1

2

)3

, (2.5.49)

where f`(x) is a polynomial in x of the form

f`(x, β) =
2`−3∑
k=0

f
(`)
k (β)xk, ` ≥ 2. (2.5.50)

The coefficients f (`)
k (β) are Laurent polynomials in β of degree `, and symmetric under the exchange

β ↔ β−1. We have, for the very first cases,

f1(x, β) = −1
2
(
β + β−1

)
,

f2(x, β) =
1
16
(
β2 + 16 + β−2

)
+
x

4
(
β + β−1

)2
.

(2.5.51)

In going from (2.5.48) to (2.5.49) an integration constant ζ(3)/2 appears. Its presence can be checked
by comparing (2.5.49) with a numerical calculation of the integral (2.5.45) at intermediate coupling3.
This constant is nothing but the well-known constant map contribution to the prepotential, first found
in [151].

The free energy in the planar approximation is given by rescaling (2.5.49) by the string coupling
F = g−2

s F0 +O(g0
s). This expression displays many interesting features. First, note that on the ABJM

slice N1 = N2 the leading term

− π
√

2
3

k2λ̂3/2 (2.5.52)

displays the “anomalous" scaling N3/2 in the number of degrees of freedom for a theory of M2 branes,
as was first derived from a supergravity calculation in [4]. The above calculation is a first principles
derivation of this behaviour at strong coupling in the gauge theory. Usually, this behaviour is associated
to the thermal free energy on R3, while (2.5.52) gives rather the free energy of the ABJM theory on
S3 at strong coupling. However, as we have seen in Section 1.4.3 a supergravity calculation of this free
energy also leads to the N3/2 behavior with exactly the same coefficient. We will show this now, and in
particular we will match the numerical coefficient in (2.5.52).

In Fig. 2.6 we show the exact result for the planar limit of ∂λF0(λ) in the case N1 = N2, as a function
of λ = N/k, and we compare it to the behavior of the supergravity prediction

∂λF0(λ) ≈ 2π3
√

2(λ− 1/24), λ→∞. (2.5.53)

We see that the strong coupling behavior gets triggered for values of the coupling λ ≈ 0.2. For λ → 0,
the behavior of the prepotential is dominated by the Gaussian, weakly coupled result (2.4.4)

∂λF0(λ) ≈ −8π2λ

(
log
(
πλ

2

)
− 1
)
, λ→ 0. (2.5.54)

3This integration constant was incorrectly set to zero in the first version of the orginal paper [6]. It was determined
numerically in [150].
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Figure 2.6: Comparison of the exact result for ∂λF0(λ) given in (2.5.44), plotted as a solid blue line,
and the weakly coupled and strongly coupled results. In the figure on the left, the red dashed line is the
supergravity result (2.5.53), while in the figure on the right, the black dashed line is the Gaussian result
(2.5.54).

A second aspect to notice is that the supergravity result (2.5.49) has corrections which are exponen-
tially suppressed. The exponential is of the form

e−`A(CP1) (2.5.55)

where
A(CP1) = 2π

√
2λ̂ (2.5.56)

is the area of the CP1 two-cycle in CP3. Also, notice that each of these exponential corrections multiplies
(at each order in λ̂−1/2) the polynomial f (`)

k (β) in β, β−1. Therefore, we have contributions schematically
of the form ∑

n++n−=`

cn+,n−e−n+(A(CP1)+2πiB)−n−(A(CP1)−2πiB) (2.5.57)

This is precisely what one should expect for a gas of n+ instantons and n− anti–instantons in a σ model
on CP3, where the (anti)instantons wrap the CP1 cycle. Notice that this kind of corrections are made
possible by the non-trivial topology of two cycles in CP3, i.e., by the fact that b2(CP3) = 1, and as such
they are absent in AdS5 × S5. Some aspects of these string instantons have been studied in [206]. It
would be interesting to test in detail the possible connection between these string instantons and the
exponentially suppressed corrections to the planar free energy.

These instanton corrections are also present in the Wilson loop result (2.5.30), again with an infinite
series of corrections. This can be compared with the case of N = 4 SYM in 4d, where the asymptotic
large coupling expansion of the Gaussian matrix model (2.2.44) has a single instanton correction which
can be explicitly identified with a second saddle point solution in AdS5 × S5 [152, 154].

Finally, we note that when N1 6= N2, the planar free energy (2.5.49) includes an imaginary term
proportional to (B− 1/2)3, which is derived by the weak coupling calculation (2.4.5). In CS theory such
a term is related to framing [46]. It would be very interesting to derive this phase in type IIA string
theory.

2.6 Conifold expansion

The expansion around the conifold locus corresponds to a region in the moduli space of the ABJM model
where one of the gauge groups has finite coupling, while the other one is weakly coupled. In the lens
space matrix model this corresponds to one ’t Hooft parameter being small, and the other of order 1.
In this section we will study this regime from three different points of view: the exact planar solution in
terms of periods and Picard–Fuchs equations, the matrix model, and the gauge theory.

2.6.1 Expansion from the exact planar solution

We can use the exact planar solution to calculate various physical quantities near the conifold locus. For
concreteness, we will expand around t2 = 0 but with t1 arbitrary. The first ingredient we need is an
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expansion of the global coordinates of moduli space. It turns out that the most convenient method is
based on the expressions for the periods (2.2.21). The locus where t2 = 0 is the line

ζ = 2β − 2, (2.6.1)

where the cut (−b,−1/b) collapses to the point Z = −1. The derivative of t2 w.r.t. ζ can then be
computed in terms of residues at this point by expanding the expression in (2.2.23):

− ∂t2
∂ζ

=
∑
k>0

1
4πi

∮
−1

dZ
Hk(Z, β) (ζ − 2β + 2)k

(Z + 1)2k+1
, (2.6.2)

where Hk(Z, β) are regular at Z = −1. This gives a series for t2 in powers of ζ − 2β + 2,

− t2 =
1

4
√
β

(ζ−2β+ 2)− 1− β
128β3/2

(ζ−2β+ 2)2 +
9− 2β + 9β2

12288β5/2
(ζ−2β+ 2)3 +O((ζ−2β+ 2)4) (2.6.3)

which can be easily inverted to

ζ = 2β − 2− 4
√
β t2 +

1
2

(1− β) t22 +
3 + 10β + 3β2

48
√
β

t32 +O(t42). (2.6.4)

As a nice application of this expansion, we can compute the VEV of the 1/2 BPS Wilson loop around
the conifold point, which is given in (2.2.51). Using the dictionary (2.2.30), (2.2.31), we find

e−πiB〈W 1/2〉g=0 = 2 sin(πλ1) + 2πλ2 (2− cos(πλ1)) + π2λ2
2 sin(πλ1)

+
1
3
π3λ3

2

(
1− 5 cos(πλ1) + 3 cos2(πλ1)

)
+O(λ4

2).
(2.6.5)

As λ2 → 0, we recover the result for a Wilson loop VEV in U(N1) CS theory. In the conifold expansion
we are then regarding the ABJM theory as a perturbation of U(N1) CS theory at strong coupling.

The above result can be also obtained by solving the Picard–Fuchs equation around a point in the
conifold locus. Let us choose for example the symmetric conifold point (2.3.32), with B = 1 and κ = 4.
This corresponds to the point in the conifold locus with

λ1 =
1
2
, λ2 = 0. (2.6.6)

The appropriate global coordinates near this point are (2.3.33). We find that λ2 is a period solving the
PF system (2.3.34) and with leading behavior

λ2 = − 1
4π

(y2 + y1/2) +O(y2). (2.6.7)

One finds the expansion

λ2 =
π

4
(B − 1)2 − 5π3

96
(B − 1)4 +

(
1

8π
− π

32
(B − 1)2 +

43π3

1536
(B − 1)4

)
(κ− 4)

+
(
− 1

128π
+

9π
1024

(B − 1)2 − 99π3

8192
(B − 1)4

)
(κ− 4)2 +O

(
(B − 1)6

)
+O

(
(κ− 4)3

)
,

(2.6.8)

which is inverted to

κ = 4− 2π2

(
λ1 −

1
2

)2

+
π4

6

(
λ1 −

1
2

)4

+ πλ2

(
8 + 4π

(
λ1 −

1
2

)
− 2π3

3

(
λ1 −

1
2

)3
)

+O
(
λ2

2

)
+O

(
(λ1 − 1/2)5

)
.

(2.6.9)

This is indeed the expansion around λ1 = 1/2 of (twice) the series in the r.h.s. of (2.6.5).
Once we know the expansion of the global coordinates, we can consider other quantities in the model,

like the genus g free energies. The conifold expansion of Fg(t1, t2) has the form

Fg(λ1, λ2) = FG
g (λ2) +

∑
n≥0

F (n)
g (λ1)λn2 , (2.6.10)
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where FG
g (λ2) is the free energy of the U(N2) Gaussian matrix model, and each coefficient F (n)

g (λ1) can
be obtained as an exact function of λ1. Of course,

F (0)
g (λ1) = F S3

g (λ1) (2.6.11)

is the genus g free energy of the CS theory on S3. When g = 0, the expansion (2.6.10) can be computed
from the exact planar solution in various ways. One can for example use the Yukawa couplings (2.3.37)
expanded around the conifold locus in order to compute the third derivatives of F0, or use the modularity
properties of the solution discussed in [109, 113]. In any case, for the first few functions one finds the
following results:

F
(1)
0 (λ1) = 2πi

(
π2λ2

1 + 2Li2
(
− eπiλ1

)
− 2Li2

(
− e−πiλ1

))
,

F
(2)
0 (λ1) = −2π3iλ1 + 8π2 log

(
cos
(
πλ1

2

))
,

F
(3)
0 (λ1) =

2π3i
3

+
π3

3
(
3 cos(πλ1)− 5

)
tan

(
πλ1

2

)
.

(2.6.12)

2.6.2 Conifold expansion from the matrix model
It is easy to implement the conifold expansion directly in the lens space matrix model. To do that, we
notice that it can be written as two interacting Chern–Simons matrix models on S3. We recall that the
CS matrix model on S3, first considered in [85], is defined by the partition function

ZS3(N, gs) =
1
N !

∫ N∏
i=1

dµi
2π

∏
i<j

(
2 sinh

(
µi − µj

2

))2

e−
1

2gs

P
i µ

2
i . (2.6.13)

This is a one-cut matrix model [90]. It can be obtained from the lens space matrix model when one of
the two cuts collapses to zero size. In the Z plane the endpoints of the cut are given by a and a−1, where

a = 2et − 1− 2et/2
√

et − 1. (2.6.14)

Let us consider the following operator in this model:

W(νj) = 2
∑
i,j

log
(

2 cosh
(
µi − νj

2

))
. (2.6.15)

The lens space partition function (2.2.4) can be calculated in two steps. In the first step, we compute

Z1(νj) =
〈

eW(νj)
〉
N1

(2.6.16)

where the subindex N1 indicates that this is an unnormalized VEV in the S3 CS matrix model with
gauge group U(N1). In a second step, we calculate

ZL(2,1) = 〈Z1(νj)〉N2 (2.6.17)

in the CS matrix model with gauge group U(N2). To obtain the conifold expansion, we calculate Z1(νj)
and we expand it in gs and around νj = 0. Each term in this expansion can be computed exactly as
a function of the Kähler parameter t1, since the CS matrix model can be solved exactly in the 1/N
expansion. The resulting double series in gs and νj is then regarded as an operator in the CS matrix
model with group U(N2), which we expand around the Gaussian point as in [85, 88], i.e., we expand the
sinh measure around νj = 0. The partition function ZL(2,1) is then computed as a VEV in the Gaussian
matrix model. This procedure gives a method to compute the expansion (2.6.10) directly in the matrix
model.

To illustrate this procedure, let us calculate F0(t1, t2) at first order in t2. In this computation we will
denote

U1 = diag(eµi), U2 = diag(eνj ). (2.6.18)

The expansion around νj = 0 of the operator W(νj) reads

W(νj) = 2N2

N1∑
i=1

log
[
2 cosh

(µi
2

)]
−

N2∑
j=1

νj

N1∑
i=1

tanh
(µi

2

)
+O(ν2

j ). (2.6.19)
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The average of the second term in the U(N2) matrix model vanishes (since it is odd in νj), while higher
order terms are at least of order t22. The first term can be written as

2
N1∑
i=1

log
[
2 cosh

(µi
2

)]
= 2 Tr log(1 + U1)−

N1∑
i=1

µi. (2.6.20)

Therefore, in the planar limit and neglecting terms which contribute at order t22, we have

logZ1(νj) ≈
2t2
gs
〈Tr log(1 + U1)〉N1

(2.6.21)

since the second term in (2.6.20) is odd in µi and its VEV vanishes. We then find,

F0(t1, t2) = F S3

0 (t1) + 2t2gs 〈Tr log(1 + U1)〉+O(t22). (2.6.22)

The VEV in (2.6.22), which is now normalized, can be computed in terms of the resolvent of the CS matrix
model, and similar computations appear in [30, 155] in the context of large N instanton corrections. In
fact, it follows from (2.7.28) and (2.7.30) that the VEV in (2.6.22) is given by −g(−1), where g(Y ) is
computed in (D.2). The final result for the linear correction in t2 is

π2

3
+
t21
2

+ Li2(e−t1)− 2Li2(e−t1/2) + 2Li2(−e−t1/2). (2.6.23)

Using dilogarithm identities, this agrees with λ2
t2
F

(1)
0 (λ1) in (2.6.12). It is interesting to point out that,

in the context of CS theory on the lens space L(2, 1), this function is essentially the action of the large
N instanton corresponding to the flat connection

U(N)→ U(N1)× U(N2), N2 � N1, (2.6.24)

as shown in [30]. In the matrix model, this action is obtained by tunneling N2 eigenvalues from the first
cut to the second cut.

We can also calculate the conifold expansion for the VEV of 1/6 and 1/2 BPS Wilson loops directly
in the matrix model. We want to compute

〈W 1/6〉 = gs〈TrU1〉L(2,1). (2.6.25)

We will again perform this computation in the planar approximation and at linear order in t2. At this
order we can compute instead the normalized average of the operator〈

TrU1 eW(νj)
〉
N1〈

eW(νj)
〉
N1

= 〈TrU1〉+ 〈TrU1W(νj)〉(c) + · · · (2.6.26)

in a Gaussian matrix model for the νj . In the last line, all VEVs are normalized VEVs in the S3 CS
matrix model. By completing the square of the Gaussian weight we derive〈

TrU1

(
N1∑
i=1

µi

)〉
=

∂

∂j

〈
TrU1 ej

PN1
i=1 µi

〉 ∣∣∣∣
j=0

= gs 〈TrU1〉 . (2.6.27)

We then find, at this order,

〈W 1/6〉g=0 = gs〈TrU1〉+ t2

(
2〈TrU1 Tr log(1 + U1)〉(c) − gs〈TrU1〉

)
+O(t22). (2.6.28)

The connected correlator

〈TrU1 Tr log(1 + U1)〉(c) = −
∞∑
`=1

(−1)`

`
〈TrU1 TrU `1〉(c) (2.6.29)

can be computed by considering the (partially) integrated two-point function (see for example [170])∫
dpW0(p, q) = −

∑
n,m

1
npnqm+1

〈TrUn1 TrUm1 〉(c) (2.6.30)
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and extracting the coefficient of q−2. We have,∫
dpW0(p, q) =

1
2(p− q)

(
1−

√
(p− a)(p− a−1)
(q − a)(q − a−1)

)
+

1
2
√

(q − a)(q − a−1)
, (2.6.31)

which includes the appropriate integration constant. We find, after changing p→ −p,

−
∞∑
`=1

(−1)`

`p`
〈TrU1 TrU `1〉(c) =

1
4

(
a+ a−1 + 2p− 2

√
(p+ a)(p+ a−1)

)
. (2.6.32)

When p = 1 this gives

−
∞∑
`=1

(−1)`

`
〈TrU1 TrU `1〉(c) = et1 − et1/2. (2.6.33)

Notice that this is an infinite sum of correlators in the CS matrix model. Since

〈TrU1〉 =
et1 − 1
gs

, (2.6.34)

we finally obtain,

〈W 1/6〉g=0 = et1 − 1 + t2

(
et1/2 − 1

)2

+O(t22)

= et1/2
(

2 sinh
t1
2

+ t2

(
−2 + 2 cosh

t1
2

)
+O(t22)

)
.

(2.6.35)

Since this is a Wilson loop only in the first group, the framing prefactor depends only on the first ’t Hooft
coupling.

The 1/2 BPS Wilson loop is obtained by subtracting

〈TrU2〉L(2,1) = N2 +O(t22) =
t2
gs

+O(t22). (2.6.36)

We find,

e−(t1+t2)/2〈W 1/2〉g=0 = 2 sinh
(
t1
2

)
+ t2

(
−2 + cosh

(
t1
2

))
+O(t22). (2.6.37)

This is the result (2.6.5) obtained from the conifold expansion after using the dictionary (2.2.29).

2.7 More exact results on Wilson loops
In this section we present more exact results on Wilson loops.

2.7.1 1/N corrections
The higher genus corrections to the VEV of 1/2 and 1/6 BPS Wilson loops can be computed in terms of
the higher genus corrections to the resolvent of the matrix model. The resolvent has a genus expansion
of the form

ω(z) =
∞∑
g=0

g2g
s ωg(z). (2.7.1)

In the same way, the density of eigenvalues has a large N expansion of the form

ρ(z) =
∞∑
g=0

g2g
s ρg(z) , ρ(z) = ρ(1)(z) + ρ(2)(z). (2.7.2)

The ρ(i)
g (z) (with i = 1, 2) have their support on the intervals Ci, and they can be obtained by the

discontinuity of ωg at the cuts as in (2.2.40).
The genus expansion of the expectation value of the 1/6 BPS and 1/2 BPS Wilson loops follows the

expressions in (2.2.42) and (2.2.43) with the appropriate term in the expansion of ρ(i)(Z) and ω(Z).
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The first step is therefore to compute ωg(p). This calculation can be done with the recursive techniques
developed in the matrix model literature starting with [170] and culminating with [175]. We will perform
an explicit computation for g = 1. Calculations for g ≥ 2 are in principle doable, but they become
complicated.

A convenient formula for ω1(p) for an algebraic resolvent was found in [173]. To write this formula,
we write the discontinuity of the resolvent (also called spectral curve in the matrix model literature) as

y(p) = M(p)
√
σ(p), σ(p) = (p− x1)(p− x2)(p− x3)(p− x4). (2.7.3)

M(p) is sometimes called the moment function. Then, one has

ω1(p) =
4√
σ(p)

4∑
i=1

(
Ai

(p− xi)2
+

Bi
p− xi

+ Ci

)
, (2.7.4)

where

Ai =
1
16

1
M(xi)

,

Bi = − 1
16

M ′(xi)
M2(xi)

+
1

8M(xi)

(
2αi −

∑
j 6=i

1
xi − xj

)
,

Ci = − 1
48

1
M(xi)

∑
j 6=i

αj − αi
xj − xi

− 1
16

M ′(xi)
M2(xi)

αi +
αi

8M(xi)

(
2αi −

∑
j 6=i

1
xi − xj

)
,

(2.7.5)

and the αi are given by

α1 =
1

(x1 − x2)

[
1− (x4 − x2)

(x4 − x1)
E(k)
K(k)

]
,

α2 =
1

(x2 − x1)

[
1− (x3 − x1)

(x3 − x2)
E(k)
K(k)

]
,

α3 =
1

(x3 − x4)

[
1− (x4 − x2)

(x3 − x2)
E(k)
K(k)

]
,

α4 =
1

(x4 − x3)

[
1− (x3 − x1)

(x4 − x1)
E(k)
K(k)

]
,

(2.7.6)

where the modulus of the elliptic functions is

k2 =
(x1 − x2)(x3 − x4)
(x1 − x3)(x2 − x4)

. (2.7.7)

These expressions differ from the ones in [173] in a permutation of the roots, as explained in [158]. The
overall factor of 4 in (2.7.4) is due to the fact that our resolvent has a different normalization than the
one in [173].

Although the resolvent of the lens space matrix model (2.2.17) is not algebraic, its discontinuity can
be written in the form (2.7.3) with

σ(p) = f(p)2 − 4β2p2, f(p) = p2 − ζp+ 1 (2.7.8)

and

M(p) =
2

p
√
σ(p)

tanh−1

√
σ(p)
f(p)

. (2.7.9)

This form of the spectral curve is typical of the mirrors of toric geometries [172, 201]. The branch points
are

x1 = −b, x2 = −1
b
, x3 =

1
a
, x4 = a. (2.7.10)

Using these expressions, it is possible to compute the integral

〈W 1/6〉g=1 =
1

4πi

∮
C1
ω1(Z)ZdZ (2.7.11)
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in closed form, in terms of elliptic functions E,K and the elliptic integral of the third kind Π(n, k), with

n =
(a2 − 1)b
(1 + ab)a

. (2.7.12)

One finds the rather complicated expression

〈W 1/6〉g=1 =
1

12π
√
a b3/2(1 + ab)(a2 − 1)2(b2 − 1)K

[
−3(b− 2a+ a2b) (1 + ab)4E2 +

[
a(1 + a4)

− b+ a2(4 + 4a2 − a4)b− 4a(1− 3a2 + a4)b2 − a2(1 + a2)b3(2 + b2) + a(1− 8a2 + a4)b4
]
K2

+
(
b3(1 + 6a2 + a4) + 4a(1 + a2)(b2 − 1) + b(3− 14a2 + 3a4)

)
(1 + ab)2EK

]
+

(ab− 1)(a2 − b2)
12π (ab)3/2(1 + ab)k4K2

[
− 6E2 + 4(2− k2)EK − (2− 2k2 + k4)K2

]
Π.

(2.7.13)
To check this formula, we expand it around the weakly coupled point λ1 = λ2 = 0. After using the
inverse mirror map given by (2.4.1) we find

〈W 1/6〉g=1 =− πi
12
λ1 +

π2

12
λ2

1 +
π2

4
λ1λ2 +

π3i
18
λ3

1 +
π3i
24
λ2

1λ2 −
π3i
4
λ1λ

2
2

− π4

36
λ4

1 +
π4

24
λ3

1λ2 +
5π4

24
λ2

1λ
2
2 −

π4

6
λ1λ

3
2 +O(λ5).

(2.7.14)

We can test this expansion with a perturbative calculation in the ABJM matrix model. At order O(g4
s)

we have found,

e−gsN1/2

2πiλ1
〈W 1/6〉 = 1−

(
1
24
N2

1 −
1
4
N1N2 +

1
24

)
g2
s +

(
1
16
N2

1N2 −
1
16
N2

)
g3
s

+
(

3
5760

N4
1 −

10
1920

N3
1N2 −

20
1920

N1N
3
2 −

10
5760

N2
1 +

5
192

N1N2 +
1
32
N2

2 +
7

5760

)
g4
s + · · ·

(2.7.15)
It is straightforward to see that this agrees with (2.7.14).

The 1/N correction to the 1/2 BPS Wilson loop is much easier to obtain, since it can be computed
as a residue at infinity. We have that

ω1(Z) =
4
Z2

4∑
i=1

Ci +O(Z−3), (2.7.16)

where the Ci are given in (2.7.5). We find, at weak coupling,

〈W 1/2〉g=1 =− πi
12

(λ1 + λ2) +
π2

12
(λ2

1 − λ2
2) +

π3i
18

(λ3
1 + λ3

2)− 5π3i
24

λ1λ2(λ1 − λ2)

− π4

36
(λ4

1 − λ4
2) +

5π4

24
λ1λ2(λ2

1 − λ2
2) +O(λ5).

(2.7.17)

At strong coupling we find (we consider for simplicity the ABJM slice)

〈W 1/2〉g=1 =
1

24i
3 + 2 log2 κ− 4 log κ

log2 κ
κ+O(1) (2.7.18)

The leading exponent is exactly as at genus zero (2.5.30), representing the same minimal surface with
an extra degenerate handle attached. Its effect is to modify the one-loop determinant, which (with our
normalization and ignoring instantons) can be written as

〈W 1/2〉g=1 = −i
(

1
12
− 1

6π
√

2λ
+

1
16π2λ

)
eπ
√

2λ, λ→∞. (2.7.19)
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2.7.2 Giant Wilson loops
It has been argued in [145, 146, 159, 203] that a D-brane probe in AdS5 × S5 represents an insertion of
a Wilson loop in the dual 4d N = 4 SYM with a large symmetric or antisymmetric representation (in
the case of D3 branes and D5 branes, respectively). These “giant Wilson loops" are characterized by a
representation with n boxes, and one considers the limit

n, N →∞, n

N
fixed. (2.7.20)

In terms of the Gaussian matrix model of the Wilson loops in that theory, the giant Wilson loop in the
symmetric representation is represented by an additional eigenvalue outside the cut and the antisym-
metric representation by a “hole” in the original cut.

Let us review now the known D-brane solutions which could be relevant for ABJM theory. The
usual 1/2 BPS Wilson loop in the fundamental representation is described by a string with world-
volume AdS2 ⊂ AdS4. In M-theory it is an M2-brane wrapping also the orbifold cycle on S7/Zk. When
considering k/2 coincident M2-branes (or k, when it is odd) the M2-brane solution develops an extra
branch, where the circle becomes a linear combination of the orbifold direction and a contractible circle
in AdS4 [160]. In type IIA these configurations are D2-branes with world-volume AdS2 × S1 ⊂ AdS4,
where the radius of the S1 is a free modulus. From the M-theory point of view these are continuous
deformations of the system of k/2 coincident M2-branes describing a Wilson loop in a k/2 dimensional
representation. In the field theory they are the vortex loop operators of [114], which have a description
as semi-classical field configurations and carry the same charge as k/2 Wilson loops.

These solutions have further moduli associated to rotations away from the orbifold cycle inside S7/Zk.
Such M2-brane configurations preserve 8 supercharges (1/3 BPS) [103, 114].

There is also a known family of D6-brane solutions which were argued in [103] to represent the 1/6
BPS Wilson loops in anti-symmetric representations. The action for this D-branes is (for N1 = N2)

SD6 = −π
√

2λ
n(N − n)

N
, (2.7.21)

which matches that of n strings for small n and has the n → N − n symmetry of the antisymmetric
representation. In the matrix model these D6-branes should correspond to creating a “hole” in one of
the two cuts, splitting it in two.

We turn now to the lens space matrix model and try to find the appropriate description for these
objects, and in particular the 1/2 BPS vortex loop operators. As pointed out in [161], the calculation
of Wilson loops in the matrix model in this limit can be done in a saddle-point approximation. We will
now reformulate the arguments of [161] and adapt them to the lens space matrix model.

We will focus on the case of 1/2 BPS Wilson loops, where we want to calculate

W η
n = 〈TrRηnU〉, η = ±1, (2.7.22)

where U is the same matrix as in (2.2.16) and R±1
n = Sn, An are respectively the totally symmetric and

the totally antisymmetric representations of U(N1 +N2) with n boxes. It will turn out that the relevant
limit in this theory is slightly different from (2.7.20) and is given by fixing

ν = η
n

k
=
ηgs n

2πi
. (2.7.23)

Positive ν will correspond to symmetric representations and negative ν to antisymmetric ones. In the ’t
Hooft limit, for fixed N/k, the two scalings are clearly equivalent.

The calculation of (2.7.22) is very similar to the calculation of partition functions of n bosons or
fermions in the canonical ensemble, where n is fixed and large. But at large n, in the thermodynamic
limit, this calculation can be done as well in the grand canonical ensemble. We then introduce the
fugacity z and consider the grand-canonical partition function, using the expression for the determinant
as the generating function of the characters

Ξη(z) =
∑
n≥0

znW η
n =

〈
det (1− ηz U)−η

〉
=

〈
exp

(∑
`≥1

TrU `

`
η`−1z`

)〉
. (2.7.24)

The average value of n in this ensemble is given by (we remove the average notation here, as is standard
in the grand canonical formalism)

n = z
∂

∂z
log Ξη. (2.7.25)
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This is inverted to determine the fugacity as a function of the number of particles

z∗ = z∗(n), (2.7.26)

and then the original VEV can be calculated, in a saddle point approximation, as

W η
n ≈ z−n∗ Ξη(z∗) =

〈
exp

(
− n log z∗ +

∑
`≥1

TrU `

`
η`−1z`∗

)〉
. (2.7.27)

For convenience, let us henceforth absorb Y = ηz. It can be seen that, at leading order in large N ,
the grand-canonical partition function (2.7.24) is given by disconnected planar graphs. Therefore

Ξη(Y ) ≈ exp
(
η

gs
g(Y )

)
, g(Y ) = gs

∑
`≥1

〈TrU `〉0
`

Y `, (2.7.28)

where the subscript 0 refers to the planar part. We now observe that the function g(Y ) is related to the
planar resolvent in the lens space matrix model (2.2.15) and (2.2.17) by

Y
∂

∂Y
g(Y ) =

1
2
(
ω0(Y −1)− t

)
=− log

(
1
2

[√
(Y + b)(Y + 1/b) +

√
(Y − a)(Y − 1/a)

])
.

(2.7.29)

Note that compared to ω0 in (2.2.17), the sign between the two square roots is reversed. Integrating this
equation we get

g(Y ) = −
∫ Y

0

dY ′

Y ′
log
(

1
2

[√
(Y ′ + b)(Y ′ + 1/b) +

√
(Y ′ − a)(Y ′ − 1/a)

])
. (2.7.30)

The initial point of integration is chosen to be Y = 0, since around that point the integrand approaches
a constant ζ/2+O(Y ). This guaranties that for small Y the result of the integration will be proportional
to the 1/2 BPS Wilson loop (2.2.51).

The saddle point equation (2.7.25) determining the mean value of n is then given by

ν =
1

2πi
Y

∂

∂Y
g(Y ). (2.7.31)

i.e., (2.7.29)

e−2πiν =
1
2

[√
(Y∗ + b)(Y∗ + 1/b) +

√
(Y∗ − a)(Y∗ − 1/a)

]
, Y∗ = ηz∗. (2.7.32)

This can be solved explicitly in terms of β, ζ or alternatively in terms of B and κ. The solution reads

Y∗ =
iκ e−πi(2ν+B)

4 sin(2π(ν +B))

(
1−

√
1− 16 sin(2πν) sin(2π(ν +B))

κ2

)
. (2.7.33)

The choice of sign is such that Y∗ = 0 when ν = 0. We will write

W η
n ≈ exp (Aη/gs) (2.7.34)

where Aη, which is identified with the action of a brane probe in the large N string/M-theory dual, is
given by

Aη = −2πiην log(ηY∗) + ηg(Y∗). (2.7.35)

In the original variables, in terms of ω0, the integral (2.7.30) is from infinity to a finite position
Y −1
∗ , and represents the effect of adding a single eigenvalue to the system. This fits with the standard

dictionary [36] identifying a brane with a single eigenvalue.
This integral gives an expression for the action of the giant Wilson loop, in the limit (2.7.20) which

is exact as a function of the ’t Hooft couplings. The derivatives of this integral with respect to β and
ζ can be evaluated in closed form, as in (2.2.23), in terms of incomplete elliptic integrals. The resulting
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expression can then be studied at the different limits of the ABJM theory as done for other observables
in earlier sections.

If we go to the conifold limit, setting λ2 = 0, we get an expression for the giant Wilson loop in
Chern–Simons theory on S3. In that case there exists an exact expression for the Wilson loop for all n.
As we show in Appendix D, the above derivation in this limit indeed reproduces the CS answer.

We will now discuss the expansion of the result for the giant Wilson loop for large κ, since this is the
strong coupling limit in which one makes contact with the AdS geometry [203]. In terms of B and κ,
the integral (2.7.30) reads

g(Y∗) = −
∫ Y∗

0

dY ′

Y ′
log
(

1
2

[√
(1 + Y ′)2 − eπiBY ′(κ− 4i sin(πB))

+
√

(1− Y ′)2 − eπiBY ′(κ+ 4i sin(πB))
]) (2.7.36)

where Y∗ is given in (2.7.33).
Expanding Y∗ at leading order at large κ we get

Y∗ = 2i e−πi(2ν+B) sin(2πν)
κ

+O(κ−2) =
1− e−4πiν

κ
e−πiB +O(κ−2) (2.7.37)

This suggests rescaling Y in the integral (2.7.36) by κ, which allows for a systematic expansion in powers
of κ−1. At leading order the integral becomes

g(Y∗) = −
∫ Y∗

0

dY ′

Y ′

(
log
√

1− eπiBκY ′ +O(κ−1)
)
. (2.7.38)

This yields

g(Y∗) =
1
2
Li2
(
eπiBκY∗

)
+O(κ−2) =

1
2
Li2
(
1− e−4πiν

)
+O(κ−2) (2.7.39)

Another way to get this estimate is to notice that the highest powers of ζ in the series expansion in y of
g(y) are captured by

g(y) =
1
2
Li2(ζy) + · · · . (2.7.40)

Using the dilogarithem identity (D.3) we conclude that the action (2.7.35), written in terms of the original
variable n, is

1
gs
Aη = nπ

√
2λ̂+

nπi
2

(2B − 1 + η) +
ηk

4πi

(
π2

6
− Li2

(
e−4πin/k

))
+O(λ̂−1/2, e−2π

√
2λ̂). (2.7.41)

Notice that this formula does not display the exchange symmetry n↔ N −n for the antisymmetric case
η = −1. This is because this symmetry is not present for the antisymmetric super-representation, as
pointed out in [208].

The leading order in λ in (2.7.41) is as expected, i.e., n times the action of the fundamental string
(and n times an extra framing factor). The non-trivial dependence on ν only appears at subleading order
in λ, and therefore will not be visible in the supergravity approximation. As mentioned above, there are
no known 1/2 BPS brane solutions carrying less than k/2 units of electric charge other than fundamental
strings. So we expect that the above action describes the interaction of these coincident strings.

For n a multiple of k/2 (or of k, if it is odd), we see from (2.7.33) that Y∗ = 0 and the integral
(2.7.30) is over a full cycle. The argument of the dilogarithm in (2.7.41) is unity, canceling the π2/6
term. Since Y ∗ passed through one of the cuts C1 or C2, it is now on a different sheet, and exactly at
the branch point of the logarithm in ω0(Y −1). This happens exactly for the value of n where the strings
describing the Wilson loop can be replaced by D2-branes, which are the string theory incarnation of
the vortex loop operators [114]. This suggests that the vortex loop operators are related to eigenvalues
along the logarithmic branch-cut. It is possible to use our formalism to calculate the perturbative and
instanton corrections to the these configurations and it would be interesting to understand further their
significance in the matrix model.
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2.8 Flavored theory and its gravity dual
It is possible to flavor the ABJM theory by adding matter hypermultiplets in the fundamental repre-
sentation [17, 129, 130]. More precisely, one adds N (i)

f multiplets (Qi, Q̃i), with i = 1, 2. The fields
Qi, i = 1, 2 are in the representations (N1, 1) and (1, N2), respectively, while Q̃i are in the conjugate
representations (N1, 1) and (1, N2), respectively. This matter content breaks the N = 6 supersymmetry
of the ABJM theory down to N = 3. Notice that the ABJM theory can be obtained, formally, as the
limit

N
(i)
f → 0 (2.8.1)

of the flavored theory. We will denote by

Nf = N
(1)
f +N

(2)
f (2.8.2)

the total number of flavours.
According to the general localization procedure described in the eprevious chapter the inclusion of

extra matter hypermultiplets just leads to the insertion of determinant-type operators in the matrix
integral (2.2.3):

ZN=3(N1, N2, N
(1)
f , N

(2)
f , gs)

=
1

N1!N2!

∫ N1∏
i=1

dµi
2π

N2∏
j=1

dνj
2π

∏
i<j

(
2 sinh

(
µi−µj

2

))2 (
2 sinh

(
νi−νj

2

))2

∏
i,j

(
2 cosh

(
µi−νj

2

))2

×
N1∏
i=1

(
2 cosh

µi
2

)−N(1)
f

N2∏
i=1

(
2 cosh

νi
2

)−N(2)
f

e−
1

2gs (P
i µ

2
i−

P
j ν

2
j ).

(2.8.3)

As was previously discussed the large N dual of the ABJM Chern–Simons–matter theory is given by
type IIA string theory on AdS4 × CP3, which lifts to M-theory on AdS4 × S7/Zk. It was conjectured in
[17, 129, 130] that, when N1 = N2 = N , the N = 3 theory with flavor has a type IIA large N dual where
Nf D6 branes wrap the RP3 cycle inside CP3. This is the four-dimensional counterpart of the original
construction of [164], which adds flavor to AdS5 by wrapping D7 branes around an S3 inside S5. The
flavored N = 3 theory also describes N M2 branes probing an eight-dimensional hyperKähler coneM8

with Sp(2) holonomy. The base of this cone is a tri-Sasakian space X7. The space M8 is a particular
member of a family of hyperKähler conesM8(t) labeled by three natural numbers t = (t1, t2, t3). These
cones can be constructed as hyperKähler quotients

H3///U(1), (2.8.4)

where the U(1) action is characterized by the three charges t. The bases X7(t) of these cones give an
infinite family of tri-Sasakian manifolds known as Eschenburg spaces, see [18] for a detailed study and
references to the relevant literature. The dual to the N = 3 Chern–Simons–matter theory with a total
number of Nf fundamentals has charges

t = (Nf , Nf , k) . (2.8.5)

In the following, the eight-dimensional cone corresponding to this charge will be simply denoted byM8.
At large N the above theory of N M2 branes is described by M-theory on the manifold

AdS4 ×X7, (2.8.6)

where X7 is the tri-Sasakian seven manifold corresponding to (2.8.5). This background is a particular
example of backgrounds considered in Section 1.4.3. The volume of X7 (with unit radius) is given by
[18]

vol(X7) =
vol(S7)
k ξ2 (µ)

, (2.8.7)

where
ξ(µ) =

1 + µ√
1 + µ/2

, µ =
Nf
k
. (2.8.8)
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Then from (1.4.57) it follows that the free energy of the flavoured theory has the following strong coupling
behaviour.

− FN=3(S3) =
π
√

2
3

N3/2k1/2ξ (µ) (2.8.9)

Another quantity that we are interested in is the VEV of supersymmetric Wilson loops. As usual in the
AdS/CFT correspondence, this can be calculated by evaluating the regularized area of a fundamental
string in the type IIA reduction of the above M-theory background. The resulting geometry, which
includes the full backreaction of the D6 branes, is a warped compactification and we have not performed
such a calculation. However, it was pointed out in [17] that

R2
str ∼

1
4

R3
X7

Nf + k
=

2πN1/2√
Nf + 2k

(2.8.10)

and we then expect

〈W 〉 ∼ exp

(
2πN1/2√
Nf + 2k

)
(2.8.11)

for both the 1/2 and 1/6 BPS Wilson loops. This VEV incorporates the screening effect on Wilson
loops due to unquenched flavor. Indeed, we see from (2.8.11) that, as the number of flavors grows, the
exponent decreases. This might be interpreted as a conformal avatar of the screening effect. Also notice
that, when Nf → 0, one recovers in (2.8.11) the right value for the ABJM limit. Notice that, in the
computation leading to (2.8.11), a possible contribution to the vev of strings ending on the D6 branes
has not been taken into account. We will see however in this paper that a gauge theory computation at
strong coupling leads to a result in agreement with (2.8.11), thus indicating that such contributions are
absent or subleading.

2.9 Strong coupling limit and tropical geometry
In order to make contact with the AdS dual, one has to calculate the gauge theory/matrix model
quantities at strong coupling. For ABJM theory considered in the previous sections this was done
essentially by computing exact interpolating functions at all couplings and then going to the strong
coupling regime. However, the calculation of interpolating functions might become hard, specially in more
complicated generalizations of ABJM theory like the theories with matter considered in [17, 129, 130].
In particular, one would like to have a computational framework to do calculations directly at strong
coupling, without going through the determination of exact interpolating functions. We will now propose
such a framework, and we will illustrate it by considering the ABJM theory.

As was explained earlier the strong coupling limit of the ABJM theory corresponds to the large radius
limit of this Calabi–Yau moduli space. This is the limit where

z1, z2 → 0. (2.9.1)

In terms of the periods Ti defined in (2.3.19) this limit can be defined as

Re (Ti)→∞, i = 1, 2, (2.9.2)

and we can write, up to exponentially suppressed corrections,

z1 ≈ e−T1 , z2 ≈ e−T2 . (2.9.3)

The ’t Hooft parameters of the ABJM model are large in this limit, and they behave like [5, 6]

λi ∼
T1T2

8π2
, i = 1, 2. (2.9.4)

We now ask the following question: what is the behavior of the planar resolvent, or equivalently the
spectral curve (2.3.1), in this limit? Notice that the coefficients of (2.3.1), regarded as an equation for an
algebraic curve, become exponentially large or small (or they remain constant). This kind of behavior
has been very much studied recently in the mathematical literature and it is known as the tropical limit
of the algebraic curve (or the ultradiscretization of the algebraic curve), see for example [165, 166]. This
limit is only non-trivial if we scale z, y in the same way, where

z = log Z, y = log Y, (2.9.5)
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Figure 2.7: The strong coupling limit of the curve (2.3.1) can be represented as a set of segments where the
relation between z and y is linear. This limit is nothing but the “ultradiscretization" or “tropicalization"
of the spectral curve.

i.e. we have to consider the limit in which

Re(z), Re(y)→∞ (2.9.6)

as well. For generic values of z, y in this regime there is only one dominating term in (2.3.1), and the
equation cannot be satisfied. To have a nontrivial equation we need at least two dominating terms
which cancel each other. This gives us a set of linear equations on Re(z) and Re(y). Therefore, the
“ultradiscrete" limit of the curve can be represented as a collection of segments in the real plane. On
each of these segments there is a linear relation between z and y. It is an easy exercise to show that, for
our particular example (2.3.1), the resulting diagram can be represented as in Fig. 2.74. This diagram
is called a tropical curve.

This two-dimensional plane can be understood as the base of the fibration

C∗ × C∗ → R2

(Z, Y ) 7→ (log |Z|, log |Y |). (2.9.7)

The fiber is S1× S1 and it is parametrized by the imaginary parts of (z, y). A linear relation of the form
mz = ny + c, m, n ∈ Z gives a line in R2 with a fiber S1 ⊂ S1 × S1 with winding number (n,m). Thus
the lines in the picture correspond, in the original curve, to thin tubes connected at the vertices. This
type of picture is familiar from local mirror symmetry: as emphasized in [167], the mirror curve of a
toric manifold, like (2.3.1), can be regarded as the thickening of the toric diagram in which lines become
cylinders or tubes. In the strong coupling or large radius limit, the tubes become thinner and we get
back the toric skeleton, which is now interpreted as a tropical curve.

In order to do calculations at strong coupling we have to understand what happens to the period
integrals in the regime (2.9.2). It can be shown rigorously (see for example [166]) that, in the limit
(2.9.2), the periods of differentials on the original curve can be computed directly on the tropical curve,
and they reduce to simple contour integrals along the two-dimensional diagram in Fig. 2.7. We then
have to determine what is the tropical limit of the contours. To do this, we first note that in the limit
(2.9.2) the endpoints of the cuts behave like

A ≈ log ζ ≈ T1/2 ≈ T2/2,

a ≈ −b ≈ ζ ≈ eA,
1
a
≈ −1

b
≈ e−A.

(2.9.8)

4In writing the linear equations for the segments, we have neglected constant imaginary parts, which are small in the
tropical limit.
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Figure 2.8: The tropical limit of the cuts of the Z-plane, represented here as a cylinder.
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Figure 2.9: The contour C around [1/a, a] becomes a parallelogram around the tropical curve.

Let us now represent the C∗ domain of the variable Z as an infinite cylinder, as in Fig. 2.8. This picture
also shows the contour C ≡ C1 around the cut [1/a, a] in the tropical limit. Since our curve (2.3.1) is
a double covering of this cylinder, we can build it out of two copies of C∗ glued along the cuts shown
in Fig. 2.8. To see this in detail, let us look at the diagram shown in Fig. 2.7 and let us thicken it in
order to reconstruct the original curve (2.3.1). If we remove the two horizontal segments, the thickening
gives two infinite tubes which can be parametrized by z. Each of these tubes can be identified in turn
with a copy of C∗. In order to recover the full curve, we have to add the thickened horizontal segments.
They give two horizontal tubes connecting the two copies of C∗ at z ≈ −A and z ≈ A. Notice that these
locations are the positions of the small cuts drawn in Fig. 2.8. Since the solid and dashed pieces of C
depicted in Fig. 2.8 lie on different copies of C∗, we conclude that the contour C around the cut [1/a, a]
becomes, in the tropical limit, the two-dimensional contour around the parallelogram shown in Fig. 2.9.

Let us now consider the contourD in Fig. 2.3, which encircles the cut [−1/b, 1/a]. This cut corresponds
to the horizontal tube at z ≈ −A, therefore the contour becomes a non-trivial cycle around the tube. In
the tropical limit it can be schematically drawn as in Fig. 2.10.

We can now use this formalism to compute some interesting physical quantities at strong coupling.
For simplicity we will restrict ourselves to the ABJM slice N1 = N2. The resolvent is

ω0(z) = y(z) dz. (2.9.9)

We first determine the relation between the ’t Hooft parameter and the modulus A as follows:

2πiλ = t1 =
1

4πi

∮
C
y(z) dz ≈ −A

2

πi
, (2.9.10)

which leads to
A ≈ π

√
2λ (2.9.11)

in agreement with the result (2.9.4) from [5, 6]. The 1/6 BPS Wilson loop is given by a integral around
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Figure 2.10: The contour D around [−1/b, 1/a] becomes a non-trivial cycle around the shrinking tube.

the contour C: 〈
W

1/6
〉

0
=
∮
C

dz
4πi

ezy(z). (2.9.12)

In the tropical limit, this becomes an elementary integral around the parallelogram shown in Fig. 2.9.
We then find, 〈

W
1/6
〉

0
≈ 1

4πi

(∫ A

−A
(z −A) ez dz −

∫ A

−A
(z +A) ez dz

)
≈ iA

2π
eA. (2.9.13)

Using (2.9.11) we find 〈
W

1/6
〉

0
≈ i

2

√
2λeπ

√
2λ (2.9.14)

which is the result obtained in section 2.5 from the exact interpolating function, up to an overall phase
(this is due to the fact that we neglected constant subleading imaginary pieces in the equations for the
segments of the tropical curve).

Another quantity that we can compute is the free energy at strong coupling. From (2.2.22) we find,

∂F0

∂λ
= −πi

∮
D
y dz = πi

∮
D
z dy ≈ −πiAmonD y, (2.9.15)

where monD denotes the monodromy along the cycle D. Since a ∼ b→∞ and Z ∼ 1/a ∼ 1/b, we have

y ≈ 2 log
{√

Z − 1/a−
√
Z + 1/b

}
+ const., (2.9.16)

and
monD y = 2πi. (2.9.17)

We conclude that
∂F0

∂λ
≈ 2π2A ≈ 2π3

√
2λ (2.9.18)

which is the result obtained in section 2.5. Of course, the interest of this tropical formalism is the
generalization to more complicated situations. This we will do in the next section, where we will consider
the ABJM theory with fundamental matter introduced in section 2.

2.10 Quenched flavor in Chern–Simons–matter theories

2.10.1 The quenched approximation in the matrix model
In studying theories with fundamental matter multiplets in the context of the AdS/CFT correspondence,
there have been essentially two approaches. In the first one, called the quenched or the probe approxima-
tion, one assumes that the number of flavors is much smaller than the number of colors. Since the flavor
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multiplets are usually obtained by adding branes to the original theory, the quenched approximation
is equivalent to treating these branes as probes, and one assumes that they do not backreact on the
background (see [168] for a review and a list of references for this approach). One can go beyond the
quenched approximation and consider unquenched flavor, where the full backreaction of the branes is
taken into account, see [169] for a recent review with references. It turns out that these two approaches
have counterparts in the study of the matrix model (2.8.3) including flavor multiplets. We will first set
up the matrix model analogue of the quenched approximation, and we will consider the full unquenched
theory in the next section.

In the matrix model (2.8.3), the inclusion of fundamental flavors leads to the insertion of two
determinant-like operators

N1∏
i=1

(
2 cosh

µi
2

)−N(1)
f

N2∏
j=1

(
2 cosh

νj
2

)−N(2)
f

= exp

−N (1)
f

N1∑
i=1

log
(

2 cosh
µi
2

)
−N (2)

f

N2∑
j=1

log
(

2 cosh
νj
2

) . (2.10.1)

We can treat these insertions as operators which perturb the partition function without changing the
spectral curve or resolvent of the ABJM theory. To see how this works in practice, we write the partition
function (2.8.3) as a normalized vev in the ABJM theory,

ZN=3(N1, N2, N
(1)
f , N

(2)
f , gs) = 〈e−W〉ABJMZABJM(N1, N2, gs) (2.10.2)

where
W = N

(1)
f W1 +N

(2)
f W2 (2.10.3)

and

W1 =
N1∑
i=1

log
[
2 cosh

µi
2

]
, W2 =

N2∑
j=1

log
[
2 cosh

νi
2

]
. (2.10.4)

We can then calculate the free energy of the N = 3 theory as a cumulant expansion,

FN=3(N1, N2, N
(1)
f , N

(2)
f , gs) = FABJM(N1, N2, gs) +

∞∑
k=1

(−1)k

k!
〈Wk〉(c)ABJM (2.10.5)

where (c) denotes as usual the connected vev. Since Wk is a polynomial of degree k in the number of
flavours N (i)

f , the above cumulant expansion is an expansion around N
(i)
f = 0. Equivalently, we can

introduce the Veneziano parameters [163]

t
(i)
f = gsN

(i)
f . (2.10.6)

The perturbative series (2.10.5) is an expansion in the Veneziano parameters around t(i)f = 0, which is
valid for

t
(i)
f � 1, (2.10.7)

or equivalently
N

(i)
f � min(N1, N2), (2.10.8)

which corresponds indeed to a quenched approximation. Each term in this series is given by an integrated
correlator in the ABJM theory, which is computed with the master field described by the resolvent
(2.2.17). Since the spectral curve is not changed, this is equivalent to neglecting the backreaction of
the D-branes on the original geometry. Diagramatically, the genus g correction to 〈Wk〉(c)ABJM gives the
contribution of k “quark" loops to the genus g free energy, where all gluon diagrams of genus g have been
resummed.

A similar perturbative scheme can be constructed for the calculation of operators O in the matrix
model (like for example Wilson loops):

〈O〉N=3 =
〈Oe−W〉ABJM

〈e−W〉ABJM
= 〈O〉ABJM +

∞∑
k=1

(−1)k

k!
〈OWk〉(c)ABJM (2.10.9)
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The operator vevs appearing in (2.10.5) and (2.10.9) can be computed by using the connected correlation
functions of the ABJM model. These are defined by

W (Z1, · · · , Zh) =
〈

Tr
1

Z1 − U
· · ·Tr

1
Zh − U

〉(c)

(2.10.10)

where U is given in (2.2.16). These correlators have a genus expansion

W (Z1, · · · , Zh) =
∞∑
g=0

g2g−2+h
s Wg(Z1, · · · , Zh) (2.10.11)

which can be computed systematically with the techniques started in [170] and culminated in [24, 171]
(for the Chern–Simons matrix models analyzed in this paper, one has to consider the slightly modified
version of these techniques considered in [172, 201]). Let us consider for example the operators

Oa(X) = Tr fa(X), Ôb(Y ) = Tr gb(Y ), a = 1, · · · , h1, b = 1, · · · , h2, (2.10.12)

where
X = diag (eµi) , Y = diag (eνi) . (2.10.13)

In this notation, the operators (2.10.4) are written as

W1(X) = Tr log
(
X

1
2 +X−

1
2

)
, W2(Y ) = Tr log

(
Y

1
2 + Y −

1
2

)
. (2.10.14)

We have then the following result for the connected correlators of these operators,

〈O1(X) · · · Oh1(X)Ô1(Y ) · · · Ôh2(Y )〉(c) =∮
C1

dX1

2πi
· · ·
∮
C1

dXh1

2πi

∮
C2

dY1

2πi
· · ·
∮
C2

dYh2

2πi
W (X1, · · · , Xh1 , Y1, · · · , Yh2)

· f1(X1) · · · fh1(Xh1)g1(Y1) · · · gh2(Yh2).

(2.10.15)

This leads to a systematic 1/N expansion by using (2.10.11). The planar limit of the one-point functions
is given by the equivalent expressions

〈O(X)〉0 = t1

∫ a

1/a

ρ1(µ)f(µ)dµ, 〈O(Y )〉0 = t2

∫ −1/b

−b
ρ2(ν)g(ν)dν. (2.10.16)

2.10.2 Quenched expansion at weak coupling

We will now present some concrete examples of the quenched approximation, calculated at weak coupling.
The results can be tested with perturbative calculations in the matrix model. For simplicity, we will
set N (2)

f = 0, and we will focus on the free energy. The first order correction in N (1)
f to the planar free

energy is given by

− 〈W1〉0 = −
∮
C1

dZ
2πi

log
(
Z

1
2 + Z−

1
2

)
W0(Z), (2.10.17)

where
W0(Z) =

1
2Z

ω0(Z). (2.10.18)

The second order planar correction is

1
2!
〈W2

1 〉(c)0 =
1
2!

∮
C1

dX1

2πi

∮
C1

dX2

2πi
log
(
X

1
2
1 +X

− 1
2

1

)
log
(
X

1
2
2 +X

− 1
2

2

)
W0(X1, X2) (2.10.19)

and W0(X1, X2) is the two-cut, two-point planar correlator of the matrix model. It is related to the
Bergmann kernel of the spectral curve B(X1, X2) by [171]

W0(X1, X2) = B(X1, X2)− 1
(X1 −X2)2 (2.10.20)
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and it was first calculated by Akemann [173] in the useful form:

W0(X1, X2) =
1

4(X1 −X2)2

(√
(X1 − a)(X1 − 1/a)(X2 + b)(X2 + 1/b)
(X1 + b)(X1 + 1/b)(X2 − a)(X2 − 1/a)

+

√
(X1 + b)(X1 + 1/b)(X2 − a)(X2 − 1/a)
(X1 − a)(X1 − 1/a)(X2 + b)(X2 + b)

)
+

(a+ 1/b)(b+ 1/a)
4
√
σ(X1)σ(X2)

E(k)
K(k)

− 1
2(X1 −X2)2

,

(2.10.21)

where σ(Z) is given in (2.7.8).
An efficient way to calculate the above integrals at weak coupling is to perform the change of variables

X =
a− a−1

2
y +

a+ a−1

2
, (2.10.22)

and expand the integrand in series in ti around ti = 0. The coefficients of the resulting series are relatively
simple integrals, which can be computed by deforming the contour in terms of residues at infinity. The
result one obtains is

〈W1〉0 =
t21
8

+
1
96
t21 (t1 + 6t2) +

1
64
t21t

2
2 +

1
3072

t21t
2
2

(
t21 − 12t1t2 + t22

)
+ · · · ,

1
2!
〈W2

1 〉(c)0 =
t21
64

+
1
64
t21t2 −

1
6144

t21
(
t21 + 24t1t2 − 48t22

)
+ · · ·

(2.10.23)

This can be explicitly checked against a direct calculation of the matrix integral. Indeed, we find in
matrix model perturbation theory

FN=3 = FABJM −N (1)
f

[
gs
N2

1

8
+ g2

s

(
N3

1

96
− N2

1N2

16
− 5N1

192

)
+ g3

s

(
N2

1N
2
2

64
+
N2

1

192

)
+ · · ·

]
+ (N (1)

f )2

[
g2
s

N2
1

64
− g3

s

(
N2

1N2

64
+
N1

128

)
− g4

s

(
N4

1

6144
− N3

1N2

256
− N2

1N
2
2

128
− 11N2

1

248
− 3N1N2

512

)
+ · · ·

] (2.10.24)

whose planar part agrees with (2.10.23).

2.10.3 Quenched expansion at strong coupling

Since the correlation functions (2.10.10) are given by contour integrals of meromorphic differentials, we
can compute them with the tropical techniques that we introduced in the last section. We will focus on
the free energy on S3, and we will assume for simplicity that N (2)

f = 0 so that N (1)
f = Nf . We can write

− 〈W1〉0 = − 1
4πigs

∮
C

ω0(z)f(z)dz (2.10.25)

where
f(z) = log

(
2 cosh

z

2

)
. (2.10.26)

In the tropical limit in which z is large the function f simplifies as

f(z) ≈ |z|
2
. (2.10.27)

Then, the contour integral (2.10.25) becomes

−
∮
C
ω0(z)f(z)dz ≈

A∫
−A

|z|
2

(z +A) dz −
A∫
−A

|z|
2

(z −A) dz = A3 ≈
(
2π2λ

)3/2 (2.10.28)
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and the first correction of order O(Nf ) to the free energy is

− π

4
NfN

√
2λ . (2.10.29)

The next order O(N2
f ) is much harder to compute with this technique, but it still can be done. Since

this correction involves the two-point correlation function, which is essentially equal to the Bergmann
kernel of the curve, what we have to do is to find the tropical limit of this kernel. To do this, we first
discuss the tropical limit of holomorphic forms.

In tropical geometry a tropical holomorphic 1-form is a locally constant real 1-form with a “conser-
vation” condition in the vertices, and which is zero on the external legs (for basic notions of tropical
geometry see e.g. [165]). The dimension of the space of holomorphic 1-forms is obviously equal to the
number of independent cycles of the graph, which coincides with the genus of the complex curve. In our
case this space is a one-dimensional space with a basis h such that

h = ±dz (2.10.30)

on the left and right sides of the parallelogram in Fig. 2.7, respectively, and

h = ±dy (2.10.31)

on the upper and lower sides. We also have h = 0 on the external legs.
One can realize a tropical holomorphic 1-form as a limit of a complex holomorphic 1-form: as we

have seen, for each edge of the tropical curve we have an integer direction vector (n,m). Then one can
associate the integral of a complex holomorphic 1-form around the corresponding tube with the value of
the tropical one form on this vector. In this way, the “conservation” condition in the vertices is a trivial
consequence of holomorphicity. Since the external legs of the graph correspond to marked points on the
complex curve, the absence of poles of the complex holomorphic 1-form at these points corresponds to
the condition that the tropical holomorphic 1-form is zero on the external legs. In our particular case
one can show explicitly that, in the tropical limit,

dZ√
σ(Z)

≈ e−Ah . (2.10.32)

The general notions of tropical Jacobian, Abel-Jacobi map and theta function were introduced in [174].
In our case the tropical Jacobian of our tropical curve Ctrop is just

Jtrop = R/LZ ∼= S1 (2.10.33)

where
L =

∮
C
h = 8A (2.10.34)

is the perimeter5 of the parallelogram. The tropical version of the Abel-Jacobi map is

utrop : Ctrop → Jtrop

p 7→ utrop(p) =
∫ p

p0

h mod LZ
(2.10.35)

which equals the length of a path between the points p and p0. It can be obtained as a tropical limit of
the ordinary Abel-Jacobi map:

u(p) ≈ i
2π
utrop(p). (2.10.36)

The tropical theta function (with an odd characteristic) is

θtrop(v) = max
n∈Z

{
−1

2
Ln2 + n(v − L/2)

}
. (2.10.37)

One can easily show that
θ′trop(v) =

[ v
L

]
(2.10.38)

5As usual in tropical geometry, the length of the edge is a “geometric” length with an extra weight (n2 +m2)−1/2.
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where [·] denotes the floor function. Thus

θ′′trop(v) = δ(v modLZ) . (2.10.39)

This tropical theta function can be obtained as a limit of the ordinary theta function with an odd
characteristic

Θ(z) =
∑
n∈Z

eπiτn2+2πi(z+τ/2) . (2.10.40)

In the tropical limit we have

τ ≈ iL
2π
→ i∞, (2.10.41)

so one exponential will dominate the others in the sum. Thus one can deduce that

log Θ
( v

2πi

)
≈ θtrop(v). (2.10.42)

Any Bergmann kernel can be written as

B = Bsing +Bhol , (2.10.43)

where Bsing is given by (see e.g. [175])

Bsing(p1, p2) = d1d2 log Θ(u(p1)− u(p2)) (2.10.44)

and Bhol is a holomorphic part. In our case it should be chosen such that∮
C

B = 0 . (2.10.45)

In the tropical limit
Bhol(p1, p2) ≈ const · h(p1)h(p2) , (2.10.46)

while

Bsing(p1, p2) ≈ d1d2θtrop(utrop(p2)− utrop(p1)) = −δ(utrop(p2)− utrop(p1))h(p1)h(p2)
≡ −hdiag(p1, p2) ,

(2.10.47)

where hdiag is supported on the diagonal and has the property∮
C×C

hdiag(p1, p2)f(p1, p2) =
∮
C

h(p)f(p, p). (2.10.48)

Imposing the condition (2.10.45) we get

B(p1, p2) ≈ Btrop(p1, p2) = −hdiag(p1, p2) +
h(p1)h(p2)

L
. (2.10.49)

We can now compute the second order correction at order O(N2
f ), (2.10.19), by using tropical tech-

niques. It is given by

N2
f

2!
1

(2πi)2

∮
C×C

B(p1, p2) log
(

2 cosh
z1

2

)
log
(

2 cosh
z2

2

)
, (2.10.50)

since the double pole subtracted in (2.10.20) does not contribute to the double contour integral. In the
tropical limit this integral reads∮

C×C

Btrop

∣∣∣z1

2

∣∣∣ ∣∣∣z2

2

∣∣∣ =
1

25A

(∫
C
h|z|

)2

− 1
22

∫
C

h|z|2 =
1
22

{(
6A2

)2
8A

− 16A3

3

}

= − 5
3 · 23

A3.

(2.10.51)
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Using (2.9.11) we obtain that the correction of order O(N2
f ) is

5N2
fπ
√

2
96

λ3/2. (2.10.52)

On the other hand, the AdS prediction for the free energy is given by (2.8.9). The quenched approxima-
tion is obtained by expanding this quantity for small Nf . Since

ξ(µ) = 1−
∞∑
k=1

(1 + 2k)(2k − 3)!!
4k k!

(−µ)k = 1 +
µ

4
− 5µ2

32
+ · · · (2.10.53)

we find

FN=3(S3) = −π
√

2
3

N3/2k1/2 − π

4
NfN

√
2λ+

5π
√

2
96

N2
fλ

3/2 +O(N3
f ). (2.10.54)

We then see that the tropical computations (2.10.29), (2.10.52) reproduce correctly the first two terms
in this expansion.

One can try to compute the next corrections by calculating the tropical limit of the connected
correlators (2.10.10) for h ≥ 3, but as we will see in the next section it is possible to solve the planar
theory at all values of N (i)

f (i.e. in the Veneziano limit) and calculate the tropical limit directly.

2.11 Unquenched flavor in Chern–Simons–matter theories

We now solve the matrix model (2.8.3) in the planar limit, but for all values of N (i)
f , by using the

techniques of [100, 162].

2.11.1 Exact resolvent in the Veneziano limit
The starting point in the calculation of the resolvent are the saddle-point equations

µi
gs

+
N

(1)
f

2
tanh

(µi
2

)
=

N1∑
j 6=i

coth
µi − µj

2
−

N2∑
a=1

tanh
µi − νa

2
,

−νa
gs

+
N

(2)
f

2
tanh

(νi
2

)
=

N2∑
b6=a

coth
νa − νb

2
−

N1∑
i=1

tanh
νa − µi

2
.

(2.11.1)

We will solve instead the problem

µi +
t
(1)
f

2
tanh

(µi
2

)
=
t1
N1

N1∑
j 6=i

coth
µi − µj

2
+

t2
N2

N2∑
a=1

tanh
µi − νa

2
,

νa −
t
(2)
f

2
tanh

(νi
2

)
=
t2
N2

N2∑
b 6=a

coth
νa − νb

2
+

t1
N1

N1∑
i=1

tanh
νa − µi

2
,

(2.11.2)

analytically in the parameters t1,2 and t(1,2)
f , and then we will perform the analytic continuation

t2 → −t2. (2.11.3)

The procedure to solve this type of equations is as in [88, 100, 162]. We first introduce exponentiated
variables

Zi = eµi , Wa = eνa . (2.11.4)

In terms of these variables the saddle–point equations read

logZi +
t
(1)
f

2
Zi − 1
Zi + 1

=t1
N1 − 1
N1

+ t2 +
2t1
N1

N1∑
j 6=i

Zj
Zi − Zj

− 2t2
N2

N2∑
a=1

Wa

Zi +Wa
,

logWa −
t
(2)
f

2
Wa − 1
Wa + 1

=t1 + t2
N2 − 1
N2

+
2t2
N2

N2∑
b 6=a

Wb

Wa −Wb
− 2t1
N1

N1∑
i=1

Zi
Wa + Zi

.

(2.11.5)
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The resolvent ω0(Z) is defined as in (2.2.15), and it will have two cuts corresponding to the set of
eigenvalues. Let [a, b], [c, d] ⊂ R be the cuts corresponding to −Wa and Zi, respectively. In terms of the
planar resolvent we have,

logZ +
t
(1)
f

2
Z − 1
Z + 1

=
1
2

(ω0(Z + i0) + ω0(Z − i0)) ,

log(−W )−
t
(2)
f

2
W + 1
W − 1

=
1
2

(ω0(W + i0) + ω0(W − i0)) .

(2.11.6)

As in [162] we now define the functions,

F (Z) =
√
σ(Z)

∫ d

c

dX
f(X)
Z −X ,

G(Z) =
√
σ(Z)

∫ b

a

dX
g(X)
Z −X ,

(2.11.7)

where

f(x) =
1√
|σ(x))|

(
log x+

t
(1)
f

2
x− 1
x+ 1

)
,

g(x) = − 1√
|σ(x))|

(
log(−x)−

t
(2)
f

2
x+ 1
x− 1

)
.

(2.11.8)

It is then easy to show that the planar resolvent, defined again by the VEV (2.2.15), is given by

ω0(Z) =
1
π

(F (Z) +G(Z)). (2.11.9)

One can check that, as in the ABJM matrix model,

ab = 1, cd = 1. (2.11.10)

This follows from the symmetry of the saddle point equations under Z → Z−1, W → W−1, together
with the conditions on the endpoints imposed by the asymptotic behavior of ω0(z) at infinity,

ω0(z) ∼ t, z →∞. (2.11.11)

From now on we will denote the two independent endpoints as a, b, as in the ABJM model, so that the
cuts are [1/a, a] and [−b,−1/b]. The two equations

t1 =
∮
C1

dZ
4πi

ω0(Z)
Z

, t2 =
∮
C2

dZ
4πi

ω0(Z)
Z

(2.11.12)

determine them a, b as a function of t1, t2. Here, Ci encircle [1/a, a] and [−b,−1/b], respectively.
We can now calculate the planar resolvent explicitly. It is given by two pieces. The first one is,∫ a

1/a

dX
Z −X

logX√
|σ(X)|

−
∫ −1/b

−b

dX
Z −X

log (−X)√
|σ(X)|

, (2.11.13)

which is simply the resolvent of the lens space matrix model (2.2.17). The second piece is

t
(1)
f

2

∫ a

1/a

dX
Z −X

X − 1
X + 1

1√
|σ(X)|

+
t
(2)
f

2

∫ −1/b

−b

dX
Z −X

X + 1
X − 1

1√
|σ(X)|

. (2.11.14)

These integrals can be expressed in terms of elliptic functions. In order to do so we use the results∫ a

1/a

dX
(Z −X)

√
|σ(X)|

=
2
√
ab

1 + ab

1
(Z − a)(Z + b)

(
(a+ b)Π(n+(Z), k) + (Z − a)K(k)

)
,∫ −1/b

−b

dX
(Z −X)

√
|σ(X)|

=
2
√
ab

1 + ab

1
(Z − a)(Z + b)

(
−(a+ b)Π(n−(Z), k) + (Z + b)K(k)

)
,

(2.11.15)
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where

k2 =
(a2 − 1)(b2 − 1)

(1 + ab)2
, n+(Z) = −a

2 − 1
1 + ab

Z + b

Z − a, n−(Z) = − b
2 − 1

1 + ab

Z − a
Z + b

. (2.11.16)

Defining the auxiliary function

J(a, b, Z, s) =

2
√
ab

1 + ab

1
Z + s

((
(a+ b)

Z − s
(Z − a)(Z + b)

Π(n+(Z), k) +
Z − s
Z + b

K(k)
)
− (Z → −s)

)
,

(2.11.17)

we finally obtain

ω0(Z) = ωABJM
0 (Z) +

√
σ(Z)
2π

(
t
(1)
f J(a, b, Z, 1) + t

(2)
f J(−b,−a, Z,−1)

)
, (2.11.18)

where ωABJM
0 (Z) is the resolvent in the theory without matter, and it is given in (2.2.17). The asymptotic

behavior (2.11.11) determines

t = log (β)

−
√
ab

π(1 + ab)

(
t
(1)
f ((b+ 1)K(k)− (a+ b)Π(na, k)) + t

(2)
f (−(a+ 1)K(k) + (a+ b)Π(nb, k))

)
,
(2.11.19)

where we have used the notation

na =
1− a2

1 + ab
, nb =

1− b2
1 + ab

. (2.11.20)

The relation (2.11.19) reduces to (2.2.20) when both t(1)
f and t(2)

f go to zero.

2.11.2 Weak coupling limit in the unquenched theory
In order to test the above expressions, we can compute the expansion of the resolvent at weak ’t Hooft
coupling (i.e. around ti = 0) but for arbitrary t(i)f . To do this, the first step is to express the endpoints of
the cuts in terms of the ’t Hooft parameters. The period integrals for ti can be expanded around a = 1,
b = 1, and these series expansions can be inverted. At the first few orders in ti we find

a = 1 +
1√
T

(1)
f

2
√
t1 +

1

T
(1)
f

2t1 +
1

6
(
T

(1)
f

)3/2

(
7− 1

T
(1)
f

)
3
2
t
3/2
1 +

1(
T

(1)
f

)3/2

1
2
√
t1t2

+
1

2
(
T

(1)
f

)2

(
3− 1

T
(1)
f

)
t21 +

1(
T

(1)
f

)2 t1t2 + · · · ,

b = 1 +
1√
T

(2)
f

2
√
t2 +

1

T
(2)
f

2t2 +
1

6
(
T

(2)
f

)3/2

(
7− 1

T
(2)
f

)
3
2
t
3/2
2 +

1(
T

(2)
f

)3/2

1
2
√
t2t1

+
1

2
(
T

(2)
f

)2

(
3− 1

T
(2)
f

)
t22 +

1(
T

(2)
f

)2 t2t1 + · · · .

(2.11.21)

In these equations,

T
(1)
f = 1 +

t
(1)
f

4
, T

(2)
f = 1−

t
(2)
f

4
. (2.11.22)

When t(i)f = 0 we recover the mirror map at the orbifold point of [88]. As a test of these results, we can
calculate the coefficient of 1/Z in the resolvent. After the analytic continuation (2.11.3), this coefficient
computes the planar VEV of the supertrace of U in the matrix model (2.8.3), as in (2.2.38):

2gs 〈Str U〉0 = ζ

+
t
(1)
f

2π
√
ab(1 + ab)

(
(1 + ab)2E(k) + (b− a+ a2b+ 3ab2)K(k)− 4ab(a+ b)Π(na, k)

)
+

t
(2)
f

2π
√
ab(1 + ab)

(
(1 + ab)2E(k) + (a− b+ ab2 + 3a2b)K(k)− 4ab(a+ b)Π(nb, k)

)
,

(2.11.23)
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where (2.11.3) must be implemented at the end of the calculation. At weak coupling we find,

gs 〈Str U〉0 = t1 + t2 +
1

2T (1)
f

t21 −
1

2T (2)
f

t22

+
1

4
(
T

(1)
f

)2

(
1− 1

3T (1)
f

)
t31 −

t21t2

4
(
T

(1)
f

)2 −
t1t

2
2

4
(
T

(2)
f

)2 +
1

4
(
T

(2)
f

)2

(
1− 1

3T (2)
f

)
t32 + · · ·

(2.11.24)

The r.h.s. has the expected symmetries of the matrix model. Indeed, it is odd under

t1 ↔ −t2, t
(1)
f ↔ −t

(2)
f . (2.11.25)

Notice that each term in the expansion (2.11.24) is a rational function of the Veneziano parameters.
From the diagrammatic point of view, each of these terms corresponds to a fixed planar “gluon" diagram
(with a boundary associated to the insertion of U) in which we have summed over all the “quark" loops,
i.e. the “gluons" are quenched and the “quarks" are dynamical. One can actually check the first few
terms written down in (2.11.24) againts an explicit perturbative calculation in the matrix model.

Based on [99], one should expect that the VEV (2.11.24) computes (twice) the VEV of the 1/2 BPS
Wilson loop operator. However, in order to assert this one should first check that the construction of [99]
of this operator extends to the flavored theory that we are considering here. In any case, the formulae
(2.2.22), (2.2.42) remain valid in the flavored theory, since the 1/6 BPS Wilson loop operator can be
constructed for all Chern–Simons–matter theories considered in [2]. We will now evaluate these formulae
in the unquenched theory at strong coupling, by using tropical techniques.

2.11.3 Strong coupling limit in the unquenched theory

For simplicity we will set N (2)
f = 0, Nf = N

(1)
f . We will write (2.11.18) as

ω0(z) = y(z) dz, y(z) = yp(z) + µ ym(z). (2.11.26)

In this equation, µ is defined in (2.8.8),

yp(z) = ωABJM
0 (z) (2.11.27)

is the equation of the spectral curve (2.2.17) in the ABJM model, and

ym(z) =
1
2

∮
C

dX
2πi

1
Z −X

X − 1
X + 1

√
σ(Z)√
σ(X)

. (2.11.28)

In the tropical limit ζ ≈ eA is large, and we will set

β = eK (2.11.29)

where K is a parameter to be determined. In the ABJM model with N1 = N2 one has K = 0. We will
shortly determine the value of K in the theory with unquenched flavor, in the tropical limit. We will
assume that A > 0, |K| < A, which will be justified a posteriori.

The integral (2.11.28) can be evaluated “tropically.” To do this we use the tropical limit (2.10.32) of
the holomorphic one-form, as well as the limits

Z

Z −X ≈ Φ(x, z) ≡
{

1, if x < z

−e−(x−z), if x > z
(2.11.30)

and

e−A
√
σ(Z)

Z
≈ ±Ξ(z) ≡ ±


−e−(x−z), if z < −A
1, if −A < z < A

−ez−A, if z > A

(2.11.31)

Here the ± sign corresponds to the two determinations of the square root. One finally obtains

ym(z) ≈ ± 1
2

Ξ(z)
∮
C

hxΦ(x, z) signx, (2.11.32)
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K
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{(A{K) 0

Figure 2.11: The two-dimensional graphs representing the tropical limits of yp(z) (left) and ym(z) (right).

where hx is defined in (2.10.32) but with z replaced by x. In this result, signx/2 can be interpreted
as the derivative of |x|/2, which is the tropical limit of the potential deformation, see (2.10.27), and in
principle we can generalized it to other deformations. The tropical limit of ym(z) can be rewritten as

ym(z) ≈ ± 1
2

∫
Cz

hx signx = ±
{
A−K + (A− |z|), if −A < z < A,

A−K, otherwise,
(2.11.33)

where Cz is a line connecting two different points on the curve with the same value of z. Equivalently
one can obtain (2.11.33) by taking the tropical limit in the explicit expression (2.11.18). The tropical
limit of the two-valued functions yp(z), ym(z) can be represented by the two-dimensional graphs shown
in Fig. 2.11. Of course, the diagram for yp(z) is nothing but the tropical curve represented in Fig. 2.7.

We now want to find the relation between A and K. To do this, we will impose for simplicity that
N1 = N2 = N in the N = 3 Chern–Simons–matter theory. This means that the total ’t Hooft parameter
t = t1 + t2 vanishes. It follows from (2.11.12) that this sum can be evaluated by deforming the sum of
the contours C1 and C2 to infinity and the origin, so we obtain

resZ=∞ ω0(Z)− resZ=0 ω0(Z) = 0, (2.11.34)

which leads to
K =

µ

1 + µ
A. (2.11.35)

Notice that in the limit µ = 0 we correctly reproduce K = 0. With this relation at hand we can already
add the two graphs to obtain the tropical curve representing the new resolvent ω0(z), which is shown
in Fig. 2.12. The calculation of the different periods reduces, like before, to trivial line integrals on the
plane. We first have to relate A to the ’t Hooft parameter. We have, for the period (2.11.12),

2πiλ = t1 =
1

4πi

∮
C
y(z) dz ≈ − (1 + µ/2)A2

πi
(2.11.36)

and we find

A ≈ π
√

2λ√
1 + µ/2

, (2.11.37)

which is the deformation of the relationship (2.9.11) in the ABJM theory. For the planar free energy we
have, as in the period integral (2.9.15) for the ABJM theory,

∂F0

∂λ
= −πiAmonDy. (2.11.38)
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A(1+¹){A(1+¹) y

z

 C

 D

Figure 2.12: The tropical curve representing the tropical limit of the resolvent (2.11.18) of the N = 3
theory.

The monodromy of ym(z) can be computed as (2.9.16). Indeed, the main contribution to the integral for
ym is given by the vicinity of 1/a, and we have

ym ≈
∞∫

1/a

dX
X − Z

√
(Z − 1/a)(Z + 1/b)√
(X − 1/a)(X + 1/b)

= log
{√

Z − 1/a−
√
Z + 1/b

}
− log

{√
Z − 1/a+

√
Z + 1/b

}
.

(2.11.39)

Then the monodromy around the cut [−1/b, 1/a] is

monDym ≈ 2πi . (2.11.40)

We conclude that
∂F0

∂λ
≈ 2π2A(1 + µ), (2.11.41)

or equivalently,

F0(λ) ≈ 1
3
π3
√

2λ3
1 + µ√
1 + µ/2

. (2.11.42)

This is in perfect agreement with the AdS prediction (2.8.9). Notice in particular that we have been able
to reconstruct the full nontrivial function ξ(µ) involved in the volume of the tri-Sasakian target space
(2.8.7).

Finally, we can calculate the vev of the 1/6 BPS Wilson loop, which is given again by (2.9.12) but
now with the new resolvent. We obtain,

〈
W

1/6
〉

0
≈ 1

4πi

(∫ A

−A
ez (z −A− µ(A− |z|)) dz −

∫ A

−A
ez (z +A+ µ(A− |z|)) dz

)

≈ i
2

√
2λ

1 + µ/2
exp

(
π

√
2λ

1 + µ/2

)
.

(2.11.43)

With some more work one can show that the would-be 1/2 BPS Wilson loop has the same leading,
exponential dependence. This is in perfect agreement with the AdS prediction (2.8.11), and the exponent
should be equal to the regularized area of a fundamental string in the corresponding type IIA background.
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2.12 The all genus free energy
In this section we present and extend the results for the all genus free energy of ABJM theory and we
give an M-theory/string theory interpretation for them.

2.12.1 Genus expansion in the matrix model
In this section we provide an efficient, recursive method to compute the 1/N corrections to the free energy
in the case N1 = N2 = N . This is based on the modular properties of the solution and the technique of
direct integration of the holomorphic anomaly equations. The method determines a priori the full 1/N
expansion. In practice it is quite efficient and it makes possible to calculate the Fg corrections for high
genera. This is then used to estimate non-perturbative effects in the large N expansion.

As noted in [113], we can use the relation between the local F0 theory and Seiberg–Witten theory to
write all the quantities in the model in terms of modular forms. This representation becomes particularly
useful when we restrict ourselves to a one-parameter model, as it was shown in a different context in
[180]. When N1 = N2, β = 1 and the modulus u becomes simply

u = 1 +
κ2

8
. (2.12.1)

In Seiberg–Witten theory, u is related to the modular parameter τ of the Seiberg–Witten curve by

u =
ϑ4

4 − ϑ4
2

ϑ4
3

(τ) = 1− 32q1/2 + 256q + · · · (2.12.2)

where q = e2πiτ . This formula can be inverted to

τ = i
K ′
(

iκ
4

)
K
(

iκ
4

) , (2.12.3)

therefore we see that the modular parameter τ is related to the specific heat of the theory through
(2.5.41). Let us now introduce the quantity

ξ =
2

ϑ2
2(τ)ϑ4

4(τ)
. (2.12.4)

This is proportional to the third derivative of the genus zero free energy, therefore to the Yukawa coupling
Cλλλ. More precisely, we have

∂3
λF0(λ) = −8π3i ξ. (2.12.5)

Therefore, the planar content of the theory can be elegantly encoded in terms of modular forms on the
Seiberg–Witten curve.

One powerful application of the modular properties of the ABJM theory is the determination of
the higher genus corrections to the free energy, Fg(λ). These can be obtained in principle from the
matrix model (2.2.3), or equivalently from the formalism of [24] (appropriately modified as in [172, 201]).
However, as emphasized in for example [129, 156, 180], this formalism is not very convenient to do
calculations at higher genus. One should rather use the fact that the Fg are quasi-modular forms that
can be promoted to non-holomorphic modular forms. The resulting non-holomorphic objects satisfy the
holomorphic anomaly equations of [144], as shown in [129, 157], and these can be in turn solved with
the technique of direct integration developed in [109, 129, 143, 180] for local CY manifolds and matrix
models.

The basic strategy of direct integration is the following. First, we assume an ansatz for Fg of the
form

Fg(τ) = ξ2g−2fg(τ) (2.12.6)

where

fg(τ) =
3g−3∑
k=0

Ek2 (τ)c(g)k (τ) , g ≥ 2, (2.12.7)

is an almost modular form of weight 6g − 6, with respect to a monodromy group Γ ⊂ SL(2,Z). Fg(τ)
can be promoted to a non-holomorphic modular form Fg(τ, τ̄) by changing

E2(τ)→ Ê2(τ, τ̄) = E2(τ)− 3
π Im(τ)

. (2.12.8)
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The resulting Fg(τ, τ̄) satisfies the holomorphic anomaly equations of [144], which govern their anti–
holomorphic dependence. Since this dependence is contained in Ê2(τ, τ̄), these equations govern the E2

content of Fg. This means that the coefficients c(g)k (τ), which are modular forms of weight 6g − 6− 2k,
can be obtained recursively for k > 0 if one knows the lower Fg. In order to write down the recursive
equation, it is useful to introduce a covariant derivative dξ taking a form of weight k into a form of
weight k + 2:

dξ = ∂τ +
k

3
∂τξ

ξ
(2.12.9)

Then, the holomorphic anomaly equations lead to

dfg
dE2

= −1
3

{
d2
ξfg−1 +

1
3
∂τξ

ξ
dξfg−1 +

g−1∑
r=1

dξfr dξfg−r

}
, g ≥ 2. (2.12.10)

If Fg′ are known, with g′ < g, the above equation determines all the coefficients c(g)k (τ) in fg, with the
exception of c(g)0 (τ), which plays the rôle of an integration constant. This coefficient is a holomorphic
form of weight 6g − 6 and it is called the holomorphic ambiguity.

In order to fix the holomorphic ambiguity we need two pieces of information. The first one concerns its
functional dependence. Since c(g)0 (τ) is a modular form w.r.t. some monodromy subgroup, it belongs to a
finitely generated ring. This means that it is determined by a finite number of coefficients, which typically
grows with g. The second piece of information comes from boundary conditions at singular points in
moduli space. A very powerful boundary condition for matrix models and local Calabi–Yau manifolds
is the so-called gap condition, discovered in [142] and further used in [109, 180] to fix the holomorphic
ambiguity. According to the gap condition, near certain points pi in moduli space, parametrized by a
flat coordinate ti, the genus g free energy behaves as

F (i)
g =

ag

t2g−2
i

+O(1). (2.12.11)

The superscript (i) means that the genus g free energy has to be transformed to the duality frame which
is appropriate for the i-th singularity, as it is well-known in special geometry. The “gap" refers to the
absence of singular terms t−k with 0 < k < 2g − 2 in the local expansion near ti = 0. The vanishing of
these terms provides boundary conditions for c(g)0 (τ), and in some cases it fixes them completely.

In our case, the relevant ring is that of Γ2 modular forms which is generated by the theta functions

b = ϑ4
2(τ) , c = ϑ4

3(τ) , d = ϑ4
4(τ). (2.12.12)

Since c = b+ d, only two of them are independent, and we will choose b and d. Using standard formulae
in the theory of modular forms, one finds

∂τξ

ξ
=
b− E2

4
, (2.12.13)

as well as

dξb =
b2 + bd

3
, dξ(bd) =

(bd)b
6

, dξE2 =
1
12
(
−E2

2 + 2bE2 − E4

)
. (2.12.14)

The modular expression for the genus one free energy is known [113] and reads

F1 = − log η(τ), (2.12.15)

therefore we have
dξf1 = −E2

24
. (2.12.16)

These are all the ingredients needed for the recursion. The holomorphic ambiguity can be written as

c
(g)
0 (τ) =

3g−3∑
j=0

α
(g)
j bjd3g−3−j (2.12.17)

and it involves 3g − 2 unknowns. Let us see how we can fix these by looking at the behavior near the
three singular points of moduli space.
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At the orbifold point, the Fg are the genus g amplitudes of the super-matrix model (2.2.3) with
N1 = N2. Their leading behavior near λ = 0 is governed by two copies of the Gaussian matrix model,
therefore they behave as

F (o)
g (λ) =

B2g

g(2g − 2)
(2πiλ)2−2g +O(λ2). (2.12.18)

This gives g conditions, since the ansatz (2.12.17) for the holomorphic ambiguity only involves even
powers of λ.

The symmetric conifold point z1 = z2 = 1/16 is related to the orbifold point through an S-duality
transformation. The appropriate global coordinates near this point are given in (2.3.33). In the ABJM
slice one has

y1 = 0, y2 = y = 1− ζ2

16
. (2.12.19)

The following period is a good local, flat coordinate near the symmetric conifold point:

t =
∞∑
n=0

an
(n+ 1) 24n

yn+1, (2.12.20)

where

an =
1(
2n
n

) n∑
k=0

(
2k
k

)(
4k
2k

)(
2n− 2k
n− k

)(
4n− 4k
2n− 2k

)
. (2.12.21)

It was noticed in [109] that the genus g amplitude at the conifold point behaves like

F (c)
g (t) =

B2g

2g(2g − 2)

(
t

2i

)2−2g

+O(1). (2.12.22)

This fixes 2g − 2 conditions. Together with the g conditions coming from the orbifold point, this com-
pletely fixes the 3g − 2 unknowns in the holomorphic ambiguity.

The result can be verified by looking at the radius point, which is related to the orbifold point by an
STS transformation. The genus g free energy at this point is the generating function of Gromov–Witten
invariants of the local F0 geometry in the slice T1 = T2 = T . More precisely, one has

F (GW)
g (Q) = (−4)g−1

 (−1)g|B2gB2g−2|
g(2g − 2)(2g − 2)!

+
∑
d≥1

Nd,gQ
d

 , Q = e−T (2.12.23)

where
Nd,g =

∑
d1+d2=d

Nd1,d2,g (2.12.24)

is a sum of Gromov–Witten invariants at genus g, Nd1,d2,g, of local F0 (the degrees d1, d2 correspond to
the two Kähler classes of this geometry). The constant term in (2.12.23) is the well-known constant map
contribution to the higher genus free energy [144] for a manifold with “effective" Euler characteristic
χ = 4. It can be checked that the higher genus free energies obtained from the integration of the
holomorphic anomaly equation with the above boundary conditions reproduce the well-known large
radius free energies (2.12.23).

Let us see how this works in some detail when g = 2. The integration of the holomorphic anomaly
equation gives,

f2 =
1
3
· 1

242

(
−5

3
E3

2 + 3bE2
2 − 2E4E2

)
+ c

(2)
0 (τ), (2.12.25)

where c(2)
0 (τ) is of the form (2.12.17). The expansion around the orbifold and conifold points read,

respectively,

F
(o)
2 (λ) =

1
432(2πiλ)2

(
−11

3
+ 1728α(2)

0

)
+ 4

(
2
3

(
α

(2)
0 −

11
5184

)
− 3α(2)

0

2
+ α

(2)
1 +

1
576

)
+O(λ2),

F
(c)
2 (t) = −5 + 1296α(2)

3

1296t2
+
−1− 864(12α(2)

2 + 15α(2)
3 )

10368t
+O(1),

(2.12.26)
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Imposing the conditions (2.12.18), (2.12.22) and (2.12.23) we fix

α
(2)
0 =

1
25920

, α
(2)
1 = − 1

3456
, α

(2)
2 =

1
3456

, α
(2)
3 =

1
3240

. (2.12.27)

We finally obtain

F
(o)
2 =

1
432bd2

(
−5

3
E3

2 + 3bE2
2 − 2E4E2

)
+

16b3 + 15db2 − 15d2b+ 2d3

12960bd2
, (2.12.28)

which gives at large radius the expansion Since τ depends on λ through (2.12.3) and (2.5.9), this gives
the exact expression for the genus two free energy on S3 in the ABJM model, for any value of the ’t Hooft
coupling.

Notice that the modular ring appearing here and parametrizing the holomorphic ambiguity is different
from the one appearing in Seiberg–Witten theory [129, 143] or in the cubic matrix model [180]. This is
due to the fact that, although the curves are the same, the meromorphic forms defining the theory are
different.

Using this method, we have computed the free energies up to high genus. The genus g free energies
Fg(λ) = F

(o)
2 (λ) obtained in this way are exact interpolating functions of the ’t Hooft parameter, and

they can be studied in various regimes. In the strong coupling regime λ → ∞ it is more convenient to
use the shifted variable

λ̂ = λ− 1
24

=
log2 κ

2π2
+O(κ−2), κ� 1. (2.12.29)

One finds the following structure. For F0 and F1 one has, at strong coupling,

F0 =
4π3
√

2
3

λ̂3/2 +O
(

e−2π
√

2λ̂

)
,

F1 =
1
6

log κ− 1
2

log
[

2 log κ
π

]
+O

(
1
κ2

)
,

(2.12.30)

while for g ≥ 2 one has

Fg = fg

(
1

log κ

)
+O

(
1
κ2

)
, (2.12.31)

where

fg(x) =
g∑
j=0

c
(g)
j x2g−3+j (2.12.32)

is a polynomial. One finds, for the very first genera,

f2(x) =
15x3 − 6x2 + x

144
,

f3(x) =
405x6 − 135x5 + 18x4 − x3

5184
,

f4(x) =
9945x9 − 3240x8 + 450x7 − 32x6 + x5

82944
,

f5(x) =
274590x12 − 89505x11 + 12960x10 − 1050x9 + 48x8 − x7

995328
,

(2.12.33)

and the leading, strong coupling behavior is given by

Fg(λ) ∼ λ 3
2−g, λ→∞, g ≥ 0. (2.12.34)

2.12.2 Expansion in the type IIA and M-theory duals
It is possible to translate the all-genus expansion of the matrix model into expansions in the type IIA
and the M-theory duals. In the type IIA dual, the genus expansion of the matrix model becomes the
genus expansion of superstring theory. In M-theory, the genus expansion becomes an expansion in the
Planck length (or, equivalently, in Newton’s constant). In order to translate the matrix model results in a
string/M-theory result we need a precise dictionary relating gauge theory quantities to gravity quantities.
In particular, one has to take into account the anomalous shifts relating the rank of the gauge group N



2.12. THE ALL GENUS FREE ENERGY 103

to the Maxwell charge Q, which in turn determines the compactification radius L [77, 78]. The relation
is

Q = N − 1
24

(
k − 1

k

)
. (2.12.35)

The charge Q determines the compactification radius in M-theory according to(
L

`p

)6

= 32π2Qk. (2.12.36)

This means that the shifted variable λ̂ introduced in (2.12.29) is given, in M-theory variables, by

λ̂ =
1

32π2k2

(
L

`p

)6
(

1− 4π2

3

(
`p
L

)6
)
. (2.12.37)

When considering the type IIA expansion, we have to trade k for the string coupling constant gst, and
the Planck length by the string lenght `s. In the end we find

k2 = g−2
st

(
L

`s

)2

,

λ̂ =
1

32π2

(
L

`s

)4
(

1− 4π2g2
st

3

(
`s
L

)6
)
.

(2.12.38)

The exponentially small corrections (2.12.31) should correspond, in the type IIA superstring, to world-
sheet instantons wrapping the CP1 inside CP3, and in M-theory to membrane instantons [120] wrapping
the S3 ⊂ S7. In the following we will drop these nonperturbative corrections, although they can be of
course computed to any given order in the exponentiated worldsheet instanton/membrane action.

Let us first write down the type IIA superstring expansion. Using the dictionary (2.12.38) we find

F = − g−2
st

384π2

(
L

`s

)8

+
3
64

(
L

`s

)2

+
1
2

log

[
2π
(
`s
L

)2
]

+
∞∑
g=2

rg

((
`s
L

)2
)
g2g−2

st (2.12.39)

where

rg(x) =
4(g−1)∑
k=3g−4

rg,kx
k, g ≥ 2, (2.12.40)

is a polynomial. One finds, for the very first genera,

r2(x) =− 1
192

π2x4
(
5120x4 − 576x2 + 27

)
,

r3(x) =
1
32
π4x10

(
163840x6 − 15360x4 + 576x2 − 9

)
,

r4(x) =− 1
576

π6x16
(
1158676480x8 − 106168320x6 + 4147200x4 − 82944x2 + 729

)
,

r5(x) =
1
32
π8x22

(
37916508160x10 − 3476029440x8 + 141557760x6

− 3225600x4 + 41472x2 − 243
)
.

(2.12.41)

Notice that [181] predicts, for general Sasaki-Einstein manifolds in M-theory, a correction for F1 scaling
as λ1/2, like the second term in (2.12.39). It would be interesting to see if the precise numerical coefficient
also agrees with theirs.

We can now work out the M-theory expansion. If we use again the dictionary (2.12.37), we see that
the M-theory free energy on AdS4 × S7/Zk has the structure

F = − 1
384π2k

(
L

`p

)9

+
3

64k

(
L

`p

)3

+
1
2

log

[
2πk

(
`p
L

)3
]

+
1
k

∞∑
n=1

pn(k)
(
`p
L

)3n

, (2.12.42)

where pn(k) is a polynomial in k of degree at most [(n+ 3)/3]. At each order n only a finite number of
terms in the original genus expansion contribute, and the maximal genus contributing is

g =
[
n+ 3

2

]
. (2.12.43)
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The polynomials pn(k) are given, for the first few orders, by

p1(k) = −9π2

64
,

p2(k) = 3π2,

p3(k) = −80π2

3
k2 − 9π4

32
.

(2.12.44)

Since each coefficient in the series (2.12.42) is a polynomial in k, one can compute from the genus
expansion in the matrix model the free energy of M-theory in the large radius expansion, at a given
order in (`p/L)3, and for any value of k.

It turns out that the expansion (2.12.42) has a remarkable hidden structure. As we see, the natural
parameter in the power series is (

`p
L

)3

(2.12.45)

as expected in a generic M-theory expansion. However, if we introduce the following “renormalized"
parameter ̂̀

p

L
=

`p/L[
1− 12π2 (`p/L)6

]1/6 , (2.12.46)

it turns out that the expansion can be resummed in the following way,

F = − 1
384π2k

(
L̂̀
p

)9

+
1
6

log

8π3k3

( ̂̀
p

L

)9
 +

∞∑
n=1

dn+1π
2nkn

( ̂̀
p

L

)9n

, (2.12.47)

where the coefficients dn are just rational numbers:

d2 = −80
3
, d3 = 5120, d4 = −18104320

9
, d5 = 1184890880, · · · (2.12.48)

This resummation is based on a highly non-trivial property of the polynomials (2.12.33) which is not at
all manifest from their matrix model origin, and is begging for an interpretation in the context of M-
theory/string theory. A similar simplification can be obtained in the type IIA expansion by introducing
a “renormalized" parameter `s/L, which depends also on gst.

What is the interpretation of the M-theory expansion (2.12.42) and its resummation (2.12.47)? In
other M-theory expansions (like the two-graviton potential in M(atrix) theory), the terms which go like
(`p/L)9 are interpreted like classical supergravity interactions, since they correspond to integral powers
of the eleven-dimensional Newton’s coupling constant. The other terms, with powers which are not
multiples of 9, are usually interpreted as “quantum gravity" corrections (see for example the discussion
in [182], IV.A.5). The resummation (2.12.47) suggest that in this case these quantum gravity corrections
can be rewritten in terms of a classical expansion, but involving the “renormalized" coupling (2.12.46).

2.13 Instantons and the genus expansion

2.13.1 Instantons in matrix models
In this subsection we review some results on instantons in matrix models, following the work of [178,
179, 180], which contains much more details and references.

The study of instantons in matrix models has been pursued in many works, starting with the pi-
oneering papers of David [183]. An important insight, first developed in relation to matrix models of
two-dimensional gravity, is that instantons are obtained by eigenvalue tunneling. In order to make the
discussion simpler, let us consider the cubic matrix model, where the effective potential has two critical
points. In the one-cut phase of this model, all eigenvalues are located in the neighborhood of one critical
point. The `-instanton configuration in this phase is simply obtained by removing ` eigenvalues from this
cut and tunneling them to the other critical point, as shown in Fig. 2.13. The instanton action for the
one-cut phase admits a beautiful geometric interpretation in terms of the spectral curve y(x) describing
the planar limit of the matrix model, and it is given by the integral

AB =
∫ x0

a

y(x)dx, (2.13.1)
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N − !
!

N

Figure 2.13: An `-instanton can be obtained by tunneling ` eigenvalues from one critical point to another
one.

a bC

A1 A2

B

Figure 2.14: The left hand side shows the spectral curve in the one-cut phase of the cubic matrix model.
The instanton action relevant in the double-scaling limit is obtained by calculating the B-period of the
one-form y(x)dx, which goes from the filled cut A1 to the pinched point. The two-cut phase, in which
the pinched point becomes a filled interval, is shown on the right hand side. The instanton action is still
given by the B-period integral.

where a is the endpoint of the filled cut, and x0 is the location of the critical point which corresponds
to an empty cut (x0 is actually a singular point where the spectral curve has a nodal singularity).
More geometrically, we can write this as a period integral of the natural meromorphic form y(x)dx,
corresponding to a B cycle which goes from the filled cut to the pinched point [184, 185]:

AB =
1
2

∮
B

y(x)dx. (2.13.2)

In Fig. 2.13.1 (left) we show the pinched curve, where the A1 cycle corresponds to the filled cut, and the
B cycle goes from A1 to the pinched cycle. This picture extends to one-cut matrix models with generic
polynomial potentials: instantons are given by eigenvalue tunneling, and their actions are B-type period,
going from the filled cut to other critical points.

Based on the connection between instantons and the large order behavior of perturbation theory
[186], we should expect these instantons to control the behavior of the genus g amplitudes Fg of one-cut
matrix models at large g. Indeed, one can verify in examples [178] that

Fg(t) ∼ (2g)!(A(t))−2g, g � 1, (2.13.3)

where A(t) is a period of y(x)dx. Notice that (2.13.3) is just the leading behavior of the full asymptotics
at large g, which involves a series of corrections in 1/g (see for example [178] for more details). The
relevant period A(t) appearing in the leading asymptotics (2.13.3) depends on the value of t. For small
t, the behavior of the free energy is dominated by its Gaussian part,

Fg(t) ≈
B2g

2g(2g − 2)t2g
, t→ 0, (2.13.4)

and the action A(t) in (2.13.3) is in fact the A1-period going around the filled cut, which is just propor-
tional to the ’t Hooft parameter:

AA1(t) = 2πit =
1
2

∮
A1

y(x)dx. (2.13.5)

Notice that this period vanishes at the origin t = 0. In other regions of the t-plane, the large genus
behavior will be controlled by B-periods AB(t) of the form (2.13.1). In general, the action controlling
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the large order behavior at a given point t is the smallest period (in absolute value). Notice that the
B-type periods AB(t) vanish at critical values of the ’t Hooft parameter and the other couplings, so in
both cases the instanton action is given by a vanishing cycle in moduli space. An equivalent way of
formulating the rôle of instantons is that their actions give the location of the singularities for the Borel
transform of the asymptotic series (0.2.2).

This result can be generalized to the two-cut phase of the cubic matrix model, where the pinched
point is now resolved into a second cut A2. The instanton action is still given by the B-cycle integral, now
going from the first cycle A1 to the second cycle A2, and it controls the large order behavior of Fg(t1, t2)
in the appropriate regions of moduli space [180]. The above analysis of instanton configurations seems
to apply to matrix models with generic polynomial potentials. However, there are important matrix
models, like the Chern–Simons matrix model [85], which display a more subtle structure. It was found
in [187], for example, that due to the multivaluedness of the effective potential, the instanton actions in
the Chern–Simons matrix model are given by

2πi (t+ 2πin) , n ∈ Z. (2.13.6)

For n = 0 one recovers the action governing the Gaussian behavior. The instantons with n = ±1 can
be detected through the large order behavior of the genus g free energies, once the Gaussian part is
subtracted.

It is then natural to ask if there is a common structure describing the instantons of general matrix
models. All the models we have in mind are characterized by the fact that their planar limit is described
by special geometry on a local Calabi–Yau manifold, and it is then desirable to describe their instantons
in that language as well. This is precisely what we will do now.

2.13.2 Instantons and special geometry
We will suppose that we are given a local Calabi–Yau manifold, whose geometry is encoded in a spectral
curve y(x). This curve can be an algebraic curve in C× C, like the curves arising in polynomial matrix
models, or a curve in C∗×C∗, like the ones arising in Chern–Simons matrix models and in the mirrors of
toric Calabi–Yau threefolds. We will denote byM the moduli space associated to the geometry described
by y(x). In order to write down the genus g amplitudes Fg, one has to choose first a symplectic frame. In
order to make this choice manifest we will write F (f)

g , where f specifies the choice of frame. The different
F

(f)
g are related by symplectic transformations and they transform as quasi-modular forms [113].
Usually,M has special points corresponding to physical singularities, and near each of these points

there are preferred frames. A famous example is Seiberg–Witten theory [10], whereM is the moduli space
of the Seiberg–Witten elliptic curve and there are three special points corresponding to the semiclassical
regime, the monopole point and the dyon point. The corresponding frames are usually called electric,
magnetic and dyonic, respectively. In the most relevant example for this paper, the ABJM matrix model,
the moduli spaceM has three critical points usually called large radius, orbifold and conifold points, so
there will be three preferred frames.

Our main proposal, based on the results reviewed above, is that instanton actions are always given
by complex linear combinations of the periods of special geometry. More precisely, we propose

A(f) (ti; ai, bi, c) =
s∑
i=1

(
ait

(f)
i + bi

∂F
(f)
0

∂ti

)
+ c, (2.13.7)

where s = dim(M) and ai, bi, c are complex numbers. The first term is the sum gives the contribution
of the A-cyles, while the second term gives the contribution of the B-cycles. Notice that this is also the
structure of central charges in special geometry. In particular, we propose that the large genus behavior
of the F (f)

g at generic points of the moduli space is governed by an instanton action of this form. A
particular rôle is played by the instanton actions which govern the large order behavior of the F (f)

g near
the singular points of moduli space. We will denote these actions by

A(f)
p (ti) (2.13.8)

where p labels the singular points inM. According to our proposal, these actions are given by (2.13.7),
for a specific choice of the constants ai, bi, c which depends on the point p.

Of course, the main problem is to determine the values of the constants ai, bi, c which describe the
possible instantons in the problem at hand. Unfortunately we don’t have a general principle to do this.
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λ = 0

λ→∞

λ = λc

orbifold

conifold

large radius

Figure 2.15: The moduli space of the ABJM theory has three special points.

However, when the singular point p is in the interior of M (i.e. for singular points of the conifold or
orbifold type), we expect the A(f)

g to be given by vanishing periods. One way to motivate this is to
notice that, near the singular points, the F (f)

g (ti) diverge for all g. The instanton action controlling their
large order behavior should then vanish at those points. The identification of vanishing periods makes
it possible to fix the constants ai, bi and c in many situations and leads to a determination of the large
genus behavior near orbifold and conifold points. At generic points there will be a competition between
the different instanton actions, and the dominant contribution to the large order behavior will be given
by the instanton action which is smaller in absolute value (or, equivalently, by the instanton action which
is closest to the origin in the Borel plane).

Of course, the proposal above recovers and generalizes the known description of instantons in matrix
models, where the instanton actions are given by A or B periods, as we have already discussed. In
the remaining of this section we will analyze in detail the ABJM matrix model following these general
principles, and we will present ample evidence that in this model the relevant instanton actions describing
the large genus behavior are indeed of the form (2.13.7).

2.13.3 Instantons in the ABJM model
The moduli space M of the ABJM matrix model was studied in detail in section 2.3, and it is shown
schematically in Fig. 2.13.3. It can be parametrized by λ (which is a period), or equivalently by the global
modulus κ. Notice that, although in the original ABJM theory λ is a rational number, in the planar
solution it is naturally promoted to a complex variable, andM will be regarded here as a complex one-
dimensional space. There are three singular points in this moduli space: the orbifold, large radius and
conifold points. The first two points correspond respectively to the weak coupling limit and the strong
coupling limits of the ABJM theory. The conifold point, which occurs for κ = −4i, or equivalently, at

λc = −2iK
π2

, (2.13.9)

where K is Catalan’s constant, has no obvious interpretation in the gauge theory (although we will
comment on this later on).

The frame in which the genus g free energies Fg give the 1/N expansion of the matrix model is the
orbifold or weak coupling frame, as first discovered in [88]. We will study this frame first, and we will
determine the relevant instanton actions near the singular points. In this frame, which we will denote
by w, the appropriate period coordinate is λ, and the orbifold singularity occurs at λ = 0. Near this
singularity the relevant instanton action is simply

A(w)
w (κ) = −4π2 λ(κ). (2.13.10)

Since the ’t Hooft coupling in the matrix model is t = 2πiλ, this action is the standard one (2.13.5)
controlling the Gaussian point. It vanishes of course at λ = 0. On the other hand, it is easy to find the
vanishing period at the conifold point, and this leads to the instanton action

A(w)
c (κ) =

i
π

∂F
(w)
0

∂λ
+ 4π2λ− π2 =

iκ
4π
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, − 1
2

∣∣∣∣− κ2

16

)
− π2. (2.13.11)
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Figure 2.16: The topology of the contours Cw, Cc, Cs for a vicinity of the orbifold point in the moduli
space.

Finally, we have to consider the large radius, or strong coupling, point. The relevant action turns out to
be

A(w)
s (κ) =

i
π

∂F
(w)
0

∂λ
− π2

=
iκ
4π
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, − 1
2

∣∣∣∣− κ2

16

)
− πκ

2 3F2

(
1
2
,

1
2
,

1
2

; 1,
3
2

;−κ
2

16

)
− π2.

(2.13.12)

For this action, the coefficients appearing in (2.13.7) cannot be determined by requiring it to be a
vanishing period, but it has a simple structure, since it is just given by

A(w)
s (κ) = A(w)

w (κ) +A(w)
c (κ). (2.13.13)

One can verify numerically that it is the right action in the sense that it controls the large order behavior
of F (w)

g in the region where it dominates the asymptotics, as we will show in the next subsection.
It is tempting to conjecture that all instanton actions appearing in the theory are just integer linear
combinations of A(w)

w (κ) and A(w)
c (κ). This is in fact what we would expect if these instantons could be

identified with Euclidean D-branes of the string dual, as we will argue later.
The actions (2.13.10), (2.13.11) and (2.13.12) can be written as period integrals on the spectral curve

of the ABJM matrix model. In terms of the variables

Y = ey, X = ex (2.13.14)

the spectral curve is given by the equation [5, 6, 88, 100]

Y +
X2

Y
−X2 + iκX − 1 = 0 . (2.13.15)

The Riemann surface of (2.13.15) can be represented by two X-planes glued along the cuts [1/a, a] and
[−b,−1/b]. The position of the endpoints can be determined from

a+
1
a

+ b+
1
b

= 4, a+
1
a
− b− 1

b
= 2iκ . (2.13.16)

Let us note that a, b→ 1 at the orbifold (weak coupling) point, and that y has a logarithmic singularity
at the origin (and at infinity) on one of the two X-sheets. The actions describing the large g behavior
can be represented as

Ap =
1
2

∮
Cp
y(x)dx (2.13.17)

where the contours Cp are depicted in Fig. 2.16.
As a last remark, notice that these actions appear in pairs A(w)

p , −A(w)
p , and this is reflected in the

fact that the genus expansion that they govern involves only even powers of the string coupling constant.
Equivalently, there are singularities in the Borel plane of the gs coupling constant at the points ±A(w)

p .
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Figure 2.17: In this figure we depict the absolute value of the three instanton actions in the orbifold
or weakly coupled frame. On the left side, the horizontal axis represents the positive real axis of the
κ variable. The curve in green, which vanishes at the origin, is |A(w)

w (κ)|, while the blue and red lines
represent |A(w)

c (κ)| and |A(w)
s (κ)|, respectively. Notice that, when κ is large (i.e. the strong coupling

region), the smallest action in absolute value is A(w)
s (κ). On the right side, the horizontal axis represents

the imaginary axis of the κ variable. The conifold action A(w)
c (κ) vanishes at κc = −4i, and therefore

dominates the large order behavior near that point.

This is also the case in simpler cases related to noncritical string theory, like the Painlevé I equation (see
for example [188]).

As explained above, at each point in moduli space we expect the large order behavior to be dominated
by the smallest action in absolute value. In Fig. 2.17 we show the absolute value of the instanton actions
in the weakly coupled frame, and along two different directions in the complex moduli space parametrized
by κ: the real axis (left) and the imaginary axis (right). For real κ� 1 (which corresponds to the strong
coupling regime λ� 1), the smallest instanton action is A(w)

s , while near the origin the smallest action
is A(w)

w . For λ imaginary and near the conifold point λc, the smallest instanton action is clearly A(w)
c .

For generic points in the moduli space there is a competition between the different actions. For example,
for imaginary κ, there is a point κ∗ where∣∣∣A(w)

c (κ∗)
∣∣∣ =

∣∣∣A(w)
w (κ∗)

∣∣∣ . (2.13.18)

This is the point where the two lines cross in the graphic on the right side of Fig. 2.17. For |κ| > |κ∗| we
should expect the large order behavior to be controlled by the conifold action A(w)

c , while for |κ| < |κ∗|
it should be controlled by the weak coupling action A

(w)
w . We will present explicit checks of these

expectations in a moment.
So far we have made the analysis in the weakly coupled frame, but we can do the analysis in the

other preferred frames. It turns out that the relevant instanton actions near the singular points are just
given by the analytic continuations of the instanton actions in other frames. This is not surprising, since
for example vanishing periods near a singular point are uniquely defined, independently of the frame.
This in particular means that the large genus behavior of the F (f)

g in different frames will be governed
by the same instanton action.

Let us consider for example the conifold frame. An appropriate flat coordinate in this frame is given
by [6, 109]

λ(c) =
1

4π

∞∑
n=0

an
(n+ 1) 24n

yn+1, (2.13.19)

where

y = 1 +
κ2

16
, an =

1(
2n
n

) n∑
k=0

(
2k
k

)(
4k
2k

)(
2n− 2k
n− k

)(
4n− 4k
2n− 2k

)
. (2.13.20)

This coordinate vanishes at the conifold point y = 0. The conifold free energies near this point behave
as [109]

F (c)
g ∼ B2g

2g(2g − 2)

(
2πiλ(c)

)2−2g

, g ≥ 2, (2.13.21)
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and we would expect the appropriate instanton action in this frame to be

A(c)
c (κ) = −4π2λ(c). (2.13.22)

Indeed, one can verify that this is just the analytic continuation of (2.13.11) to κ = −4i. Similar
considerations apply to the other instanton actions in the conifold and strong coupling frame.

2.13.4 Large order behavior
We now provide some numerical evidence that the actions we have found control indeed the large order
behavior of the genus expansion. We will only consider the behavior in the weak coupling frame, but
similar considerations and tests can be made for the other frames. For simplicity of notation, in this
subsection we will remove the superscript (w) in our expressions. Our numerical analysis is done for the
original sequence Fg coming from the matrix model. It can be easily shown that the redefinition of the
Fgs which occurs when we use the type IIA parameters, as explained in (2.12.38), does not change the
leading asymptotics (2.13.3), and it only affects the subleading 1/g corrections.

Generically, the instanton actions we have found are complex, and we will write them as

Ap(λ) = |Ap(λ)| eiθp(λ). (2.13.23)

If the genus g amplitudes are real (as it happens for example for λ and k real), complex instantons
governing the large order behavior must appear in complex conjugate pairs (this was pointed out already
in [177], in ordinary quantum mechanics). This means that, for real λ, the large order behavior of Fg(λ)
must be given by

Fg(λ) ∼ Γ(2g − 1)
{
Cp(λ) (Ap(λ))−2g + Cp(λ)

(
Ap(λ)

)−2g
}

∼ Γ(2g − 1) |Ap(λ)|−2g cos (2gθp(λ) + δp(λ)) , g � 1.
(2.13.24)

In this equation, Cp(λ) is the next correction to the asymptotics, which in some simple matrix models
can be obtained by a one-loop calculation in the background of an instanton [178, 183], and

δp(λ) = arg (Cp(λ)) . (2.13.25)

The choice of instanton action here depends on the value of λ, as explained above. If both (Ap(λ))2 and
the Fg(λ) are real, the large genus behavior is given simply by

Fg(λ) ∼ Γ(2g − 1) (Ap(λ))−2g
, g � 1. (2.13.26)

This is what happens for example for λ imaginary and negative, near the conifold point λc.
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Figure 2.18: In these figures, the dots represent the sequence (2.13.27) for values of λ in the strong
coupling region: λ ≈ 1.2838 (left) and λ ≈ 4.6687 (right). The action is then As(λ), given in (2.13.12).
The continuous line represents the oscillatory behavior in the r.h.s. of (2.13.28), where the angle is the
one associated to the strong coupling action θs(λ).

When the instanton action is complex, the asymptotics is much harder to study numerically, since the
standard techniques of acceleration of convergence (like Richardson extrapolation) do not apply to the
oscillatory behavior (2.13.24), and in addition the phase δp(λ) is not known. In these cases the sequence

Rpg = (−1)g+1 πFg

Γ(2g − 1) |Ap(λ)|−2g+1 (2.13.27)
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should behave as
Rpg ∼ cos (2gθp(λ) + gπ + δp(λ)) , (2.13.28)

i.e. it should lead to an oscillatory behavior in g, with (unknown) constant amplitude but with a known
frequency given by θp(λ). The factor (−1)g+1 in (2.13.27) has been introduced for convenience, in view
of the forthcoming discussion on Borel summability, and it leads to the shift by gπ in (2.13.28).

When the action is real, we can actually extract the value of the instanton action from the sequence

Qpg =
4g2Fg(λ)

Fg+1(λ) (Ap(λ))2 (2.13.29)

which as g →∞ should asymptote 1. Standard acceleration methods like Richardson extrapolation can
be used to test this behavior to high precision, as in [178].
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Figure 2.19: In these figures, the dots represent the fifth Richardson transform of the sequence (2.13.29)
for values of λ along the negative imaginary axis λ ≈ −0.1386 i (left) and λ ≈ −0.0620 i (right), and for
the conifold and the weak coupling action, respectively. They converge quite rapidly to unity, verifying in
this way that the proposed instanton actions control the large order behavior of the genus g free energies.

We now present two tests of the large order behavior of the genus g free energies Fg, as predicted by
the instanton analysis of the previous subsection.

For λ real and large, we expect the large order behavior to be controlled by the action (2.13.12). This
action is complex, and should lead to an oscillatory behavior in Fg. We can then compare the sequence
Rsg, for g = 2, · · · , 28, as computed numerically in (2.13.27), to the expected behavior (2.13.28). This is
done in Fig. 2.18 for two values of λ in the strong coupling region. The agreement is rather good. In
order to plot the continuous line in these figures, we have taken δs(λ) = −2θs(λ), which leads to a good
matching.

When λ (or κ) is on the negative imaginary axis, the relevant instanton actions are the conifold and
the weak coupling actions, as shown in the figure on the right in Fig. 2.17. These are real and pure
imaginary, respectively. Therefore, we can use the sequence (2.13.29) and its Richardson transforms to
test the expected large order behavior. In this region there is a competition between the conifold and
weak coupling instanton actions, and we should pass from a regime dominated by the weak coupling
action near λ = 0, to a regime dominated by the conifold action near λ = λc. This is precisely what
the numerical analysis shows. As an example, we show in Fig. 2.19 the fifth Richardson transform of
the sequence (2.13.29) for two different values of λ and two different instanton actions: on the left, we
consider λ ≈ −0.1386 i and the conifold action, while on the right we consider λ ≈ −0.0620 i and the
weak coupling action. As we see, the expected asymptotic value (unity) is reached quite accurately.

2.13.5 Borel summability
In the physical ABJM theory, λ is real and gs is purely imaginary. The expansion (0.2.2) should be
written in terms of the real coupling constant 2π/k, i.e. as

F (λ, k) =
∞∑
g=0

(
2π
k

)g−2

(−1)g−1Fg(λ). (2.13.30)

We get an extra (−1)g−1 sign at each genus, and this is what motivated the introduction of this sign in
(2.13.27). Equivalently, this leads to an extra −i factor in the instanton actions computed above. We
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π2
−iAs(λ)

−iAw(λ)
iA∗

c(λ)

Figure 2.20: Singularities in the first quadrant of the Borel plane, for λ ∼ 1.

can now ask whether this factorially divergent series is Borel summable or not. At strong coupling, the
behavior of the genus g free energy (−1)g−1Fg(λ) is oscillatory for generic λ. This is because the strong
coupling action (2.13.12), which controls the asymptotics in this regime, is complex:

Im (−iAs(λ)) = π2. (2.13.31)

In fact, for large λ we have,

− iAs(λ) = 2π2
√

2λ+ π2i +O
(

e−2π
√

2λ
)
, λ� 1. (2.13.32)

This suggests that the 1/N expansion is Borel summable for generic values of λ in the strong coupling
region, as it happens in simple quantum-mechanical examples [177]. More precisely, Borel summability
requires that there are no instantons with positive real action, i.e. that there are no singularities along
the positive real axis in the Borel plane of the coupling constant 2π/k. For λ > 1/4 none of the actions
Ap(λ) lies on the positive real axis. This is illustrated in Fig. 2.20, which shows the singularities in
the first quadrant of the Borel plane for λ ∼ 1. They are associated to the instanton actions −iAs(λ),
−iAw(λ), and to the conjugate action (−iAc(λ))∗. Notice that there are other singularities in the other
quadrants, related to the ones shown in Fig. 2.20 by flipping the sign and by conjugation.

Since
Im (−iAc(κ)) = π2 (1− 4λ(κ)) , (2.13.33)

the conifold action is real for λ = 1/4, and we have in principle an obstruction to Borel summability.
It might happen that there are other instantons in the theory which we have not identified and lead to
singularities in the real axis, even at strong coupling. However, if all the instantons are integer linear
combinations of (2.13.10) and (2.13.11), as we conjectured before, there will be only a countable set of
values of λ for which this happens.

Notice that, at large λ, the imaginary part of the dominant instanton action is subleading, and the
action is approximately real. This peculiar behavior, in which Borel summability is lost in some limit
of the parameter space of the model, has been found before in much more conventional models. Indeed,
as shown in [189], the classical O(N) one-dimensional spin chain has a Borel summable 1/N expansion,
where each term in the expansion is itself a function of the temperature. However, in the low temperature
limit the imaginary part of the instanton action is subleading. Correspondingly, when each term in the
1/N series is truncated to its low-temperature limit, the resulting expansion is not Borel summable
anymore. Nevertheless, it should be kept in mind that in general the asymptotics does not commute
with taking limits in parameter space. In the case of ABJM, for example, the asymptotics of the strongly
coupled Fg (where we neglect worldsheet instanton corrections) is not governed by the strong coupling
limit of the instanton action (2.13.32).

We conclude that for generic, real values of λ in the strong coupling region, the genus expansion is
very likely Borel summable. This means that all the information about the partition function of the
dual superstring theory can be retrieved from the perturbative genus expansion, by Borel resummation.
This is in contrast with the genus expansion of unitary models coupled to gravity, which is not Borel
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summable [190]. Of course, the lack of Borel summability is not a problem if we have an unambiguous
non-perturbative definition, as it is the case here. It just means that we have to add explicit non-
perturbative effects in the theory in a careful way, as illustrated for example in [191]. But it is interesting
that type IIA superstring on this AdS4 background leads to a Borel resummable string expansion, since
this means that it represents a stable background with respect to quantum-mechanical tunnelling effects
in the string coupling constant.

Let us now consider the analytic continuation of the ABJM theory to an imaginary value of the
Chern–Simons level,

k = iγ, γ ∈ R, (2.13.34)

so that λ is also imaginary. In this case gs is real, and the action controlling large order behavior near
λ = λc is the conifold action, which is also real. The free energies Fg have all the same sign now and the
expansion in 1/γ is not Borel summable.

2.13.6 Double scaling limit near the conifold point
One interesting aspect of the ABJM free energy is the existence of the critical point (2.13.9) for an
imaginary value of the coupling, which corresponds in the Calabi–Yau language to a conifold point. The
genus g free energies Fg(λ) are singular at this point, and their behavior near λ = λc is given by

Fg ∼ Cg
(

2π2i (λ− λc)
log(λ− λc)

)2−2g

, g ≥ 2, (2.13.35)

where
Cg =

B2g

2g(2g − 2)
. (2.13.36)

This is of course the critical behavior associated to the c = 1 string at the self-dual radius (see for
example [117]). The scaling variable is

µ ∼ λ− λc
log(λ− λc)

. (2.13.37)

This c = 1 behavior is expected from the Calabi–Yau point of view [192], but it is more surprising from
the point of view of ABJM theory and its string dual.

The scenario one finds for ABJM theory near λc (i.e. a non-trivial critical point at imaginary ’t
Hooft coupling, a non-trivial double-scaling limit, and the lack of Borel summability which signals an
instability) has been advocated in [193] in order to analytically continue AdS theories to de Sitter space.
It would be interesting to understand this better.

2.14 Instanton at strong coupling
Based on the AdS/CFT correspondence, we would expect that the instanton configurations that we have
found in the matrix model/gauge theory context should correspond to instanton configurations in the
string theory dual. A natural source for such instanton effects are Euclidean D-branes wrapped around
submanifolds in the target AdS4×CP3. In this section, we want to interpret the strong coupling instanton
As (which is the dominant configuration in the strongly coupled region) as a D-brane configuration, and
we will find a D2-brane whose action coincides with the action As at large λ. Notice that, after including
the coupling constant, the action (2.13.32) becomes, at strong coupling,

k

2πi
As(λ) ≈ kπ

√
2λ+

πik
2
. (2.14.1)

In terms of the string coupling constant this can be also written as Ast/gst, where

Ast ≈
1
4

(
L

`s

)3(
1 + 2πi

`2s
L2

)
. (2.14.2)

The leading part of this action has the appropriate form for a extended object in three dimensions, and
it is natural to identify it with an Euclidean D2 brane. In fact, it can be written as

TD2vol(RP3) (2.14.3)
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and seems to correspond to an Euclidean D2 brane wrapping a RP3 inside CP3. We will now make this
more precise by an explicit calculation. Note from (2.14.2) that the imaginary part of the instanton
action, which makes the 1/N expansion Borel summable, is in fact an α′ correction. This means that
Borel summability is in this case a stringy effect, and it is invisible in the supergravity limit.

2.14.1 D2-brane instantons
We work in the coordinate system for CP3 given in Appendix F. The metric has the form (F.7). We
consider a D2-brane wrapping the submanifold of fixed α with ϑ1 = ϑ2 = ϑ and ϕ1 = −ϕ2 = ϕ. The
metric is that of a warped RP3 (note that the period of χ is 2π)

ds2 =
L3

4k

[
dϑ2 + sin2 ϑ dϕ2 + sin2 α (dχ+ cosϑdϕ)2

]
, (2.14.4)

and in addition in the world-volume we include a field strength Fϑϕ = E sinϑ.
The classical action including the Dirac-Born-Infeld (DBI) and Chern–Simons (CS) terms is

SD2 = TD2

∫
e−Φ

√
det(g + 2πα′F ) + TD2

∫
πiα′P [C1] ∧ F , (2.14.5)

where P [C1] is the pullback to the world-volume of the one-form (F.9), which in our subspace is

C1 =
k

2

[
cosα(dχ+ cosϑ dϕ)− dχ− dϕ

]
. (2.14.6)

The extra dχ and dϕ terms, which are exact, make the expression regular at α = ϑ = 0. Similar terms
with opposite signs will be regular at α, ϑ = π.

Plugging our ansatz in we find

SD2 =
TD2L

3

8

∫
dχdϑ dϕ sinϑ

[
sinα

√
1 + β2E2 + iβE(cosα− 1)

]
, (2.14.7)

with β = 8πk/L3 =
√

2/λ (setting α′ = 1). Note that we are using conventions where the D2-brane
tension is TD2 = 1/4π2.

The equation of motion for α gives the relation

βE = −i cosα . (2.14.8)

Then the electric flux density is the conserved momentum dual to the electric field

p = i
δL
δE

= β sinϑ . (2.14.9)

The classical action should be expressed in terms of p, rather than E, and the Legendre transform gives

Sclassical
D2 =

TD2L
3

8

∫
dχdϑdϕ ipE + SD2 =

L3

4
= πk

√
2λ , (2.14.10)

In precise agreement with the leading, real part of the action of the matrix model instanton (2.14.1).
This is the same as the action of k/2 string instantons.

Above we wrote the DBI action suppressing fluctuations in the three orthogonal directions in CP3.
It is easy to include them and one finds that this D2-brane is a classical solution which is unstable to
fluctuations in these three directions.

2.14.2 Supersymmetry
The D-brane we have found should be a BPS state since RP3 is a generalized Lagrangian submanifold
in CP3 (this has been established in a related context in [142]). We will now confirm this by direct
calculation, see [194, 195, 196] for similar considerations.

Our choice of frame and the corresponding expression for the Killing spinors are given in Appendix G.
For our ansatz (with all the other fields set to zero) they are

ε = e
α
4 (γ̂γ4−γ7\)e

ϑ
4 (γ̂γ5−γ8\+γ79+γ46)e−

ξ1
2 (γ̂γ\−γ47)− ξ22 (γ58−γ69)ε0 =Mε0 , (2.14.11)
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ε0 is a constant 32-component spinor and the Dirac matrices satisfy γ0123456789\ = 1.
The angles ξi are the phases from (F.4)

ξ1 =
χ+ ϕ

2
, ξ2 =

χ− ϕ
2

. (2.14.12)

The supersymmetries preserved by a D2-brane are determined by solving the following equation on
the D2-brane solution

Γ ε = ε , (2.14.13)

where Γ for our D2-brane solution is given by (see e.g. [195])

Γ =
i

LDBI

(
Γ(3) + 2πα′Fϑϕ Γ(1)γ\

)
. (2.14.14)

Here
Γ(3) = Γµ1µ2µ3

∂xµ1

∂σ1

∂xµ2

∂σ2

∂xµ3

∂σ3
, Γ(1) = Γχ , (2.14.15)

are the pullback of the curved space-time Dirac matrices in the world-volume directions (with and without
the directions of the field strength Fϑϕ). Plugging in our choice of coordinates and the details of the
solution we find

Γ(3) =
1
8

sinα sinϑ γ758 e
α
2 (γ56−γ89) ,

2πα′FϑϕΓ(1) = − i
8

cosα sinα sinϑ γ7 ,

LDBI =
1
8

sin2 α sinϑ .

(2.14.16)

And we therefore find that (2.14.13) reads(
i γ758 e

α
2 (γ56−γ89) + cosαγ7\

)
ε = sinα ε . (2.14.17)

Simple manipulations allow to write this equation as

− i γ58\ e
α
2 (2γ7\+γ56−γ89) ε = ε . (2.14.18)

Next we need to commute this operator throughM in (2.14.11). As it turns out, only the α dependent
term inM does not commute through and we find the equation

− iM−1γ58\ e
α
2 (2γ7\+γ56−γ89) ε = −i γ58\ e

α
2 (γ̂γ4+γ7\+γ56−γ89) ε0 = ε0 . (2.14.19)

It is easy to see that the operator appearing in this equation squares to unity, and half its eigenvalues
are +1 and half −1. Since it does not commute with the Si operators in (G.6), the D2-brane is 1/2 BPS.

Note in particular that for α = 0 we find the equation i γ58\ε0 = ε0, which is the projector equation
for a fundamental string wrapping the ϑ1, ϕ1 sphere. In this limit the D2-brane instanton indeed de-
generates to k/2 regular string instantons. While the supercharges at different values of α are not the
same, it is possible to choose the orientation of the D2-branes in CP3 such that their supersymmetry is
compatible with the supercharge used for localization and with world-sheet instantons (of certain orien-
tation). Therefore, these D2-branes have the right structure to be responsible for the non-perturbative
effects we have found in the matrix model.
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Chapter 3

Fermi gas approach

In this chapter we develop an alternative method to study Chern–Simons–matter models based on a
relation to a certain Fermi gas system. This chapter is organized as follows. In section 3.1 we discuss
how the perturbative parts of all genus free energies of ABJM theory can be resummed into a closed
simple expression. In section 3.2 we show that the matrix integral of a general class of N ≥ 3 CSM
theories (necklace quivers with fundamental matter) can be written as the partition function of an ideal
Fermi gas with a non-trivial one-particle Hamiltonian. In sections 3.3 and 3.4 we present the tools to
analyze the Fermi gas, and we illustrate them in ABJM theory. More precisely, in section 3.3 we study
the Fermi gas in the thermodynamic limit, by passing to the grand canonical ensemble. This makes it
possible to derive the leading N3/2 behavior of the free energy of ABJM theory, by using elementary
tools in Statistical Mechanics. In section 3.4 we study the quantum corrections to the grand canonical
potential. In section 3.5 we extend our techniques to more general CSM theories, including necklace
quivers and theories with fundamental matter. We show that, when the free energy on the three-sphere
is real, the 1/N expansion at fixed k gets resummed by an Airy function, thus proving the property
0.2.15 for this family of examples. We also consider the “massive" theory of [176], where a different N5/3

scaling has been found for the free energy, and we rederive it with our techniques.

3.1 The ABJM matrix model in the ’t Hooft expansion

3.1.1 1/N expansion and non-perturbative effects

As we have seen in section 2.12.1, when expanded at strong coupling, the genus g free energies have the
structure

Fg(λ̂) = F p
g (λ̂) + F np

g (λ̂). (3.1.1)

The first term represents the perturbative contribution in α′, while the second term is non-perturbative
in α′,

F np
g (λ̂) ∼ O

(
e−2π
√

2λ̂

)
(3.1.2)

and it was interpreted as the contribution of worldsheet instantons in the type IIA dual.
Besides the non-perturbative effects in α′ there are also non-perturbative effects in the string coupling

constant of the form

exp
(
−kπ
√

2λ
)

(3.1.3)

at large λ. These instanton effects were deduced in the previous chapter by analysis of large-order
behavior of perturbation theory These were interpreted as D2-branes wrapped around generalized La-
grangian cycles of the target geometry. We will refer to these non-perturbative effects as membrane
instanton effects, since they can be interpreted as M2 instantons in M-theory [120] but they are invisible
in ordinary string perturbation theory.

It was shown in [23] that the genus expansion of the perturbative free energies can be resummed. In
order to do that, one has to use the variable

λren = λ− 1
24
− 1

3k2
. (3.1.4)

117
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If we define the perturbative partition function as

Zp
ABJM = exp

[ ∞∑
g=0

F p
g (λ̂)g2g−2

s

]
(3.1.5)

then

Zp
ABJM ∝ Ai

[(
π2k4

2

)1/3

λren

]
, (3.1.6)

where Ai is the Airy function. This can be also written in terms of N as

Zp
ABJM ∝ Ai

[
C−1/3

(
N − k

24
− 1

3k

)]
, (3.1.7)

where
C =

2
π2k

. (3.1.8)

The expansion resummed in (3.1.7) makes perfect sense for finite k. Therefore, even if (3.1.7) was
obtained from a calculation in the ’t Hooft expansion, it should be part of the M-theory answer. Indeed,
one of our goals in this paper is to verify this by computing ZABJM directly in the M-theory expansion.

The Airy function appearing in (3.1.7) gives an exact resummation of the long-distance expansion in
M-theory. The shift (3.1.4) was interpreted in (2.12.46) as a renormalization of the expansion parameter
`p/L. Then the argument of the Airy function (3.1.7) is given by

(
256 k π2

)−2/3

(
L̂̀
p

)6

. (3.1.9)

The 1/N expansion of the ABJM matrix model was derived in the previous chapter by using the
holomorphic anomaly equations [144] of topological string theory. The result (3.1.7) was obtained in
[23] by looking at the recursive structure of these equations. There is however a much simpler method
to obtain (3.1.7) which exploits the wavefunction behavior of the topological string partition function.
Our derivation of (3.1.7) in this paper does not depend at all on ideas from topological string theory,
but since it is formally very similar, we will now present this simpler argument. Readers who are not
familiar with topological string theory can skip the rest of this section and proceed to the next one.

As shown in [121], it follows from the holomorphic anomaly equations that the topological string par-
tition function is a wavefunction on moduli space. In particular, its transformation from one symplectic
frame to the other is given by a Fourier transform. This property was spelled out in detail and exploited
in [113]. The main result is summarized as follows. Let

Γ =
(
α β
γ δ

)
∈ SL(2,Z) (3.1.10)

be a symplectic transformation relating two different frames (we assume for simplicity that there is a
single modulus in the problem). This means that the periods (∂aF0, a) transform as(

∂aΓFΓ
0

aΓ

)
= Γ

(
∂aF0

a

)
. (3.1.11)

Then, the full topological string partition function

Z(a) = exp

[ ∞∑
g=0

Fg(a)g2g−2
s

]
(3.1.12)

transforms as
ZΓ(aΓ) =

∫
da e−S(a,aΓ)/g2

sZ(a), (3.1.13)

where
S(a, aΓ) = −1

2
δγ−1a2 + γ−1aaΓ − 1

2
αγ−1

(
aΓ
)2
. (3.1.14)
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In the context of ABJM theory, as explained in detail in [5, 6], the relevant quantities correspond to
topological string computations in the so-called orbifold frame, where the natural periods are λ (the ’t
Hooft coupling of the gauge theory) and the derivative ∂λF0. On the other hand, the most familiar frame
in topological string theory is the large radius or Gromov–Witten frame, where the natural periods are
T (the Kähler modulus) and the derivative ∂TFGW

0 . The genus g free energies in the large radius frame
are given by the standard formulae,

FGW
0 =

T 3

6
+
∑
k>0

N0,ke−kT ,

FGW
1 =

T

12
+
∑
k>0

N1,ke−kT ,

FGW
g>1 =

∑
k>0

Ng,ke−kT ,

(3.1.15)

where Ng,k are Gromov–Witten invariants in the local P1 × P1 geometry (there is no constant term
contribution at higher genus). The fact that the total free energy is at most cubic in T , up to exponentially
small corrections, is a well known fact in topological string theory.

In the previous chapter, the periods in the orbifold frame were written in terms of periods in the
large radius frame in order to perform analytic continuations to strong coupling. By general principles,
this relation must be a symplectic transformation like (3.1.10). In fact, it is easy to see that the results
of the previous chaper relating the periods can be written as the following symplectic transformation:(

∂λ̃F̃0

λ̃

)
=
(

0 1
−1 2

)(
∂eT F̃GW

0

T̃

)
(3.1.16)

where

λ̃ =
4π2

c
λ, T̃ =

πi
2c
T, c2 = 2πi, (3.1.17)

and
F̃0 = F0 − π3iλ,

F̃GW
g = (−4)g−1

(
FGW
g − δg,0

π2T

3

)
.

(3.1.18)

Then, according to (3.1.13), (3.1.14), the total partition functions are related by the following formula:

exp
[
F (λ)− π3iλ/g2

s

]
∝
∫

dT̃ exp
[
−T̃ 2/g2

s + T̃ λ̃/g2
s + F̃GW(T̃ )

]
. (3.1.19)

Notice that, up to nonperturbative terms in T , this is the integral of the exponential of a cubic polynomial,
therefore we will indeed get an Airy function. Let us introduce the new variable µ through

T =
4µ
k
− πi. (3.1.20)

Then, one finds the expression

expF (λ) ∝
∫

dµ exp
{

2µ3

3kπ2
− µN +

k

24
µ+

1
3k

µ+O
(

e−
4µ
k

)}
∝ Ai

[
C−1/3(N −B)

] (
1 +O(e−2π

√
2λ)
)
,

(3.1.21)

where we used the following integral representation of the Airy function,

Ai(z) =
1

2πi

∫
C

dt exp
(
t3

3
− zt

)
, (3.1.22)

and C is a contour in the complex plane from e−iπ/3∞ to eiπ/3∞. In (3.1.21), C is given in (3.1.8) and

B =
k

24
+

1
3k
. (3.1.23)
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The result of (3.1.21) is of course the expression obtained in (3.1.7). Notice that the first term in the
shift B comes from FGW

0 in (3.1.18), while the second term is due to the first, perturbative term in FGW
1 .

The exponentially small corrections in N in (3.1.21), which are due to the worldsheet instantons at large
radius of the topological string, become, after Fourier transform, the worldsheet instantons (3.1.2) of the
type IIA superstring.

This derivation is nice, but it seems difficult to generalize it in its current form to other Chern–
Simons–matter theories, and prove in this way the property (0.2.15) for other cases. In this paper we
will find a completely different approach to the derivation of the Airy function which turns out to formally
equivalent to the one based on topological string theory. However, this approach can be extended to
many N ≥ 3 CSM theories and makes it possible to verify the conjecture 0.2.15 for many of them.

3.2 Chern–Simons–matter theories as Fermi gases

3.2.1 ABJM theory as a Fermi gas
Our Fermi gas approach is based on the following observation. The interaction term between the eigen-
values in (2.2.3) can be written in a different way by using the Cauchy identity:∏

i<j

[
2 sinh

(
µi−µj

2

)] [
2 sinh

(
νi−νj

2

)]
∏
i,j 2 cosh

(
µi−νj

2

) = detij
1

2 cosh
(
µi−νj

2

)
=
∑
σ∈SN

(−1)ε(σ)
∏
i

1

2 cosh
(
µi−νσ(i)

2

) . (3.2.1)

In this equation, SN is the permutation group of N elements, and ε(σ) is the signature of the permutation
σ. This identity has been used in other matrix models in [31, 118, 119] in order to study them in the
grand canonical ensemble, as we will do here. In the context of ABJM theory, it was used in [204] in
order to prove the equivalence of (2.2.3) and the matrix integral for N = 8 super Yang–Mills theory in
three dimensions, when k = 1. The manipulations in [204] can be easily generalized to arbitrary k, and
one obtains the following expression for the ABJM matrix model,

Z(N) =
1
N !

∑
σ∈SN

(−1)ε(σ)

∫
dNx

(2πk)N
1∏

i 2 cosh
(
xi
2

)
2 cosh

(
xi−xσ(i)

2k

) . (3.2.2)

We will derive this expression below with a different technique, which can be used for more general
Chern–Simons–matter theories. The main property of (3.2.2) is that it makes contact with the standard
formalism to study partition functions of ideal Fermi gases. Indeed, let us introduce the function

ρ(x1, x2) =
1

2πk
1(

2 cosh x1
2

)1/2 1(
2 cosh x2

2

)1/2 1
2 cosh

(
x1−x2

2k

) . (3.2.3)

If we interpret it as a one-particle density matrix in the position representation

ρ(x1, x2) = 〈x1|ρ̂|x2〉, (3.2.4)

the matrix integral (2.2.3) can be written as the partition function of an ideal Fermi gas with N particles

Z(N) =
1
N !

∑
σ∈SN

(−1)ε(σ)

∫
dNx

∏
i

ρ(xi, xσ(i)). (3.2.5)

It is well-known that the sum over permutations appearing in the canonical free energy of an ideal
quantum gas can be written as a sum over conjugacy classes of the permutation group (see for example
[122]). A conjugacy class is specified by a set of integers {m`} satisfying∑

`

`m` = N. (3.2.6)

Let us define
Z` =

∫
dx1 · · · dx` ρ(x1, x2)ρ(x2, x3) · · · ρ(x`−1, x`)ρ(x`, x1). (3.2.7)
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Then, the partition function is given by,

Z(N) =
∑
{m`}

′∏
`

η(`−1)m`Zm``

m`!`m`
(3.2.8)

where the
′
means that we only sum over the integers satisfying the constraint (3.2.6).

Due to the constrained sum, the canonical partition function is not easy to handle for large N . As
usual, the remedy is to consider the grand partition function

Ξ = 1 +
∞∑
N=1

Z(N)zN , (3.2.9)

where
z = eµ (3.2.10)

plays the rôle of the fugacity and µ is the chemical potential. The grand-canonical potential is

J(µ) = log Ξ. (3.2.11)

Notice that this potential (like the free energy) has the opposite sign to the usual conventions in Statistical
Mechanics. A standard argument (presented for example in [122]) tells us that the sum over conjugacy
classes in (3.2.8) can be written as

J(µ) = −
∑
`≥1

Z`
(−z)`
`

. (3.2.12)

The canonical partition function is recovered from the grand-canonical potential as

Z(N) =
∮

dz
2πi

Ξ
zN+1

. (3.2.13)

At large N , this integral can be computed by applying the saddle-point method to

Z(N) =
1

2πi

∫
dµ exp [J(µ)− µN ] . (3.2.14)

The saddle point occurs at

N =
∂J

∂µ
= −

∑
`≥1

Z`(−z)`, (3.2.15)

and defines a function µ∗(N). The free energy is given, at leading order as N →∞, by

F (N) = J(µ∗)− µ∗N. (3.2.16)

However, it is possible to compute the 1/N corrections to this relation by simply computing the correc-
tions to the full integral in (3.2.14). This is what we will eventually do. Notice the similarity between
the traditional inverse transform (3.2.14) and the Fourier transform (3.1.21) in topological string theory.

We have then shown that the original ABJM matrix integral can be computed as the canonical
partition function of a system of N non-interacting fermions, where the one-particle density matrix is
given by (3.2.3). We just have to solve the corresponding one-body problem in order to compute the
relevant thermodynamic quantities of the system. Equivalently, one should compute the quantity Z`
introduced in (3.2.7). This quantity can be regarded as the partition function of a classical lattice gas
with ` particles in a periodic lattice with nearest-neighbour interactions, as shown in Fig. 3.1. The
density matrix ρ plays the rôle of the classical transfer matrix of the system (see for example chapter 12
of [123]). It defines a symmetric kernel

〈x|ρ̂|φ〉 =
∫

dx′ ρ(x, x′)φ(x′), (3.2.17)

so that
Z` = Tr ρ̂`. (3.2.18)
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ρ̂ = e−Ĥ

1
2

!

!− 1

Figure 3.1: A one-dimensional periodic lattice with ` sites. The transfer matrix ρ̂ can be regarded as the
quantum propagator for a single particle in Euclidean, discretized time with Hamiltonian Ĥ.

It is easy to see that this kernel is a non-negative Hilbert–Schmidt operator, therefore it has a discrete,
positive spectrum

ρ̂|φn〉 = λn|φn〉, n = 0, 1, · · · , (3.2.19)

where |φn〉 are orthonormal eigenfunctions and we assume that

λ0 ≥ λ1 ≥ λ2 ≥ · · · . (3.2.20)

We can then write the density matrix as

ρ̂ =
∑
n≥0

λn|φn〉〈φn|. (3.2.21)

In terms of these eigenvalues we have,
Z` =

∑
n≥0

λ`n. (3.2.22)

When ` is large, this sum is dominated by the largest eigenvalue λ0,

Z` ≈ λ`0, `� 1. (3.2.23)

It also follows from this representation that the grand-canonical partition function is given by a Fredholm
determinant,

Ξ = det (1 + zρ̂) =
∏
n≥0

(1 + zλn) . (3.2.24)

Instead of using the formulation of the lattice problem in terms of the density matrix operator, we
can introduce a quantum Hamiltonian in the standard way,

ρ̂ = e−Ĥ . (3.2.25)

This leads to the well-known equivalence between the partition function of a classical lattice gas (3.2.18)
and the propagator of a quantum particle in ` units of discretized time (see for example [123, 124]). We
can then write

Z` = Tr e−`Ĥ . (3.2.26)

To find the Hamiltonian corresponding to the ABJM matrix model, we first write the density matrix
(3.2.3) as

ρ̂ = e−
1
2U(q̂)e−T (p̂)e−

1
2U(q̂). (3.2.27)

In this equation, q̂, p̂ are canonically conjugate operators,

[q̂, p̂] = i~, (3.2.28)

and
~ = 2πk. (3.2.29)
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This is a key aspect of this formalism: ~ is the inverse coupling constant of the gauge theory/string theory,
therefore semiclassical or WKB expansions in the Fermi gas correspond to strong coupling expansions
in gauge theory/string theory. The potential U(q) in (3.2.27) is given by

U(q) = log
(

2 cosh
q

2

)
, (3.2.30)

and the kinetic term T (p) is given by the same function,

T (p) = log
(

2 cosh
p

2

)
. (3.2.31)

The peculiar kinetic term (3.2.31) can be regarded as a non-trivial dispersion relation interpolating
between the quadratic behavior of a non-relativistic particle at small p,

T (p) ∼ log(2) +
p2

8
, p→ 0, (3.2.32)

and the linear behavior of an ultra-relativistic particle at large p,

T (p) ∼ |p|
2
, |p| → ∞. (3.2.33)

Notice that, as it is standard for Hamiltonians defined by transfer matrices at finite lattice spacing
[123, 124], the quantum operator Ĥ defined by (3.2.25) and (3.2.27) differs from

T (p̂) + U(q̂) (3.2.34)

in ~ corrections. There is a very elegant method to obtain these corrections based on the phase-space or
Wigner approach to quantization. This method will be also extremely useful in setting the semiclassical
or WKB expansion of our thermodynamic problem. We first recall that the Wigner transform of an
operator Â is given by (see [125] for a detailed exposition of phase-space quantization)

AW(q, p) =
∫

dq′
〈
q − q′

2

∣∣∣∣ Â ∣∣∣∣q +
q′

2

〉
eipq′/~. (3.2.35)

The Wigner transform of a product is given by the ?-product of their Wigner transforms,(
ÂB̂
)

W
= AW ? BW (3.2.36)

where the star operator is given as usual by

? = exp
[

i~
2

(←−
∂ q
−→
∂ p −

←−
∂ p
−→
∂ q

)]
, (3.2.37)

and is invariant under linear canonical transformations. Another useful property is that

Tr Â =
∫

dpdq
2π~

AW(q, p). (3.2.38)

In order to calculate the ~ corrections to the Hamiltonian, we consider the Wigner transform of the
density matrix (3.2.27). By using (3.2.36) we find,

ρW = e−
1
2U(q) ? e−T (p) ? e−

1
2U(q). (3.2.39)

Let us note that the partition function depends only on the eigenvalues λn of ρ̂ (or, equivalently, on the
traces Z` = Tr ρ̂`). Therefore there is the following freedom in the choice of ρ̂:

ρ̂→ V̂ ρ̂V̂ −1 (3.2.40)

which translates into
ρW(q, p)→ VW(q, p) ? ρW(q, p) ? (V −1)W(q, p) (3.2.41)

after the Wigner transform. Equation (3.2.39) defines the Wigner transform of our Hamiltonian through

ρW = e−HW
? , (3.2.42)
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k1

kr k2

Nf1

kr-1 k3

Nfr

Nfr-1

Nf2

Nf3

Figure 3.2: A quiver with r nodes forming a necklace.

where the ?-exponential is defined by

exp?(A) = 1 +A+
1
2
A ? A+ · · · . (3.2.43)

The quantum Hamiltonian HW can be computed by using the Baker–Campbell–Hausdorff formula, as
applied to the ?-product. One finds,

HW(q, p) = T + U +
1
12

[T, [T,U ]?]? +
1
24

[U, [T,U ]?]? + . . .

= T (p) + U(q)− ~2

12
(T ′(p))2

U ′′(q) +
~2

24
(U ′(q))2

T ′′(p) +O(~4),
(3.2.44)

where we have used the fact that, at leading order in ~, the Moyal bracket is the Poisson bracket

[A,B]? ≡ A ? B −B ? A = i~{A,B}+O(~2). (3.2.45)

Further corrections to (3.2.44) can be computed to any desired order, see (B.1) for the result at order
O(~4).

3.2.2 More general Chern–Simons–matter theories

The identification of the matrix model of ABJM theory as the partition function of a Fermi gas can be
also made for more general N ≥ 3 Chern–Simons–matter theories. We will set up the formalism for the
necklace quivers with r nodes considered in [126, 127], and with fundamental matter in each node (see
Fig. 3.2). These theories are given by a

U(N)k1 × U(N)k2 × · · ·U(N)kr (3.2.46)

Chern–Simons quiver. Each node will be labelled with the letter a = 1, · · · , r. There are bifundamental
chiral superfields Aaa+1, Baa−1 connecting adjacent nodes, and in addition we will suppose that there
are Nfa matter superfields (Qa, Q̃a) in each node, in the fundamental representation. We will write

ka = nak, (3.2.47)

and we will assume that
r∑
a=1

na = 0. (3.2.48)
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According to the general localization computation in [2], the matrix model computing the S3 partition
function of a necklace quiver is given by

Z(N) =
1

(N !)r

∫ ∏
a,i

dλa,i
2π

exp
[

inak
4π λ2

a,i

](
2 cosh λa,i

2

)Nfa r∏
a=1

∏
i<j

[
2 sinh

(
λa,i−λa,j

2

)]2
∏
i,j 2 cosh

(
λa,i−λa+1,j

2

) . (3.2.49)

This matrix model is very similar to the Âr−1 models considered in for example [31, 128], and one can
use a very similar strategy in order to rewrite them as Fermi gases. First of all, we define a kernel
corresponding to a pair of connected nodes (a, b) by,

Kab(x′, x) =
1

2πk

exp
{

inbx
2

4πk

}
2 cosh

(
x′−x

2k

) [2 cosh
x

2k

]−Nfb
, (3.2.50)

where we set x = λ/k. The grand canonical partition function corresponding to the above matrix model
is defined as in (3.2.9). Then, if we use the Cauchy identity (3.2.1), a simple generalization of the above
arguments makes it possible to write it again as a Fredholm determinant (3.2.24), where now [31]

ρ̂ = K̂r1K̂12 · · · K̂r−1,r (3.2.51)

is the product of the kernels (3.2.50) around the quiver. Therefore, we can apply exactly the same
techniques that we used before in ABJM theory. In a sense, we are “integrating out" r − 1 nodes of the
quiver in order to define an effective theory in the r-th node, but with a complicated Hamiltonian which
takes into account the other nodes.

This idea can be made very concrete by looking at the Wigner transform of the operator ρ̂ in (3.2.51).
We first compute the Wigner transform of the kernel (3.2.50),

KW
ab (q, p) =

1
2 cosh p

2

?
e

inbq
2

2~[
2 cosh q

2k

]Nfb (3.2.52)

where the ~ in the ? product is given again by (3.2.29). Let us note that

e
inq2

2~ ? f(p) ? e−
inq2

2~ = f

(
e

inq2

2~ ? p ? e−
inq2

2~

)
= f

(
ead?

h
inq2

2~

i
p

)
= f(p− nq), (3.2.53)

where we used that [
q2, p

]
?

= 2i~q. (3.2.54)

We obtain then, for the Wigner transform of the density operator (3.2.51)

ρW(q, p) =
1

2 cosh p
2

?
1[

2 cosh q
2k

]Nf1 ? 1
2 cosh p−n1q

2

?

1[
2 cosh q

2k

]Nf2 ? 1

2 cosh p−(n1+n2)q
2

?
1[

2 cosh q
2k

]Nf3 ?
· · · ? 1

2 cosh p−(n1+···+nr−1)q
2

?
1[

2 cosh q
2k

]Nfr
(3.2.55)

where we used (3.2.48). For necklace theories without fundamental matter this is simply

ρW(q, p) =
1

2 cosh p
2

?
1

2 cosh p−n1q
2

?
1

2 cosh p−(n1+n2)q
2

? · · · ? 1

2 cosh p−(n1+···+nr−1)q
2

. (3.2.56)

In particular, for the ABJM necklace (−k, k) with fundamental matter Nf1 = Nf2 = Nf first considered
in [17, 129, 130], we have

ρW(q, p) =
1

2 cosh p
2

?
1[

2 cosh q
2k

]Nf ? 1
2 cosh p+q

2

?
1[

2 cosh q
2k

]Nf . (3.2.57)
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If we perform a canonical transformation

p→ −q, q → p+ q (3.2.58)

and we conjugate by
[
2 cosh q

2

]1/2 to obtain a symmetric kernel, we get the equivalent representation,

ρW(q, p) =
1[

2 cosh q
2

]1/2 ? 1[
2 cosh p+q

2k

]Nf ? 1
2 cosh p

2

?
1[

2 cosh p+q
2k

]Nf ? 1[
2 cosh q

2

]1/2 (3.2.59)

which, for Nf = 0, agrees with the result (3.2.39). In this way, we have reduced the general necklace
quiver theory to an ideal Fermi gas whose one-particle quantum Hamiltonian is defined by the above
density matrices through (3.2.42).

Notice that, in general, the density operators ρ̂ are not Hermitian, and correspondingly HW is gen-
erally not real. This reflects the fact that the free energy on the three-sphere of these CSM theories is
in general complex.

3.3 Thermodynamic limit

It is well-known that the thermodynamic limit of an ideal quantum gas can be evaluated by treating the
one-particle problem in the semiclassical or WKB approximation. Moreover, the 1/N corrections to the
thermodynamic limit can be obtained by studying the quantum corrections to the semiclassical limit. In
this section we will present general results about the thermodynamic limit and we will illustrate them in
ABJM theory. More general theories will be considered in section 3.5.

3.3.1 The thermodynamic limit of ideal Fermi gases

In the following we will need several standard results in the analysis of ideal quantum gases. The
distribution operator at zero temperature is given by,

n̂(E) = θ(E − Ĥ) (3.3.1)

where θ(x) is the Heaviside step function. The trace of this operator gives the function n(E), counting
the number of eigenstates whose energy is less than E:

n(E) = Tr n̂(E) =
∑
n

θ(E − En). (3.3.2)

Notice that
En = − log λn, (3.3.3)

where λn are the eigenvalues (3.2.19) of the density matrix. The density of eigenstates is defined by

ρ(E) =
dn(E)

dE
=
∑
n

δ(E − En). (3.3.4)

The one-particle canonical partition function is then given by the standard formula,

Z` =
∫ ∞

0

dE ρ(E) e−`E , (3.3.5)

while the grand-canonical potential of the N particle system is given by

J(µ) =
∫ ∞

0

dE ρ(E) log
(
1 + ze−E

)
. (3.3.6)

Let us now consider the thermodynamic limit of the system, when N → ∞. In this regime, the
behavior of the system is semiclassical and the spectrum of the one-particle Hamiltonian is encoded in
the functions n(E), ρ(E). The thermodynamic limit is governed by the behavior of these functions as
E � 1. We notice that, if

n(E) ≈ CEs, E � 1, (3.3.7)
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then the grand-canonical potential is given by

J(µ) ≈ sC
∞∫

0

log
(
1 + ze−E

)
Es−1dE = −CΓ(s+ 1) Lis+1(−eµ), (3.3.8)

where Lis is the usual polylogarithm function. The number of particles is related to the chemical potential
by

N(µ) ≈ CΓ(s+ 1) Lis(−eµ), (3.3.9)

and large N corresponds to large µ. In this regime, we have

J(µ) ≈ C

s+ 1
µs+1, N(µ) ≈ Cµs . (3.3.10)

The second equation defines µ as function of N , and we deduce from (3.2.16) that the canonical free
energy is given, as N →∞, by

F (N) ≈ − s

s+ 1
C−1/sN

s+1
s . (3.3.11)

These formulae should be familiar from the elementary theory of ideal quantum gases. For example, the
textbook ideal Fermi gas in three dimensions has s = 3/2.

To determine the value of s for a given system we notice that, in the semiclassical limit, the trace is
replaced by an integral over phase space

Tr→
∫

dqdp
2π~

(3.3.12)

which gives the standard semiclassical formula

n(E) ≈
∫

dpdq
2πk

θ(E −H(q, p)) =
Vol(E)

2π~
, (3.3.13)

i.e. the number of eigenstates is just given by the volume of phase space. The surface

H(q, p) = E (3.3.14)

is just the Fermi surface of the system. For a one-dimensional ideal gas whose one-particle Hamiltonian
is of the form

H ∼ A|p|α +B|q|β (3.3.15)

we have
s =

1
α

+
1
β
. (3.3.16)

This will be useful later on.

3.3.2 A simple derivation of the N3/2 behavior in ABJM theory
We can now study the thermodynamic limit of the partition function of ABJM theory. In this case, the
Hamiltonian appearing in the semiclassical formula (3.3.13) is just given by the classical counterpart of
(3.2.34),

Hcl(q, p) = T (p) + U(q) = log
(

2 cosh
p

2

)
+ log

(
2 cosh

q

2

)
. (3.3.17)

Here we have neglected the ~ corrections appearing in HW. It is easy to show that the minimum energy
is

E0 = 2 log 2, (3.3.18)

which corresponds to the maximal eigenvalue of the density matrix

λ0 =
1
4
. (3.3.19)

This is the semiclassical value given by the leading WKB approximation, and it will be corrected
quantum-mechanically. In the large E regime, the discrete spectrum “condenses" along a cut in the
complex plane, and λ0 signals the endpoint of the cut.
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Figure 3.3: The Fermi surface (3.3.20) for ABJM theory in the q-p plane, for E = 4 (left) and E = 100
(right). When the energy is large, the Fermi surface approaches the polygon (3.3.22).

In order to proceed with the analysis of the thermodynamic limit, we should determine the Fermi
surface

Hcl(q, p) = E (3.3.20)

controling the density of eigenvalues. We show the shape of this surface in Fig. 3.3 for E = 4 (left)
and E = 100 (right). It is clear that in the thermodynamic limit, when E is large, the surface can be
approximated by considering the values of U(q), T (p) for q, p large. In this regime we have

U(q) ≈ |q|
2
, |q| → ∞, T (p) ≈ |p|

2
, |p| → ∞, (3.3.21)

so that (3.3.20) is approximately given by

|q|+ |p| = 2E, (3.3.22)

as it is manifest in the graphic on the right in Fig. 3.3. From (3.3.15) and (3.3.16) we deduce that

s = 2. (3.3.23)

Since
Vol(E) ≈ 8E2, (3.3.24)

the number of states is given by

n(E) ≈ 2
π2k

E2. (3.3.25)

By comparing with (3.3.7), we find

C =
2
π2k

. (3.3.26)

The equation (3.3.11) gives immediately

F (N) ≈ −π
√

2k
3

N3/2 . (3.3.27)

This is exactly the result found in the previous chapter using the ’t Hooft expansion of the matrix model.
The derivation presented here is however completely elementary, and relies on basic notions of quantum
Statistical Mechanics: the 3/2 scaling of the number of degrees of freedom is nothing but the scaling of
the free energy of an ultrarelativistic gas of one-dimensional fermions in a linearly confining potential. No
matrix model techniques are needed. In this sense, our derivation is even simpler than the one presented
in [38], which required some detailed analysis of the eigenvalue interaction in the matrix integral.

We would like to emphasize that the above result (3.3.27) provides the right large N behavior of the
system at finite k. This is because the true expansion parameter in the semiclassical expansion is ~/E,
which is small for large E even at finite ~. This can be proved rigorously for some spectral problems
defined by kernels of the form (3.2.3) [131], and we will verify it in section 3.4 by a detailed analysis of
the WKB expansion.
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3.3.3 Large N corrections
One advantage of the statistical-mechanical framework presented here is that it makes it possible to
compute corrections to the thermodynamic limit in a systematic way. To start the study of these
corrections, we now look at the thermodynamics of the Fermi gas of ABJM theory in the semiclassical
approximation, but taking into account the exact value of the volume of phase space (i.e. we go beyond the
polygonal approximation in (3.3.22)). As expected, this gives sub-leading and exponentially suppressed
corrections at large N .

The computation of the exact volume is equivalent to computing all the Z` exactly in the semiclassical
approximation, and resumming the resulting series (3.2.12). Using that∫ ∞

−∞

dξ(
2 cosh ξ

2

)` =
Γ2(`/2)

Γ(`)
(3.3.28)

we find
Z` ≈

1
~
Z

(0)
` , (3.3.29)

where

Z
(0)
` =

∫
dpdq
2π

e−`Hcl(q,p) =
1

2π
Γ4(`/2)
Γ2(`)

. (3.3.30)

Therefore,

J(µ) ≈ 1
k
J0(µ) (3.3.31)

where

J0(µ) = −
∞∑
`=1

(−z)`
4π2

Γ4(`/2)
`Γ2(`)

=
1
4
z 3F2

(
1
2
,

1
2
,

1
2

; 1,
3
2

;
z2

16

)
− z2

8π2 4F3

(
1, 1, 1, 1;

3
2
,

3
2
, 2;

z2

16

)
.

(3.3.32)

This function has a branch cut in the z-plane at (−∞,−4]. This is expected: indeed, from (3.2.24) there
should be a cut starting at

z = −λ−1
0 = −4, (3.3.33)

indicating the condensation of eigenvalues for the one-particle density matrix. The function (3.3.32) has
the following asymptotics for large µ,

J0(µ) =
2µ3

3π2
+
µ

3
+

2ζ(3)
π2

+ Jnp
0 (µ). (3.3.34)

The leading, cubic term in µ, is the responsible for the behavior (3.3.27). The subleading term in µ gives
a correction of order N1/2 to the leading behavior (3.3.27). The last, non-perturbative term involves an
infinite power series of exponentially small corrections in µ. They have the structure,

Jnp
0 (µ) =

∞∑
`=1

(
a0,`µ

2 + b0,`µ+ c0,`
)

e−2`µ. (3.3.35)

Explicitly, one finds for the very first orders

Jnp
0 (µ) =

2
3π2

(
6− π2 + 6µ− 6µ2

)
e−2µ +

1
2π2

(
25− 6π2 − 66µ− 36µ2

)
e−4µ

+O
(
µ2e−6µ

)
.

(3.3.36)

The non-perturbative part of the grand potential leads to exponentially small corrections in N in the
canonical free energy. In fact, using (3.3.10) we find that, once evaluated at the saddle-point,

exp (−2µ) ≈ exp
(
−
√

2πk1/2N1/2
)
. (3.3.37)

This is precisely the action for membrane instantons (3.1.3) found in the previous chapter as large N
instantons of the matrix model in the ’t Hooft expansion. We conclude that the exponentially small
corrections in µ, which in this approach appear already in the semi-classical approximation, correspond
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in fact to non-perturbative corrections in the genus expansion, and should be identified as membrane
instanton contributions.

As mentioned before, the calculation of these exponentially small corrections to the grand-canonical
potential is equivalent to the exact calculation of the volume (3.3.13) of classical phase space. To see
this, we notice that we can write this volume as a period of the one-form pdq along the curve (3.3.14)

Vol(E) =
∮

Hcl(q,p)=E

pdq. (3.3.38)

This period vanishes at the point E = E0. It turns out that its exact value is given by a Meijer function,

Vol(E) =
eE

π
G2,3

3,3

(
e2E

16

∣∣∣∣ 1
2 ,

1
2 ,

1
2

0, 0,− 1
2

)
− 4π2. (3.3.39)

This leads to the following large E expansion of the number of states,

n(E) =
2E2

π2k
− 1

3k
+O(Ee−2E) +O(~), (3.3.40)

where the first term agrees of course with the semiclassical calculation at large E done before. One can
then check that the expression (3.3.6) for the grand-canonical potential reproduces (3.3.32), once the
density obtained from (3.3.39) is used.

3.3.4 Relation to previous results
The semiclassical limit of the one-particle Hamiltonian turns out to be closely related to the planar limit
of ABJM theory studied in [5, 6, 8].

First of all, the semiclassical quantization of the one-dimensional problem leads to the Fermi surface

T (p) + U(q) = E (3.3.41)

which is in fact a curve in phase space. Let us now make the following change of variables,

x =
q

2
+
p

2
, y = p+ πi, (3.3.42)

which, up to an overall constant, preserves the form pdq. In terms of the exponentiated variables

X = eq/2+p/2, Y = −ep. (3.3.43)

the Fermi surface (3.3.41) reads

Y +
X2

Y
−X2 + iκX − 1 = 0, (3.3.44)

where
iκ = eE . (3.3.45)

The curve (3.3.44) is nothing but the spectral curve (2.3.1) of the ABJM matrix model. The minimal
energy E0 given in (3.3.18) corresponds to the conifold point κ = 4i studied in detail in the previous
chapter. The volume of phase space, which as we remarked after (3.3.38) is a vanishing period at E = E0,
is actually proportional to the conifold period studied in section 2.13. Finally, the large energy limit,
in which the Fermi surface becomes a polygon, is nothing but the tropical limit of the spectral curve
studied in the previous chapter.

3.4 Quantum corrections
In the previous section we have recalled the semiclassical limit of ideal Fermi gases, and we have studied
in detail the case of ABJM theory. We now study the corrections to the semiclassical limit in a systematic
and general way. These corrections lead to a power series in ~2 ∝ k2 for the grand-canonical partition
function. As we will see, only the first ~2 correction contributes to the asymptotic series in 1/N of
the canonical free energy, up to an additive function of k but independent of N . This means that we
can compute the full series of 1/N corrections to the original matrix model partition function, up to an
overall, N -independent constant. However, the exponentially small terms in µ appearing in J(µ) receive
corrections to all orders in ~2.
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3.4.1 Quantum-corrected Hamiltonian and Wigner–Kirkwood expansion

There are two sources of ~ corrections in the one-body problem appearing in our Fermi gas formulation.
The first one appears already in the Hamiltonian Ĥ: when we compute Ĥ starting from (3.2.27), the
non-commutativity of the operators in (3.2.27) leads to O(~) corrections to (3.2.34). This first source
of corrections is nicely encoded in the Wigner transform (3.2.44). Another source of corrections is due
to the standard semiclassical expansion of the density of eigenvalues. We now present a formalism to
treat in a systematic way both types of corrections. This formalism is a generalization of the standard
Wigner–Kirkwood ~ expansion [132, 133] in quantum statistical mechanics, and it incorporates general,
~-dependent Hamiltonians. As in section 3.2.1, the formalism is most conveniently formulated in the
phase-space approach to quantization, and it has been developed in the context of many-body physics.
The most elegant presentation is due to Voros [134, 135] (see also [136]).

Let Ĥ be the Hamiltonian of a one-particle, one-dimensional quantum system, and let HW be its
Wigner transform. We would like to compute systematically the ~ expansion of the canonical partition
function and of the density of states. Following [135] we notice that it is possible to expand any function
f(Ĥ) of Ĥ around HW(q, p), which is a c-number. This gives,

f(Ĥ) =
∑
r≥0

1
r!
f (r)(HW)

(
Ĥ −HW(q, p)

)r
. (3.4.1)

The semiclassical expansion of this object is obtained simply by evaluating its Wigner transform, and
we obtain

f(Ĥ)W =
∑
r≥0

1
r!
f (r) (HW)Gr (3.4.2)

where
Gr =

[(
Ĥ −HW(q, p)

)r]
W

(3.4.3)

and the Wigner transform is evaluated at the same point q, p. Of course, one has

G0 = 1, G1 = 0, (3.4.4)

and the quantities Gr for r ≥ 2 can be computed again by using (3.2.36). They have an ~ expansion of
the form

Gr =
∑

n≥[ r+2
3 ]

~2nG(n)
r , r ≥ 2. (3.4.5)

This means, in particular, that to any order in ~2, only a finite number of Gr’s are involved. One finds,
for the very first orders [135, 136],

G2 = −~2

4

[
∂2HW

∂q2

∂2HW

∂p2
−
(
∂2HW

∂q∂p

)2
]

+O(~4),

G3 = −~2

4

[(
∂HW

∂q

)2
∂2HW

∂p2
+
(
∂HW

∂p

)2
∂2HW

∂q2
− 2

∂HW

∂q

∂HW

∂p

∂2HW

∂q∂p

]
+O(~4).

(3.4.6)

One can then apply this method to compute the semiclassical expansion of any function of the Hamilto-
nian operator. For example, when applied to (3.3.2), one finds,

n̂(E)W = θ(E −HW) +
∞∑
r=2

1
r!
Grδ(r−1)(E −HW), (3.4.7)

therefore

n(E) =
∫
HW(q,p)≤E

dqdp
2π~

+
∞∑
r=2

1
r!

∫
dqdp
2π~
Grδ(r−1)(E −HW). (3.4.8)

When applied to the canonical density matrix at inverse temperature β, one finds,

(
e−βĤ

)
W

=

( ∞∑
r=0

(−β)r

r!
Gr
)

e−βHW . (3.4.9)
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The standard Wigner–Kirkwood ~ expansion of the canonical partition function [132, 133] is just a
particular case of (3.4.9) when the Hamiltonian is

Ĥ =
p̂2

2
+ U(q̂). (3.4.10)

Let us now apply this formalism to our case. First of all, the quantum-corrected Hamiltonian is given
by a power series in ~ of the form,

HW =
∑
n≥0

~2nH
(n)
W . (3.4.11)

At leading order we find of course the classical Hamiltonian (3.3.17),

H
(0)
W = T (p) + U(q), (3.4.12)

the O(~2) term is written down in (3.2.44), and the O(~4) term can be found in (B.1). The one-particle
canonical partition function can then be computed as a power series in ~,

Z` =
1
~

∞∑
n=0

Z
(n)
` ~2n, (3.4.13)

where
Z

(0)
` =

∫
dqdp
2π

e−`Hcl (3.4.14)

is the classical limit. The expansion is obtained by grouping ~2 corrections in the expression

Z` =
1
~
∑
r≥0

(−`)r
r!

∫
dq dp

2π
Gre−`HW . (3.4.15)

The power series in ~ for Z` leads to the following power series in k for J(µ),

J(µ) =
1
k

∞∑
n=0

Jn(µ)k2n, (3.4.16)

where

Jn(µ) = −(2π)2n−1
∞∑
`=1

(−z)`
`

Z
(n)
` . (3.4.17)

As an illustration of the above, general considerations, we will now calculate the first, ~2 correction
to the semiclassical result of ABJM theory obtained in section 3.3.3. Using the formulae above, we find

Z
(1)
` =

∫
dqdp
2π

e−`Hcl

{
−`H(1)

W +
`2

2
G(1)

2 − `3

6
G(1)

3

}
= −`

∫
dqdp
2π

e−`Hcl

[
1
24

(U ′(q))2T ′′(p)− 1
12

(T ′(p))2U ′′(q)
]

+
∫

dqdp
2π

e−`Hcl

{
`3

24
[
(U ′(q))2T ′′(p) + U ′′(q)(T ′(p))2

]
− `2

8
U ′′(q)T ′′(p)

}
.

(3.4.18)

To evaluate these coefficients, we need the integral appearing in (3.3.28), as well as∫ ∞
−∞

dξ
tanh2(ξ/2)

(2 cosh(ξ/2))`
=

Γ2(`/2)
Γ(`)

− 4
Γ2(`/2 + 1)

Γ(`+ 2)
. (3.4.19)

We then find,

Z
(1)
` =

`

48π
(2`2 + 1)

[
Γ2(`/2 + 1)Γ2(`/2)

4Γ(`+ 2)Γ(`)
− Γ4(`/2 + 1)

Γ2(`+ 2)

]
− `2

16π
Γ4(`/2 + 1)
Γ2(`+ 2)

. (3.4.20)

From (3.4.20) one can compute J1(z) in closed form. Let us introduce the function

f(z) = 3F2

(
1, 1, 1;

3
2
,

3
2

;
z2

16

)
− z2

24 3F2

(
1, 1, 2;

3
2
,

5
2

;
z2

16

)
+

1
z

(
−2πE

(z
4

)
− z + π2

) (3.4.21)



3.4. QUANTUM CORRECTIONS 133

where E(k) is the complete elliptic integral of the second kind with modulus k. Then, one finds

J1(µ) =
1
24

{
f(z)−

(
z
∂

∂z

)2

f(z)

}
. (3.4.22)

The asymptotic expansion of the above function at large µ is given by

f(z)−
(
z
∂

∂z

)2

f(z) = µ− 2 +O
(
µ2e−2µ

)
. (3.4.23)

Therefore, we find, at next-to-leading order in k, the following expression for the grand canonical potential
of ABJM theory,

JABJM(µ) ≈ 2µ3

3kπ2
+ µ

(
1
3k

+
k

24

)
+

2ζ(3)
π2k

− k

12
+O

(
µ2e−2µ

)
. (3.4.24)

Notice that the non-perturbative corrections in µ to (3.4.23) involve only even powers of z. This is
consistent with their interpretation as membrane instantons.

3.4.2 General structure of quantum corrections
As we mentioned above, we can compute the quantum corrections to J(µ) either by working out the
corrections to the Z` integrals, or by working out the corrections to the function n(E). In order to
understand the general structure of these corrections for a Fermi gas, the second point of view is more
convenient. In this section we will analyze this general structure in detail, and we will make a precise
connection between the structure of n(E) and the expected Airy function behavior.

First of all, we have to understand more precisely the relationship between the structure of n(E) and
the structure of J(µ). Let us write the density function n(E) in the form,

n(E) = CE2 + n0 + nnp(E), (3.4.25)

where the last term has the following asymptotics at infinity,

nnp(E) = O(Ee−E), E →∞. (3.4.26)

We know from (3.3.40) that this is indeed the case at leading order in k for ABJM theory and in the
next subsection we will show that quantum corrections do not spoil this behavior. Notice that, since all
eigenvalues of our Hamiltonian are positive, we must have

n(0) = 0, (3.4.27)

therefore
nnp(0) = −n0. (3.4.28)

If we now plug (3.4.25) in (3.3.6) we find,

J(µ) =

∞∫
0

dE n′(E) log(1 + ze−E)

= −2C Li3(−z) + µ

∞∫
0

dE n′np(E)−
∞∫

0

dE n′np(E)E +

∞∫
0

dE n′np(E) log(1 + eE/z).

(3.4.29)

The second integral gives ∫ ∞
0

dE n′np(E) = −nnp(0) = n0, (3.4.30)

where we used (3.4.28). The last term can be calculated as

∞∫
0

dE n′np(E) log(1 + eE/z) = n0 log(1 + 1/z)−
∞∫

0

dE
nnp(E)

1 + ze−E
, (3.4.31)
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and both terms are non-perturbative in µ. Indeed,

∞∫
0

dE
nnp(E)

1 + ze−E
∼
∞∫

0

dE
Ee−E

1 + ze−E
= O

(
µ e−µ

)
. (3.4.32)

Then, by using the standard asymptotics of the trilogarithm

Li3(−z) = −µ
3

6
− π2

6
µ+O

(
e−µ

)
, (3.4.33)

we deduce the following asymptotic expansion of J(µ) for large µ:

J(µ) =
C

3
µ3 +Bµ+A+ Jnp(µ) , (3.4.34)

where

B = n0 +
π2C

3
,

A = −Tr′ Ĥ ≡ −
∞∫

0

dE E n′np(E),
(3.4.35)

and
Jnp(µ) = O

(
µ e−µ

)
. (3.4.36)

Notice that A is a non-trivial function of k, but it doesn’t depend on µ. If we now plug this in (3.2.14),
we find immediately

Z(N) = C−1/3eA Ai
[
C−1/3(N −B)

]
+ Znp(N), (3.4.37)

where the last term is non-perturbative in N .
We then see that, if we are able to derive the structural results (3.4.25) and (3.4.26) for the density

of states of a given theory, the conjecture 0.2.15 for the M-theory expansion is proved. In fact, so far we
have not specified in which regime we are working in k. In practice, we have to work in an expansion in
k around k = 0. However, we expect that C will only get contributions at leading order in k (i.e. the
strict semiclassical limit), and that B will be only corrected at the next-to-leading order in k. We will
now verify this in ABJM theory. In contrast, the µ-independent term A gets corrected at all orders in k.

3.4.3 Quantum corrections in ABJM theory

We now study the general structure of quantum corrections in ABJM theory, by using the strategy
explained above, i.e. by looking at the number of eigenvalues n(E). Our goal is to show that n(E)
has the structure (3.4.25). This involves a somewhat detailed argument. Since not every reader might
go through it, we want to emphasize that the physics behind this argument is very simple. The WKB
expansion of the density of eigenvalues of a quantum system is in fact an expansion in(

~
d

dE

)2

. (3.4.38)

Therefore, if the leading order term in n(E) is of the form CE2, the first quantum correction gives the
constant term in (3.4.25), and further terms in the WKB expansion do not correct the polynomial part
of n(E). They can only give exponentially small corrections in E. In the rest of this section, we will
verify that this qualitative argument is actually correct in the case of the one-body problem appearing
in ABJM theory.

Our starting point in the study of quantum corrections in ABJM theory is (3.4.8). As we know, there
are two sources of ~ corrections in this formula. One is the quantum-corrected Hamiltonian, and the
other are the terms Gr appearing in the generalized Wigner–Kirkwood expansion. We will consider first
the quantum corrections coming from HW, i.e. from the first term in (3.4.8). Since we have a symmetry
q → −q and p→ −p in the problem, we can restrict ourselves to the case q > 0 and p > 0. We want to
solve the equation

HW(q, p) = E (3.4.39)
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q∗

p∗

HW = E

q∗

p∗

HW = E

III

Figure 3.4: The regions I (left) and II (right) under the quantum curve HW(q, p) = E in the positive
quadrant. The diagonal dashed line is the polygonal curve (3.3.22).

in the limit E → ∞. This defines a “quantum curve" or “quantum Fermi surface," including explicit ~
corrections. At leading order in E the curve is given by (3.3.22), and the corresponding domain (in the
positive quadrant) has volume

Vol0(E) = 2E2. (3.4.40)

One crucial ingredient in what follows is the fact that the function U(q) and its derivatives have the
following asymptotics as q � 1:

U(q) = log 2 cosh
q

2
=
q

2
+
∑
k>1

(−1)k+1

k
e−kq,

U ′(q) =
1
2

tanh
q

2
=

1
2

+
∑
k>1

(−1)ke−kq,

U ′′(q) =
1

4 cosh2 q
2

=
∑
k>1

k(−1)k+1e−kq.

(3.4.41)

The same results hold for T (p). Notice that, if we take a number large enough of derivatives of these
functions, they become exponentially suppressed at infinity. This will be eventually the source of the
simplifications at large E.

Let us now consider the point (q∗, p∗) in the curve (3.4.39), where

p∗ = E. (3.4.42)

It is easy to see from the explicit form of HW that

q∗ = E +O
(
e−E

)
(3.4.43)

where the exponentially small corrections in E are themselves power series in ~2. This point divides
the curve (3.4.39) into two segments, and defines two regions for the fully corrected volume, as shown
in Fig. 3.4. Region I is defined as the region under the quantum curve with p ≥ p∗, while region II is
defined by q ≥ q∗. We have

Vol(E) = 4VolI(E) + 4VolII(E), (3.4.44)

where

VolI(E) =
∫ q∗(E)

0

p(E, q) dq, VolII(E) =
∫ p∗(E)

0

q(E, p)dp− p∗q∗, (3.4.45)

and p(E, q) and q(E, p) are local solutions of HW(q, p) = E.
Let us first consider the curve bounding region I. Along this curve, p(q, E) ≥ E, therefore exponential

terms in p in HW are bounded by exponential terms in E. We can then write

T (p) =
p

2
+O

(
e−E

)
, T ′(p) =

1
2

+O
(
e−E

)
, (3.4.46)

and
T (n)(p) = O

(
e−E

)
, n ≥ 2. (3.4.47)
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In the quantum corrections to the function HW we will have terms of the form (T (k)(p))n, with k ≥ 1.
Due to (3.4.46) and (3.4.47), and neglecting exponentially small corrections of the form O

(
e−E

)
, we

should keep only the terms (T ′(p))n with n ≥ 1 (like the third term in the second line of (3.2.44)). But
these terms always multiply terms of the form U (2n)(q). We conclude that, on the curve bounding region
I,

HW =
p

2
+ U(q)− ~2

48
U ′′(q) +

1
2

∑
n>1

~2ncnU
(2n)(q) +O

(
e−E

)
. (3.4.48)

The third term in this expression comes from the third term in the second line of (3.2.44). The fourth
term comes from higher quantum corrections (see the first term in the last line of (B.2) for an example
of such a term at order O(~4)). We can now solve for p along this curve,

p(E, q) = 2E − q + ∆p(E, q), (3.4.49)

where

∆p(E, q) = q − 2U(q) +
~2

24
U ′′(q)−

∑
n>1

~2ncnU
(2n)(q) +O(e−E). (3.4.50)

We calculate the volume of region I as follows,

VolI = Vol0I + ∆VolI. (3.4.51)

The first term comes from the polygonal limit of the curve,

Vol0I (E) =

q∗(E)∫
0

(2E − q)dq = 2Eq∗(E)− q2
∗(E)

2
. (3.4.52)

The second term comes from the corrections to the curve, and it is given by

∆VolI(E) =

q∗(E)∫
0

∆p(E, q)dq

− 2

q∗(E)∫
0

(
U(q)− q

2

)
dq +

~2

24

q∗(E)∫
0

U ′′(q)dq −
∑
n>1

~2ncn

q∗(E)∫
0

U (2n)(q) +O
(
Ee−E

)

= −2

∞∫
0

(
U(q)− q

2

)
dq +

~2

24

∞∫
0

U ′′(q)dq −
∑
n>1

~2ncn

∞∫
0

U (2n)(q) +O
(
Ee−E

)
= −π

2

6
+

~2

48
+O

(
Ee−E

)
.

(3.4.53)

In the last calculation we used that, up to non-perturbative terms in E, we can extend the integration
region to infinity, and also that

∞∫
0

U (2n)(q)dq = U (2n−1)(∞)− U (2n−1)(0) = 0 for n > 1. (3.4.54)

A similar calculation can be done for region II. We obtain, from the polygonal approximation of the
curve,

Vol0II(E) = 2Ep∗(E)− p2
∗(E)
2
− p∗(E)q∗(E), (3.4.55)

while the corrections give,

∆VolII(E) = −π
2

6
− ~2

96
+O

(
Ee−E

)
. (3.4.56)

Using that
p∗(E) + q∗(E) = 2E +O

(
e−E

)
(3.4.57)

we finally get

Vol(E) = 8E2 − 4π2

3
+

~2

24
+O

(
Ee−E

)
. (3.4.58)



3.4. QUANTUM CORRECTIONS 137

We now consider the contribution from the quantum corrections to the density. In fact, these terms
only give non-perturbative corrections in E. Using that

δ(E −HW(q, p)) = δ(p− p(E, q))
/
∂HW(q, p)

∂p
= δ(q − q(E, p))

/
∂HW(q, p)

∂q
(3.4.59)

one can always decompose an integral over the phase space as a sum of one-dimensional integrals in
regions I and II, as in (3.4.44). For region I one can use again the expression (3.4.48) and the properties
(3.4.46), (3.4.47). The only nontrivial term which gives an ~2 correction comes from G3 and gives,

~2

24
∂2

∂E2

q∗(E)∫
0

dq
∂HW(q, p)

∂p

∂2HW(q, p)
∂q2

∣∣∣∣
p=p(E,q)

=

~2

24
∂2

∂E2

q∗(E)∫
0

dq

∑
n≥0

~2ncnU
(2n+2)(q) +O(e−E)

 = O(Ee−E). (3.4.60)

For higher order corrections everything that contains a term with

∂rHW(q, p)
∂pr

, r > 1, (3.4.61)

or with
∂2HW(q, p)

∂p∂q
(3.4.62)

is of order e−E . Since the derivatives ∂p and ∂q always come in pairs, the only terms possibly contributing
are of the form ∏

i

(
∂HW(q, p)

∂p

)ni ∂niHW(q, p)
∂qni

=
∏
i

∂niHW(q, p)
∂qni

+O(e−E) (3.4.63)

where ni ≥ 2,∀i. After integrating and applying ∂r/∂Er this gives a correction of order O(Ee−E) by
the same reason.

We conclude that, to all orders in the ~ expansion,

n(E) =
Vol(E)

2π~
+O(Ee−E) =

2E2

πk
− 1

3k
+

k

24
+O(Ee−E). (3.4.64)

Therefore, by using (3.4.34) and (3.4.35) we find the expression

JABJM(µ) =
2µ3

3kπ2
+ µ

(
1
3k

+
k

24

)
+A(k) + Jnp(µ) (3.4.65)

where

Jnp(µ) =
∞∑

`,n=1

(
a`,nµ

2 + b`,nµ+ c`,n
)
k2n−3e−2`µ. (3.4.66)

It is not manifest from the above results that this series involves only even powers of z−1, but we have
verified it to be the case for the first three orders in k, and we believe it is a general feature. Finally, it
follows from (3.4.64) and (3.4.37) that

ZABJM(N) = C−1/3eA(k) Ai
[
C−1/3

(
N − 1

3k
− k

24

)]
+ Znp(N), (3.4.67)

where C is given in (3.1.8) and Znp(N) are exponentially suppressed corrections at large N . This
concludes our derivation of the Airy behavior for ABJM theory. The function A(k) can in principle be
determined, order by order in k, by computing the Z(n)

` , resumming the resulting series, and expanding
at µ =∞, as we did in sections 3.3.3 and 3.4.1. One obtains,

A(k) =
2ζ(3)
π2k

− k

12
− π2k3

4320
+O(k5). (3.4.68)

A sketch of the computation leading to the third term of this expansion can be found in the Appendix
B. In principle one can also compute A(k) by using the representation (3.4.35).
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Figure 3.5: The Riemann surface of Hcl(p, q) = E for ABJM theory for large E. The four interior tubes
form the limiting polygon of the Fermi surface.

3.4.4 Quantum-mechanical instantons as worldsheet instantons
One obvious question that one can ask at this point is the following: where are the worldsheet instantons
(3.1.2) that one finds perturbatively in gs in the ’t Hooft expansion? We now give some preliminary
evidence that worldsheet instantons correspond to the quantum-mechanical instantons of the Hamiltonian
HW.

So far our focus has been in the perturbative corrections in ~, but one should expect generically non-
perturbative corrections due to instantons, of order exp(−1/~). To understand these quantum-mechanical
instantons in our problem, with a non-conventional Hamiltonian, we need a general, geometric approach
to non-perturbative WKB expansions, like the one proposed in [137, 138]. In this approach, instanton
contributions are obtained by looking at the complexified curve

H(q, p) = E (3.4.69)

where H(q, p) is the Hamiltonian of the model. Perturbative WKB expansions are associated to periods
of the above curve around “A-type" cycles, while non-perturbative corrections to the WKB method are
associated to “B-type" cycles. In the case of ABJM theory, the complexified curve is identical to the
spectral curve (3.3.44), after an appropriate choice of the variables. Its Riemann surface looks as shown
in the Fig. 3.5. Let us introduce canonical coordinates Q, P related to the q, p coordinates as

Q = q, P = p+ q. (3.4.70)

This preserves the symplectic form. The coordinate P is chosen so that it has no monodromy along the
contour B. Then in the large E limit

n(E) ≈ 1
2π~

∮
A
PdQ ≈ 1

2π~
Vol {(q, p) : |p|+ |q| < 2E} =

4E2

π~
. (3.4.71)

The instanton contribution is of order
exp

[
i
~

∮
B
PdQ

]
, (3.4.72)

where in the large E limit ∮
B
PdQ = 2E · 4πi +O(e−cE). (3.4.73)

Here we used that, in the interior of the upper-right tube, P = p+ q = 2E +O(e−cE) for some constant
c, and that the monodromy of Q around the tube is 4πi. The above period can be computed exactly



3.4. QUANTUM CORRECTIONS 139

with the results of section 2.13 since the behavior (3.4.73) fixes it completely:∮
B
PdQ = −2ieEπ 3F2

(
1
2
,

1
2
,

1
2

; 1,
3
2

;
e2E

16

)
− eE

π
G2,3

3,3

(
e2E

16

∣∣∣∣ 1
2 ,

1
2 ,

1
2

0, 0,− 1
2

)
+ 4π2

= 8iπE +O(e−2E).
(3.4.74)

In fact, after the identification (3.3.45), this period is equal to −4As, where As is the strong coupling
instanton action computed in section 2.13. For large energy, (3.4.74) gives a contribution to the density
of states of order

exp [−4E/k] (3.4.75)

which becomes a contribution
exp [−4µ/k] (3.4.76)

to the grand canonical potential, and a contribution

∼ exp
[
−2π

√
2N/k

]
(3.4.77)

to the canonical free energy. This is precisely the weight of a worldsheet instanton (3.1.2) in ABJM
theory.

Quantum-mechanical instantons are of course invisible in the perturbative ~ expansion of HW and
in the Wigner–Kirkwood expansion, but they appear in the ’t Hooft expansion. In fact, the ’t Hooft
expansion of the canonical free energy

F (λ, k) =
∑
g≥0

k2−2gFg(λ) (3.4.78)

leads to a genus expansion of the grand canonical potential of the form [119]

J ’t Hooft(µ, k) =
∑
g≥0

k2−2gJg(µ/k). (3.4.79)

Notice that, in the Fermi gas approach, only the perturbative part in µ of J(µ) can be written in this form
(3.4.79). The membrane instanton contributions and the function A(k) do not have the right functional
dependence in µ/k to fit into the ’t Hooft expansion, while the weight associated to a quantum-mechanical
instanton (3.4.76) is again of the right form. In the case of ABJM theory, we see from (3.4.24) that the
Fermi gas approach gives

J0(ζ) =
2ζ3

3π2
+

ζ

24
+O

(
e−4ζ

)
,

J1(ζ) =
ζ

3
+O

(
e−4ζ

)
,

Jg(ζ) = O
(
e−4ζ

)
, g ≥ 2,

(3.4.80)

where ζ = µ/k. From the point of view of the topological string, it follows from (3.1.20) that the variable
ζ is essentially the period T at large radius, and a perturbative Fermi gas approach makes possible to
recover the leading, perturbative genus zero and genus one free energies of the topological string given
in (3.1.15).

Finally, we should mention that there is an extra source of worldsheet instanton-like corrections. In
general, the exact representation (3.2.13) and the saddle-point integral (3.2.14) are only equivalent up
to exponentially small corrections in N . Since we are taking into account such corrections, we have to
be more careful here. The expression (3.2.13) is equivalent to

Z(N) =
1

2πi

∫ µ∗+iπ

µ∗−iπ

dµ exp [J(µ)− µN ] , (3.4.81)

where the integration contour is parallel to the imaginary axis, and µ∗ is arbitrary. To apply the saddle-
point method, one chooses for µ∗ the saddle-point of the exponent, and then extends the integration
contour to infinity along the imaginary axis (this is what gives the Airy function behavior we have found
many times in this paper). As it is well-known, it is in this last step of extending the integration contour
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Figure 3.6: The Fermi surface for the three-node quiver with na = (1, 3,−4) in the q-p plane, for E = 5
(left) and E = 500 (right). At large energy it approaches the polygon (3.5.1).

that one introduces exponentially small errors in N . A rough estimate of these errors can be done as
follows. The saddle-point expansion involves integrating a Gaussian of the form

exp
[

1
2

(µ− µ∗)2J ′′(µ∗)
]
. (3.4.82)

The error in going to (3.2.14) can then be estimated by evaluating this Gaussian at the true endpoints
in (3.4.81). This gives, by using the leading term in (3.4.24),

∼ exp [−2µ∗/k] (3.4.83)

which is the square root of (3.4.76). Therefore, these type of corrections should also be taken in account
when trying to extract information about worldsheet instantons.

3.5 More general Chern–Simons–matter theories
In this section we consider in detail more general CSM theories. We first study the thermodynamic limit
of necklace quivers, and derive a general formula for the large N limit of their free energy which agrees
with the result obtained in [115, 116] by analyzing the matrix model. Then we extend the considerations
of section 3.4.3 to the general necklace CSM theories considered in section 3.2.2. For technical reasons we
restrict ourselves to theories whose Hamiltonian is Hermitian, i.e. whose free energy is real, and we show
that, with that assumption, the Airy behavior of the resummed 1/N expansion found in [23] is indeed
generic. These general considerations are then illustrated in detail in the case of the ABJM theory (i.e.
the two-node theory) with fundamental matter. Finally, we consider the massive theories of [176], and
we derive the N5/3 behavior found in [42, 139] with our techniques.

3.5.1 Thermodynamic limit for general necklace quivers
In this section we study the general necklace quiver considered in subsection 3.2.2. From (3.2.55) it
follows that, for large energy, the Fermi surface is defined by the polygonal equation

r∑
j=1

∣∣∣∣∣p−
(
j−1∑
i=1

ni

)
q

∣∣∣∣∣+

 r∑
j=1

Nfj
k

 |q| = 2E. (3.5.1)

As an example, we show in Fig. 3.6 the classical Fermi surface (3.5.1) at small and large energy, for
a three-node quiver with na = (1, 3,−4). By the by now familiar argument of the previous sections, the
number of eigenstates is given by the semiclassical formula (3.3.13) applied to the domain bounded by
(3.5.1). One finds,

n(E) ≈ CE2, (3.5.2)
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where the constant C is given by

π2C = Vol

(x, y) :
r∑
j=1

∣∣∣∣∣y −
(
j−1∑
i=1

ki

)
x

∣∣∣∣∣+

 r∑
j=1

Nfj

 |x| < 1

 (3.5.3)

and the variables y, x differ from p, q in (3.5.1) by rescaling. Once this constant has been determined,
the large N asymptotics of the free energy is given by (3.3.11)

F (N) ≈ −2
3
C−1/2N3/2. (3.5.4)

In order to compute C, we notice that the right hand side of (3.5.3) is the volume of a convex polygon
which can be easily calculated. Suppose for simplicity that Nfj = 0. Let us introduce new parameters
cj , related to ki in the following way

cσ(j) = c+
j−1∑
i=1

ki (3.5.5)

where c is an auxiliary constant and σ is a permutation chosen so that ci ≤ ci+1,∀i. Then

π2C = Vol

(x, y) :
r∑
j=1

|y − cjx| < 1

 . (3.5.6)

Let us note that the cj differ by a permutation from the parameters qa introduced in [38] (where they
were defined in such a way that ka = qa+1 − qa). Notice also that the expression (3.5.6) is explicitly
invariant under permutations of the cj . The inequality

∑r
j=1 |y − cjx| < 1 defines a convex hull of 2r

points (±xs,±ys) so that

ys = csxs,

r∑
j=1

|ys − cjxs| = 1. (3.5.7)

One finds
xs =

1∑r
j=1 |cs − cj |

, ys =
cs∑r

j=1 |cs − cj |
. (3.5.8)

Then one can use the standard formula for the area of a convex hull to find

π2C =
r∑
s=1

|cs+1 − cs|(∑r
j=1 |cs+1 − cj |

)(∑r
j=1 |cs − cj |

) (3.5.9)

where as usual we use the convention cr+1 ≡ c1. Let us illustrate this formula by applying it to necklaces
with three and four nodes. For the necklace with three nodes (k1, k2, k3) we can assume, without loss of
generality, that

|c1 − c2| = |k3|, |c2 − c3| = |k1|, |c1 − c3| = |k2|. (3.5.10)

Then
π2C

2
=

|k1||k2|+ |k2||k3|+ |k3||k1|
(|k1|+ |k2|)(|k2|+ |k3|)(|k3|+ |k1|)

. (3.5.11)

For the quiver with four nodes, let us assume without loss of generality that
∑4
i=1 ci = 0. Then an easy

computation gives
π2C

2
=

1
32

(
1
c1
− 1
c4

+ 12
1

c3 + c4
+ 4

c1 + c3
(c3 + c4)2

)
. (3.5.12)

These formulae for the three and four-node quivers agree with the results first found in [38] (for the
four-node quiver, their formula is obtained by setting c1 = q3, c2 = q1, c3 = q2, c4 = q4). In fact, the
above general result for the free energy of these CSM theories, involving the area of the polygon (3.5.3),
has been derived in this form in [115, 116] by refining the analysis of the matrix model done in [38]
(where a different, but equivalent general formula for the free energy was proposed). This class of CSM
theories is dual to M-theory on AdS4 ×X7, where X7 is an appropriate tri-Sasaki Einstein space [127].
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Therefore, the coefficient C should be proportional to the volume of the X7 manifold, and one should
have

Vol(X7)
Vol(S7)

=
π2C

2
=

1
2

Vol

(x, y) :
p∑
j=1

∣∣∣∣∣y −
(
j−1∑
i=1

ki

)
x

∣∣∣∣∣+

 p∑
j=1

Nfj

 |x| < 1

 . (3.5.13)

This is indeed the case, as it was proved in [115].
We then see that the Fermi gas approach allows us to rederive the result for the large N energy

obtained in [115], but in a simpler way. The polygon appearing in the matrix model analysis of [115] has
here a very simple interpretation: it is the large energy limit of the Fermi surface for the ideal Fermi gas.

3.5.2 Airy function behavior for a class of CSM theories

We now extend the considerations of section 3.4.3 to more general necklace quivers with matter. In the
next subsection we apply the general considerations developed here to the case of ABJM theory with
matter.

Let us assume that the Wigner transform of the density matrix can be written in the form

ρW(q, p) ≡ exp? {−HW } = e−Φ1(QR1 ) ? e−Φ2(QR2 ) ? · · · ? e−Φm(QRm ), (3.5.14)

where
QR = aRq + bRp (3.5.15)

for suitable aR, bR, and the different QR are given by linearly independent combinations of q, p. We will
also suppose that the functions Φi are real valued, even, and that1

Φi(Q) = γi|Q|+O(e−c|Q|), Q→∞, γi > 0. (3.5.16)

These assumptions are obviously true for the general necklace quivers considered in subsection 3.2.2. In
addition, we will suppose that HW(q, p) is real. This corresponds to the case when the quantum operator
Ĥ is Hermitian. It should be possible to treat the general case, when Ĥ has complex eigenvalues, with
similar techniques, but we will not do it here.

As usual, the leading contribution to the number of states is given by the volume of a polygon:

n(E) ≈ 1
2π~

Vol

{
(q, p) :

m∑
i=1

γi|aRiq + bRip| < E

}
= CE2. (3.5.17)

Let
CE = {(q, p) : HW(p, q) = E} (3.5.18)

be the real curve describing the Fermi surface. One can always decompose CE into patches UR, U ′R so
that both UR and U ′R contain one point where QR = 0, U ′R is related by to UR by reflection through the
center of the polygon, and

m∑
i=1

γi|aRiq + bRip|
∣∣∣∣∣
∂UR, ∂U ′R

= E +O(e−cE). (3.5.19)

In Fig. 3.7 we depict the general structure of such decomposition. In the case of ABJM theory considered
in section 3.4.3, the boundaries of the regions I and II lying on the curve CE are halves of the patches
U1 and U2. A particular example of such a decomposition of the Fermi surface in regions is shown in
Fig. 3.10, in the case of ABJM theory with fundamental matter. We will now argue that, for each patch
UR, the structure of corrections is essentially the same as in the ABJM case.

One can always choose
PR = cRp+ dRq (3.5.20)

so that
dQR ∧ dPR = dq ∧ dp (3.5.21)

1In what follows, the constant c > 0 may have different values in different formulae.
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Figure 3.7: The black thick line depicts the Fermi surface (3.5.18). The green thin line depicts the
limiting polygon. The red thick dashes mark the boundaries of the patches UR.

and such that, in the domain UR, the Hamiltonian can be written as follows:

HW(q, p) = βRPR +
∑

i|Ri=R
Φi(QR) +

∑
r>0

∑
i|Ri=R

~2rcRr,iΦ
(2r)
i (QR) +O(e−cE) (3.5.22)

where O(e−cE) denotes an estimate which is uniform in UR. Without loss of generality one can assume
that βR > 0. Then in the domain UR the solution to H(R)

W (PR, QR) ≡ HW (p, q) = E can be written as

PR(E,QR) =
1
βR

E − ∑
i|Ri=R

γi|QR|

+ ∆PR(E,QR). (3.5.23)

In this equation,
∆PR(E,QR) = ∆pPR(QR) +O(e−cE), (3.5.24)

where ∆p denotes the perturbative part of the correction. It is given by

∆pPR(QR) = − 1
βR

 ∑
i|Ri=R

(Φi(QR)− γi|QR|) +
∑
r>0

∑
i|Ri=R

~2rcRr,iΦ
(2r)
i (QR)

 , (3.5.25)

and satisfies the property,
∆pPR(QR) = O

(
e−c|QR|

)
, QR →∞ (3.5.26)

The property (3.5.19) implies that

Vol {HW(q, p) < E} = Vol

{
m∑
i=1

γi|QR| < E

}
+ 2

∑
R

∆VolR(E) +O(e−cE) (3.5.27)

where
∆VolR(E) =

∫
UR

∆PR(E,QR)dQR. (3.5.28)

From (3.5.24) it follows that

∆VolR(E) =
∫
UR

∆pPR(QR)dQR +O(e−cE). (3.5.29)
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Figure 3.8: Quiver for the two-node theory with fundamental matter.

By using (3.5.26), we can extend the integration region to infinity, up to non-perturbative corrections,
and we obtain

∆VolR(E) =

∞∫
−∞

∆pPR(QR)dQR +O(e−cE). (3.5.30)

Let us denote

∆pVolR ≡
∞∫
−∞

∆pPR(QR)dQR = − 1
βR

∞∫
−∞

∑
i|Ri=R

(Φi(QR)− γi|QR|)dQR −
2~2

βR

∑
i|Ri=R

cR1,iγi. (3.5.31)

Similarly to what happened in ABJM theory, there are no perturbative corrections to n(E) from higher
terms of the Wigner–Kirkwood expansion. Therefore we obtain

n(E) = CE2 + n0 +O(e−cE) (3.5.32)

with
n0 =

1
π~
∑
R

∆pVolR. (3.5.33)

As was shown in subsection 3.4.2, it then follows that the 1/N corrections are resummed to an Airy
function

Z(N) = C−1/3eA Ai
[
C−1/3(N −B)

]
+ Znp(N) (3.5.34)

where

B = n0 +
Cπ2

3
. (3.5.35)

The above general argument gives an explicit algorithm to compute the constant (3.5.33). In the next
subsection we consider the example of the ABJM theory with matter as an illustration of this argument.

3.5.3 ABJM theory with fundamental matter
The ABJM theory with matter we will consider is described by a two-node quiver with equal number of
fundamentals in each node, see Fig. 3.8. The density matrix of this theory is given by (3.2.57):

ρW ≡ exp?{−HW} = e−U(q)/2 ? e−Ψ(p+q) ? e−T (p) ? e−Ψ(p+q) ? e−U(q)/2 (3.5.36)

where U(q), T (p) are given respectively in (3.2.30) and (3.2.31), and

Ψ(p+ q) = Nf log 2 cosh
p+ q

2k
. (3.5.37)

The Wigner transform of the Hamiltonian has the following ~ expansion, which can be obtained with
the use of the Baker-Campbell-Hausdorff formula:

HW(p, q) = Hcl(p, q) +
~2

24
U ′(q)2 (2Ψ′′(p+ q) + T ′′(p))

− ~2

12
(
−2Ψ′(p+ q)2 (T ′′(p)− 2U ′′(q)) + T ′(p)2 (2Ψ′′(p+ q) + U ′′(q)) + 4T ′(p)U ′′(q)Ψ′(p+ q)

)
+

~2

6
U ′(q) (T ′′(p)Ψ′(p+ q)− T ′(p)Ψ′′(p+ q)) +O

(
~4
)
,

(3.5.38)
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Figure 3.9: The Fermi surface (3.5.18) in the q-p plane for the ABJM theory with fundamental matter
and Nf = 1, k = 2, for E = 5 (left) and E = 100 (right).

where the first term is the “classical” Hamiltonian2:

Hcl(p, q) = T (p) + U(q) + 2Ψ(p+ q). (3.5.39)

The function Ψ has an asymptotic behavior similar to that of T and U :

Ψ(Q) =
α

2
|Q|+O(e−c|Q|), |Q| � 1, (3.5.40)

where
α =

Nf
k
. (3.5.41)

Since HW is real, (3.5.36) is a particular example of the general case (3.5.14) considered in the previous
subsection. We have three different local coordinates

Q1 = q, Q2 = p, Q3 = p+ q. (3.5.42)

For large energy the Fermi surface HW(q, p) = E approaches a polygon given by

|p|
2

+
|q|
2

+ α|p+ q| = E, (3.5.43)

see Fig. 3.9. Therefore, the leading contribution to the number of states is

n(E) ≈ 1
2π~

Vol
{ |p|

2
+
|q|
2

+ α|p+ q| < E

}
= CE2 (3.5.44)

where
C =

2(1 + α)
π2k(1 + 2α)2

. (3.5.45)

It follows that

F (N) ≈ −
√

2
3
πk

1 + 2α√
1 + α

N3/2 (3.5.46)

which reproduces the result of [7, 38]. Notice that, as in the case of ABJM theory, the large energy limit
of the Fermi surface is closely related to the tropical limit of the spectral curve obtained in the previous
chapter.

Now let us compute the corrections according to the general scheme described in the previous sub-
section. The regions UR,U ′R for R = 1, 2, 3, as well as the lines QR = 0, are shown in Fig. 3.10. In the
domain U1 the Hamiltonian can be written as

HW(q, p) = p

(
α+

1
2

)
+ U(q) + qα− 1

48
~2(2α+ 1)2U ′′(q) +

∑
n>1

~2nc1nU
(2n)(q) +O(e−cE). (3.5.47)

2We use quotation marks because Ψ still contains k = ~/(2π).
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Therefore we can take
P1 = p+

α

1/2 + α
q (3.5.48)

and

∆pP1(Q1) = − 2
1 + 2α

{
U(Q1)− |Q1|

2
− 1

48
~2(2α+ 1)2U ′′(Q1) +

∑
n>1

~2nc1nU
(2n)(Q1)

}
, (3.5.49)

∆pVol1 = − π2

3(1 + 2α)
+

~2(1 + 2α)
24

. (3.5.50)

In the domain U2 we have,

HW(q, p) = T (p)− pα− q
(
α+

1
2

)
+

1
96

(2α+ 1)2~2T ′′(p) +
∑
n>1

~2nc2nT
(2n)(p) +O(e−cE), (3.5.51)

therefore
P2 = −q − α

1/2 + α
p (3.5.52)

and

∆pP2(Q2) = − 2
1 + 2α

{
T (Q2)− |Q2|

2
+

1
96

~2(2α+ 1)2T ′′(Q2) +
∑
n>1

~2nc2nT
(2n)(Q2)

}
, (3.5.53)

∆pVol2 = − π2

3(1 + 2α)
− ~2(1 + 2α)

48
. (3.5.54)

In the domain U3,

HW(q, p) = p/2− q/2 + 2Ψ (p+ q) +
1
48

~2Ψ′′ (p+ q) +
∑
n>1

~2nc3nΨ(2n)(p+ q) +O(e−cE). (3.5.55)

Therefore
P3 =

p− q
2

(3.5.56)

and
∆pP3(Q3) = − (2Ψ(Q3)− α|Q3|)−

1
48

~2Ψ′′ (Q3)−
∑
n>1

~2nc3nΨ(2n)(Q3), (3.5.57)

∆pVol3 = − 5
48

~2α (3.5.58)

Finally, we obtain

n0 =
1
π~

∑
R∈{1,2,3}

∆pVolR = − 1
3k(1 + 2α)

+
k

24
(1− 3α) , (3.5.59)

and we conclude that the partition function is given by the Airy function

Z(N) = C−1/3eA Ai
[
C−1/3(N −B)

]
+ Znp(N) (3.5.60)

with

B = n0 +
Cπ2

3
=

1
3k(1 + 2α)2

+
k

24
(1− 3α) . (3.5.61)

The above procedure can be repeated for other quivers with a Hermitian Hamiltonian in order to
determine the precise value of B. For example, for the four-node quiver with levels

(k,−2k, 2k,−k), (3.5.62)

one finds
B = − 13

135k
+
k

8
. (3.5.63)

Clearly, it would be nice to have a close answer for the shift for a more general class of quivers (like
for example four node quivers with a Hermitian density matrix). In addition, it would be interesting to
compare the shifts (3.5.61), (3.5.63) with a direct calculation from the M-theory/type IIA geometry, as
in [77, 78].
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Figure 3.10: The regions UR, U ′R defined in section 3.5.2 for the Fermi surface of ABJM theory with
matter. The dashed lines are defined by QR = 0, where the different coordinates are given in (3.5.42).

3.5.4 The massive theory

The techniques developed in this paper can be also applied to a variant of ABJM theory in which the
Chern–Simons levels k1, k2 do not add up to zero [176]. We will denote

2πiθ = − 1
k1
− 1
k2
,

4π
~

=
1
k1
− 1
k2
, (3.5.64)

so that the original ABJM theory is recovered when θ = 0. Notice that θ is in principle imaginary,
but it will be useful to Wick-rotate it to real values (see also [141]). The theory with k1 + k2 6= 0 was
studied in [176], where it was argued that a non-zero θ corresponds to a non-zero Romans mass in type
IIA supergravity. For this reason, we will call this theory the “massive" theory. The massive theory was
further investigated in [139], where it was found that its free energy scales with N as

F (N) ≈ (k1 + k2)1/3
N5/3. (3.5.65)

This scaling was reproduced in [42] from an analysis of the matrix model representing the partition
function,

Z(N, θ)

=
1
N !2

∫
dNx

(2π)N
dNy

(2π)N

∏
i<j

[
2 sinh

(
µi−µj

2

)]2 [
2 sinh

(
νi−νj

2

)]2
∏
i,j

[
2 cosh

(
µi−νj

2

)]2 exp

[
i

4π

N∑
i=1

(
k1µ

2
i + k2ν

2
i

)]
.

(3.5.66)
The exact planar resolvent of this theory was found, in a somewhat implicit form, in [140]. The scaling
(3.5.65) can be also derived from this resolvent by using the techniques of [141].

In order to apply the Fermi gas picture to this theory, we have to find an appropriate density matrix.
An elementary computation leads to

Z(N, ξ) =
1
N !

∑
σ∈SN

(−1)ε(σ)

∫
dNx

∏
i

ρ(xi, xσ(i); θ). (3.5.67)

where
ρ(x1, x2; θ) = e−

1
2Uθ(x1)K(x1, x2; θ)e−

1
2Uθ(x2). (3.5.68)

Here, the one-body potential is given by

Uθ(q) = log
(

2 cosh
q

2

)
+
θ

2
q2, (3.5.69)



148 CHAPTER 3. FERMI GAS APPROACH

-60 -40 -20 0 20 40 60

-30

-20

-10

0

10

20

30

-6000 -4000 -2000 0 2000 4000 6000

-300

-200

-100

0

100

200

300

Figure 3.11: The Fermi surface (3.5.81) in the q-P plane, for θ = 1/10, k = 1, E = 50 (left) and E = 5000
(right). When the energy is large, the Fermi surface approaches the surface defined by (3.5.82).

while the function K is given by

K(x1, x2; θ)

=
√

1 + ~2θ2/4
∫ ∞
−∞

dy
4π~ cosh y

2

exp
{
−θ

2
y2 − y

[
θ

2
(x1 + x2) +

i
~

(x1 − x2)
]}

.
(3.5.70)

Although (3.5.70) is complicated, its Wigner transform is very simple,

KW(q, p; θ) =
√

1 + ~2θ2/4 e−Tθ(q,p) (3.5.71)

where
Tθ(q, p) = log

(
2 cosh

p

2

)
+
θ

2
p2 + θpq, (3.5.72)

and of course
KW (q, p; 0) = e−T (p). (3.5.73)

The Wigner transform of the density matrix is then

ρW(θ) =
√

1 + ~2θ2/4 e−
1
2Uθ(q) ? e−Tθ(q,p) ? e−

1
2Uθ(q), (3.5.74)

and defines the Hamiltonian of the theory through

ρW(θ) = e−HW(θ)
? . (3.5.75)

For θ = 0 we recover the density matrix of ABJM theory (3.2.39).
We can now use the technology developed before to analyze the theory. We will content ourselves

with an analysis of the thermodynamic limit, which leads to a nice interpretation of the N5/3 behavior
found in [42, 139]. We will also assume that

|θ~| � 1, (3.5.76)

or equivalently, that ∣∣∣∣k1 + k2

k1 − k2

∣∣∣∣� 1. (3.5.77)

In this limit we can safely ignore quantum corrections and just look at the classical Hamiltonian

Hcl(q, P ; θ) = U(q) + T (P − q) +
θ

2
P 2 − 1

2
log
(

1 +
θ2~2

4

)
, (3.5.78)

where
P = p+ q. (3.5.79)



3.5. MORE GENERAL CHERN–SIMONS–MATTER THEORIES 149

This linear change of variables preserves the volume form in phase space,

dq ∧ dP = dq ∧ dp. (3.5.80)

At large E the Fermi surface
Hcl(q, P ; θ) = E (3.5.81)

becomes simply
θ

2
P 2 + |q| = E, (3.5.82)

as we can see in Fig. 3.11. Notice that, once θ 6= 0, the equation defining the Fermi surface at large E has
a quadratic term in the new momentum coordinate P which dominates at large E. In other words, the
Fermi gas has now a non-relativistic dispersion relation, and this changes the scaling of the free energy.
Looking at (3.3.15) we deduce that

s =
3
2
, (3.5.83)

therefore the free energy should scale now as N5/3, as found in [42, 139]3. We find

n(E) ≈ 4
2π~

∫ √ 2E
θ

0

dP
(
E − θ

2
P 2

)
=

4
3π~

√
2
θ
E3/2. (3.5.84)

The free energy can now be computed from (3.3.11) and reads,

F (N) ≈ −3
5

(
3
√

2π~
8

)2/3

θ1/3N5/3. (3.5.85)

If we express this in terms of k1 + k2 we find,

F (N) ≈ − 35/3

5 · 24/3
πe−

iπ
6 (k1 + k2)1/3

(
1 +

θ2~2

4

)1/3

N5/3. (3.5.86)

Since we are assuming (3.5.76), our result can be written as

F (N) ≈ − 35/3

5 · 24/3
πe−

iπ
6 (k1 + k2)1/3N5/3, (3.5.87)

which is precisely what [42] obtained. Notice that, in [42], this result was derived based on an assumption
on the behavior of the eigenvalues of the matrix model at large N , while here we have obtained it directly.
When the parameter θ2~2 is not small, one has to take into account the quantum corrections to the
Hamiltonian, and the equation of the Fermi surface is modified. It would be interesting to study in more
detail the different regimes that can occur in this theory as we vary the coupling constants.

3The matrix model analyzed in [119] displays the same scaling.
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Appendix

A Harmonic analysis on S3

A.1 Maurer–Cartan forms
We will first introduce some results and conventions for the Lie algebra and the Maurer–Cartan forms.
The basis of a Lie algebra g satisfies

[Ta, Tb] = fabcTc. (A.1)

If g ∈ G is a generic element of G, one defines the Maurer–Cartan forms ωa through the equation

g−1dg =
∑
a

Taωa, (A.2)

and they satisfy

dωa +
1
2
fabcωb ∧ ωc = 0. (A.3)

This is due to the identity
d
(
g−1dg

)
+ g−1dg ∧ g−1dg = 0. (A.4)

Let us now specialize to SU(2). A basis for the Lie algebra is given by:

Ta =
i
2
σa. (A.5)

Explicitly

T1 =
i
2

(
0 1
1 0

)
, T2 =

i
2

(
0 −i
i 0

)
, T3 =

i
2

(
1 0
0 −1

)
. (A.6)

The structure constants are
fabc = −εabc. (A.7)

Any element of SU(2) can be written in the form

g =
(
α β
−β̄ ᾱ

)
, |α|2 + |β|2 = 1. (A.8)

We parametrize this element as (see for example [207])

|α| = cos
t1
2
, |β| = sin

t1
2
, Argα =

t2 + t3
2

, Arg β =
t2 − t3 + π

2
, (A.9)

where ti are the Euler angles and span the range

0 ≤ t1 < π, 0 ≤ t2 < 2π, −2π ≤ t3 < 2π. (A.10)

The general element of SU(2) will then be given by

g = u(t1, t2.t3) =
(

cos(t1/2)ei(t2+t3)/2 i sin(t1/2)ei(t2−t3)/2

i sin(t1/2)ei(−t2+t3)/2 cos(t1/2)e−i(t2+t3)/2

)
= u(t2, 0, 0)u(0, t1, 0)u(0, 0, t3).

(A.11)

We then have
Ω = g−1dg =

i
2

(
dt3 + cos t1dt2 e−it3(dt1 + idt2 sin t1)

eit3(dt1 − idt2 sin t1) −dt3 − cos t1dt2

)
. (A.12)
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Therefore,
ω1 = cos t3dt1 + sin t3 sin t1dt2,
ω2 = sin t3dt1 − cos t3 sin t1dt2,
ω3 = cos t1dt2 + dt3,

(A.13)

and one checks explicitly

dωa =
1
2
εabc ωb ∧ ωc, (A.14)

as it should be according to (A.3).

A.2 Metric and spin connection
The metric on SU(2) = S3 is induced from the metric on C2

ds2 = r2

(
d|α|2 + |α|2dArgα2 + d|β|2 + |β|2dArgβ2

)
, (A.15)

where r is the radius of the three-sphere. A simple calculation leads to

ds2 =
r2

4

(
dt21 + dt22 + dt23 + 2 cos t1 dt2dt3

)
, (A.16)

with inverse metric

G−1 =
4
r2

1 0 0
0 csc2 t1 − cot t1 csc t1
0 − cot t1 csc t1 csc2 t1

 (A.17)

and volume element

(detG)1/2 =
r3 sin t1

8
. (A.18)

The volume of S3 is then ∫
SU(2)

(detG)1/2dt1 dt2 dt3 = 2π2 r3 (A.19)

which is the standard result. The only nonzero Christoffel symbols of this metric are

Γ1
23 =

1
2

sin t1, Γ2
13 = Γ3

12 = − 1
2 sin t1

, Γ3
13 = Γ2

12 =
1
2

cot t1. (A.20)

We can use the Maurer–Cartan forms to analyze the differential geometry of S3. The dreibein of S3

is proportional to ωa, and we have
eaµ =

r

2
(ωa)µ . (A.21)

In terms of forms, we have
ea = eaµdxµ =

r

2
ωa. (A.22)

Indeed, one can explicitly check that
eaµe

b
νηab = Gµν . (A.23)

The inverse vierbein is defined by
Eµa = ηabG

µνebµ, (A.24)

which can be used to define left-invariant vector fields

`a = Eµa
∂

∂xµ
. (A.25)

Let us give their explicit expression in components:

`1 =
2
r

(
cos t3

∂

∂t1
+

sin t3
sin t1

∂

∂t2
− sin t3 cot t1

∂

∂t3

)
,

`2 =
2
r

(
sin t3

∂

∂t1
− cos t3

sin t1
∂

∂t2
+ cos t3 cot t1

∂

∂t3

)
,

`3 =
2
r

∂

∂t3
.

(A.26)
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Of course, they obey
ea(`b) = δab , (A.27)

as well as the following commutation relations

[`a, `b] = −2
r
εabc`c. (A.28)

This can be checked by direct computation. If we now introduce the operators La through

`a =
2i
r
La. (A.29)

we see that they satisfy the standard commutation relations of the SU(2) angular momentum operators:

[La, Lb] = iεabcLc. (A.30)

The spin connection ωab is characterized by

dea + ωab ∧ eb = 0. (A.31)

Imposing no torsion one finds the explicit expression,

ωabµ = −Eνb
(
∂µe

a
ν − Γλµνe

a
λ

)
, (A.32)

or, equivalently,
∂µe

a
ν = Γλµνe

a
λ − ebνωabµ. (A.33)

In our case we find
ωab =

1
r
εabce

c. (A.34)

A.3 Laplace–Beltrami operator and scalar spherical harmonics
The scalar Laplacian on S3 can be calculated in coordinates from the general formula

−∆0φ =
1√

detG

∑
m,n

∂

∂xm

(√
detGGmn

∂φ

∂xn

)
, (A.35)

or equivalently
−∆0 = Gµν∂µ∂ν −GµνΓρµν∂ρ. (A.36)

In this case it reads

−∆0 =
4
r2

(
∂2

∂t21
+ cot t1

∂

∂t1
+ csc2 t1

∂2

∂t22
+ csc2 t1

∂2

∂t32
− 2 csc t1 cot t1

∂2

∂t2∂t3

)
. (A.37)

It is easy to check that it can be written, in terms of left-invariant vector fields, as

−∆0 =
∑
a

`2a. (A.38)

To see this, we write ∑
a

`2a =
∑
a

EµaE
ν
a∂µ∂ν +

∑
a

Eµa
∂Eνa
∂xµ

∂

∂xν
. (A.39)

The first term reproduces the first term in (A.36). We now use the identity

∂µE
ν
b = Eνc ω

c
bµ − ΓνµλE

λ
b . (A.40)

After contraction with Eµa and use of the explicit form of the spin connection, we see that only the second
term survives, which is indeed the second term in (A.36).

The Peter–Weyl theorem says that any square-integrable function on S3 ' SU(2) can be written as
a linear combination of

Smnj , m, n = 1, · · · , dj (A.41)



154 APPENDIX

where
Sj : SU(2)→Mdj×dj (A.42)

is the representation of spin j and dimension dj , and Mdj×dj are the inversible square matrices of rank
dj . The function Smnj is just the (m,n)-th entry of the matrix. The eigenvalues of the Laplacian might
be calculated immediately by noticing that, in terms of the SU(2) angular momentum operators, it reads

∆0 =
4
r2

L2, (A.43)

and since the possible eigenvalues of L2 are

j(j + 1), j = 0,
1
2
, · · · , (A.44)

we conclude that the eigenvalues of the Laplacian are of the form

λj =
4
r2
j(j + 1), j = 0,

1
2
, · · · (A.45)

Notice that the dependence on r is the expected one from dimensional analysis. The degeneracy of these
eigenvalues is

d2
j = (2j + 1)2 (A.46)

which is the dimension of the matrix Mdj×dj .

A.4 Vector spherical harmonics

The space of one-forms on S3 can be decomposed in two different sets. One set is spanned by gradients
of Smnj , and it is proportional to

Smqj (Ta)qnj ωa. (A.47)

The other set is spanned by the so-called vector spherical harmonics,

V mnj± , ε = ±1, m = 1, · · · , dj± 1
2
, n = 1, · · · , dj∓ 1

2
, (A.48)

see Appendix B of [205] for a useful summary of their properties. The ε = ±1 corresponds to two linear
combinations of the ωa which are independent from the one appearing in (A.47). The vector spherical
harmonics are in the representation (

j ± 1
2
, j ∓ 1

2

)
(A.49)

of SU(2)× SU(2). We will write them, as in [205], as V α, where

α = (j,m,m′, ε), (A.50)

and we will regard them as one-forms. They satisfy the properties

d†V α = 0, ∗dV α = −ε(2j + 1)V α. (A.51)

It follows that
∗ d ∗ dV α = −∆1V α = (2j + 1)2V α. (A.52)

Their degeneracy is
2dj+ 1

2
dj− 1

2
= 4j(2j + 2). (A.53)

A.5 Spinors

Using the dreibein, we define the “locally inertial" gamma matrices as

γa = Eµa γµ, (A.54)

which satisfy the relations
{γa, γb} = 2δab, [γa, γb] = 2iεabcγc. (A.55)
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The standard definition of a covariant derivative acting on a spinor is

∇µ = ∂µ +
1
4
ωabµ γaγb = ∂µ +

1
8
ωabµ [γa, γb]. (A.56)

Using the commutation relations of the gamma matrices γa and the explicit expression for the spin
connection (A.34) we find

∇µ =∂µ +
i

4r
εabcεabde

c
µγd = ∂µ +

i
2
ecµγc

=∂µ +
i

2r
γµ.

(A.57)

It follows that the Dirac operator is

− iD/ = −iγµ∂µ +
3
2r

= −iγaEµa ∂µ +
3
2r

= −iγa`a +
3
2r
. (A.58)

Let us now introduce the spin operators

Sa =
1
2
γa, (A.59)

which satisfy the SU(2) algebra
[Sa, Sb] = iεabcSc. (A.60)

In terms of the Sa and the SU(2) operators La, the Dirac operator reads

− iD/ =
1
r

(
4L · S +

3
2

)
. (A.61)

The calculation of the spectrum of this operator is as in standard Quantum Mechanics: we introduce
the total angular momentum

J = L + S, (A.62)

so that
4L · S = 2

(
J2 − L2 − S2

)
. (A.63)

Since S corresponds to spin s = 1/2, and L to j, the possible eigenvalues of J are j ± 1/2, and we
conclude that the eigenvalues of (A.61) are (we set r = 1)

2
((

j ± 1
2

)(
j ± 1

2
+ 1
)
− j(j + 1)

)
=

{
2j + 3

2 for +
−2j − 1

2 for −, , (A.64)

with degeneracies

dj± 1
2

=
(

2
(
j ± 1

2

))
(2j + 1) =

{
2(j + 1)(2j + 1) for +
2j(2j + 1) for −. (A.65)

These can be written in a more compact form as

λ±n = ±
(
n+

1
2

)
, d±n = n(n+ 1), n = 1, 2, · · · (A.66)

B Quantum corrections in ABJM theory at order O(~4)

In this Appendix, we give some details on the computation of the order O(~4) corrections to the grand
canonical potential of ABJM theory, which confirm the general arguments of section 3.4.

The Baker–Campbell–Hausdorff formula applied to (3.2.39) gives

HW(q, p) = T + U +
1
12

[T, [T,U ]?]? +
1
24

[U, [T,U ]?]? +
1

360
[[[[T,U ]?, U ]?, U ]?, T ]?

− 1
480

[[[[U, T ]?, U ]?, T ]?, U ]? +
1

360
[[[[U, T ]?, T ]?, T ]?, U ]? +

1
120

[[[[T,U ]?, T ]?, U ]?, T ]?

+
7

5760
[[[[T,U ]?, U ]?, U ]?, U ]? −

1
720

[[[[U, T ]?, T ]?, T ]?, T ]? + · · ·

(B.1)
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This leads to the next correction to the Wigner transform of the Hamiltonian

H
(2)
W =

1
144

T ′(p)T ′′′(p)U (4)(q)− 1
288

U ′(q)U ′′′(q)T (4)(q)

− 1
240

(U ′(q))2
U ′′(q) (T ′′(p))2 +

1
60

(T ′(p))2
T ′′(p) (U ′′(q))2

− 1
80

(U ′(q))2
U ′′(q)T ′(p)T ′′′(p) +

1
120

(T ′(p))2
T ′′(p)U ′(q)U ′′′(q)

+
7

5760
(U ′(q))4

T (4)(p)− 1
720

(T ′(p))4
U (4)(q).

(B.2)

The computation of J2(µ) also involves the Gr defined in (3.4.3) up to order O(~4). Due to (3.4.5) only
the terms with r ≤ 6 are needed. A long but straightforward calculation leads finally to

J2(µ) = − π2

4320
− π2

2880
(
104 + 5π2 − 134µ+ 30µ2

)
e−2µ +O

(
µ2e−4µ

)
. (B.3)

Notice that no polynomial in µ is generated, as expected from the analysis in section 3.4.

C Normalization of the ABJM matrix model

Here we shall fix the overall normalization of the matrix model. As explained in the beginning of
Section 2.2, to fix the normalization we must fix the coefficient of the cosh in the denominator. This
term appears as a consequence of integrating out the matter hypermultiplets at one-loop. For general
supersymmetric Chern–Simons-matter theories, the contribution of a hypermultiplet in representation
R is given by [2]

log Z[a] = log
∏
ρ

∞∏
n=1

(
n+ 1/2 + iρ(a)
n− 1/2− iρ(a)

)n
(C.1)

where ρ are the weights of the representation, and a is the element in the Cartan algebra given by

a =
1

2π
diag (µ1, · · · , µN1 , ν1, · · · , νN2) . (C.2)

In [2] the one-loop determinant is evaluated up to a multiplicative constant,

Z[a] =
∏
ρ

(C cosh (πρ(a)))−1/2
. (C.3)

The constant C can be determined by setting a = 0 in (C.1)

− 1
2

logC = log
∞∏
n=1

(
n+ 1/2
n− 1/2

)n
. (C.4)

This is a divergent constant, but as usual when considering determinants on compact manifolds, we can
compute it by using ζ-function regularization. Let us define

ζZ(s) =
∞∑
n=1

(
n(

n+ 1
2

)s − n(
n− 1

2

)s
)
. (C.5)

The regularization of the quantity appearing in (C.4) is then −ζ ′Z(0). An elementary calculation shows
that

ζZ(s) = − (2s − 1) ζ(s) (C.6)

where ζ(s) is the standard Riemann zeta function. Therefore,

− ζ ′Z(0) = − log 2
2

(C.7)

and C = 2.
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D Giant Wilson loops in Chern–Simons theory
Chern–Simons theory on S3 is a particular case of the lens space matrix model when b = 1 and the
second cut collapses to zero size, i.e., t1 = t, t2 = 0. It gives the leading behavior of the Wilson loop in
ABJM theory when λ2 � λ1, as discussed in Section 2.6.

Here we consider the behavior of the giant Wilson loops, those in high dimensional symmetric or
antisymmetric representations presented in Section 2.7.2, in this limit. In this case it is easy to calculate
explicitly the action (2.7.35), since the integral

g(Y ) = −
∫ Y

0

dY ′

Y ′
log(h(Y ′)) , h(Y ) =

1
2

[
1 + Y +

√
(1 + Y )2 − 4etY

]
(D.1)

can be obtained in closed form

g(Y ) =
π2

6
− 1

2
log2(h(Y )) + log(h(Y ))

(
log
(
1− e−th(Y )

)
− log(1− h(Y ))

)
− Li2(h(Y )) + Li2

(
e−th(Y )

)
− Li2(e−t).

(D.2)

Here we used the dilogarithm identity

Li2(1− x) =
π2

6
− Li2(x)− log(x) log(1− x). (D.3)

The solution of the saddle point equation (2.7.25) is obtained by setting in (2.7.33)

κ = −4i sinh
t

2
, B =

t

2πi
+

1
2

(D.4)

and we find

Y∗ = − 1− e−2πiν

1− e2πiν+t
. (D.5)

The action (2.7.35) is

η Aη = −2πiν log(ηY∗) + g(Y∗)

= −2πiν log η − 2π2ν2 + 2πiνt+
π2

6
+ Li2

(
e2πiν−t)− Li2

(
e2πiν

)
− Li2

(
e−t
)
.

(D.6)

Notice that this expression is exact in t.
We can test (D.6) in all details against a direct calculation of correlators. Indeed, the VEVs 〈TrR U〉

for the Chern–Simons matrix model on S3 are proportional to quantum dimensions (see for example
[90]):

〈TrR U〉 = qκR/2+`(R)N/2dimq(R). (D.7)

In this equation,
q = egs , (D.8)

`(R) is the number of boxes in R, and κR is the framing factor, given by

κR =
∑
i

li(li − 2i+ 1), (D.9)

where li are the lenghts of the rows in the diagrams. The quantum dimensions of the symmetric and
antisymmetric representations are given by

dimq(Rηn) =
qηn(n−1)/4ent/2

[n]!

n∏
i=1

(1− e−tq−η(i−1)), (D.10)

where

[n]! =
n∏
i=1

(qi/2 − q−i/2) = q
1
4n(n+1)

n∏
i=1

(1− q−i). (D.11)

At large n we rescale

ξ =
i

n
, q−i = exp(−gsi)→ e−2πiηνξ (D.12)
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so that

log([n]!) ≈ 1
gs

(
−π2ν2 + 2πiην

∫ 1

0

dξ log(1− e−2πiηνξ)
)
. (D.13)

This gives the following contribution to the action

π2ν2 +
π2

6
− Li2

(
e−2πiην

)
= η

(
π2ν2 − 2πiν log η +

π2

6
− Li2

(
e−2πiν

))
. (D.14)

To derive the expression on the right hand side we used, for η = −1 the dilogarithm identity

Li2(ex) = −Li2(e−x) +
π2

3
− x2

2
± πix. (D.15)

The product in the numerator of both the symmetric and antisymmetric representations can be
written in a unified form as

2πiην
∫ 1

0

dξ log(1− e−te−2πiνξ) = η
(
Li2(e−t−2πiν)− Li2(e−t)

)
. (D.16)

The prefactors in (D.7) and (D.10) contribute

η(−3π2ν2 + 2πiνt). (D.17)

Together with (D.14) and (D.16) this exactly reproduces (D.6).
In the antisymmetric representation the result can also be written as

− 2πiν(t+ 2πiν) +
π2

6
+ Li2(e−t)− Li2(e−t−2πiν)− Li2(e2πiν). (D.18)

This expression agrees at leading order with the D6-brane calculation (2.7.21) and should be the full
answer in the limit of λ2 = 0. In this expression we see the expected symmetry [159]

n↔ N − n (D.19)

which is
2πiν ↔ −t− 2πiν. (D.20)

E Strongly coupled density of eigenvalues and tropical geometry
In this Appendix we rederive some of the results for the N = 3 theory by using the approach of [38],
and we compare it in detail to our tropical methods.

The starting point of [38] is an analysis of the ABJM matrix model (2.2.3) in the ABJM slice, at
large N but fixed k, which corresponds to the strongly coupled limit of the theory. Let us see how this
is done, following closely the steps in [38]. The behaviour at large N of the equilibrium eigenvalues of
the matrix model is

µk = N1/2xk + i`k, νk = N1/2xk − i`k, k = 1, · · · , N, (E.1)

where xk, `k are of order one at large N . At large N the eigenvalues xk, `k become dense, so that

k

N
→ ξ ∈ [0, 1] (E.2)

and they are described by the functions

ρ(x) =
dξ
dx
, `(x). (E.3)

It is shown in [38] that, when N is large, the free energy of the matrix model can be written as

− F = N3/2

[
k

π

∫
dxxρ(x)`(x) +

∫
dx ρ2(x)f (2`(x))− m

2π

(∫
dx ρ(x)− 1

)]
. (E.4)
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Here, f(t) is a periodic function of t, with period 2π, and given by

f(t) = π2 − t2, t ∈ [−π, π]. (E.5)

The last term in (E.4) involves, as usual, a Lagrange multiplier m imposing the normalization of ρ(x).
Notice that our sign convention is opposite to the one chosen in [38]. Varying this functional w.r.t. ρ(x)
and `(x) one obtains the two equations

2πρ(x)f ′ (2`(x)) = −kx,
4πρ(x)f (2`(x)) = m− 2kx`(x),

(E.6)

which are solved by

ρ(x) =
m

4π3
, `(x) =

π2kx

2m
. (E.7)

The support of ρ(x), `(x) is the interval [−x∗, x∗]. One fixes x∗ and m from the normalization of ρ and
by minimizing −F . This gives

x∗ = π

√
2
k
, m =

2π3

x∗
. (E.8)

Evaluating the free energy for the functions (E.7) and the values (E.8) of x∗, m, one reproduces the
result of section 2.5 for the free energy.

The above results can be easily compared with our tropical analysis. The value of x∗ gives (up to a
factor N1/2) the position of the endpoint A, and it is in accord with the value of (2.9.11), since

A = N1/2x∗. (E.9)

The fact that the density ρ(x) is constant follows from our result for the tropical limit of the curve.
Indeed, the density of eigenvalues (normalized as to have an integral along the cut equal to one) is given
by the well-known formula

ρ(z) =
1

8π2λ
disc y(z) (E.10)

where disc y(z) is the discontinuity of the curve through the cut [−A,A]. In our case this is just the
constant 2A, and it is given by the horizontal separation between the two diagonals in Fig. 2.9. Changing
variables from z = N1/2x to x we find indeed,

ρ(x) =

√
2k

4π
, (E.11)

in precise agreement with the result of [38].
The inclusion of fundamental matter in the approach of [38] is straightforward. −F includes now the

extra term
N3/2Nf

2

∫
dx ρ(x)|x| (E.12)

which is the large N limit of the operator in the exponential of (2.10.1) (as in (2.10.27)). The new saddle
point equations are

2πρ(x)f ′ (2`(x)) = −kx,
4πρ(x)f (2`(x)) = m− 2kx`(x)− πNf |x|,

(E.13)

with solution

ρ(x) =
m− πNf |x|

4π3
, `(x) =

kπ2x

2 (m− πNf |x|)
. (E.14)

Normalization of the density and minimization of −F lead to

x∗ =
2π√

2k +Nf
, m = 2π2 k +Nf√

2k +Nf
. (E.15)

A straightforward calculation of −F reproduces (2.8.9).
Let us now compare this with the tropical approach. First of all, we have again the equality (E.9)

between the endpoints of the cut in both approaches, involving now the value of x∗ obtained in (E.15)
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and the value of A obtained in (2.11.37). The density of eigenvalues in the theory with matter can be
obtained from the planar resolvent (2.11.26) as

ρ(x) =
N1/2

8π2λ
disc (yp(z) + µym(z)) , (E.16)

where µ is defined in (2.8.8). From Fig. 2.11 and (2.11.33) we read off immediately

1
2

disc yp(z) = A−K, 1
2

disc ym(z) = 2A−K − |z|, (E.17)

and we deduce

ρ(x) =
N1/2

4π2λ

[
(1 + µ)A− µN1/2|x|

]
. (E.18)

Plugging in the value of A (2.11.37), we recover precisely the form of ρ(x) given in (E.14). This shows
explicitly that the piece-wise linear densities obtained with the method in [38] correspond to the tropical
curves obtained in this paper.

One advantage of the method of [38] is that it gives the large N limit of the free energy, at strong
coupling, without directly using the resolvent of the model. Therefore, this method is useful when the
resolvent is difficult to write down. If on the contrary one is interested in calculating the resolvent of the
model (to study for example weak coupling expansions), then the tropical approach developed in this
paper provides a powerful method to extract the strong coupling limit from the resolvent. In addition,
the method of [38] assumes as an ansatz the scaling (E.1) of the eigenvalues, while the approach based on
studying the resolvent and its tropical limit provides a bona fide solution to the large N theory without
any further assumptions.

F Metric

In this appendix we follow the notations in [103] (with the replacement χ → 2χ). The metric on
AdS4 × CP3 is

ds2 =
L3

4k
(
ds2

AdS4
+ 4ds2

CP3

)
. (F.1)

For the AdS4 part we may use the global Lorentzian metric

ds2
AdS4

= − cosh2 ρdt2 + dρ2 + sinh2 ρ
(
dθ2 + sin2 θ dψ2

)
. (F.2)

The metric on CP3 can be written in terms of four complex projective coordinates zi as

ds2
CP3 =

1
ρ2

4∑
i=1

dzi dz̄i −
1
ρ4

∣∣∣∣ 4∑
i=1

zi dz̄i

∣∣∣∣2 , ρ2 =
4∑
i=1

|zi|2 . (F.3)

In the following we choose a specific representations in terms of angular coordinates (used also in
[197, 198]). We start by parametrizing S7 ⊂ C4 as

z1 = cos
α

2
cos

ϑ1

2
ei(2ϕ1+2χ+ζ)/4 , z3 = sin

α

2
cos

ϑ2

2
ei(2ϕ2−2χ+ζ)/4 ,

z2 = cos
α

2
sin

ϑ1

2
ei(−2ϕ1+2χ+ζ)/4 , z4 = sin

α

2
sin

ϑ2

2
ei(−2ϕ2−2χ+ζ)/4.

(F.4)

The metric on S7 is then given by

ds2
S7 =

1
4

[
dα2 + cos2 α

2
(dϑ2

1 + sin2 ϑ1 dϕ2
1) + sin2 α

2
(dϑ2

2 + sin2 ϑ2 dϕ2
2)

+ sin2 α

2
cos2 α

2
(2dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)2 +

1
4

(dζ + 2A)2

]
, (F.5)

A = cosα dχ+ cos2 α

2
cosϑ1 dϕ1 + sin2 α

2
cosϑ2 dϕ2 . (F.6)
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The angle ζ appears only in the last term and if we drop it we end up with the metric on CP3

ds2
CP3 =

1
4

[
dα2 + cos2 α

2
(dϑ2

1 + sin2 ϑ1 dϕ2
1) + sin2 α

2
(dϑ2

2 + sin2 ϑ2 dϕ2
2)

+ sin2 α

2
cos2 α

2
(2dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)2

]
.

(F.7)

The ranges of the angles are 0 ≤ α, ϑ1, ϑ2 ≤ π and 0 ≤ ϕ1, ϕ2, χ ≤ 2π.
In addition to the metric, the supergravity background has the dilaton, and the 2-form and 4-form

field strengths from the Ramond-Ramond (RR) sector

e2Φ =
L3

k3
, F4 =

3
8
L3 dΩAdS4 , F2 =

k

2
dA . (F.8)

Here dΩAdS4 is the volume form on AdS4 and F2 is proportional to the Kähler form on CP3.
To write down the general D-brane action in this background one also needs the potentials for these

forms. The one-form potential is, up to gauge transformations

C1 =
k

2
A , (F.9)

with A defined in (F.6). It is easy to write down C3, the three-form potential for F4 and C5, its magnetic
dual, but they are not required for our calculation in Section 2.14.1.

The relation between the parameters of the string background and of the field theory are (for α′ = 1
and in the supergravity and tree-level limit)

L3

4k
= π

√
2N
k

= π
√

2λ . (F.10)

G Killing spinors

To write down the Killing spinors it is useful to start in 11-dimensions with the AdS4 metric in (F.2)
and the S7 metric in (F.5).

We take the elfbeine (ignoring the factor of L3/k)

e0 =
1
2

cosh ρdt , e1 =
1
2

dρ , e2 =
1
2

sinh ρdθ , e3 =
1
2

sinh ρ sin θ dψ ,

e4 =
1
2

dα, e5 =
1
2

cos
α

2
dϑ1, e6 =

1
2

sin
α

2
dϑ2,

e7 =
1
2

cos
α

2
sin

α

2

(
cosϑ1 dϕ1 − cosϑ2 dϕ2 + 2dχ

)
,

e8 =
1
2

cos
α

2
sinϑ1 dϕ1, e9 =

1
2

sin
α

2
sinϑ2 dϕ2 ,

e\ = −1
4

(
dζ + 2 cos2 α

2
cosϑ1 dϕ1 + 2 sin2 α

2
cosϑ2 dϕ2 + 2 cosα dχ

)
.

(G.1)

Killing spinor equation for this background comes from the supersymmetry transformation of the
gravitino

δΨµ = Dµε−
1

288

(
Γ νλρσ
µ − 8δνµΓλρσ

)
Fνλρσε , Dµε = ∂µε+

1
4
ωabµ γabε . (G.2)

The 4-form corresponding to the AdS4 × S7 solution is Fνλρσ = 6 ενλρσ, where the epsilon symbol is the
volume form on AdS4 (so the indices take the values 0, 1, 2, 3). Plugging this into the variation above
one finds the Killing spinor equation

Dµε = γ̂Γµε , µ = 0, 1, 2, 3

Dµε =
1
2
γ̂Γµε , µ = 4, 5, · · · , 9, 10

(G.3)

where µ runs over all 11 coordinates, and γ̂ = γ0123. Note that small γ have tangent-space indices while
capital Γ carry curved-space indices.
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The general solution to these equations is

e
α
4 (γ̂γ4−γ7\)e

ϑ1
4 (γ̂γ5−γ8\)e

ϑ2
4 (γ79+γ46)e−

ξ1
2 γ̂γ\e−

ξ2
2 γ58e−

ξ3
2 γ47e−

ξ4
2 γ69e

ρ
2 γ̂γ1e

t
2 γ̂γ0e

θ
2 γ12e

ψ
2 γ23ε0 =Mε0 ,

(G.4)
where the ξi are given by

ξ1 =
2ϕ1 + 2χ+ ζ

4
, ξ2 =

−2ϕ1 + 2χ+ ζ

4
, ξ3 =

2ϕ2 − 2χ+ ζ

4
, ξ4 =

−2ϕ2 − 2χ+ ζ

4
.

(G.5)
In (G.4) ε0 is a constant 32-component spinor and the Dirac matrices were chosen such that γ0123456789\ =
1. A similar calculation in a different coordinate system was done in [199].

To see which Killing spinors survive the orbifolding from M-theory to type IIA, we write the spinor
ε0 in a basis which diagonalizes

iγ̂γ\ε0 = s1ε0 , iγ58ε0 = s2ε0 , iγ47ε0 = s3ε0 , iγ69ε0 = s4ε0 . (G.6)

All the si take values ±1 and by our conventions on the product of all the Dirac matrices, the number
of negative eigenvalues is even. Now consider a shift along the ζ circle, which changes all the angles by
ξi → ξi + δ/4, the Killing spinors transform as

Mε0 →Mei δ8 (s1+s2+s3+s4)ε0 . (G.7)

This transformation is a symmetry of the Killing spinor when two of the si eigenvalues are positive and
two negative and not when they all have the same sign (unless δ is an integer multiple of 4π). Note that
on S7 the radius of the ζ circle is 8π, so the Zk orbifold of S7 is given by taking δ = 8π/k. The allowed
values of the si are therefore

(s1, s2, s3, s4) ∈
{

(+,+,−,−), (+,−,+,−), (+,−,−,+),
(−,+,+,−), (−,+,−,+), (−,−,+,+)

}
(G.8)

Each configuration represents four supercharges, so the orbifolding breaks 1/4 of the supercharges (except
for k = 1, 2) and leaves 24 unbroken supersymmetries.
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