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ABSTRACT 

A method is outlined which allows to construct the envelope of holomorphy for gene- 

ral local vertex functions with arbitrary mass spectrum. 

O. 
w 

Analyticity properties of the momentum space three point function V are consi- 

dered in the frame-work of axiomatic f ie ld theory. More precisely, we are studying 

the Fourier transform of the vacuum expectation value of the retarded product of 

three in general different Wightman fields or currents. 

problem is to find the envelope of holomorphy ()~= ~)~(J~ ) of the primi- The 

tive analyticity domain ~vof  V , in i ts dependence on the spectral assumptions 

of the theory. We disregard non-linear properties of f ie ld theory, so the results 

are independent of an appearance of Martin catastrophies. 

Since we can disregard one-particle poles in V , the boundary ~c)C of c~ de- 

pends only on the lower limits of the continuous spectra of the mass operator in the 

different channels ( i .e.  the multi-particle thresholds M k , k = 1,2,3); ~ C ) C ( ~ I )  

~ The primitive domain in the variables z k = p~ , k = 1,2,3 with Z Pk = 0 is 

where (k,l,m) denotes a cyclic permutation of (1,2,3) and ~-~v(O) is the K~llen - 
Wightman domain (I) 

The procedure of constructing ~c)~runs through following steps (2). 

I) choice of suitable variables, 

2) determination of edges of ~c)~( ~ v  (Mk) ) '  

3) choice of a suitable parametrization of a family of smooth hypersurfaces , )  

which interpolate between these edges, 

4) geometrical properties of ~C, 
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5) characterization of the requested pseudoconvexity properties of ~ ,  
6) introduction of a constraint on ~ through a differential equation (PSC-equa- 

tion) on the defining functions of J~ which is sufficient for ~ to have the 
desired pseudoconvexity, 

7) proof of the existence and uniqueness of a solution ~ of the resulting system 
of boundary value problems, 

8) proof that the resulting unique hypersurface J~ is the boundary of a (natu- 
ral) domain of holomorphy, 

9) construction of disks to establish ~ ( J ~ v  (Mk)) ~ ~ " 

1. 
m 

For the choice of variables we f i r s t  remark that in the special cases where Mk-~O 
V k or Mk~->~ Vk the holomorphy envelope of V is invariant under the two 
transformation groups 

v-~ RSp v 
v-~D× v 

(simultaneous rotations: SR) 
(simultaneous dilatations: SD) 

where 

I 
v I 
v 2 

v :  = v3 

v 4 

R :  = 
9 

© 

Jl (Plo - P11 ) - J2 (P2o " P21 ) 
Jl (P2o " P21 ) " J2 (Plo - P11 ) 
Jl (Plo " P11 ) " J2 (P2o ÷ P21 ) 
Jl (P2o + P21 ) - J2 (Plo + Pll ) 

© 
~-'~ 

with momenta (Pko' Pkl ) '  k = 1,2,3~ Z Pko =ZPk l  = 0 in a two-dimensional Min- 
• Z,T k k k 

kowski space,with Jk : el ~ ' k - 1,2,3 and with ~Pe ~ ,  )~ ~ ~ .  For M k - - ~  

the holomorphy envelope is even invar iant under a larger group, namely ~ ~ ~ .  In 

general both symmetries are broken i f  O<Mk<~ for at least one k , i .e .  i f  at 

least one of the mul t ipar t ic le  thresholds is f i n i t e .  However, i f  the mul t ipar t ic le  

thresholds in the three channels are equal, one has s t i l l  invariance under SR, but 

not under SD. 

Because we are interested in the dependence of the ana ly t i c i t y  domain on M k i t  
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is desirable to choose instead of z k three other Lorentz invariants x,y,o~ in such 
a way that only one of them is not SD-invariant (X) respectively not SR-invariant 

( ~ ) .  Such a choice is possible : 

x : = (v I v 2 v 3 v4)-1/2, y : = v I v 4 x , oK : = v I v 3 x. 

Then the K~ll~n-Wightman manifolds C k and l~{ have similar representations: With 

~/k c-c~ .~ ~ ~ + t x  ( % , t ) : :  ~E + - o 

/ 
both C k and Tke can be represented by ~ k  ( % ' t) = 0 with t e~and different 
choice~ of T,  t- e~2. 

Furthermore for fixed y ~ the singularity region of V is restricted to the 

union of the 3 cut manifolds C k and a region ~ ( y ) c ~ 2 ,  ~, (y):= ~ (x, ~ ) ; 
x E~ (y ) ,  ~c E d (y,x) } ,  which is f inite of Mk~ o V k. Here _(~ (y) depends ana- 
lyt ically on y in the sense that i t  can be represented by 

f ( x , y ;  c~, ~ '  ) : 0 ( o~, e~' ) ~ - ~ i  

where f is  holomorphic in x and y and C ( ~ )  in o ~,  o- '  in - ~ I  with 

_ ~ :  = I (  ~ ,  O ~')  E- //r~2; (~F. mink M~ ~ ) ~ [0,I~ d'2 ~ [0,I  I, ~ fixed ~ .  

2. 

By construction of perturbation theoretical examples i t  can be shown that certain 
portions of C k , T~e are edges E~ of ~R~, that for arbitrary YoE~ and arbi- 

trary x o 6 ~_~(Yo ) the union of these edges has a non-vanishing intersection with 

Ix, y ,~ ; x = x o, y = Yo' ~ ~ d (Yo' Xo)} and that the edges are analytic in y . 

3, 

~pass through the edges E~ of ~ , are quasi-analytic of rank 1 and can be re- 
presented by 

I f ( x ,y ;  o~ , 0- " )  = 0 

where f is the special function characterizing the domain_Q(y) and 3 , /~ are ho- 
]omorphic in (x,y,c~) for yeC, (x ,  c~ )E ~ (y) and twice continuously different- 

iable in ( ~ , o- , o ~' ) for ~E~, ( (%, c~') E_~g . The function / \  can be 
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constructed in such a way that the hypersurface f = /~ = 0 interpolates between 

the edges E? of ~ and that E~ is approached on f = /~ = 0 in the l im i t  

d is t  ~( ~,  o") ,  ~1-Zf] -> O. 

For this aim the s imi lar i ty  of the representations of C k and T~C in (x,y,  ~ ) 

-space can be exploited: The desired interpolation between the edges E~ is estab- 

lished by an ansatz 
3 

where S = S (x ,y ,K ; ~ , c ,  ~-') never vanishes in /A (y )  and where ~=~(~,g,C'), 

with I~I  = I ,  and t k = t k ( ~ , o-, o~'), t k~ 0 are suitably chosen, twice 

continuously differentiable ( ~ , ( cr ,  o- ') 6_C~ i ) and depend on the lower l i -  

mits M k, k = 1,2,3, of the mass spectrum in the three channels.(For details see ref. 

2). In the case when we s t i l l  have invariance under SR ( i .e .  in the equal mass case), 

t k ~ t V k . 

The hypersurfaces ~ yield interpolations of the desired type for arbitrary 

with ~ = 0 on ~I~L~ . 

4. 

Using the fact that a common scaling of the three mass spectra results in a scaling 

of x with y, ~ unchanged (more precisely: of c with y, ~ , o--' unchanged) the 

boundary ~)L ~ o f ~  must be such that on ~ C  the coordinate ~ is uniquely de- 

termined, 0"= (F ° (y, c~, oF'), by y, ~ , o-'. Thus we may use the notion: b e -  

low (above) ~)C • for characterizing points with O- ~ O- ° ( 0 -2  O-o). 

5. 

From the geometrical property of c~ just stated a necessary condition for a hyper- 

surface to be in ~ is that i t  be Cartan pseudoconvex from below. 

6~ m 

I f  a hypersurface ~ = O, (~ ~ C 3 ~ ~ , (~ ~ C(2) possesses in a neighbourhood 

of some point P supporting analytic manifolds of lower dimension (and i f  the rank 

of the Hesse form restricted to the analytic tangent space f u l f i l s  a further condi- 

tion, both conditions being satisfied for quasi-analytic hypersurfaces of rank 1) 

then pseudoconvexity in the sense of Caftan and pseudoconvexity in the sense of Hes- 

se forms are equivalent. Thus for pseudoconvexity from below of the hypersurface 

at some point P semi-definiteness of the corresponding Hesse form at P (instead 
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of definiteness in the general case) and ~ + m ~ c (2) with respect to ~ , o- , 

' (instead of C (4) in the general case) are already sufficient. In particular a 

system of second order e l l ip t ic  differential equations (pseudoconvexity equation) for 

in the variables o-, o ~' can be stated: 

which is sufficient for .~  to be pseudoconvex from below (for any smooth solution 

with ~ 

7. 

The system of boundary value problems consisting of (PSC) and the boundary condition 

~ 0 on ~ can be shown by use of the Leray-Schauder theorem (and of Lady- 

zhenskaya-Ural'tseva estimates) to have a solution ~ which is unique and which, 

moreover, is analytic in y, c~ , ~ with y E ( , o~ ~ d (y,x(y, o- , o~' )) , 

8, 

The uniquely determined hypersurface ~ is pseudoconvex from below at all points 

where ~o-~ ~ + b-o-/\ ~ O. From the boundary condition and the properties of the 

~ + ~ / ~  = 0 somewhere on ~ implies solution the assumption that ~ ~ 

the existence of points where ~ is convex from above and ~-o_~ +~--~/~- 0 what 

leads to a contradiction by the fact that (PSC) is a sufficient condition for pseu- 

doconvexity from below at this point. I t  follows that is the boundary of some 

domain of holomorphy. 

g. 

The last step is to show that ~ coincides with part of ~ by use of the con- 

tinuity theorem. In the proof the construction of disks is based on the fact that 

quasi-analytic hypersurface ~ has some analyticity properties:through the rank i 

any of its points P passes a I-dimensional analytic manifold completely belonging 

to --~'~ in a ful l  neighbourhood of P . The boundary condition imposed on ~ on 

~-(~ a11ows to construct a one-parameter sequence of disks z1 (k"), ~cc-~O,IJ in 

such a way that for arbitrary KeI(),l] the large o< region on ~ (~)  and for ~< = 1 

the whole of Z~ is in the analyticity domain. 
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io. 

To conclude, for (x ,~)  ~ ( y ) ,  y~C the envelope of holomorphy of the general lo- 

cal vertex function for arbitrary mass spectrum is bounded by a quasi-analytic hy- 

persurface ~ of rank I. Here ~ is the unique solution of the boundary value prob- 

lem consisting of (PSC) and the boundary condition ~ = 0 on ~-~and can be deter- 

mined numerically. The dependence of ~ on the mass spectrum is displayed by the 

functions ~ and ~ . 
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DISCUSSION 

V.S. Vladimirov (question): 

Is i t  possible to calculate an expl ic i t  form of the surfaces at the boundary of ~(~ 

in p-space, as in x-space (K~ll~n-l¢ightman), at least for equal masses? 

G. Sommer (answer): 

Unfortunately not. The dependence of the pseudoconvexity equations on the three mass- 

parameters as well as on the variables o ~ ,~ '  and the other parameters is s t i l l  ra- 

ther involved. This is,because the hypersurface has to interpolate between the sets 

given by the boundary conditions, and these are complicated. All this gets only 

sl ightly simplified in the equal mass case. The structure of the pseudoconvexity equ~ 

tions remains unchanged, because essentially the only simplification in this case is 

that al l  three t k in the parametrization of/~ are equal. 


