EINSTEIN FIELD EQUATIONS WITHIN LOCAL FRACTIONAL CALCULUS
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In this paper, we introduce the local fractional Christoffel index symbols of the
first and second kind. The divergence of a local fractional contravariant vector and the
curl of local fractional covariant vector are defined. The fractional intrinsic derivative
is given. The local fractional Riemann-Christoffel and Ricci tensors are obtained. Fi-
nally, the Einstein tensor and Einstein field are generalized by involving the fractional
derivatives. Illustrative examples are presented.
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1. INTRODUCTION

Fractional calculus is an old subject and it recently found many applications
in physics, mechanics, chaos, control, and so on [1-8]. The fractional derivative is
non local which is not suitable in fractal medium. As it is well known the fractals
have many application in science [9—14]. Therefore, the local fractional calculus
has been defined [15-26]. The fractional calculus is used to generalized Newtonian
mechanics, the Maxwell’s equations and the Hamiltonian mechanics [27-30]. The
one-dimensional heat equations with the local fractional derivative has been studied
using Adomian decomposition method [31]. A new Neumann series method has
been applied to find analytic solution for the family of local fractional Fredholm and
Volterra integral equations [32]. Recently, the nonlocal fractional derivative was used
to generalized general relativity [33, 34].

The plan of the paper is as follows. In section 2 we review the fractional calcu-
lus. In section 3 the local fractional Christoffel symbols are introduced. Divergence
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2 Einstein field equations within local fractional calculus 23

and curl of a local fractional contravariant vector are studied in section 4. We give the
definition for the local fractional intrinsic derivative in section 5. In section 6 local
fractional Riemann-Christoffel and Ricci tensors are explained. The local fractional
Einstein field equation is suggested in section 7. Finally, the section 8 is devoted to
our conclusions.

2. A REVIEW OF LOCAL FRACTIONAL DERIVATIVES

In this section we review the local fractional derivative, local fractional integral,
and tensors in fractal orthogonal coordinates systems and their properties [18].

2.1. LOCAL FRACTIONAL DERIVATIVE

Suppose that f(x) € Cyla,b] and = € (xg— 6,20+ 9),0 > 0 then
Dgof(x) _ d : F(l —|—a)[f(x) — f(‘rO)]

(@) |p=z =: lim
if the limit exists.

; ey

dxe T—o (x —x0)

2.2. LOCAL FRACTIONAL INTEGRAL

Let f(z) € Cyla,b], the local fractional integral of the function f(x) is defined
(18]
j=N—-1

oI )(dt)” 2
o f(@) = 1—|—a /f (1—i—a Ateo Z Ut @
where 0 < a <1, At; =tj41 —t; and At = max{Atl,Atg, LA

2.3. TENSORS IN LOCAL FRACTIONAL ORTHOGONAL COORDINATES SYSTEMS

Tensors are the quantities obeying special transformations. Here we study the
local fractional tensor notation. The local fractional covariant and contravariant linear
vectors are as follows [18]

Xa(x) = xlaéla + ylaéla + zlaélth; Za(x) = xlaela + ylaela + zlaéla; (3)
=(1%,0%,0%);  é2a = (0%,1%,0%); é3a = (0%,0%,1%).

The squared fractional distance between two points y*® = @ (2@, 2% 232 .. 2N)

and y'* + d“y" in local fractional Riemann space is given by

2 _ _
(d%)" = grada™de™ g = S50 31y dare daeo

r,s=1,2,3,...N. 4)
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where gy is the local fractional metric [18].
Some formulas of local fractional calculus:

The Mittag-Leffler function on fractal set of dimension « is [18]

> rka
Ea ) ) = T2 ..\ ) Sl
(B,z%) ];)P(B‘Fka) r€eR 0<a

The sine function on fractal set is defined as
0 . x(2k+1)a

i * = -1 ) € R, 0<a<l
S ® kz_o( S tata@izn) °© “=
The tangent function on fractal set of dimension « is given by
sing x® ¢
tang2® = ———;  Dfc=0; Df——— =1
Ml COSq T = T+ )

&)

b
D¢ sing % = cosq % / cosq % (dz)* = T'(1+ a)(sing b* —sing a®).
a

For more formulas see Ref. [18].

3. LOCAL FRACTIONAL CHRISTOFFEL INDEX SYMBOLS

The Christoffel symbols have an important role in the calculus on manifolds
and general relativity in physics. It is used in the definition of the quantity of Riemann
curvature tensor, divergence, curl, intrinsic derivative and Einstein tensor in N-dimen-
sional manifold space. For the local coordinate system the Christoffel symbols have
n? components. In the section, we generalize the Christoffel symbols by involving
local fractional derivatives. Then we use them in the calculus of fractal manifolds.

3.1. LOCAL FRACTIONAL CHRISTOFFEL INDEX SYMBOL OF THE FIRST KIND

Suppose we have a fractional Riemannian manifold (M“, ¢®) and a chart. So
one can compute the fractional Christoffel index symbol of the first kind using the
following definition

ik = L2 O 095

’ 2 0pic Qi Jxka
where [ij,k]*, g, and « are called fractional Christoffel index symbol of the first
kind, fractional fundamental metric tensor and fractal dimension, respectively.

)y i k=1,2..N 0<a<l, (6)
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3.2. LOCAL FRACTIONAL CHRISTOFFEL INDEX SYMBOL OF THE SECOND KIND

The local fractional Christoffel index symbol of the second kind is generalized
using local fractional derivatives on local fractional Riemannian manifold (M, g%)
and a given chart

opk _ agimpis i~ Lagem 0in  O%im 095
v g > 2 g 81-]'04 axia Oxma ’

i,j,k=1,2,..,.N O0<a<l, (7

where “¢*™ is the reciprocal tensor for the fundamental metric tensor 9gis-
Example 1. Let V5 be a fractal space with fractal line element as

1o $1a l,la Sil’l2 $2a
o \2 lay2 200\ 2 « 2\ 2
@) = iy ) Y e ey @) ®

where a is a constant. Then, using the Eq. (4) we have the element of the local
fractional metric tensor as

104 <$1a>2
911 = I‘Q(a—l-l); 922 T2(a+1)’ o
. (z10)? sin? 220 ¢& =0 i
33 I‘2(a+ 1) « ) i )
and the determinant of the metric tensor g;; is
1"2(1a 1) OOé Oa
a+ .
g¢ = 0« 7(2351&)2 0™ — W (10)
I (Oé+1) - FG(O[+ 1) .
0« (0 Gl il sin? x2o
IZ(at1) o
The reciprocal of the local fractional metric tensor is obtained using gij = ﬁ
ij
1
gt = — =T*(a+1);
) 911 , an
w2 1 _F(a+1)' w33 1 “(a+1)

Cgs (@2 T 0% (219)2sin? 220
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Then, we calculate the local fractional Christoffel index symbol of the first kind as
written below

[12,2]% = [21,2)% = et [13,3]* = [31,3]% = T gt
’ ’ I?(a+1) ’ ’ MPa+1)
—$1a (:Ula)Z )
[22,2]* = D) [23,3]% = msma 2% cosg 12 (12)
[33,1]% = is' 2% [33,2]% = _(710[)25' 20 cosg o2
A= in’ A= in, x a7

In view of Eq. (7), we arrive at the local fractional Christoffel index symbol of the
second kind as

10(
apl lao, apl __ la 2.2 20, a2 _am2 _
Loy =—2™%; 33 = —x %sing «™; “I'{y = F21—7x1a'
)
2, = —sing 2°% cosq 2% Ty = I'Sy = cotq 2%%; (13)
(0%
041'13 _« I‘\3 _ 1
137 1317 Ta-

All the results for this example in a fractal space will lead to standard results by
choosing o = 1.

4. DIVERGENCE AND CURL OF A FRACTIONAL CONTRAVARIANT VECTOR

Sink and source of vector field can be measured by divergence of vector field
which is a vector operator. The curl is the infinitesimal rotation in a vector space.
Here we expand the standard curl and divergence to the fractal space that involve
the local fractional derivatives. Now let us define local fractional contravariant and
covariant Riemann-Christoffel tensors which are denoted by AZJO‘ and Aj, 1, respec-
tively, as follows

e _ DA™ 0Ajq

»J Oxic Oxko

where A', Aj, are components of arbitrary local fractional contravariant and co-
variant tensors. Using the Eq. (14) the local fractional divergence is given by

div? A = VEA™ = A div® Aia = “¢F Ajo- (15)

FTLAR A= ST, ()

We now introduce curl of a local fractional covariant tensor in the fractal space Vy
as

0A; 0A;
curlO‘Aia =V*x Az’a = Aimj — Ajoéﬂ' = ax;z — axgg, (16)
where curl®A;, is called local fractional curl operator. We can get the standard
results in Egs. (15) and (16) by putting oo = 1.




6 Einstein field equations within local fractional calculus 27

5. FRACTIONAL INTRINSIC DERIVATIVE

It is known that the covariant differentiation in a Riemannian space is regarded
as a generalization of partial differentiation. Intrinsic or absolute differentiation is
considered as the generalization of ordinary differentiation. Let C'™ be a certain frac-
tal space curve that is described by the parametric equations in Vy such as

C%: '™ =z (t*);  i=1,2,..,N (17)

For any local fractional contravariant vector along the local fractional C'* we can
define intrinsic or absolute local fractional derivative as

JA™ - dxke DA™ Cdake dAte - dxhe
e~ Ak = L AT T e = T AT Do (19)
and for local fractional covariant vector will be
0A; dzke  dA, o dxke
s = ik g = g~ Ama TG (19)

The Egs. (18) and (19) are written in the local fractional differential form

SA™ = dA™ + TP AIdah;  §Aj = dAiq — “TV Ajoda™™ (20
where A’ and §A;, are intrinsic or absolute local fractional derivatives of con-
travariant and covariant local fractional tensors, respectively.
Example 2. Let a particle moves along a fractal curve 2 = 2+ (t*) where ¢ is the

parameter in the fractal time space. Then, the generalized local fractional velocity of
a particle on fractal manifold is

d[]ﬁka
ko
=— k=1,2,3,....N 21
dta ) ) 9 ) 9 ) ( )
and the fractal acceleration will be
ko Svke B dvke o dzi® d?ake o daP® dxi®
CoSte i dto — (dt)? W i dpe’
k=1,2,3,...,.N. (22)

ampk |, p
+ T v

These definitions are the standard ones if one choose o = 1.

6. LOCAL FRACTIONAL RIEMANN-CHRISTOFFEL AND RICCI TENSORS

In this section we extend the Riemann-Christoffel, Ricci tensors, and scalar
curvature involving local fractional derivative. Let B;, be an arbitrary covariant
vector then its local fractional covariant derivative with respect to /¢ is given by
aBia
Oxi

Bia,j = - QF?}Bmaa (23)
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which is a local fractional covariant tensor of rank 2. Riemann-Chrisstoffel tensor is
given by
o] 0 apTm  arm
@ f}k = + . (24)
aT'm aT'm ﬁ 6
L 1 I e N At

The Riemann-Chrisstoffel tensor “R}”, can be contracted in three ways with respect
to m and any one of its lower indlces Le., "RV, R .Y R, The contracted
tensor “ R}, which is not identically zero is called the Ricci tensor of the first kind

and its components are denoted by “Rij = “R;%

ap: - 82 o 9 m B m b
RZ] = W(loga Vg )— or maF]Z+F F BmF]z (25)

The local fractional scalar curvature in fractal space R is defined as

RS — agimR%i_ (26)
Example 3. Let us consider the local fractional metric tensor in E3* space such as
2a 2a (102 . la
d%s)2 — deten2 @ SMal g 2002 27
(@) = Ftrn ™) T oy @) (0

Using fractional linear vector Eq. (27) we obtain fundamental local fractional metric
tensor as

a20¢

o . o o N,

911—m, 912 = 921 = 0%
200 302 L la 4o 302 . la (28)

o _ 00singe® o, asingx

922 F2(Oz+1) 9 g Fﬁ(a—i—l) )
and the reciprocal local fractional metric tensor
I (a+1 I (a+1

agll — (a+ ); agl2 _ ag2l _goy  ap22 (a+1) (29

a’e a2 sin? glo’

The local fractional Christoffel index symbol of the second kind in this case will be

Tl = —sing z'%cos, 'Y T3, = “I'2, = coty 1. (30)

For the local fractional metric tensor Eq. (27) local fractional Ricci tensor will be
of 0 0 apm | « B apm  apB
Ry, = (0z10)? log, vg* T Hpma I+ Ty “Thy — “Th “Tiys

= —cosec2 z' + °T% °T%, = —cosec2 x4 cot? 2!* = -1,

€1y
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Fig. 1 — The graph of function f(a,«) = ka for the parameters o = igg, and z € [0,1].

and
82
(8 Qa) lo 08a v axma
= cosq 22" + ar§2 “Tly+ “Thy “Tig+ Ty °Tyy — T3, *T'g
= —sinZz'*  (32)

Ry = Ty + Ty arrﬂm - “Thn argz

The local fractional scalar curvature for Eq. (27) is

2% (a+1)
1 22
R =gl Ry + "9 Ry = ——— o (33)
The local fractional Riemannian curvature tensor can be written as
0 0
1 1 1
“Ry1p = T 9% Ty T 5p0a —=To+ Tl T}, — “Thy T 34)
0
= Ozla Aala2— Ty °T3 =sinja'® “R31, =0.
Then local fractional non-vanishing covariant curvature tensor is
200 (302 . la
a~*sin; x
*Rig12 = g%, “Rb1a = g *Ra1p+ 95 “R310 = Wil) (35)
Finally, local fractional Riemannian curvature £ will be
“R r 1
g 212 (O;j ), (36)
g a
We have sketched the function f(a,a) = k% for the parameters o = %, and

z € ]0,1] in Fig. 1.
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7. FRACTIONAL EINSTEIN FIELD

In this section we define the Einstein local fractional tensor therefore we have
suggested the local fractional Einstein field equation. First, let us define the local
fractional covariant tensor G7;, which is called Einstein tensor as following

(0% 167 1 (667
G =R — QR Gijs (37)

where “g% R, = R® is the scalar curvature. Then we define the local fractional
Einstein field equation as

Gy +9i;,L = PTj,

where L and P are local fractional space constants.

(38)

8. CONCLUSIONS

In this work we have considered the geometry of the real world as fractal.
Therefore, we generalized the tensor calculus by using the local fractional deriva-
tives. The local fractional Christoffel index symbols are suggested. We defined the
divergence and curl of tensors on N-dimensional fractal space. The local fractional
Riemann-Christoffel and Ricci tensors in fractal space are obtained. The Einstein
field equations within the local fractional derivatives are also obtained.
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