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Abstract The propagators of the Dirac fermions on the
expanding portion of the (1+3)-dimensional de Sitter space-
time are considered as mode sums in momentum representa-
tion with a fixed vacuum of Bunch–Davies type. The princi-
pal result reported here is a new integral representation of the
Feynman propagators of the massive and left-handed mass-
less Dirac fields which can be used for deriving the Feyn-
man rules of de Sitter QED in the Coulomb gauge or of an
extended QFT.

1 Introduction

Important ingredients of the quantum field theory on curved
spacetimes are the two-point functions that can be calculated
either as propagators by using mode expansions or by looking
for new hypotheses complying with the general relativistic
covariance as, for example, that of the maximal symmetry of
the two-point functions on the hyperbolic spacetimes, i.e. de
Sitter (dS) and anti-de Sitter ones [1].

The propagator of the Dirac fermions on the dS spacetime
in configuration representation was derived first by Candelas
and Reine who integrated the Green equation for this field
[2]. The same propagator was calculated later as a mode
sum by Koskma and Prokopec in the context of more gen-
eral Friedmann–Lemaître–Robertson–Walker spacetimes of
arbitrary dimensions [3].

On the other hand, we developed the dS QED in Coulomb
gauge [4] where we know the Dirac quantum modes in dif-
ferent bases [5–8] and we need to use the Feynman propaga-
tors for calculating physical effects. However, their expres-
sions as mode sums are not suitable for calculating Feyn-
man diagrams because of their explicit dependence on the
Heaviside functions resulting after computing the chrono-
logical product. In the flat case this problem is solved by
representing the propagators as 4-dimensional Fourier inte-
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grals which include the effects of the Heaviside functions,
allowing one to work in momentum representation. Unfor-
tunately, this method cannot be used in the dS case since
here the propagators depend on two independent time vari-
ables. For this reason, our objective in this paper is to find
another type of integral representation of the fermion prop-
agators in the (1 + 3)-dimensional dS expanding universe,
assuming that the vacuum of the Bunch–Davies type [9,10]
is stable.

This paper consists of four sections. In the next one we
review the fundamental solutions in momentum represen-
tation of the Dirac equation minimally coupled to the dS
gravity, mentioning that these form a complete system of
orthonormalized spinors allowing us to write various mode
expansions. For technical reasons, here we express the fun-
damental solutions in terms of modified Bessel functions
[11,12] instead of the Hankel functions used in our previous
papers [5–7]. In the third section we discuss the propagators
of the Dirac field on the dS expanding universe and we pro-
pose the principal result of this paper, namely the new integral
representation of the Feynman propagators which encapsu-
lates the effects of the Heaviside functions. Furthermore, we
show that this result is correct since after solving the new
integral of this representation we recover the mode sums of
the Feynman propagators we know [3,5]. Some conclusions
are presented in the last section.

2 Fundamental spinor solutions

Let us first revisit some basic properties of the fundamen-
tal solutions of the Dirac equation minimally coupled to the
gravity of the (1 + 3)-dimensional de Sitter expanding uni-
verse. In what follows we consider the normalized solutions
of positive and negative frequencies of the momentum–spin
basis [7] since those of the momentum–helicity basis [5] are
not defined in rest frames.
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We denote by M the de Sitter expanding universe of
radius 1

ω
where the notation ω stands for its Hubble con-

stant. We choose the chart {x} = {t, x} of conformal time,
t ∈ (−∞, 0], and Cartesian coordinates, we refer here as the
conformal chart. This covers the expanding portion of the de
Sitter manifold having the line element

ds2 = 1

(ωt)2

(
dt2 − dx · dx

)
. (1)

In this chart we consider the non-holonomic local frames
defined by the tetrad fields which have only diagonal com-
ponents,

e0
0 = −ωt, eij = −δij ωt,

ê0
0 = − 1

ωt
, êij = −δij

1

ωt
. (2)

In this tetrad gauge, the massive Dirac field ψ of mass m
satisfies the field equations (Dx −m)ψ(x) = 0 given by the
Dirac operator

Dx = −iωt
(
γ 0∂t + γ i∂i

)
+ 3iω

2
γ 0. (3)

The general solutions of this equation may be expanded in
terms of fundamental spinors of positive and negative fre-
quencies derived in various representations. Here we con-
sider the momentum representation where the plane wave
solutions Up,σ and Vp,σ depend on the momentum p and an
arbitrary polarization σ . These spinors form an orthonormal
basis satisfying the orthogonality relations

〈Up,σ ,Up ′,σ ′ 〉 = 〈Vp,σ , Vp ′,σ ′ 〉 = δσσ ′δ3 (
p − p ′) , (4)

〈Up,σ , Vp ′,σ ′ 〉 = 〈Vp,σ ,Up ′,σ ′ 〉 = 0, (5)

with respect to the relativistic scalar product [5]

〈ψ,ψ ′〉 =
∫

d3x
√|g| e0

0 ψ̄(x)γ 0ψ(x)

=
∫

d3x (−ωt)−3 ψ̄(x)γ 0ψ(x), (6)

where g = det(gμν) while the notation ψ̄ = ψ+γ 0 stands
for the Dirac adjoint of the field ψ . Moreover, this basis is
complete, satisfying [5]

∫
d3 p

∑
σ

[
Up, σ (t, x)U+

p,σ (t, x ′)

+Vp,σ (t, x)V+
p,σ (t, x ′)

]
= (−ωt)3δ3(x − x ′). (7)

In the momentum representation under consideration here
the Dirac field may be expanded as

ψ(t, x) = ψ(+)(t, x) + ψ(−)(t, x)

=
∫

d3 p
∑
σ

[Up,σ (x)a(p, σ ) + Vp,σ (x)b†(p, σ )],

(8)

assuming that the particle (a, a†) and antiparticle (b, b†)

operators satisfy the canonical anti-commutation relations
[5,8],

{a(p, σ ), a†(p ′, σ ′)} = {b(p, σ ), b†(p ′, σ ′)}
= δσσ ′δ3(p − p ′). (9)

Thus we obtain a good quantum theory where the one-particle
operators conserved via the Noether theorem become just the
generators of the corresponding isometries [8].

The plane wave solutions can be derived as in Refs. [5,7]
by solving the Dirac equation in the standard representation
of the Dirac matrices (with diagonal γ 0). Here we express
these solutions in terms of modified Bessel functions Kν [11]
instead of the Hankel functions used in Refs. [5,7,8], since
in this manner we get some technical advantages. More spe-
cific, working with the real functions Kν(z) (of the complex
variables ν and z) we simplify the calculations involving the
complex and Dirac conjugations such that the entire formal-
ism becomes more transparent and intuitive, as we shall see
in what follows.

The fundamental spinor solutions in momentum represen-
tation of Ref. [7] can be rewritten with new suitable phase
factors as

Up,σ (t, x) =
√

p

πω
(ωt)2

(
Kν−(i pt) ξσ

Kν+(i pt) p·σ
p ξσ

)
eip·x

(2π)
3
2

, (10)

Vp,σ (t, x) = −
√

p

πω
(ωt)2

(
Kν−(−i pt) p·σ

p ησ

Kν+(−i pt) ησ

)
e−ip·x

(2π)
3
2

,

(11)

where p = |p| and ν± = 1
2 ± iμ, with μ = m

ω
. The Pauli

spinors ξσ and ησ = iσ2(ξσ )∗ must be correctly normal-
ized, ξ+

σ ξσ ′ = η+
σ ησ ′ = δσσ ′ , satisfying the completeness

condition [13]

∑
σ

ξσ ξ+
σ =

∑
σ

ησ η+
σ = 12×2. (12)

In Ref. [5] we considered the Pauli spinors of the momentum–
helicity basis whose direction of the spin projection is just
that of the momentum p. However, we can project the spin
on an arbitrary direction, independent on p, as in the case of
the spin basis where the spin is projected on the third axis
of the rest frame such that ξ 1

2
= (1, 0)T and ξ− 1

2
= (0, 1)T

for particles and η 1
2

= (0,−1)T and η− 1
2

= (1, 0)T for
antiparticles [7]. In what follows we work exclusively in this
basis, called the momentum–spin basis.
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The form of the spinors (10) and (11) suggests us to intro-
duce the auxiliary 4 × 4 matrix functions

W±(x) =
(
Kν±(i x) 0

0 Kν∓(i x)

)
, ∀x ∈ R, (13)

which have the obvious properties

W̄±(x) = W±(x)∗ = γ 5W±(−x)γ 5 = W∓(−x) (14)

and satisfy

Tr
[
W±(x)W∓(−x)

] = 2π

x
, (15)

as results from Eq. (42). With their help we can write the
fundamental spinors in a simpler form as

Up,σ (t, x) =
√

p

πω

eip·x

(2π)
3
2

(ωt)2 W−(pt)γ (p)uσ , (16)

Vp,σ (t, x) =
√

p

πω

e−ip·x

(2π)
3
2

(ωt)2 W−(−pt)γ (p)vσ , (17)

depending on the nilpotent matrix

γ (p) = γ 0 p − γ i pi

p
, (18)

and the 4-dimensional rest spinors of the momentum–spin
basis

uσ =
(

ξσ

0

)
vσ =

(
0
ησ

)
, (19)

which allow us to define the usual projector matrices

π+ =
∑
σ

uσ ūσ = 1 + γ 0

2
, π− =

∑
σ

vσ v̄σ = 1 − γ 0

2
,

(20)

which form a complete system (π+π− = 0 and π+ + π− =
1). All these auxiliary quantities will help us to perform easily
the further calculations either by using the form

W±(x) = π+Kν±(i x) + π−Kν∓(i x), (21)

and simple rules as, for example, γ (p)2 = 0, γ (p)γ (−p) =
2γ (p)γ 0, γ (p)π±γ (p) = ±γ (p), etc., or resorting to alge-
braic codes on computer.

The fundamental solutions in the case of m = 0 (when
μ = 0) are derived in Ref. [5] using the chiral representation
of the Dirac matrices (with diagonal γ 5) and the momentum–
helicity basis. We note that these fundamental solutions have
fixed helicities (i.e. −1/2 for particles and 1/2 for antiparti-
cles) as in Minkowski spacetime. This is because the mass-
less Dirac equation is conformally covariant and, therefore,

the massless spinors in the conformal chart {x} are just
the Minkowski ones multiplied with the conformal factor

(−ωt)
3
2 .

3 Green functions and Feynman propagators

Let us consider the partial anti-commutators matrix functions
of positive and negative frequencies [5],

S(±)(t, t ′, x − x ′) = −i
{
ψ(±)(t, x), ψ̄(±)(t ′, x ′)

}
, (22)

which satisfy the Dirac equation in both sets of variables
[3,5]. The total anti-commutator matrix function [5]

S(t, t ′, x − x ′) = −i
{
ψ(t, x), ψ̄(t ′, x ′)

}

= S(+)(t, t ′, x − x ′) + S(−)(t, t ′, x − x ′)
(23)

has similar properties and, in addition, satisfies the equal-
time condition

S(t, t, x − x ′) = −iγ 0(−ωt)3δ3(x − x ′) (24)

resulting from Eq. (7).
Let us focus now on the Green functions related to the

partial or total anti-commutator matrix functions. According
to the general definitions [13], we introduced in Ref. [5] the
retarded (R) and advanced (A) Green functions,

SR(t, t ′, x − x ′) = θ(t − t ′)S(t, t ′, x − x ′), (25)

SA(t, t ′, x − x ′) = −θ(t ′ − t)S(t, t ′, x − x ′), (26)

and the Feynman propagator,

SF (t, t ′, x − x ′) = −i〈0|T [ψ(x)ψ̄(x ′)]|0〉
= θ(t − t ′)S(+)(t, t ′, x + x ′)

− θ(t ′ − t)S(−)(t, t ′, x − x ′). (27)

These Green functions satisfy the Green equation, which in
the conformal chart has the form [5]

(Dx − m)SF/R/A(t, t ′, x − x ′) = (−ωt)3δ4(x − x ′). (28)

This equation has an infinite set of solutions corresponding
to various initial conditions. However, here we restrict our-
selves to only the SR , SA and SF Green functions, called
here propagators, which may be derived as mode sums with-
out solving the Green equation.
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The Feynman propagator (27) can be written as a mode
sum since, according to Eqs. (4) and (5), the anti-commutator
matrix functions can be put in the form

i S(+)(t, t ′, x − x ′)

=
∑
σ

∫
d3 pUp,σ (t, x)Ūp,σ (t ′, x ′)

= ω3

8π4 (t t ′)2
∫

d3 p p eip·(x−x′)W−(pt)γ (p)W+(−pt ′),

(29)

i S(−)(t, t ′, x − x ′) =
∑
σ

∫
d3 p Vp,σ (t, x)V̄p,σ (t ′, x ′)

= ω3

8π4 (t t ′)2
∫

d3 p p eip·(x−x′)W−(−pt)γ (−p)W+(pt ′),

(30)

after changing p → −p in the last integral. Hereby we obtain
the generic expression of the Feynman propagator, which can
be studied either in the configuration representation or in the
momentum one.

In the configuration representation these matrix functions
can be put in a closed form particularizing the general results
of Ref. [3] to D = 4 dimensions and the Bunch–Davies
vacuum. In Ref. [14] we present the details of this calculation
for m �= 0, pointing out that in the massless case we obtain
a different result for the left-handed fermions (neutrinos).
This is because we do not have a general definition, in any
dimensions, of these fields which seem to be specific to the
case of D = 4.

The propagators (25), (26) and (27) cannot be used in
the concrete calculations of Feynman diagrams because of
their explicit dependence on the Heaviside θ -functions. In
the case of the Minkowski spacetime this problem is solved
by representing these propagators as 4-dimensional Fourier
integrals which take over the effects of the Heaviside func-
tions according to the well-known method of the contour
integrals [13]. In this manner one obtains a suitable integral
representation of the Feynman propagators allowing one to
work in the momentum representation.

In dS spacetimes we also have a momentum representation
but we do not know how to exploit it, since in this geometry
the propagators are functions of two time variables, t− t ′ and
t t ′, instead of the unique variable t−t ′ of the Minkowski case.
This situation generates new difficulties since apart from a
Fourier transform in t − t ′ ∈ R a supplementary Mellin
transform for the new variable t t ′ ∈ R

+ [12] might be con-
sidered. Obviously, an integral with two more variables of
integration is not a convenient solution for representing the
Feynman propagators.

Under such circumstances, we must look for an alternative
integral representation based on the method of the contour
integrals [13] but avoiding the mentioned Fourier or Mellin

Fig. 1 The contours of integration in the complex s-plane, C±, are the
limits of the pictured ones for R → ∞

transforms. The form of the matrix functions (29) and (30)
suggests us to introduce a new variable of integration, s ∈ C,
postulating the following suitable integral representation of
the Feynman propagator of the massive Dirac field:

SF(t, t ′, x − x ′) = ω3

π2 (t t ′)2
∫

d3 p
eip·(x−x′)

(2π)3

×
∫ ∞
−∞

ds|s|W−(st)
γ 0s − γ i pi

s2 − p2 + iε
W+(−st ′),

(31)

which encapsulates the effect of the Heaviside functions in a
similar manner to the flat case.

The main task is to prove that this integral representa-
tion gives just the Feynman propagator (27) after solving the
integral along the real s-axis, which can be written with a
self-explanatory notation as

I (t, t ′) =
∫ ∞

−∞
ds M(s, t, t ′). (32)

For large values of |s| we may use the last property of (43)
obtaining the asymptotic behavior

M(s, t, t ′) ∼ γ 0s − γ i pi

s2 − p2 + iε

π

2
√
t t ′

e−is(t−t ′), (33)

which allows us to estimate the integrals on the semicircular
parts, c±, of the contours pictured in Fig. 1 as

∫

c±
ds M(s, t, t ′) ∼ I0[±R(t − t ′)] ∼ 1√

R
e±R(t−t ′), (34)
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according to the first of Eqs. (43). In the limit of R → ∞
the contribution of c+ vanishes for t ′ > t , while those of c−
vanish for t > t ′. Therefore, the integration along the real
s-axis is equivalent with the following contour integrals:

I (t, t ′) =
{∫

C+ ds M(s, t, t ′) = I+(t, t ′) for t < t ′,∫
C− ds M(s, t, t ′) = I−(t, t ′) for t > t ′,

(35)

where the contours C± are the limits for R → ∞ of those of
Fig. 1. Under such circumstances we may apply the Cauchy
theorem [15],

I±(t, t ′) = ±2π i Res
[
M(s, t, t ′)

]∣∣
s=∓p±iε , (36)

taking into account that in the simple poles at s = ±p ∓ iε
we have the residues

Res
[
M(s, t, t ′)

]∣∣
s=∓p∓iε = p

2
W−(∓pt)γ (∓p)W+(±pt ′).

(37)

Consequently, the integral I−(t, t ′) gives the first term of the
Feynman propagator (27), while the integral I+(t, t ′) yields
its second term. Thus we demonstrated that the integral rep-
resentation (31) is correct, since after integration over s we
obtain just the Feynman propagator (27).

Note that the other propagators, SA and SR , can be repre-
sented in a similar manner, but changing the positions of the
poles as in the flat case [13].

For the left-handed massless fermions the Feynman prop-
agator can be calculated as

S0
F(t, t ′, x − x ′) = lim

μ→0

1 − γ 5

2
SF (t, t ′, x − x ′) 1 + γ 5

2
,

(38)

taking into account that for μ = 0 we may use the particular
functions (43). Thus we arrive at the final result,

S0
F(t, t ′, x − x ′) = ω3

(2π)4 (t t ′)
3
2

∫
d3 p

×
∫ ∞

−∞
ds

1 − γ 5

2

γ 0s − γ i pi

s2 − p2 + iε
eip·(x−x′)−is(t−t ′). (39)

The form of this propagator written in the conformal chart
{x} is very similar to that of the flat case because of the
conformal covariance of the massless Dirac equation. For
this reason the dS propagator is just the flat one with the

conformal factor ω3(t t ′) 3
2 . Obviously, in the flat limit, for

ω → 0 and ωt → −1, this factor tends to 1 and we recover
the neutrino propagator in Minkowski spacetime.

4 Concluding remarks

The integral representations of the Feynman propagators we
propose here are suitable for calculating Feynman diagrams
where the integration over the supplemental variables s will
appear in each internal fermionic line. On the other hand, we
know that the contribution of the electromagnetic field is sim-
ilar to the Minkowski case since the Maxwell equations are
conformally invariant [4]. Thus, after solving the space inte-
grals generating 3-dimensional Dirac δ functions and inte-
grating over momenta we are left in each diagram with a
time integral for each vertex and an integral over the internal
variables of the internal lines. Solving all these integrals we
may obtain the desired amplitudes in momentum representa-
tion. Another advantage of our proposal is that now we can
use such simple methods of regularization as, for example,
the Pauli–Villars one.

Concluding we may say that now we have all the pieces
we need for starting the perturbation machinery of the dS
QED in Coulomb gauge which will give us the scattering
amplitudes and their radiative corrections in the presence of
the dS gravity.
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Appendix: Modified Bessel functions

According to the general properties of the modified Bessel
functions, Iν(z) and Kν(z) = K−ν(z) [12], we deduce that
those used here, Kν±(z), with ν± = 1

2 ±iμ are related among
themselves through

[Kν±(z)]∗ = Kν∓(z∗), ∀z ∈ C, (40)

satisfying the equations

(
d

dz
+ ν±

z

)
Kν±(z) = −Kν∓(z), (41)

and the identities

Kν±(z)Kν∓(−z) + Kν±(−z)Kν∓(z) = iπ

z
, (42)

which guarantees the correct orthonormalization properties
of the fundamental spinors. Note that for |z| → ∞ and
|ph z| ≤ π

2 we have the asymptotic behaviors

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


769 Page 6 of 6 Eur. Phys. J. C (2018) 78 :769

Iν(z) →
√

π

2z
ez, Kν(z) → K 1

2
(z) =

√
π

2z
e−z, (43)

for any ν [11].
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