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ABSTRACT

We outline the formalism for making a partial wave analysis of the reactions
T+ N—A(1236) + Tand K + N —¥(1385) + 7. From such an analysis the decay

rates of baryon resonances into these inelastic channels can be determined.
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I. INTRODUCTION

We give the formulae for making a partial wave analysis of the reaction

sequence:

T+ N—-=A(1236) + 7 _ (I. 1 a)
N+ (b)
and
K+ N—x(1385) + (1.2 a)
‘LA+ T (b)

The decay sequence (I.1) is described by five independent variables, which may

~ be chosenas k, @, 6, ¢, P, where k is the momentum in the 7N c¢.m. system,

A A
cos @ = Tin” Tout in the c.m. system, 6, ¢ are the polar and azimuthal angles

of the decay nucleon inthe Arest frame,and P is the nucleon polarization. By

"partial wave' analysis we mean that the experimental distributions are used to

infer the quantities S;T, 3/2,11 /z(k) which are the S matrix elements connecting

the initial 7N state with orbital angular momentum £ and spin J to the Aw state

J
2'3/2,01/2

scalar quant1t1es which are functions only of the total c.m. energy.

with orbital angular momentum ¢£'and spin J. The S are complex

Partlal wave analyses of reactlons (1. 1) and (I.2) can be used to determine '
the decay rates of N* and Y* resonances into A(1238) + mand X(1385) + m
respectively, and to check the (IJPV) values inferred from analyses of elastic
scattering data. Considerable data on these reactions is being amassed in
current bubble chamber experiments at incédent momentum below 3 GeV/c.
Partial wave analyses of the reactionsK + N—y(1385)+7, and K + N—A(1520) +

have already been made for the special case that the cross section is dominated
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' l
1.2,3 These analyses led to a determination of the (1J ) ‘

by a single amplitude
quantum numbers for ¥(1770) and A(1815), and their decay rate into A(1520)
+ wand ¥(1385) + 7 respectively.

In this paper we relate the distributions in the variables k, @, ¢,

¢, P, which can be measured experimentally to the S amplitudes.

J
€' 3/2, 21/2

Previous authors have studied certain aspects of this problem, (mainly the

relation between the cos @ distribution and the SET' 3/2,11/2

have not enumerated a complete set of equations which utilizes all the experimental
3 4 0

amplitudes), but

information on the production and decay of A( 3 ) to determine the S 13/2, 01/2°

———— .

We have used the (IZSJ M) representation for the S matrix, rather than the
}helicity representation, since we are concerned with s —channel states of
deflmte spin and parlty A11 formulas are relat1v1stlca11y exact.

In general the reaction 7rN—»1r17N is a eoherent sumof such amplitudes as

'
—_— =
'

A(7rN—>1rN*), A(TN—pPN), A(7N —nrN),etc. The formalism outlined below is
applicable only to a subset of events corresponding to the reaction 7N —7A. In
most experiments it is possible to isolate a sample of these events which are
relatively free from interference of other amplitudes (in some cases the complete
range of variables @, 0, ¢ will not be accessible due to experimental cuts).
Models which take into account all possible two partiele interactions in the

2

77N final state have been worked out, However, the application of these

. models poses pract1cal d1ff1cult1es because of their mathematical complex1ty.

{ We believe that the formalism outlined here is a useful tool for the preliminary
analysis of the three body final states (I.1) and (I.2). This approach has already
prov1ded mformatlon on the couplmg of baryon resonances to quasi two-body

channels. 1 2



I. THE PRODUCTION ANGULAR DISTRIBUTION

In this section the differential cross section for the reaction
A + -
0 +1/2 —3/2+0 (1. 1

is expressed as a function of the matrix elements E‘g 3/2, 11/2 (Eq. (k. 8)). A
detailed derivation is given in order to show the origin of the various terms in
Eq. (IL.8).

We follow the treatment of two-body scattering reactions by Goldberger and

-

Watson, 7 with their notation:

Entrance Channel Exit Channel

c c'

Momentam in c.m.t k ' kg
Total spin S(1/2) S'(3/2)
z compo.nent of spin : v V'
Orbital angular momentum 2 (A
z component of orbital ‘ -

angular momentum m m'
Total angular momentum J : J'

2z component of total
angular momentum | M M!



The differential cross section in the c.‘m. system for the reaction, (II.1)

with initial stﬁte Ik, S, v) and final state 'kf, SLyDis
do _ 1. t ' A 2 |
10 —( ) |<c k S', v lS(k)|c;k, s,v>| (11. 2)
A 2
=‘(S‘,v" f (kf, ¢, k, ¢) | s,::)l (II. 22)

where (c'; f’ st v! |S(k) l c; f{, S,v ) is the unitary S matrix element in the
barycentric subspaée on the energy and momentum shell; Eq.‘ (11. 2a) defines the
scattering amplitude f for the reaction. For an unpolarized target the average
cross section for any final spin orientation is obtained by averaging over the

initial spin orientations y and summing over the final spin orientations p':

A
= ZS+1 E dQ (C' k S!V'; C;k, S, V)

Q-lQa
w9
|

1 +
= 3551 Trdf) (II. 3)

The S matrix elements are used throughout rather than the T matrix elements,
because there is no unique convention for the normalization of the T matrix. If

the T matrix elements are defined by:

(cvk S'p! |S(k)|c k S,u)= 8 1 CSS' SS'paﬁf,k

A A
+ 1<c'; kf, s, ! [T(k) le; k, S, v3)

S may be replaced everywhere by iT, since we are dealing with an inelastic

reaction. We will omit the channel suffix c from now on.




The S matrix element in (J1.2) is transformed to the (¢SJM) representation,

using the transformatlon matrxx

¢k S,v|imsv) = Y’E‘(ﬁ) (IL. 4)

which resolves plane wave states into partial waves; and with the Clebsch-Gordon
coefficients {{, S, m, VIJ,M) which resolve states ,!Zm Sy) into states of total

~ angular momentum pJy M)

A ' A
S| stlk, 8, > = :): ke, S v m' S pHQ,Shm, '3, MY

'm'JM! ’
fmJM

x{' 8t J M"S(k)la,s J M), S;m,v|I, ML m S v lﬁ,s.u_)' (I1. 5)

From rotational invariance
Qs g M’\S(k)\!l SJ M= SR

J J M M'e s, (IL. 6)

where S;ZI S S is the S matrix element in the ((SJM) representation,

From Egs. (II.4), (II.5) and(Il. 6) we have

<y, Sk, 5,0y = E Vi ()", 8tm, v |38 g0 ol
0'm'IMIM

*
x(ﬂ,S;m,u,J,M}YRm

- E (cos@)(!l ,3/2;0-1 ', T, 1)) ,3/2 21/2@ ,1/2;0, ;J!Jv> ~1z+1
23

(L. 7)

A
specifying the incident beam direction k as axis of quantization,

T 1 A A
£+ 1 and cos ® =k-k

. _ _ o _
1.e.,m—0,M-ll,Y!Z Var £
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Inserting (II. 7) into (II. 3) gives

dn k2

EARNAN |
(IL. 8)

where we have dropped the summation over v =1/2, - 1/2 since, for the chosen
axis of quantization, do(v',v) =do(-v',-v). The summation over { is superfluous

because £ is uniquely determined by J and £' and {f, 1/ 2;0, 1/ 2 I J,1/2) =

A'=(3-1/2) (3 + 1/2 1/%
) M+l )

If the relative intrinsic parities of the initial and final state particles are odd, then

- 1/2 3
<.1/2:0,1/24 3, 1/2) oA 1/2) gﬂ++1{2
The total cross section is:
J £

The maximum value of SJ,3 /2.,01/2 is unity, sothatthe maximum inelastic cross
section for a single partial wave amplitude is 1r?(2 (J + 1/2). More generally

12

EDIRLCE 1/2)Z| 03/2,01/2%) "% e 8,08,
J |

and the maximum & in the elastic channel for a singlé amplitude is therefore

4T XZ(J + 1/2).

do_m Z(J+ 172y 2 0201 300172000 '|3,1/2>s) rae. ﬂ/z(k)Yl/z V! coso)®



The S matrix element in the proceeding equations is in general a linear
. combination of two isotopic spin amplitudes. Denoting the isotopic spin of the

initial state meson and baryon by I and T respectively we have for reactions (1. 1):

S =1, T;L,, T, |3/2,1, + . |
CLTslg, Tg [3/2,15 + Ty S3/2+(I,T,I3T3|1/2,I3+T3)Sl/2

and for reactions (I.2)

S = . .
<I,T,13,T3|1,13 + Tgd8) +<L, TsIg T, 0,1, + To)S,

The R. H.S. of Eq. (II. 8) can be written as an expansion in the Legendre

polynomials P, (cos@)

doe  _ .2 '
d—‘Z- =X znjAnPn (cos@) | (1I. 10)

where

A = ntl) C—I%Pn (cos@) dO

SR gry? d
. % q |
_Z Z Re(sgfﬁ SJN)\) BM'J; ANT! (I.11)
£',J =2x,J!

The coefficients Bn, evaluated by inserting (II. 8) in (II. 11) are listed in Table 1.

The scattei‘ing angle cos @ = ﬁ ﬁf is not uniquely defined. In elastic scattering -
the convention is that 1'2 and fzf refer to the same particle. Then the amplitude SJ
always lies in the upper half of the complex plane (Im S >0). In inelastic scattering
such as T + N—K + A, where the outgoing baryon and boson belong to the same SU3
octets as the initial state particles, the same con‘vention is maintained by invoking
SU symmetry. However, the amplitude SJ can now lie anywhere in the complex

plane because of the sion of the SU3 Clebsch~-Gordon coefficients.



In the reaction 7 + N~ + A, in which N and A belong to dif_ferent Su3

multiplets, a higher symmetry is needed to make a correspondence between N and

h
141

et

A A
nvention that k and k, are the directions of the

o
w
Fe
r
2

initial and final state bosons. The formalism in Sect. II is independent of the

A A

definition of scattering angle. I kf is replaced by (- f)’ then Sg'g
A B

(") S,Q',Q‘

goes to



II. THE DECAY ANGULAR DISTRIBTUION

For clarity we specify reaction(l. 1) Notation
¢, ¢ Polar and azimuthal decay angles in the A rest frame.
p Spin density matrix of A
fD Amplitude for the decay I.1b
The differential decay distribution W(#, ¢) can be expressed as a function of
the partial wave amplitudes. This is most conveniently done through the density
matrix formalism:

£f

p =
Tr(f f+)

(I 1)

where f is the scattering amplitude for reaction(l. 1a), defined in Eq. (II.2a). Here
pis the 7A spin state density matrix in the overall center-of-mass. However since

the pion has zero spin Pis simply the A density matrix in the same system. The

" spin state of a particle is invariant under a transformation from the rest frame
of the particle to a moving frame,9 hence p is also the density matrix of A

~ in its rest frame. Then

Tr (fo £ fD+)

' +
W(p,¢) =T.(fpf) = - (LIL 2)
-Tr (1)
The decay amplitude for the p-wave decay A—N + 7 is given by Eq. (II. 7):
oy !
/2y "fD‘S/ZV) Y (cos @, ¢)1,1/2w v ', v '|3/2v) (IIL. 3)

We ignore the energy dependent part of the amplitude, since it does not affect the
angular distributions, With this definition of fD the decay distribution (III. 2) is

normalized fo unity.



The decay angles 6, ¢ refer to the coordinate frame in which the Z-axis is
the axis of quantization. The amplitude f has been calculated in section II for

A .
Z =k, the c.m. incident beam direction:

9 t ) = ‘ '-J- V! ‘
<3/2v"|£[1/20) _‘-{Z—r- E (J+1/2)1/2(_) J l/Z)YIll/'V (cos@)(ll'3/2;u-uv,ul', !Jv) 85,3/2* /2
IIE; . !

|
(ILIL. 4)

A A A g !
Defining a coordinate system Z=k, y =k X k., Fig. 1a, the terun y;, g (cos @)

above becomes 1/4r (20" + HE'-{v -/ +v -v ') p,7 '(cos @) since the

production azimuthal angle is always zero in this frame. This form of f, inserted

in Eq. (I1I.2), gives the decay angular distribution in the coordinate system of Fig. la.
The decay distribution in another frame of reference is obtained by fotation of

the axis of quantization of the density matrix p. The rotation matrices which take

the quantization axis frdm the beam direction to the helicity direction or to the

production normal are given in the appendix.

The form of the decay distribution depends on the choice of quantization
axis. For axis of quantization in the production plane (Fig. la or 1b) the general

form for the density matrix is10

P

; 33 31 31 3-3 |

] * P*
| Pay A1 fAa Taa I

! (1IL. 5)

\ X —p p _ p* |
Pay ~Aa 11 31 !
-p p _p P
33 31 31 33 ;

S i

Hermiticity requires that all diagonal elements are real and that p 3.3 and Pi-1

are purely imaginary, For a single amplitude all elements of the density matrix

are real.
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From Egs. (III.2), (II, 3), (I1.5) the decay distribution for the z -axis in the

production plane is

WEo) = 71?1? [1/6 +2/3 Pgq+ (1/2 - 2p33)‘00820
(II1. 6)

2 .2 2 , .
"B Re p, sin 0 cos 2¢ B Re p g, sin 26 cos ¢]

— L
For axis of quantization along the production normal k X k £ the general form

for the density matrix is

Py O by O
0 by 0 . P
*
Paqy O P11 0
*
0 Prg O P-3-3

and the corresponding decay distribution is

\ - . .

‘ w9, 9) = o= [3 sin'g + 2("11\11 * Plj1-1>(2_ -3 Sm;o;

. 2 (N N ' :
- 2.8 sin"9 (Re é’3—1 + p1_3) cos 2¢ (I1L. 7)

- Im(pgl + p]I:I_3)sin 2¢)] i
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. IV. POLARIZATION OF THE SPIN 1/2 BARYON

Whereas A can be polarized only along the production normal the spin 1/2
baryon can be polarized in any direction. The density matrix of a spin 1/2

particle in its rest system can be writien

1/2

Px+1Py 1--PZ ,

where Px’ Py and PZ are the three components of the polarization vector. The
polarization can be expressed as a function of the partial wave amplitudes
through the relation:

: + . -
_|_fop'p ) DP'D

Pl e = . (IV.2)
1/2 m‘ w(g, ¢) -

where P is the density matrix of the A. Equation (IV.2) defines p‘l /2 in the A rest

frame with the same axis of quantization as p. The density matrix Pl /2 is
unchanged by a transformation from the A system to the nucleon rest system.
[When the reaction goes by @,ﬂ?%le 1 paftial wave amplitude both the A and the

nucleon are unpolarized.]

- 12 .



V. ANALYSIS OF EXPERIMENTAL DATA

The experimental data at a given momentum consists of a joint distruibtion in
three independent variables; which may be 0,6 and ¢ as defined in Sect. I. (We
neglect polarization which is usually not measured in reaction I.1). The distribuiton

. . . J
(@, 9, ) is related to the partial wave amplitudes Sﬂ, 3/2,01/2 by:

16,6, 4) = 92 . we,6,9) v.1)

There are two possible forms for W(@, 9, ¢)-—Eqs.' (IIL. 6) and (III. 7) depending
on the coordinate frame in Whiqh 6, ¢ are measured. In the coordinate frame
Z=k, y=kx fcf (Fig. 1a), %—g« =-;~ Tr (£ ') and W(g,0, ¢) = Tr (L £V
(2 dg/ds?) where f and £, are given by Egs. (I 4) and (IIL 3) respectively. Note
that in this case the Z axis is the incident beam direction in c. m. system (not in
the A rest system).

For a given set of partial wave amplitudes, Eq. (V.1) predicts the distribution
I(®, 6, ¢). In general, the set of amplitudes which best fit the data is found by
computer search, using the method of X 2 minimization or maximum likelihood.

The decay distribution of A or 2 for a given production angle @ is completely
described by three parameters which are functions of the density matrix elements -
p33(@), Re P3_1(@) and‘ Re p31(@) for the axis of quantization in the production plane,
or (pllql(@) + pljl _ 1(@)), Re (pgrl(@ﬂ p11\1_3(@)) and Im<p§__1(@)+ p§_3(@)>f0r the quanfization
axis along the production normal. The experimental datfa at a single momentum can
therefore be summarized in the form of four distributions in cos (), —the production
angle. These distributions are shown in Figs. 2,3 for the partial wave amplitudes
DD5, FF7, and GD7 for the coordinate systems defined in Fig. 1a ( pB) and Fig. lc

N

(p ). The correlations between the production and decay angles of the A are clearly

sensitive to the spin and parity of the partial wave amplitudes..

-13 -



The experimental density matrix elements are statistically correlated.
This correlation must ‘be taken into account if the comaprison between the exper-
imental and calculated distributions is made in terms of densily matrix elements.

The experimental data may be insufficient to determine all the correlations
between 0,0 and ¢. In that case the question of how best tfo bin the déta arises.
Also the choice of coordinate frame in which the decay angles are measured
may be important, There is no simple prescription - but a study of the density
matrix elements for the hypothesis being tested will usually indicate the best
procedure. For example, if one is trying to distinguish between the amplitudes
FF17and GD7 the correlations between ® and BN or between ® and ¢B are
clearly very sensitive, as indicated by the plots of p;Il\Il and Re P3}§1 in Fig. 2.

These correlations are shown graphically in Figs.‘ 4,5,6,and".

- 14 -



APPENDIX

Rotation of the Axis of Quantization

If p denotes the density matrix for axis of quantization z and P' the same

state for axis of quantization z', ¢ and ¢' are related by the unitary transformation:
p'=R p r7!

The change of axis of quantization is simply a change of basis states from

IJM > bolJM' > where M' is an elgenvalue of J '

Below we glve ‘the transformation matrixes RH and ;{N corresponding to a
rotation of the axis of quant1zat1on from the incident beam direction (Fig. 1a) to
(1) spin 3/2 particle direction (helicity direction) (Fig.' 1b) and to (2) the production
normal (Fig. 1c) respectively,
(1) Rotation to the helicity direction. |
In the nght-handed (x,¥,z) coordinate frame z —k and y = k ><k (Fig. 1a.)

The Euler angles for the rotation which takes z into the helicity direction are

a=0,p8 =@H_and 7=0. 1 (GH =180°- ©) The corresponding rotation matrix R is: 'L

39 Oy 3 Oy 3 oy 3

S)

. . H
cos —§H+3cos 5 J3(sin —5 +sin -—-) J3(-cos ——+cos 5 ) -sin—= +3sin 5
%9 O 36y On
YP(sin —~ +sin 57) 8cos —=+cos 5~ 3sin —5=-sin —2- J3(-cos —5=+cos 5=
3 ) 36 Oy 3@, 3 &y
H L H, G N G -
Jf;(—cos —2—-+cos 5 ). -3sin——+sin 3 3cos —5-+c0s »J.'S(sm 5 +sin 5=)
3 36, Oy . 3
@H -3sin —2-— J3(-cos ——2-I:I+cos ———) <f3(sin —%+sm ?—H) cos _——E;I—{+ 3cos 5

- 15 -~




(2) Rotation to production normal (see Fig. 1c).
The Euler angles which take (x,y,z) into (x',y',z')areq = 900, B = 90° and

Y=0. The density matrix with axis of quantization z' is Ry P R;II , where

ei31r/4 B ei1r/4; B e-i1r/4 e—u'i37r/'4
S eldT4 _ Gin/4 o in/4 3 o 187/4
Ry = =
| V8 BOVE _nfa o Hn/4 g -i3u/4
137/4 B e L7 B o-in/4 e.-i31r/‘4
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LISTING OF TABLES

I, Il and HI:

' - n
The coefficients BM' TANT!

defined by Egs. (II.10) and (II.11) are given for

all possible combinations of £¢',J, A X' and J' up to spin 7/2.

1.

FIGURE CAPTIONS

£ are the c.m.,

incident and final firm directions in the reaction 7+ N—A + .

Coordinate frames for decay angle of A. The vectors fcand ]::

a, incident beam direction in c.m, is Z axis, production normal is y axis.,
b. axis Z'is ——v]?cf (see-appendix).

¢, - axis Z" is production normal II; X f{f (see appendix).

Prodﬁction angular distributions for FF7, GD7 and. DD5 amplitudes.

The decay parameters defined in Sect. V are shown as a function of the A
production a?ngie € for quantization axis of the density matrix as (a) beam
direction and (b) normal to the production plane. For a single amplitude, as
shown here, p:l;I_l = plf__3.

Correlation between the FF7 production angular distribution and the normalized .
decay distribution W(ON, ¢N) integrated over‘ qu. (Coordinate system as in
Fig. lc.)

Correlation between the FF7 production angular distribution and the normalized
W(OB, qu). intégrated ove-r cos 65, (Coordinate system as in Fig. 1a.)

Same as Fig. 4 but for the GD7 amplitudes.

Same as Fig. 5 but for the GD7 amplitudes.



22J*AA'2J"

B0

TABLE I

SD1*SD1
PP1
PP3
PF3
DS3
DD3
DD5
DG5
FP5
FF5
FF7
FHT
GD7
GGT

PP1*PP1
PP3
PF3
DS3
DD3
DD5
DG5S
FP5
FF5
FF7
FHT7
GD7
GGT7

PP3*PP3
PF3
DS3
DD3
DD5
DG5
FP5
FF5
FF7
FH7
G
GGT7

0.25

0.25

0.5

0.5

-0. 316

0. 948
-0.707
0.707
~-0.567
1.388

-0. 316
0.949
-0. 707
0.707

~1.161
0,949

-0.400
-0.600
0.447
0.358
1.506

0,735
0. 686
1.992

-1.161
0.949
-0. 842
1,825

-0.567
1.388

-1.604
1.195

-0.805
~1.147
-0.878

1.014
1. 007

-1.604
1.195

-0, 842
1,825

-1.286
-1,476
-1.155

-1, 764
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TABLE II

PF3*PF3
DS3
DD3
DD5
DGo
FP5
FF¥5
FFT7
FHT7
GD7
GGT

DS3*DS3
DD3
DD5
DGS
FP5
FF5
FF¥7
FHT
GD7
GG7

DD3*DD3
DD5
DG5S
FP5
FFb5
FF7
FH7
GD7
GGT7

DD5*DD5
DG5
FP5
FFb5
FF7
FHT7
GD7
GG7

0.5 0.4

0.268

~-0,215

1. 757
~-0.105
0.515
-0.443
2.474

0.5
~-1.0
0.802

1,643

2.268

0.5
0.572
0.561
-0, 329
1.610

-0, 648
2.173
0. 306

-0.450

0.75

0.263
0.246
2,381

0.519
0.516

-1, 342
1.073
-0, 861
0.878

-0.226
0. 756

-1,342
1.155

~-1.315
~0.268
0.770
0.861

1. 054
0.813
0.308
-0. 690

-2.10
1.286

-1,106
0.990

~1.964

1.690

-1.375
1.403

-1.620
-0,483
-0.735
-1.125

1.299
1.003

-2.817
1.512

-2.582

-1.925
1,721

-2.134
-1.763
-1.380

2,875



TABLE III

L2J*\ A'2J! B0 B1 B2 B3 B4 B5 'BG B'7

DG5*DG5 0,750 0. 765 0.413

FpP5 -0.239 -2.988

FF5 0.188 0.878 1.568

FF7 -0, 162 -0, 756 -1.350

FH7 2.535 1.6905 0.846

GD7 ~-0. 035 -0.482 -3.936

GGT7 0. 395 1.164 1.7605
FP5*FP5 0.750 0.600

FF5 -0.630 -1.575

FF17 0. 542 1.355

FHT7 -0, 385 -3.857

GD7 2,485 1.242

GG7 -0, 926 -1.852
FF5*FF5  0.750 0.472 -0. 322

FF7 0.480 0.905 -2.934

FH7 0.412 1.215 1.837

GD7 -0.217 -1.014 -1.811

GGT7 2,430 0.756 -0. 907
FF7*FF7 1.000 0.7%4 -0.117 -1.010

FHT -0. 355 -1, 045 -1.581

GD7 0. 187 0.873 1.559

GG7 0.186 0.798 0. 965 -3.901
FHT*FH7 1.000 1.111 0.818 0.404

GD7 -0. 089 -0. 751 -5.016

GG7 0.714 1.511 1.994
GD7*GD7 1.000 1. 021 0.551

GG7 -0.456 -1.344 -2.033

GGT*GG7 1.000 0.884 0.150 -0. 606
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