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ABSTRACT 

We outline the formalism for making a partial wave analysis of the reactions 

r + N-A(1236) + T and K + N -z(1385) + a. From such an analysis the decay 

rates of baryon resonances into these inelastic channels can be determined. 
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I. INTRODUCTION 

We give the formulae for making a partial wave analysis of the reaction 

sequence : 

a + N-;A(1236) f w 

L N-i-T 

(I. 1 a) 

(b) 

and 

X + N-x(1385) + n (I. 2 a) 

‘1 A+ -lr (b! 
The decay sequence (I. 1) is described by five independent variables, which may 

be chosen as k, 0, 8, $I, 5, where k is the momentum in the nN c. m. system, 

cos Q =Gti f Gout in the c. m. system, 6, $ are the polar and azimuthal angles 

of the decay nucleon in the A rest frame, and F is the nucleon polarization. By 

“partial wave” analysis we mean that the experimental distributions are used to 

infer the quantities d P’ 3/2, Q l/2( k which are the, S matrix elements connecting ) 
the initial nN state with orbital angular momentum Band spin J to the AT state 

with orbital angular momentum I’ and spin J. J The Sn, 3,2, f 1,2 are complex 

! scalar quantities which are functions only of the total c. m. energy. 
..-_ .~_.. -.. - -... ___- 

Partial wave analyses of reactions (I. 1) and (I. 2) can be used to determine 

the decay rates of N* and Y” resonances into A(1238) + ‘IT and a1385) + r 

respectively, and to check the (IJ’) values inferred from analyses of elastic 

scattering data. Considerable data on these reactions is being amassed in 

current bubble chamber experiments at incident momentum below 3 C&V/c. 
I 

.’ 

Partial wave analyses of the reactionsE + N--+z(1385)+n, and K + N-+A(1520) + x 

have already been made for the special case that the cross section is dominated _. 
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by a single amplitude. 1,2,3 These analyses led to a determination of the (LIP) 

quantum numbers for C(1770) and A(1815), and their decay rate into A(I520) 

+ ‘IT and ~(1385) + ‘lr respectively. 

In this paper we relate the distributions in the variables k, @ , 0, 

$I, $, which can be measured experimentally to the Sl, 3,2 
, 

1! 1,2 amplitudes. 

Previous authors have studied certain aspects of this problem, (mainly the 

relation between the cos @ distribution and the d 8’ 3/2, P l/2 amplitudes), but 

have not enumerated a complete set of equations which utilizes all the experimental 

information on the production and decay of A( x ) to determine the Si, 3,2 3,4,5 
, 

L 1,2. 
_~____... -~~~.- 

We have used the (QSJM) representation for the S matrix, rather than the ’ -- 

‘helicity representation, since we are’concerned with s-channel states of 

! definite spin and parity. All formulas are relativistically exact. 
-.-- -...- _ 

In general, the reaction nN --KnNis a coherent sum of such amplitudes as 

A(nN--aN*), A(nN-cpN), A(rN-xrN),etc. The formalism outlined below is 

applicable only to ,a subset of events corresponding to the reaction nN -7rA. In 

most experiments it is possible to isolate a sample of these events which are 

relatively free from interference of other amplitudes (in some cases the complete 

range of variables 0, 8, C#I will not be accessible due to experimental cuts). 

Models which take into account all possible two particle interactions in the 

nrN final state have been worked out. 596 However, the application of these 

\ models poses practical difficulties because of their mathematical complexity. - -. ..-- .----_. .____.. --~-.-__ 
( We believe that the formalism outlined here is a useful tool for the preliminary 

analysis of the three body final states (I. 1) and (I. 2). This approach has already 

provided information on the coupling of baryon resonances to quasi two-body 

192 
vi 

channels. 
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II. THE PRODUCTION ANGULAR DISTRIBUTION 

In this section the different.ial cross section for the reaction 

0- -I- l/2+--33/2+ O- (II. 1) 

is expressed as a function of the matrix elements 
Ff t 3/2, P l/2 @q- (II. 8)). A 

detailed derivation is given in order to show the origin of the various terms in 

Eq. (II. 8). 

We follow the treatment of two-body scattering reactions by Goldberger and 

Watson , 
7 with their notation: 

. 

Momentum in c. m.8 

Total spin 

2 component of spin 

Orbital angular momentum 

z component of orbital 

angular momentum 

Total angular momentum 

z component of total 

angular momentum 

Entrance Channel 

C 

k 

w/q 

u 

P 

Exit Channel 

C’ 

kf 

S’(3/2) 

u’ 

P’ 

m m’ 

J J’ 

M M’ 
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The difSerentia1 cross section in the c. m. system for the reaction, (II. 1) 

with initial state Ik, S, v> and final state (kf, S l,v’>is 

<c’; sf, s’, v’ IS(k) Ic; k, S,v>12 HI. 2) 

= p, vq f c,, c’s k, c) s,v>2 
I I 

(II. 2al 

where <cl; $f, S’, V’ 1 S(k) 1 c; hk, S, y > is the unitary S matrix element in the 

barycentric subspace on the energy and momentum shell; Eq. (II. 2a) defines the 

scattering amplitude f for the reaction. For an unpolarized target the average 

cross section for any final spin orientation is obtained by averaging over the 

initial spin orientations v and summing over the final spin orientations v’: 

dr? 1 
m =- 25 + 1 c 

g (c’; c,, S’, vt; c; i, s, v) 

V’,V 

= p&y Tr (f f’) (II. 3) . . , 

The S matrix elements are used throughout rather than the T matrix elements, 

because there is no unique convention for the normalization of the T matrix. If 

the T matrix elements are defined by: 

<C’;&’ S’v’ 1 wl c; $8 s, v>= %,,c 8st,s ~v,,v y,, k 

+ i<c’; Lf, St, vt 1 T(k) Ic; i, S, v;> 

S may be replaced everywhere by iT, since we are dealing with an inelastic 

reaction. We will omit the channel suffix c from now on. -’ I 
. 

I _-~- __.. - -. 
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The S matrix element in (II.2 ) is transformed to the (QSJM) representation, 

using the transformation matrix: 

<f S, VI QmSv) = c(C) (D.4) 

which resolves plane wave states into partial waves, and with the Clebsch-Cordon 

coefficients <Q, S,m, V) J, M) which resolve states /Pm SV) into states of total 

angular momentum b M) 

~f,s’,vtls(k)[&S,~ > = c <t,,S’ vtlQ1 m’ St Y’>~~~,S~;~‘,~‘~J’,M’> 

Q’m’J’M’ . 
QmJM 

X<Q’ S’. J’ M’ S(k)P, S J Ivr)<Q,S;m,vlJ,M><Q m S v 1 k,S v>* 
I I 

(II* 5) 

From rotational invariance 

a’ s’ J’. Ml(s(k)(Q i-3 J M> = 3, J,‘M,,,$ s,,p, #) (II* 6) 

J 
where SQ ls, ,Qs is’ the S matrix element in the (QSJM) representation. 

From Eqs. (IT. 4), (II. 5) and(II. 6) we have 

<Lf,S,v ‘~S(k)~k,S,V> = 
c J$%fW1’Sf;mt,v t~J~S&, ns(l~) , 

Q’m’QMJM 

xlj,S;m,v J,M>Yim(i) I 

= 
yQl V-Vt(cos@)<Q’,3/2;v-vt,v:~J,v>S;t3;2 ,,,2Q,1/2;4J,v) , 

P’QJ 

P* 7) 

h - 
specifying the incident beam direction k as axis of quantization, 

i.e.,m=O,M=V,YF and cos 0 = k* cf 
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Inserting (II. 7) into (II. 3) gives 

da ?r 
G=k2 (J -+ l/2) 

l/2 Qt -(J-1/2) 
(-) <Q’,3/2;1/2-u ‘,v’~J,l,‘2>S~t3,2,P1,2(k)Y~~2-v’(cos~) 2 

I 
u”Q’J 

where we have dropped the summation over Y = l/2, - l/2 since, for the chosen 

axis of quantization, do-(v’, v ) = da( -v ‘, -V ). The summation over Q is superfluous 

because Q is uniquely determined by J and Q’ and <Q, 1/2;0,1/2 1 J,1/2> = 

If the relative intrinsic parities of the initial and final state particles are odd, then 
___--- --- .--~__ ---- ._ L- .-. .__ ___- 

&1/2;0,1/2 { J,1/2> = (-)Qt-(J + 1’2) iQ++‘y 
172 

; 
I 

The total cross section is: 

* . \ 

The maximum value of SjIt3,2 Q1,2 is unity, so that the maximum inelastic cross 
9 

section for a single partial wave amplitude is R &J + l/2). More generally 

2 
F’= c nA2(J ’ l/21 xIsi~3/2,~1/2(k) -$t,c$t,Q$*,g 

J Q’ 

m. 9) 

and the maximum Fin the elastic channel for a single amplitude is therefore 

47&J + l/2). 
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The S matrix element in the proceeding equations is in general a linear . 

combination of two isotopic spin amplitudes. Denoting the isotopic spin of the 

initial state meson and baryon by I and T respectively we have for reactions (I. 1): 

S =<I,RIStT313/2,13 + T3> S3i2 +<I,T;13T311/2,13+T3>S1,2 

and for reactions (I. 2) 

S =<I,T;13,T311,13 + T3)S1 +<I,T;13T310,13 + T3>S0 

The R. H. S. of Eq. (II. 8) can be written as an expansion in the Legendre 

polynomials Pn(cos@) 

da 
dR = ft2 c A,P, (cosQ) 

n 
(II. 10) 

_ _ ..-- . . _ 
where 

An = (2n +. 1). S Ff pn (case) dR 
. 47rh2 

The coefficients Bn, evaluated by inserting (II. 8) in (II. 11) are listed in Table I. 

The scattering angle cos @ = 20 cf is not uniquely defined. In elastic scattering . 

the convention is that t and cf refer to the same particle. Then the amplitude SJ 

always lies in the upper half of the complex plane (Im S > 0). In inelastic scattering 

such as 7r + N - K + A, where the outgoing baryon and boson belong to the same SU3 

octets as the initial state particles, the same convention is maintained by invoking 

SU symmetry. However, the amplitude SJ can now lie anywhere in the complex 
-’ 

plane because of the sim of the SU3 .Clebsch-_Gprdon coefficients. ____ _ _ _. _.. .._ .-. ..-_. 
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I 

In the reaction 7r + N - r + A, in which N and A belong to different SU3 

multiplets, a higher symmetry is needed to make a correspondence between N and 

A. Instead we make the simple convention that f; and $ are the directions of the 

initial and final state bosons. The formalism in Sect. II is indbpendent of the 

definition of scattering angle. If ^kf is replaced by (-kf), then Si,l goes to 

P’ J 
t-1 SJ!f 

- 
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I 

III. THE DECAY ANGULAR DISTRIBTUION 

For clarity we specify reaction(1. 1)Notation 

0, $ Polar and azimuthal decay angles in the A rest, frame. 

p Spin density matrix of A 

fD Amplitude for the decay I. lb 

The differential decay distribution W( 0, $) can be expressed as a function of 

the partial wave amplitudes. This is most conveniently done through the density 

matrix formalism : 

p= ff” 

Tr(f f+) 
w. 1) 

where f is the scattering amplitude for reaction(1. lal, defined in Eq. (II. 2a). Here 

P is the 7rA spin state density matrix in the overall center-of-mass. However since 

the pion has zero spin P is simply the A density matrix in the same system. The 

spin state of a particle is invariant under a transformation from the rest frame 

of the particle to a moving frame, 9 hence p is also the density matrix of A 

in its rest frame. Then 

- 

W(e, $1 = T,(fpf+) = 
Tr (fDf f+ fDf) 

_ Tr (f f’) 
(ItI. 2) 

The decay amplitude for the p-wave decay A-+N + 7~ is given by Eq. (II. 7): 

(III. 3) 

We ignore the energy dependent part of the amplitude, since it does not affect the 

angular distributions. With this definition of fD the decay distribution (III. 2) is 

normalized to unity. 
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The decay angles 0, 4 refer to the coordinate frame in which the Z-axis is 

the axis of quantization. The amplitude f has been calculated in section II for 

Z = k, the c. m. incident beam direction: 
/ -. - -. _ 

_’ --. 

<3/2v’ 1 f 1 1/2v > = $~(J+I/2)1’2(-)f’-(J-1’2)Y7 ‘(cos@)<~~/~;Y+ v,’ [Jv>S;,~,~,, nlj2 

P’J I 
! --- 

(III. 4, 

Defining a coordinate system Z = ^k, y = k X kf, Fig. la, thr term YL,-” ‘(cos Q) 

above becomes JgG- &I’ + l)(f’+J -lJ’l)!/(Qt +Iu -V ‘I)! Pi,-, ‘(cos Q) since the 

production azimuthal angle is always zero in this frame. This form of f, inserted 

in Eqi (III. 2), gives the decay angular distribution in the coordinate system of Fig. la. 

The decay distribution in another frame of reference is obtained by rotation of 

the axis of quantization of the density matrix p. The rotation matrices which take 

the quantization axis from the beam direction to the helicity direction or to the 

production normal are given in the appendix. 

The form of the decay distribution depends on the choice of quantization 

axis. For axis of quantiza tion in the production plane (Fig. la or lb) the general 

form for the density matrix is 
10 

- 

Hermiticity requires that all diagonal elements are real and that p3-3 and p 1-I 

I 

I P P P P 
33 31 3-l 3-3 

!-* p P* 
i _ 

I P 
/ p31 11 l-l 3-1 

* * 
%-1 -!I.-1 P 11 -p31 j 

-P P -P P 
3-3 3-l 31 33 / 

(III. 5) 

are purely imaginary. For a single amplitude all elements of the density matrix 

are real. .~-- ..____-- --.--- _-...- .__ . .~- ----~~ 
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From Eqs. (III.2), (III. 3), @I.?J ) the decay distribution for the z-axis in the 

production plane is 

3 
W(e@) = Tn 

[ 
l/6 + 2/3 P33 + (l/2 - 2 p33) cos2e 

(III. 6) 

-$ Re p,,sin28 cos 29 --?-Re P 0 31sin 20 cos + 1 
I 

For axis of quantization along the production normal t x .k, the general form 

for the density matrix is. ._ 

P 33 

0 

* 
S-1 

0 

0 Q-1 

and the corresponding decay distribution is 
-1 

(III. 7) 
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IV. POLARIZATION OF THE SPIN l/2 EL4RYON 

Whereas A can be polarized only along the production normal the spin l/2 

baryon can be polarized in any direction. The density matrix of a spin l/2 

particle in its rest system can be written 

?1+ Pz px -iP 
Y P 

112 
= l/2 (Iv* 1) 

Px+iP 
Y 

1 -Pz 

where px, Py and Pz are the three components of the polarization vector. The 

polarization can be expressed as a function of the partial wave amplitudes 

through the relation: 

where P is the density matrix of the A. Equation (IV. 2) defines P 
l/2 

in the A rest 

frame with the same axis of quantization as p. The density matrix ol,2 is 

unchanged by a transformation from the A system to the nucleon rest system. 

men the reaction goes by a - single partial wave amplitude both the A and the 

nucleon are\ unpolarized.] 
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V. ANALYSIS OF EXPERIMENTAL DATA 

The experimental data at a given momentum consists of a joint distruibtion in 

three independent variables, which may be @,8 and C$ as defined in Sect. I. (We 

neglect polarization which is usually not measured in reaction I. 1). The distribuiton 

I(@, 0, Cp) is related to the partial wave amplitudes SJ 1’ 3/2, I l/2 by: 

w* 1) 

There are two possible forms for W(@,e, $)-Eqs. (III. 6) and (III. 7’) depending 

on the coordinate frame in which 8, # are measured. In the coordinate frame 
d@ z SC, y =iix C, (Fig. la), 5 = f Tr (f f’) and W(@, 8, $) = Tr (fDf f’ fD+)/ 

(2 da/dfij where f and fD are given by Eqs. (III.4) and (III. 3) respectively. Note 

that in this case the 2 axis is the incident beam direction in c-m. system (not in 

the A rest system). 

For a given set of partial wave amplitudes, Eq. (V. 1) predicts the distribution 

I(@, 0, $). In general, the set of amplitudes which best fit the data is found by 

computer search, using the method of X2 minimization or maximum likelihood. 

The decay distribution of A or Cfor a given production angle 0 is completely 

described by three parameters which are functions of the density matrix elements- 

P33@) 2 Re P3,1 (0) and Re ~~~(0) for the axis of quantization in the production plane, 

or ( pZ@J + P yl -1 (~1) , Re (pyl (0) + pye3 (01) and QJI (ptwl to> + P~T_~ 0) for the quantization 
axis along the production normal. The experimental data at a single momentum can 

therefore be summarized in the form of four distributions in cos (a), -the production 

angle. These distributions are shown in Figs. 2,3 for the partial wave amplitudes 

DD5, FF7, and GD7 for the coordinate systems defined in Fig. la (pB) and Fig. lc 

(pN). The correlations between the production and decay angles of the A are clearly 

sensitive to the spin and parity of the partial wave amplitudes. 

- 13 - 



The experimental density matrix elements’ are statistically correlated. 

This correlation must be taken into account if the comaprison between the exper- 

imental and calculated distributions is made in terms of density matrix elements. 

The experimental data may be insufficient to determine all the correlations 

between 0,8 and 4. In that case the question of how best to bin the data arises. 

Also the choice of coordinate frame in which the decay angles are measured 

may be important. There is no simple prescription - but a study of the density 

matrix elements for the hypothesis being tested will usually indicate the best 

procedure. For example, if one is trying to distinguish between the amplitudes 

FF7 and GD7 the correlations between @ and BN or between 0 and cjB are 

N clearly very sensitive, as indicated by the pflots of pll and Re P& in Fig. 2. 

These correlations are shown graphically in Figs. 4, 5, 6, and 7. 
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APPENDIX 

Rotation of the Axis of Quantization 

If p denotes the density.matrix for axis of quantization z and P’ the same 

state for axis of quantization z ‘, P and P’ are related by the unitary transformation: 

The change of axis of quantization is simply a change of basis states from 

IJ I M > to JM*‘> where Mr is an eigenvalue of Jz,. 
_.-- 

I Below we give the transformation matrixes RH and itN corresponding to a 
I 
! rotation of the axis of quantization from the incident beam direction (Fig. la) to 

(1) spin 3/2 particle direction (helicity direction) (Fig. lb) and to (2) the production 

normal (Fig. lc) respectively. I 

(1) Rotation to the helicity direction. 

In the right-handed (x, y, z) coordinate frame z = t and y = t k if. (Fig. la’. ) 

The Euler angles for the rotation which takes z into the helicity direction are I 

cv =0, p=@Hand y=O. 11 (@H = 180°- 0.) The corresponding rotation matrix RH is: 
~____.._ --.. ~... _~.- 1 

wJ.J @J-J 
+3cos y- 3% @H 3 

$(sin 2 + sin -2-- ) 93 $(-cos 2 @H 3% @H CO8 - +COS 7j- ) -sin - 2 2 +3sin -2-- 

30H 3n 3cos +cos @H %i QH 2 2 3sin T.-sin y $( 

31 @(SOS %I +COS @H 2 2 ) -3sin 3QH +- sin @iI --2- 2 

3 
Sill- %I 

2 
$3( 
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I 

(2) Rotatioq to production normal (see Fig. lc). 

The Euler angles which take (x,y,z) into (x’,y’,z’) are CY = 90”, p = 90’ and 

Y = 0. The density matrix with axis of qnantization z’ is RN p Ri. , where 
* 

a 
c 

J37rf4 $3 .in/4 ~5 e-i7r/4 e- i37r/4 

-$3 ei3?r/t _ eirfJ e-i7rf4 J3 e-i3ir/;l 
1 

RN = -i- J-- G e i37rf4 _ ,irrf4 _ e-i~f4 G e-iW4 

.13’rrf4 $ e-ilr/‘4 -G .-in/4 e-i37f/4 
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LISTING OF TABLES 

I, II and III: 

The coefficients Bi,JiXh,J, defined by Eqs. (II. 10) and (II. 11) are given for 

all possible combinations of M’ ; J, X X and J’ up to spin 7/Z. 

FIGURE CAPTIONS 

.----- ______ -..- 
__I._-. ------1--- I-.--.--._cI-.-- .---- _-1.--.- -- 

1. Coordinate frames for decay angle of A. The vectors fi and cf are the c. m. 

incident and final firm directions in the reaction ?r + N--+A + r. 

a, incident beam direction in c. m. is Z axis, production normal is y axis. 
‘A 

2. 

3. 

b. axis Z ’ is - kf (see. appendix). 

CT . axis Z” is production normal c X ^kf (see appendix). 

Production angular distributions for FF7, GD7 and DD5 amplitudes. 

The decay parameters defined in Sect. V are shown as a function of the A 

production angle Q for quantization axis of the density m,atrix as (a) beam 

direction and (b) normal to the production plane. For a single amplitude, as 

N N shown here, p3-1 = pl -3= 

4. Correlation between the FF7 production angular distribution and the normalized 

decay distribution W(QN, eN) integrated over $I N. (C oordinate system as in 

Fig. lc. ) 

5. 

6. 

Correlation between the FF7 production angular distribution and the normalized 

W(eB, $B) integrated over cos 8 B. (Coordinate system as in Fig. la. ) 

Same as Fig. 4 but for the GD7 amplitudes. 

7. Same as Fig. 5 but for the GD7 amplitudes. 
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TABLE I 

@‘2J*Xx’2J B” B1 B2 B3 $ B5 B6 B7 

SDl* SD1 

PPl 

PP3 

PF3 

DS3 

DD3 

DD5 

DG5 

FP5 

FF5 

FF7 

FH7 

GD7 

GG7 

PPl* PPl 

PP3 

PF3 

DS3 

DD3 

DD5 

DG5 

FP5 

FF5 

FF7 

FH7 

GD7 

GG7 

PP3* PP3 

PF3 

DS3 

DD3 

DD5 

DG5 

FP5 

FF5 

FF7 

FH7 

‘337 

GG7 

0.25 

0.5 

-0.316 

0.948 

-0.707 

0.707 

-0.567 

1.388 

-1.161 

0.949 

-0.842 

1.825 

-1.604 

1.195 

0.25 

-0.316 

0.949 

-0.707 

0.707 

-0.567 

1.388 

-1.161 

0.949 

-0.842 

1.825 

-1.604 

1.195 

0.5 -0.400 

-0.600 

0.447 

0.358 

1.506 

0.735 

0.686 

1.992 

-0.805 

-1.147 

-0.878 

-1.286 

-1.476 

-1.155 

1.014 

1.007 -1.764 



TABLE II 

@‘2J*Xh’2J’ B” B1 B2 B3 B4 B5 B6 B7 

PF3* PF3 

DS3 

DD3 

DD5 

DG5 

FP5 

FF5 

FF7 

FH7 

GD7 

GG’i 

DS3* DS3 

DD3 

DD5 

DG5 

FP5 

FF5 

FF7 

FH7 

GD7 

GG7 

DD3* DD3 

DD5 

DG5 

FP5 

FF5 

FF7 

FH7 

GD7 

GG7 

DD5*DD5 

DG5 

FP5 

FF5 

FF7 

FH7 

GD7 

GG7 

0.4 

0.268 

-0.215 

1.757 

-0.105 

0.515 

-0.443 

2.474 

-1.342 

1.073 

-0.861 

0.878 

-2.10 

1.286 

-1.106 

0.990 

-0.226 -2.817 

0.756 1.512 

-1.0 

0.802 

-1.964 

1.643 

-1.342 

1.155 

-2.582 

2.268 

1.690 

0.572 

0.561 

-0.329 
1.610 

-0.648 

2.173 

0.306 

-0.450 

0.263 

0.246 

2.381 

0.519 

-1.315 

-0.268 

0.770 

0.861 

1.054 

0.813 

0.308 

-0.690 

-1.375 

1.403 

-1.925 

1.721 

-1.620 

-0.483 

-0.735 

-1.125 

-2.134 

-1.763 

-1.380 

1.299 

0.516 1.003 2.875 



TABLE III 

!Z’2J*XX12J’ B” B1 B2 B3 B4 B5 B6 B7 

DG5*DG5 

FP5 

FF5 

FF7 

FH7 

GD7 

GG7 

FP5*FP5 

FF5 

FF7 

FH’7 

GD7 

GG7 

FF5*FF5 

FF7 

FH7 

GD7 

GG7 

FF7*FF7 

FH7 

GD7 

GG7 

FH7*FH7 

GD7 

GG7 

GD7*GD7 

GG7 

GG7* GG7 

0.750 0.765 

0.750 

0.750 

0.188 

-0.162 

2.535 

2.485 

-0.217 

2.430 

1.000 

0.187 

0.186 

1.000 

1.000 

1.000 

-0.035 

0.395 

0.600 

-0.630 

0.542 

0.472 

0.480 

0.412 

0.794 

-0.355 

1.111 

1.021 

-0.456 

0.884 

0.413 

-0.239 

0.878 

-0.756 

1.6905 

-0.482 

1,164 

-1.575 

1.355 

-0.385 

1.242 

-0,926 

-0.322 

0.905 

1.215 

-1.014 

0.756 

-0.117 

-1.045 

0.873 

0.798 

0.818 

-0.089 

0.714 

0.551 

-1.344 

0.150 

-2.988 

1.568 

-1.350 

0.846 

-3.936 

1.7605 

-3.857 

-1.852 

-2.934 

1.837 

-1.811 

-0.907 

-1.010 

-1.581 

1.559 

0.965 

-0.751 

1.511 

-3.901 

0.404 

-5.016 

1.994 

-2.033 

-0.606 
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