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Abstract

Recently, Antoniadis, Konitopoulos and Savvidy introduced, in the context of the so-called extended 
gauge theory, a procedure to construct background-free gauge invariants, using non-abelian gauge potentials 
described by higher degree forms.

In this article it is shown that the extended invariants found by Antoniadis, Konitopoulos and Savvidy 
can be constructed from an algebraic structure known as free differential algebra. In other words, we show 
that the above mentioned non-abelian gauge theory, where the gauge fields are described by p-forms with 
p ≥ 2, can be obtained by gauging free differential algebras.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Higher gauge theory [1–8] is an extension of ordinary gauge theory, where the gauge poten-
tials and their gauge curvatures are higher degree forms. It is believed that higher gauge theories 
describe the dynamics of higher dimensional extended objects thought to be the basic building 
blocks of fundamental interactions.

The basic field of the abelian higher gauge theory, originated in supergravity is a p-form gauge 
potential A, whose (p + 1)-form curvature is given by F = dA from which the Lagrangian and 
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the action of the theory can be constructed. This abelian theory is known in the specialized 
literature as p-form electrodynamics and it is endowed with a local gauge symmetry with the 
transformation law A → A′ = A + dϕ for some (p − 1)-form ϕ.

The natural question is: does there exist a non-abelian higher gauge theory? To answer this 
question it is interesting to remember that the points of a curve have a natural order and the 
definition of the parallel transport along a given curve indeed makes use of this order. However, 
for higher dimensional submanifolds such a canonical order is not available. This lack of natural 
order led to C. Teitelboim in Ref. [9] to the formulation of a no-go theorem, ruling out the 
existence of non-abelian gauge theories for extended objects.

Recent attempts to circumvent this theorem has been carried out in Refs. [1–8]. In particular, 
in Refs. [1–4], were found invariants similar to the Pontryagin–Chern forms P2n in non-abelian 
tensor gauge field theory, denoted by �2n+p, with p = 3, 4, 6, 8. Since d�2n+p = 0, we can write 

�2n+p = dC(2n+p−1)

ChSAS . In the same references were found explicit expressions for these invariants 
in terms of higher order polynomials of the curvature forms. As with standard Chern–Simons 
forms, the secondary forms C(2n+p−1)

ChSAS are background-free, quasi-invariant and only locally de-

fined (and therefore defined only up to boundary terms, C(2n+p−1)

ChSAS ∼ C
(2n+p−1)

ChSAS + dσ (2n+p−2)).
The purpose of this paper is to show that the invariants introduced in Refs. [1–4] can be 

constructed from a gauged free differential algebra.
This paper is organized as follows: In Section 2, we briefly review the extended gauge the-

ory developed in Refs. [1–8]. In Section 3, we will make a short review about free differential 
algebras and their gauging. Section 4 contains the results of the main objective of this work, 
namely: to show that the algebraic structure known as free differential algebras (FDA), allows 
to formulate a theory of non-abelian gauge with gauge fields described by p-forms with p ≥ 2
and to prove that the extended invariants found in Refs. [1–4] can be constructed by gauging free 
differential algebras. We finish in Section 5 with some final remarks and considerations on future 
possible developments.

2. Chern–Simons–Antoniadis–Savvidy (ChSAS) forms

In this section we briefly review the extended gauge theory developed in Refs. [1–4].

2.1. Chern–Simons forms

The Pontryagin–Chern forms P2n+2 = 〈Fn+1〉 satisfy the condition dP2n+2 = 0, where 
F = dA + A2 is the 2-form field strength of the 1-form gauge field A. From the Poincaré 
lemma, we know that locally there exists a (2n + 1)-form C2n+1 such that P2n+2 = dC2n+1. 
This (2n + 1)-form C2n+1 is called a Chern–Simons form which is quasi-invariant under gauge 
transformations [10].

Using the Chern–Weil theorem we can find an explicit expression for the Chern–Simons 
forms. In fact: let A(0) and A(1) be two one-form gauge connections on a fiber bundle over a 
(2n + 1)-dimensional base manifold M , and let F (0) and F (1) be the corresponding curvatures. 
Then, the difference of Pontryagin–Chern forms is exact,

〈[
F (1)

]n+1〉 − 〈[
F (0)

]n+1〉 = dT (2n+1)
(
A(1),A(0)

)
, (1)

where
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T (2n+1)
(
A(1),A(0)

) = (n + 1)

1∫
0

dt
〈
�Fn

t

〉
, (2)

is called a transgression (2n + 1)-form, with � = A(1) − A(0) and At = A(0) + t �. The 2-form 
Ft stands for the field-strength of the 1-form connection At , Ft = dAt + AtAt . Setting A(0) = 0
and A(1) = A in (2), we obtain the well known Chern–Simons (2n + 1)-form

C2n+1(A) = T (2n+1)(A,0) = (n + 1)

1∫
0

dt
〈
A

(
tdA + t2A2)n〉

. (3)

From the Chern–Weil theorem it is straightforward to show that under gauge transformations the 
Chern–Simons forms are quasi-invariant. However, it is important to stress that since a connec-
tion cannot be globally set to zero unless the bundle (topology) is trivial, Chern–Simons forms 
turn out to be only locally defined.

2.2. Non-abelian tensor gauge fields

The idea of extending the Yang–Mills fields to higher rank tensor gauge fields was used in 
Refs. [1–4] to construct gauge invariant and metric independent forms in higher dimensions. 
These forms are analogous to the Pontryagin–Chern forms in Yang–Mills gauge theory.

2.2.1. ChSAS forms in (2n + 2)-dimensions
The first series of exact (2n + 3)-forms is given by

�2n+3 = 〈
Fn,F3

〉 = dC(2n+2)
ChSAS , (4)

where F3 = dA2 + [A, A2] is the 3-form field-strength tensor for the 2-rank gauge field 
A2 = 1

2Bμν ⊗ dxμ ∧ dxν = 1
2Ba

μνTa ⊗ dxμ ∧ dxν and satisfy the Bianchi identities, DF3 +
[A2, F ] = 0. Under gauge transformations, the gauge potential A2 and the corresponding curva-
ture transform as [1]

δA2 = Dξ1 + [A2, ξ0], (5)

δF3 = D(δA2) + [δA,A2], (6)

where ξ0 = ξaTa is a 0-form gauge parameter and ξ1 = ξa
μTa ⊗ dxμ is a 1-form gauge parame-

ter.
Using the Chern–Weil theorem, we can find an explicit expression for the Chern–Simons 

form. In fact: Let A(0) and A(1) be two gauge connection 1-forms, and let F (0) and F (1) be their 
corresponding curvature 2-forms. Let A(0)

2 and A(1)
2 be two gauge connection 2-forms and let 

F
(0)
3 and F (1)

3 be their corresponding curvature 3-forms. Then, the difference �(1)
2n+3 − �

(0)
2n+3 is 

an exact form

�
(1)
2n+3 − �

(0)
2n+3 = 〈[

F (1)
]n

,F
(1)
3

〉 − 〈[
F (0)

]n
,F

(0)
3

〉 = dT(2n+2)
(
A(0),A

(0)
2 ;A(1),A

(1)
2

)
, (7)

where

T(2n+2)
(
A(0),A

(0)
2 ;A(1),A

(1)
2

) =
1∫

0

dt
(
n
〈
Fn−1,�,F3t

〉 + 〈
Fn

t ,	
〉)
, (8)

with 	 = A
(1) − A

(0), is what we call Antoniadis–Savvidy (AS) transgression form.
2 2
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Using the procedure followed in the case of Chern–Simons forms, we define the (2n +
2)-ChSAS form as

C
(2n+2)
ChSAS = T(2n+2)(A,A2;0,0) =

1∫
0

dt
〈
nAFn−1

t F3t + A2F
n
t

〉

= 〈
Fn,A2

〉 + dϕ2n+1. (9)

This result is analogous to the usual Chern–Simons form (3), but in even dimensions [8]. It is 
interesting to notice that transgression forms (both, standard ones and the above generalization) 
are defined globally on the spacetime basis manifold of the principal bundle and are off-shell 
gauge invariant. Chern–Simons forms (both, standard ones and the AS generalization) are locally 
defined and are off-shell gauge invariant only up to boundary terms (i.e., quasi-invariants).

2.2.2. ChSAS forms in (2n + 3)-dimensions
The second series of invariant forms is defined in 2n + 4 dimensions and is given by

�2n+4 = 〈
Fn,F4

〉 = dC(2n+3)
ChSAS , (10)

where the corresponding (2n + 3)-form C(2n+3)
ChSAS is defined in terms of the 4-form F4 = dA3 +

[A, A3] field-strength tensor for the 3-rank gauge field A3. In fact, following the procedure shown 
in the above subsection, we define the (2n + 3)-ChSAS form as

C
(2n+3)
ChSAS =

1∫
0

dt
〈
nAFn−1

t F4t + A3F
n
t

〉

= 〈
Fn,A3

〉 + dϕ2n+2. (11)

2.2.3. ChSAS forms in (2n + 5)-dimensions
The third series of exact (2n + 6)-forms is given by [4]


2n+6 = 〈
Fn,F6

〉 + n
〈
Fn−1,F 2

4

〉 = dC(2n+5)
ChSAS , (12)

where the corresponding (2n + 5)-form C(2n+5)
ChSAS is defined in terms of the 6-form F6 = DA5 +

[A3, A3] field-strength for the rank-5 gauge field A5. As in subsection 2.2.1 we can now also 
define the (2n + 5)-ChSAS form as

C
(2n+5)
ChSAS = 〈

Fn,A5
〉 + n

〈
Fn−1,F4,A3

〉
. (13)

2.2.4. ChSAS forms in (2n + 7)-dimensions
The fourth series of invariant closed forms �2n+8 in (2n + 8) dimensions is given by [3]

ϒ2n+8 = 〈
Fn,F8

〉 + 3n
〈
Fn−1,F4,F6

〉 + n(n − 1)
〈
Fn−2,F 3

4

〉 = dC(2n+7)
ChSAS , (14)

where the corresponding (2n + 7)-form C(2n+5)
ChSAS is defined in terms of the 8-form F8 = DA7 +

3[A3, A5] field-strength for the rank 7 gauge field A7. From (14) it is possible to find the called 
(2n + 7)-ChSAS form

C
(2n+7)
ChSAS = 〈

Fn,A7
〉 + n(n − 1)

〈
F4,F4,A3,F

n−2〉 + n
〈
F6,A3,F

n−1〉 + 2n
〈
F4,A5,F

n−1〉.
(15)
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3. Free differential algebras

In this section, we will make a short review on free differential algebras and their gauging 
[11–14].

The dual formulation of Lie algebras provided by the Maurer–Cartan equations [13] can be 
naturally extended to p-forms (p > 1). Let’s consider an arbitrary manifold M and a basis of 
exterior forms {�A1(p1), �A2(p2), . . . , �An(pn)} defined on M , labeled by the index A and by the 
degree p of the form, which may be different for different values of A. This means that each pi

takes values 0, 1, 2, . . . , N , while i takes the values 1, 2, ..., n.
The external derivative d�A(p) can be expressed as a combination of the elements of the base, 

which leads to write a generalized Maurer–Cartan equation of the following type [11–14]

d�A(p) +
N∑

n=1

1

n
C

A(p)

B1(p1)···Bn(pn)�
B1(p1) ∧ · · · ∧ �Bn(pn) = 0, (16)

where the coefficients CA(p)

B1(p1)···Bn(pn) are called generalized structure constants. The symmetry 

of these constants in the lower index is induced by the permutation of the forms �A(p) in the 
product wedge and are different from zero only if

p1 + p2 + · · · + pn = p + 1. (17)

Here, the number N is equal to pmax + 1, where pmax is the highest degree in the set {�A(p)}. 
One can say that Eq. (16) is a generalized Maurer–Cartan equation and that it describes a FDA if 
and only if the integrability condition d2�A(p) = 0 follows automatically from (16). Explicitly, 
the condition for (16) to be a FDA is given by

d2�A(p) = −
N∑

n,m=1

1

m
C

A(p)

B1(p1)···Bn(pn)C
B1(p1)

D1(q1)···Dm(qm)

�D1(q1) ∧ · · · ∧ �Dm(qm) ∧ �B2(p2) ∧ · · · ∧ �Bn(pn)

= 0. (18)

This equation is just the analogue of the Jacobi identities of an ordinary Lie algebra. It is very 
instructive to have a look at the most general form of a FDA as it emerges from theorems of 
Sullivan. From Ref. [13] we know that: (i) a FDA is called “minimal algebra” when it is true 
that CA(p)

B(p+1) = 0. This means that all forms appearing in the expansion of d�A(p) have at most 
degree p, being the degree (p + 1) ruled out; (ii) a FDA is called a contractible algebra when 
the only form appearing in the expansion of d�A(p) has degree (p + 1), namely

d�A(p) = �A(p+1), i.e., d�A(p+1) = 0. (19)

Sullivan’s fundamental theorem. The most general free differential algebra is the direct sum of 
a contractible algebra with a minimal algebra.

3.1. Gauging free differential algebras

Physical applications of FDA require a generalization of the concepts of soft 1-forms and 
curvatures introduced gauging of Maurer–Cartan equations [12–14].
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Let {AB1(p1), AB2(p2), . . . , ABn(pn)} be a set of p-forms gauge potential, labeled by the index 
B and by the degree p of the form, which may be different for different values of B . If we con-
sider the p-forms ABi(pi) as the gauge potentials of a FDA, in the same way as the components 
Aa are the gauge potentials of an ordinary Lie algebra described by the ordinary Maurer–Cartan 
equations, then the curvatures associated with the ABi(pi) potentials are given by

FA(p+1) = dAA(p) +
N∑

n=1

1

n
C

A(p)

B1(p1)···Bn(pn)A
B1(p1) ∧ · · · ∧ ABn(pn). (20)

If we apply the exterior derivative to both sides of Eq. (20), we obtain a generalization of the 
Bianchi identity [13]

∇FA(p+1) = dFA(p+1) +
N∑

n=1

C
A(p)

B1(p1)···Bn(pn)
FB1(p1+1) ∧AB2(p2) ∧· · ·∧ABn(pn) = 0. (21)

In complete analogy to what one does in ordinary group theory, we say that the left side of (21)
defines the covariant derivative ∇ of an adjoint set of (p + 1)-forms. With this definition, the 
Bianchi identity (21) just states that the covariant derivative of the curvature set FA(p+1) is zero 
as it happens for ordinary groups.

4. Extended gauge theory and gauged FDA

Let us now consider the explicit form of the equations (20), (21). In the case of a minimal 
FDA, the explicit form of equations (20), (21) for p = 1, 2, 3, 5, 7, 9, is given in Appendices A 
and B respectively. Here we will list, using the nomenclature of Refs. [1–4], only the equations 
we will use later. In fact, from (79) we can see that, if we restrict ourselves to the case of an 
FDA whose structure constants satisfy the condition CA(q+r−1)

B(q)C(r) = CA
BC for any r < q , where 

CA
BC correspond to the structure constants of a Lie algebra,1 then the equations (78), (79) can be 

written in the form (see Appendix A)

F = dA + A2,

F3 = dA2 + [A,A2],
F4 = dA3 + [A,A3],
F6 = dA5 + [A,A5] + 1

2
[A3,A3],

F8 = dA7 + [A,A7] + [A3,A5],
F10 = dA9 + [A,A9] + [A3,A7] + 1

2
[A5,A5]. (22)

In the same way, for the equation (80) we find (see Appendix B),

DF = 0,

DF3 + [A2,F ] = 0,

DF4 + [A3,F ] = 0,

1 We will consider this condition in the rest of this paper.
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DF6 + [A3,F4] + [A5,F ] = 0,

DF8 + [A3,F6] + [A5,F4] + [A7,F ] = 0,

DF10 + [A3,F8] + [A5,F6] + [A7,F4] + [A9,F ] = 0. (23)

It should be noted that equations (22) and (23) match those found in Refs. [1–4], except for 
numerical coefficients. However, they coincide exactly after an appropriate transformation of the 
gauge fields (see Appendix F).

4.1. Gauge transformations

Let {λB1(p1), . . . , λBn−1(pn−1)} be a set (p − 1)-forms gauge parameters and let {AB1(p1), . . . ,
ABn(pn)} be a set of p-forms gauge potentials labeled by an index B and by the degree p. Under 
a gauge transformation, the gauge potential transforms as

δAA(p+1) = dλA(p) +
N∑

n=1

C
A(p)

B1(p1)B2(p2)···Bn(pn)A
B1(p1) ∧ λB2(p2) ∧ · · · ∧ λBn(pn). (24)

In the case of a minimal FDA, the explicit form of equation (24) for n = 2 and p = 1, 2, 3, 5, 7, 9, 
is given in Appendix C. From (83) we can see that

δA = Dλ,

δA2 = Dλ1 + [A2, λ],
δA3 = Dλ2 + [A3, λ],
δA5 = Dλ4 + [A3, λ2] + [A5, λ],
δA7 = Dλ6 + [A3, λ4] + [A5, λ2] + [A7, λ],
δA9 = Dλ8 + [A3, λ6] + [A5, λ4] + [A7, λ2] + [A9, λ]. (25)

4.2. Gauge transformations for curvatures

Following the definition of the usual gauge theory, we have

δFA(p+1) = ∇(
δAA(p)

)
, (26)

so that

δFA(p+1) = ∇(
δAA(p)

) = d
(
δAA(p)

)

+
N∑

n=1

C
A(p)

B1(p1)B2(p2)···Bn(pn)δA
B1(p1) ∧ AB2(p2) ∧ · · · ∧ ABn(pn). (27)

In the case of a minimal FDA, the explicit form of equation (27) for p = 1, . . . , 9 is given Ap-
pendix D. When a FDA has structure constants that satisfy the condition CA(q+r−1)

B(q)C(r) = CA
BC , we 

find that the equations (85) can be written in the form (see Appendix D),

δF = [F,λ],
δF4 = [F4, λ] + [F,λ2],
δF6 = [F6, λ] + [F4, λ2] + [F,λ4],
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δF8 = [F8, λ] + [F6, λ2] + [F4, λ4] + [F,λ6],
δF10 = [F10, λ] + [F8, λ2] + [F6, λ4] + [F4, λ6] + [F,λ8]. (28)

The equations (25), (28) match those found in Refs. [1–4], after an appropriate redefinition of 
the gauge fields (see Appendix F).

5. Extended invariants

In this section it is shown that the extended invariants found by Antoniadis and Savvidy in 
Refs. [1–4] can be constructed from a gauged free differential algebra.

5.1. Chern–Pontryagin invariants

Let A = AaTa be a 1-form connection evaluated in the Lie algebra g of the group G and let 
F = FaTa = dA +A2 be its corresponding 2-form curvature. The Chern–Pontryagin topological 
invariant in 2n + 2 dimensions is given by [15]

P2n+2 = 〈F ∧ · · · ∧ F 〉 = ga1···an+1F
a1 ∧ · · · ∧ Fan+1 , (29)

where the bracket 〈· · · 〉 is a symmetric multilinear form that represents an appropriately normal-
ized trace over the algebra defined by

ga1···an+1 = 〈Ta1 , . . . , Tan+1〉. (30)

5.2. Generalized Chern–Pontryagin invariants

Let’s consider now the generalization of the Chern–Pontryagin topological invariant to the 
case where Lie algebra g is replaced by a free differential algebra. Let {FB1(p1), . . . , FBn+1(pn+1)}
be a set of p-forms field intensities. It is possible to construct topological invariants analogous to 
the Chern–Pontryagin invariant as follows

P̃ =
∑
{pi }

〈
F (p1) ∧ · · · ∧ F (pn+1)

〉

=
∑
{pi }

gB1(p1)···Bn+1(pn+1)F
B1(p1) ∧ · · · ∧ FBn+1(pn+1), (31)

where for each order of the form P̃ , the sum runs over all possible combinations.

5.2.1. Case p1 + · · · + pn+1 = 2n + 2
If p1 + · · · + pn+1 = 2n + 2, the only possible choice is p1 = · · · = pn+1 = 2. Then we find

P̃ = gB1(p1)···Bn(pn+1)F
B1(p1) ∧ · · · ∧ FBn+1(pn+1)

= gB1(2)···Bn+1(2)F
B1(2) ∧ · · · ∧ FBn+1(2)

= 〈
F (2) ∧ · · · ∧ F (2)

〉 = 〈[
F (2)

]n+1〉
. (32)

Using the nomenclature used in Refs. [1–4] we can write,

P = 〈
Fn+1〉, (33)

which coincides with the usual Chern–Pontryagin invariant P2n+2.
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5.2.2. Case p1 + · · · + pn+1 = 2n + 3
If p1 + · · · + pn+1 = 2n + 3 the only possible choice is p1 = · · · = pn = 2; pn+1 = 3. Ac-

cording to the permutations law, there must exist n + 1 terms of the form

gB1(2)···Bn(2)Bn+1(3)F
B1(2) ∧ · · · ∧ FBn(2) ∧ FBn+1(3)

= 〈
F (2) ∧ · · · ∧ F (2) ∧ F (3)

〉 = 〈[
F (2)

]n
,F (3)

〉
, (34)

so that, the corresponding extended Chern–Pontryagin invariant is given by

P̃ = (n + 1)
〈
F (2) ∧ · · · ∧ F (2) ∧ F (3)

〉 = (n + 1)
〈
F (2)n,F (3)

〉
. (35)

Using the nomenclature used in Refs. [1–4] we find

P2n+3 = 〈
Fn,F3

〉
. (36)

Since dP2n+3 = 0 we have P2n+3 = dC(2n+2). Following the usual procedure we have

C(2n+2) = 〈
Fn,A2

〉 + dϕ2n+1. (37)

These results coincide with the extended Chern–Pontryagin (2n + 3)-dimensional and with the 
(2n + 2)-Chern–Simons forms C(2n+2)

ChSAS found by Antoniadis and Savvidy in Refs. [1–3].

5.2.3. Case p1 + · · · + pn+1 = 2n + 4
According to the permutations law, there must exist n + 1 terms of the form

gB1(2)···Bn(2)Bn+1(4)F
B1(2) · · · ∧ FBn(2) ∧ FBn+1(4)

= 〈
F (2) ∧ · · · ∧ F (2) ∧ F (4)

〉 = 〈[
F (2)

]n
,F (4)

〉
, (38)

so that, the corresponding extended Chern–Pontryagin invariant is given by

P̃ = (n + 1)
〈
F (2) ∧ · · · ∧ F (2) ∧ F (4)

〉 = (n + 1)
〈[
F (2)

]n
,F (4)

〉
. (39)

Using the nomenclature used in Refs. [1–4] we can write as

P2n+4 = 〈
Fn,F4

〉
. (40)

Since dP2n+4 = 0 we have P2n+4 = dC(2n+3), where

C(2n+3) = 〈
Fn,A3

〉 + dϕ2n+2. (41)

These results coincides with the extended topological invariant and with the (2n + 3)-Chern–
Simons forms C(2n+3)

ChSAS found in Refs. [1–3].

5.2.4. Case p1 + · · · + pn+1 = 2n + 6
In this case we will choice two combinations which will be analyze separately.

5.2.4.1. Term with p1 = · · · = pn = 2 and pn+1 = 6 In this case we have that, according to the 
permutations law, there must exist n + 1 terms of the form

gB1(2)···Bn(2)Bn(6)F
B1(2) ∧ · · · ∧ FBn(2) ∧ FBn+1(6)

= 〈
F (2) ∧ · · · ∧ F (2) ∧ F (6)

〉 = 〈[
F (2)

]n
,F (6)

〉
, (42)

so that

P̃1 = (n + 1)
〈
F (2) ∧ · · · ∧ F (2) ∧ F (6)

〉 = (n + 1)
〈[
F (2)

]n
,F (6)

〉
. (43)
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5.2.4.2. Term with p1 = · · · = pn−1 = 2 and pn = pn+1 = 4 In this case we have that, accord-
ing to the law of permutations, there must exist n(n + 1)/2 terms of the form

gB1(2)···Bn−1(2)Bn(4)Bn+1(4)F
B1(2) ∧ · · · ∧ FBn−1(2) ∧ FBn(4) ∧ FBn+1(4)

= 〈
F (2) ∧ · · · ∧ F (2) ∧ F (4) ∧ F (4)

〉 = 〈[
F (2)

]n−1
,
[
F (4)

]2〉
, (44)

so that

P̃2 = n(n + 1)

2

〈[
F (2)

]n−1
,
[
F (4)

]2〉
. (45)

This means that the corresponding extended Chern–Pontryagin invariant is given by

P̃ = P̃1 + P̃2 = (n + 1)
〈[
F (2)

]n
,F (6)

〉 + n(n + 1)

2

〈[
F (2)

]n−1
,
[
F (4)

]2〉
, (46)

which can be write as

P = 〈[
F (2)

]n
,F (6)

〉 + n

2

〈[
F (2)

]n−1
,
[
F (4)

]2〉
. (47)

Using the nomenclature used in Refs. [1–4] we can write

P2n+6 = 〈
Fn,F6

〉 + n

2

〈
Fn−1,F 2

4

〉
. (48)

Now let us now prove that the expression (48) is, in addition to being gauge invariant, a closed 
form. The variation of P2n+6 is given by

δP2n+6 = n
〈
Fn−1, δF,F6

〉 + 〈
Fn, δF6

〉
+ n(n − 1)

2

〈
Fn−2, δF,F 2

4

〉 + n

2

〈
Fn−1,F4, δF4

〉
. (49)

Introducing (28) into (49) we have

δP2n+6 = 〈[F4, λ2],F n
〉 + 〈[F,λ4],F n

〉 + n
〈[F,λ2],F4,F

n−1〉
= {〈[F4, λ2],F n

〉 + n
〈[F,λ2],F4,F

n−1〉} + 〈[F,λ4],F n
〉

= 0. (50)

Now let us show that (48) is a closed form. Taking the exterior derivative of P2n+6 we have

dP2n+6 = 〈
DF6,F

n
〉 + n

〈
F6,DF,Fn−1〉 + n

〈
DF4,F4,F

n−1〉
+ n(n − 1)

2

〈
F 2

4 ,DF,Fn−2〉. (51)

Using (23) we have

dP2n+6 = 〈[F4,A3],F n
〉 + 〈[F,A5],F n

〉 + n
〈[F,A3],F4,F

n−1〉
= {〈[F4,A3],F n

〉 + n
〈[F,A3],F4,F

n−1〉} + 〈[F,A5],F n
〉
, (52)

and using the well known identity [16]

n∑
i=1

(−1)(d1+···+di−1)d�
〈

1, . . . , [�,
i], . . . ,
n

〉 = 0, (53)

where each 
i is a di -form and � is an arbitrary d�-form, we have
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dP2n+6 = 0, (54)

which proves that the form P2n+6 is closed. This means that P2n+6 = dC2n+5 where, following 
the usual procedure, we find

C(2n+5) = 〈
Fn,A5

〉 + n

2

〈
F4,A3,F

n−1〉 + dϕ2n+4, (55)

5.2.5. Case p1 + · · · + pn+1 = 2n + 8
In this case we will choice three combinations which will be analyze separately.

5.2.5.1. Term with p1 = p2 = · · · = pn−1 = 2 and pn = 8 Now we have according to the law 
of permutations, n + 1 terms of the form

gB1(2)···Bn(2)Bn+1(8)F
B1(2) ∧ · · · ∧ FBn(2) ∧ FBn+1(8)

= 〈
F (2) ∧ · · · ∧ F (2) ∧ F (8)

〉 = 〈[
F (2)

]n
,F (8)

〉
, (56)

so that

P̃1 = (n + 1)
〈
F (2) ∧ · · · ∧ F (2) ∧ F (8)

〉 = (n + 1)
〈[
F (2)

]n
,F (8)

〉
. (57)

5.2.5.2. Term with p1 = · · · = pn−1 = 2, pn = 4 and pn+1 = 6 According to the law of per-
mutations, we have n(n + 1) terms of the form

gB1(2)···Bn−1(2)Bn(4)Bn+1(6)F
B1(2) ∧ · · · ∧ FBn−1(2) ∧ FBn(4) ∧ FBn+1(6)

= 〈
F (2) ∧ · · · ∧ F (2) ∧ F (4) ∧ F (6)

〉 = 〈[
F (2)

]n−1
,F (4),F (6)

〉
, (58)

so that

P̃2 = n(n + 1)
〈
F (2) ∧ · · · ∧ F (2) ∧ F (4) ∧ F (6)

〉 = n(n + 1)
〈[
F (2)

]n−1
,F (4),F (6)

〉
. (59)

5.2.5.3. Term with p1 = · · · = pn−2 = 2 and pn−1 = pn = pn+1 = 4 The permutations law 
tells us that there are (n + 1)n(n − 1)/3! terms of the form

gB1(2)···Bn−2(2)Bn−1(4)Bn(4)Bn+1(4)F
B1(2) ∧ · · · ∧ FBn−2(2) ∧ FBn−1(4) ∧ FBn(4) ∧ FBn+1(4)

= 〈
F (2) ∧ · · · ∧ F (2) ∧ F (4) ∧ F (4) ∧ F (4)

〉 = 〈[
F (2)

]n−2
,
[
F (4)

]3〉
, (60)

so that

P̃3 = n(n + 1)(n − 1)

3!
〈
F (2) ∧ · · · ∧ F (2) ∧ F (4) ∧ F (4) ∧ F (4)

〉

= n(n + 1)(n − 1)

3!
〈[
F (2)

]n−2
,
[
F (4)

]3〉
. (61)

This means that the corresponding extended Chern–Pontryagin invariant is given by

P̃ = P̃1 + P̃2 + P̃3

= (n + 1)
〈[
F (2)

]n
,F (8)

〉 + n(n + 1)
〈[
F (2)

]n−1
,F (4),F (6)

〉
+ n(n + 1)(n − 1)

3!
〈[
F (2)

]n−2
,
[
F (4)

]3〉
, (62)

which can be written as
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P2n+8 = 〈[
F (2)

]n
,F (8)

〉 + n
〈[
F (2)

]n−1
,F (4),F (6)

〉 + n(n − 1)

3!
〈[
F (2)

]n−2
,
[
F (4)

]3〉
, (63)

that coincides, except for two numerical coefficients, with the topological invariant �2n+8 found 
by Antoniadis and Savvidy in Refs. [1–3]. Using the nomenclature from these references, the 
equation (63) takes the form

P2n+8 = 〈
F8,F

n
〉 + n

〈
F4,F6,F

n−1〉 + n(n − 1)

3!
〈
F 3

4 ,F n−2〉. (64)

Now let us prove that (64) is gauge invariant. The variation of P2n+8 is given by

δP2n+8 = 〈
δF8,F

n
〉 + n

〈
F8, δF,Fn−1〉 + n

〈
δF4,F6,F

n−1〉
+ n

〈
F4, δF6,F

n−1〉 + n(n − 1)
〈
F4,F6, δF,Fn−2〉

+ n(n − 1)

2

〈
δF4,F

2
4 ,F n−2〉 + n(n − 1)(n − 2)

3!
〈
F 3

4 , δF,Fn−3〉. (65)

Introducing (28) into (65) we find

δP2n+8 = −{〈[F6, λ2],F n
〉 + n

〈[F,λ2],F6,F
n−1〉}

− n

2

{
2
〈
F (4), [F4, λ2],F n−1〉 + (n − 1)

〈[F4, λ2],F 2
4 ,F n−2〉}

− {〈[F4, λ4],F n
〉 + n

〈
F4, [F,λ4],F n−1〉} + 〈[F,λ6],F n

〉
= 0. (66)

Let us now show that (64) is also a closed form. Taking the exterior derivative of P2n+8 we have

dP2n+8 = 〈
DF8,F

n
〉 + n

〈
F8,DF,Fn−1〉 + n

〈
DF4,F6,F

n−1〉
+ n

〈
F4,DF6,F

n−1〉 + n(n − 1)
〈
F4,F6,DF,Fn−2〉

+ 3n(n − 1)

3!
〈
DF4,F

2
4 ,F n−2〉 + n(n − 1)(n − 2)

3!
〈
F 3

4 ,DF,Fn−3〉. (67)

Using (23) we find

dP2n+8 = 〈[F6,A3],F n
〉 + 〈[F4,A5],F n

〉 + 〈[F,A7],F n
〉

+ n
〈[F,A3],F6,F

n−1〉 + n
〈
F4, [F4,A3],F n−1〉

+ n
〈
F4, [F,A5],F n−1〉 + n(n − 1)

2

〈[F4,A3],F 2
4 ,F n−2〉, (68)

or equivalently

dP2n+8 = {〈[F6,A3],F n
〉 + n

〈[F,A3],F6,F
n−1〉}

+ n

2

{
2
〈
F4, [F4,A3],F n−1〉 + (n − 1)

〈[F4,A3],F 2
4 ,F n−2〉}

+ {〈[F4,A5],F n
〉 + n

〈
F4, [F,A5],F n−1〉} + 〈[F,A7],F n

〉
. (69)

Then using (53) we can see

dP2n+8 = 0, (70)

which proves that the form P2n+8 is a closed form. This means that P2n+8 = dC2n+7, where 
C2n+7 is given by
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C(2n+7) = 〈
Fn,A7

〉 + n(n − 1)

3!
〈
F4,F4,A3,F

n−2〉 + n

3

〈
F6,A3,F

n−1〉

+ 2n

3

〈
F4,A5,F

n−1〉 + dϕ2n+6. (71)

The equations (48), (64), (55), (71) match those found in Refs. [1–4] after an appropriate 
redefinition of the gauge fields (see Appendix F).

6. Concluding remarks

In this article we have shown that the so-called ChSAS invariants [1–4] can be constructed 
from an algebraic structure known as gauged free differential algebra. The series of exact 
(2n + p)-forms is given by

P2n+3 = dC(2n+2) = 〈
Fn,F3

〉
,

P2n+4 = dC(2n+3) = 〈
Fn,F4

〉
,

P2n+6 = dC(2n+5) = 〈
Fn,F6

〉 + n

2

〈
Fn−1,F 2

4

〉
,

P2n+8 = dC(2n+7) = 〈
Fn,F8

〉 + n
〈
Fn−1,F4,F6

〉 + n(n − 1)

3!
〈
Fn−2,F 3

4

〉
,

where each Fq+1 is a (q + 1)-form field-strength for the rank-q gauge field Aq which depends 
also on other gauge fields Ar with r < q . The corresponding secondary (2n + p)-form C(2n+p)

are also defined in terms of such gauge fields in the following way

C(2n+2) = 〈
Fn,A2

〉 + dϕ2n+1,

C(2n+3) = 〈
Fn,A3

〉 + dϕ2n+2,

C(2n+5) = 〈
Fn,A5

〉 + n

2

〈
F4,A3,F

n−1〉 + dϕ2n+4,

C(2n+7) = 〈
Fn,A7

〉 + n(n − 1)

3!
〈
F4,F4,A3,F

n−2〉 + n

3

〈
F6,A3,F

n−1〉

+ 2n

3

〈
F4,A5,F

n−1〉 + dϕ2n+6.

If we consider the n = 2 case in the definition of C(2n+7), we find that the 11-dimensional ChSAS 
form is given by

C11 = 〈
F 2,A7

〉 + 1

3
〈F4,F4,A3〉 + 2

3
〈F6,A3,F 〉 + 4

3
〈F4,A5,F 〉. (72)

From here we can see that the second term has the same form as a term that appears in the CJS 
supergravity [17], whose action is given by

S11 =
∫

M11

L11

=
∫

M11

−1

4
Rab�ab + i

2
ψ̄�(8)Dψ + i

8

(
T a − i

4
ψ̄�aψ

)
eaψ̄�(6)ψ

− 1

2
F4 ∗ F4 + (∗F4 + b)(F − a) + 1

2
ab − 1

3
A3F4F4, (73)
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where

�a1···ar := 1

(D − r)!εa1···arar+1···aD
ear+1 · · · eaD , (74)

�(n) := 1

n!�a1···ane
a1 · · · ean, a := i

4
ψ̄�(2)ψ, (75)

b := i

4
ψ̄�(5)ψ, F4 = dA3, (76)

and the ∗ symbol denotes the Hodge operator. In fact, if one sets the metric and gravitino field 
to zero, 11 dimensional supergravity [17] is reduced to a Chern–Simons like theory based on a 
three form A whose action is

S =
∫

M11

A3F4F4, (77)

where F4 is a 4-form and M11 is an eleven dimensional manifold. This result allows us to conjec-
ture that it would be possible to construct a theory of 11-dimensional Chern–Simons supergravity 
using a procedure similar to that shown in Ref. [8], which contains or ends at some limit in stan-
dard 11-dimensional supergravity theory [17].
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Appendix A

Consider now the explicit form of the equation (20) for n = 2 and p = 1, 2, 3, 5, 7, 9

FA(2) = dAA(1) + 1

2
C

A(1)
B1(1)B2(1)A

B1(1)AB2(1),

FA(3) = dAA(2) + C
A(2)
B1(1)B2(2)A

B1(1)AB2(2),

FA(4) = dAA(3) + C
A(3)
B1(1)B2(3)A

B1(1)AB2(3),

FA(6) = dAA(5) + C
A(5)
B1(1)B2(5)A

B1(1)AB2(5) + 1

2
C

A(5)
B1(3)B2(3)A

B1(3)AB2(3),

FA(8) = dAA(7) + C
A(7)
B1(1)B2(7)A

B1(1)AB2(7) + C
A(7)
B1(3)B2(5)A

B1(3)AB2(5),

FA(10) = dAA(9) + C
A(9)
B1(1)B2(9)A

B1(1)AB2(9) + C
A(9)
B1(3)B2(7)A

B1(3)AB2(7)

+ 1

2
C

A(9)
B1(5)B2(5)

AB1(5)AB2(5), (78)

where from p = 3 we have considered only odd-order gauge fields. Note that we have considered 
a FDA whose structure constants satisfy the condition CA(q+r−1)

B(q)C(r) for any r < q . These equations 
can be written as
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FA
2 = dAA

1 + 1

2
CA

BCAB
1 AC

1 ,

FA
3 = dAA

2 + CA
BCAB

1 AC
2 ,

FA
4 = dAA

3 + CA
BCAB

1 AC
3 ,

FA
6 = dAA

5 + CA
BCAB

1 AC
5 + 1

2
CA

BCAB
3 AC

3 ,

FA
8 = dAA

7 + CA
BCAB

1 AC
7 + CA

BCAB
3 AC

5 ,

FA
10 = dAA

9 + CA
BCAB

1 AC
9 + CA

BCAB
3 AC

7 + 1

2
CA

BCAB
5 AC

5 . (79)

Appendix B

The explicit form of the equation (21) for n = 2 and p = 1, 2, 3, 5, 7, 9 is

dFA(2) = −C
A(1)
B1(1)B2(1)F

B1(2)AB2(1),

dFA(3) = −C
A(2)
B1(1)B2(2)F

B1(2)AB2(2) − C
A(2)
B1(2)B2(1)F

B1(3)AB2(1),

dFA(4) = −C
A(3)
B1(1)B2(3)F

B1(2)AB2(3) − C
A(3)
B1(3)B2(1)F

B1(4)AB2(1),

dFA(6) = −C
A(5)
B1(1)B2(5)F

B1(2)AB2(5) − C
A(5)
B1(3)B2(3)F

B1(4)AB2(3)

− C
A(5)
B1(5)B2(1)

FB1(6)AB2(1),

dFA(8) = −C
A(7)
B1(1)B2(7)F

B1(2)AB2(7) − C
A(7)
B1(3)B2(5)F

B1(4)AB2(5)

− C
A(7)
B1(5)B2(3)

FB1(6)AB2(3) − C
A(7)
B1(7)B2(1)

FB1(8)AB2(1),

dFA(10) = −C
A(9)
B1(1)B2(9)F

B1(2)AB2(9) − C
A(9)
B1(3)B2(7)F

B1(4)AB2(7)

− C
A(9)
B1(5)B2(5)F

B1(6)AB2(5) − C
A(9)
B1(7)B2(3)F

B1(8)AB2(3)

− C
A(9)
B1(9)B2(1)F

B1(10)AB2(1), (80)

where from p = 3 we have considered only odd-order gauge fields. These equations can be 
written as

dFA
2 = −CA

BCAB
1 FC

2 ,

dFA
3 = −CA

BCAB
2 FC

2 − CA
BCAB

1 FC
3 ,

dFA
4 = −CA

BCAB
3 FC

2 − CA
BCAB

1 FC
4 ,

dFA
6 = −CA

BCAB
5 FC

2 − CA
BCAB

3 FC
4 − CA

BCAB
1 FC

6 ,

dFA
8 = −CA

BCAB
7 FC

2 − CA
BCAB

5 FC
4 − CA

BCAB
3 FC

6 − CA
BCAB

1 FC
8 ,

dFA
10 = −CA

BCAB
9 FC

2 − CA
BCAB

7 FC
4 − CA

BCAB
5 FC

6 − CA
BCAB

3 FC
8

− CA
BCAB

1 FC
10. (81)
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Appendix C

The explicit form of the equation (24) for n = 2 and p = 1, 2, 3, 5, 7, 9 is given by

δAA(1) = dλA(0) + C
A(0)
B1(1)B2(0)A

B1(1)λB2(0),

δAA(2) = dλA(1) + C
A(1)
B1(1)B2(1)A

B1(1)λB2(1) + C
A(1)
B1(2)B2(0)A

B1(2)λB2(0),

δAA(3) = dλA(2) + C
A(2)
B1(1)B2(2)A

B1(1)λB2(2) + C
A(2)
B1(3)B2(0)A

B1(3)λB2(0),

δAA(5) = dλA(4) + C
A(4)
B1(1)B2(4)

AB1(1)λB2(4) + C
A(4)
B1(3)B2(2)

AB1(3)λB2(2)

+ C
A(4)
B1(5)B2(0)A

B1(5)λB2(0),

δAA(7) = dλA(6) + C
A(6)
B1(1)B2(6)A

B1(1)λB2(76) + C
A(6)
B1(3)B2(4)A

B1(3)λB2(4)

+ C
A(6)
B1(5)B2(2)A

B1(5)λB2(2) + C
A(6)
B1(7)B2(0)A

B1(7)λB2(0),

δAA(9) = dλA(8) + C
A(8)
B1(1)B2(8)A

B1(1)λB2(8) + C
A(8)
B1(3)B2(6)A

B1(3)λB2(6)

+ C
A(8)
B1(5)B2(4)A

B1(5)λB2(4) + C
A(8)
B1(7)B2(2)A

B1(7)λB2(2) + C
A(8)
B1(9)B2(0)A

B1(9)λB2(0),

(82)

where from p = 3 we have considered only odd-order gauge fields. These equations can be 
written as

δAA
1 = dλA

0 + CA
BCAB

1 λC
0 ,

δAA
2 = dλA

1 + CA
BCAB

1 λC
1 + CA

BCAB
2 λC

0 ,

δAA
3 = dλA

2 + CA
BCAB

1 λC
2 + CA

BCAB
3 λC

0 ,

δAA
5 = dλA

4 + CA
BCAB

1 λC
4 + CA

BCAB
3 λC

2 + CA
BCAB

5 λC
0 ,

δAA
7 = dλA

6 + CA
BCAB

1 λC
6 + CA

BCAB
3 λC

4 + CA
BCAB

5 λC
2 + CA

BCAB
7 λC

0 ,

δAA
9 = dλA

8 + CA
BCAB

1 λC
8 + CA

BCAB
3 λC

6 + CA
BCAB

5 λC
4 + CA

BCAB
7 λC

2

+ CA
BCAB

9 λC
0 . (83)

Appendix D

The explicit form of the equation (27) for n = 2 and p = 1, 2, 3, 5, 7, 9 is given by

δFA(2) = ∇(
δAA(1)

) = d
(
δAA(1)

) + C
A(1)
B1(1)B2(1)δA

B1(1)AB2(1),

δFA(4) = ∇(
δAA(3)

) = d
(
δAA(3)

) + C
A(3)
B1(1)B2(3)δA

B1(1)AB2(3)

+ C
A(3)
B1(3)B2(1)δA

B1(3)AB2(1),

δFA(6) = ∇(
δAA(5)

) = d
(
δAA(5)

) + C
A(5)
B1(1)B2(5)δA

B1(1)AB2(5)

+ C
A(5)
B1(3)B2(3)δA

B1(3)AB2(3) + C
A(5)
B1(5)B2(1)δA

B1(5)AB2(1),

δFA(8) = ∇(
δAA(7)

) = d
(
δAA(7)

) + C
A(7)
B1(1)B2(7)δA

B1(1)AB2(7)

+ C
A(7)
B1(3)B2(5)

δAB1(3)AB2(5) + C
A(7)
B1(5)B2(3)

δAB1(5)AB2(3)

+ C
A(7)

δAB1(7)AB2(1),
B1(7)B2(1)



P. Salgado, S. Salgado / Nuclear Physics B 926 (2018) 179–199 195
δFA(10) = ∇(
δAA(9)

) = d
(
δAA(9)

) + C
A(9)
B1(1)B2(9)δA

B1(1)AB2(9)

+ C
A(9)
B1(3)B2(7)δA

B1(3)AB2(7)

+ C
A(9)
B1(5)B2(5)δA

B1(5)AB2(5) + C
A(9)
B1(7)B2(3)δA

B1(7)AB2(3)

+ C
A(9)
B1(9)B2(1)δA

B1(9)AB2(1), (84)

where, from p = 3 we have considered only odd-order gauge fields. These equations can be 
written as

δFA
2 = d

(
δAA

1

) + CA
BCAB

1 δAC
1 ,

δFA
4 = d

(
δAA

3

) + CA
BCAB

3 δAC
1 + CA

BCAB
1 δAC

3 ,

δFA
6 = d

(
δAA

5

) + CA
BCAB

5 δAC
1 + CA

BCAB
3 δAC

3 + CA
BCAB

1 δAC
5 ,

δFA
8 = d

(
δAA

7

) + CA
BCAB

7 δAC
1 + CA

BCAB
5 δAC

3 + CA
BCAB

3 δAC
5

+ CA
BCAB

1 δAC
7 ,

δFA
10 = d

(
δAA

9

) + CA
BCAB

9 δAC
1 + CA

BCAB
7 δAC

3 + CA
BCAB

5 δAC
5

+ CA
BCAB

3 δAC
7 + CA

BCAB
1 δAC

9 . (85)

Appendix E

In this appendix we show that (85) correspond to homogeneous transformations.

E.1. Gauge transformation of the rank-2 field strength tensor F2

Introducing the first equations of (83) in the first equation of (85) we have

δFA
2 = CA

BCdAB
1 λC

0 − CA
BCAB

1 dλC
0 + CA

BCAB
1 dλC

0 + CA
BCAB

1 CC
EF AE

1 λF
0

= CA
BCdAB

1 λC
0 + CA

BCAB
1 CC

EF AE
1 λF

0 . (86)

Using the nomenclature of Refs. [1–4], this equation takes the form

δF2 = [dA1 + A1A1, λ0] = [F2, λ0]. (87)

E.2. Gauge transformation of the rank-4 field strength tensor F4

Introducing the first and third equations of (83) in the second equation of (85), we have

δFA
4 = CA

BCdAB
1 λC

2 − CA
BCAB

1 dλC
2 + CA

BCdAB
3 λC

0 − CA
BCAB

3 dλC
0

+ CA
BCAB

3 dλC
0 + CA

BCAB
3 CC

EF AE
1 λF

0 + CA
BCAB

1 dλC
2

+ CA
BCAB

1 CC
EF AE

1 λF
2 + CA

BCAB
1 CC

EF AE
3 λF

0

= CA
BCdAB

1 λC
2 + CA

BCdAB
3 λC

0 + CA
BCAB

3 CC
EF AE

1 λF
0

+ CA
BCAB

1 CC
EF AE

1 λF
2 + CA

BCAB
1 CC

EF AE
3 λF

0 . (88)

Using the nomenclature of Refs. [1–4], this equation takes the form

δF4 = [dA1, λ2] + [dA3, λ0] + [
A3, [A1, λ0]

] + [
A1, [A1, λ2]

] + [
A1, [A3, λ0]

]
= [dA1 + A1A1, λ2] + [

dA3 + {A1A3}, λ0
]

= [F2, λ2] + [F4, λ0]. (89)
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E.3. Gauge transformation of the rank-4 field strength tensor F6

Introducing the first, third and fifth equations of (83) in the third equation of (85), we have

δFA
6 = CA

BCdAB
1 λC

4 − CA
BCAB

1 dλC
4 + CA

BCdAB
3 λC

2 − CA
BCAB

3 dλC
2

+ CA
BCdAB

5 λC
0 − CA

BCAB
5 dλC

0 + CA
BCAB

5 dλC
0 + CA

BCAB
5 CC

EF AE
1 λF

0

+ CA
BCAB

3 dλC
2 + CA

BCAB
3 CC

EF AE
1 λF

2 + CA
BCAB

3 CC
EF AE

3 λF
0

+ CA
BCAB

1 dλC
4 + CA

BCAB
1 CC

EF AE
1 λF

4 + CA
BCAB

1 CC
EF AE

3 λF
2

+ CA
BCAB

1 CC
EF AE

5 λF
0

= CA
BCdAB

1 λC
4 + CA

BCdAB
3 λC

2 + CA
BCdAB

5 λC
0 + CA

BCAB
5 CC

EF AE
1 λF

0

+ CA
BCAB

3 CC
EF AE

1 λF
2 + CA

BCAB
3 CC

EF AE
3 λF

0 + CA
BCAB

1 CC
EF AE

1 λF
4

+ CA
BCAB

1 CC
EF AE

3 λF
2 + CA

BCAB
1 CC

EF AE
5 λF

0 .

Using the nomenclature of Refs. [1–4] this equation takes the form

δF6 = [dA1, λ4] + [dA3, λ2] + [dA5, λ0] + [
A5, [A1, λ0]

] + [
A3, [A1, λ2]

]
+ [

A3, [A3, λ0]
] + [

A1, [A1, λ4]
] + [

A1, [A3, λ2]
] + [

A1, [A5, λ0]
]
,

so that

δF6 = [dA1 + A1A1, λ4] + [
dA3 + [A1,A3], λ2

] +
[

dA5 + [A1,A5] + 1

2
[A3,A3], λ0

]

= [F6, λ0] + [F4, λ2] + [F2, λ4].

E.4. Gauge transformation of the field strength tensor F8

Introducing the first, third, fifth and seventh equations of (83) in the fourth equation of (85), 
we have

δFA
8 = CA

BCdAB
1 λC

6 + CA
BCdAB

3 λC
4 + CA

BCdAB
5 λC

2 + CA
BCdAB

7 λC
0

+ CA
BCAB

7 CC
EF AE

1 λF
0 + CA

BCAB
5 CC

EF AE
1 λF

2 + CA
BCAB

5 CC
EF AE

3 λF
0

+ CA
BCAB

3 CC
EF AE

1 λF
4 + CA

BCAB
3 CC

EF AE
3 λF

2 + CA
BCAB

3 CC
EF AE

5 λF
0

+ CA
BCAB

1 CC
EF AE

1 λF
6 + CA

BCAB
1 CC

EF AE
3 λF

4 + CA
BCAB

1 CC
EF AE

5 λF
2

+ CA
BCAB

1 CC
EF AE

7 λF
0 .

Using the nomenclature of Refs. [1–4], this equation takes the form

δF8 = [dA1, λ6] + [dA3, λ4] + [dA5, λ2] + [dA7, λ0] + [
A7, [A1, λ0]

]
+ [

A5, [A1, λ2]
] + [

A5, [A3, λ0]
] + [

A3, [A1, λ4]
] + [

A3, [A3, λ2]
]

+ [
A3, [A5, λ0]

] + [
A1, [A1, λ6]

] + [
A1, [A3, λ4]

] + [
A1, [A5, λ2]

]
+ [

A1, [A7, λ0]
]
,

so that

δF8 = [dA1 + A1A1, λ6] + [
dA3 + [A1,A3], λ4

] +
[

dA5 + [A1,A5] + 1

2
[A3,A3], λ2

]

+ [
dA7 + [A3,A5] + [A1,A7], λ0

] = [F8, λ] + [F6, λ2] + [F4, λ4] + [F,λ6].
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E.5. Gauge transformation of the field strength tensor F10

Introducing the first, third, fifth, seventh and ninth equations from (83) in the fifth equation of 
(85) we have

δFA
10 = CA

BCdAB
1 λC

8 + CA
BCdAB

3 λC
6 + CA

BCdAB
5 λC

4 + CA
BCdAB

7 λC
2

+ CA
BCdAB

9 λC
0 + CA

BCAB
9 CC

EF AE
1 λF

0 + CA
BCAB

7 CC
EF AE

1 λF
2

+ CA
BCAB

7 CC
EF AE

3 λF
0 + CA

BCAB
5 CC

EF AE
1 λF

4 + CA
BCAB

5 CC
EF AE

3 λF
2

+ CA
BCAB

5 CC
EF AE

5 λF
0 + CA

BCAB
3 CC

EF AE
1 λF

6 + CA
BCAB

3 CC
EF AE

3 λF
4

+ CA
BCAB

3 CC
EF AE

5 λF
2 + CA

BCAB
3 CC

EF AE
7 λF

0 + CA
BCAB

1 CC
EF AE

1 λF
8

+ CA
BCAB

1 CC
EF AE

3 λF
6 + CA

BCAB
1 CC

EF AE
5 λF

4 + CA
BCAB

1 CC
EF AE

7 λF
2

+ CA
BCAB

1 CC
EF AE

9 λF
0 .

Using the nomenclature of Refs. [1–4], this equation takes the form

δF10 = [dA1, λ8] + [dA3, λ6] + [dA5, λ4] + [dA7, λ2] + [dA9, λ0]
+ [

A9, [A1, λ0]
] + [

A7, [A1, λ2]
] + [

A7, [A3, λ0]
] + [

A5, [A1, λ4]
]

+ [
A5, [A3, λ2]

] + [
A5, [A5, λ0]

] + [
A3, [A1, λ6]

] + [
A3, [A3, λ4]

]
+ [

A3, [A5, λ2]
] + [

A3, [A7, λ0]
] + [

A1, [A1, λ8]
] + [

A1, [A3, λ6]
]

+ [
A1, [A5, λ4]

] + [
A1, [A7, λ2]

] + [
A1, [A9, λ0]

]
,

so that

δF10 = [dA1 + A1A1, λ8] + [
dA3 + [A1,A3], λ6

] +
[

dA5 + [A1,A5] + 1

2
[A3,A3], λ4

]

+ [
dA7 + [A3,A5] + [A1,A7], λ2

] +
[

dA9 + [A1,A9] + [A3,A7]

+ 1

2
[A5,A5], λ0

]

= [F10, λ0] + [F8, λ2] + [F6, λ4] + [F4, λ6] + [F2, λ8].

Appendix F

It is interesting to note that the difference between the coefficients that accompany the terms of 
equations (22), (23), (25), (28) of this article and the coefficients of the corresponding equations 
of Refs. [1–4] can be understood as follows. Consider the FDA given by Eq. (16), which leads 
to the definition of curvature given by Eq. (20). This last equation was restricted to the case 
where the only nonzero structure constants are those with only two low indices. This means that 
equations (16) and (20) take the form

d�A(p) + 1

2
C

A(p)

B1(p1)B2(p2)
�B1(p1) ∧ �B2(p2) = 0, (90)

FA(p+1) = dAA(p) + 1

2
C

A(p)

B1(p1)B2(p2)
AB1(p1) ∧ AB2(p2). (91)
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The next step is to consider that all the structure constants of the FDA (91) can be written in 
terms of the structure constants CA

B1B2
of a Lie algebra. This allows us to write the Eq. (91) in 

the form shown in equations (80) and (22).
We have seen that: (i) the generalized field strength tensors transform homogeneously and 

(ii) the generalized Chern–Pontryagin invariants are polynomials in the fields strength tensors 
and are invariant under gauged and diffeomorphism transformations. Since this invariance is 
maintained under a linear redefinition of the tensor gauge fields it is direct to prove that the fields 
strength tensor found in the Eqs. (80) and (22) can be mapped into the field strength tensors 
defined in Refs. [1–4]. In fact, defining the extended gauged fields of the following form

A −→ Ā = A; A3 −→ Ā3 = aA3; A5 −→ Ā5 = 2aA5,

A7 −→ Ā7 = 6a3A7;A9 −→ Ā9 = 24a4A9, (92)

where a is an arbitrary number, we found that Eq. (80) takes the form

F̄ A
2 = dĀA

1 + 1

2
CA

BCĀB
1 ĀC

1 ,

F̄ A
3 = dĀA

2 + 1

2
CA

BCĀB
1 ĀC

2 ,

F̄ A
4 = aFA

4 = dAA
3 + CA

BCĀB
1 ĀC

3 ,

F̄ A
6 = 2a2FA

6 = dĀA
5 + CA

BCĀB
1 ĀC

5 + CA
BCĀB

3 ĀC
3 ,

F̄ A
8 = 6a3FA

8 = dĀA
7 + CA

BCĀB
1 ĀC

7 + 3CA
BCĀB

3 ĀC
5 ,

F̄ A
10 = 24a4FA

10 = dĀA
9 + CA

BCĀB
1 ĀC

9 + 4CA
BCĀB

3 ĀC
7 + 3CA

BCĀB
5 ĀC

5 , (93)

which can be written in the form

F̄ = dĀ + Ā2,

F̄3 = dĀ2 + [Ā, Ā2],
F̄4 = dĀ3 + [Ā, Ā3],
F̄6 = dĀ5 + [Ā, Ā5] + [Ā3, Ā3],
F̄8 = dĀ7 + [Ā, Ā7] + 3[Ā3, Ā5],

F̄10 = dĀ9 + [Ā, Ā9] + 4[Ā3, Ā7] + 3[Ā5, Ā5]. (94)

These equations coincide exactly with the equations (A2) of Ref. [3].
The equations (A5), (A1), and (A4) of Ref. [3] can be obtained in an analogous way. In fact, 

taking into account that the transformations (92) induce in the field strengths and in the gauge 
parameters the transformations

F̄ = F, F̄4 = aF4, F̄6 = 2a2F6,

F̄8 = 6a3F8, F̄10 = 24a4F10, (95)

λ̄ = λ, λ̄4 = aλ4, λ̄6 = 2a2λ6,

λ̄8 = 6a3λ8, λ̄10 = 24a4λ10, (96)

it is straightforward to find that the equations (23), (25), (28) take the form from Eqs. (A5), (A1), 
and (A4) of Ref. [3]. In the same way we can see that, after using the Eqs. (92), (95), (96), the 
Eqs. (48), (64), (55), (71) take the form from Eqs. (1.7), (1.8), (2.15) and (3.10) in Ref. [3].
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