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Analytical investigations of electromagnetic cascades in photon gas
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Abstract: Exact analytical solutions of the diffusion equation are obtained by solving the differential-difference equations
for electron-photon cascades developing in photon gas, assuming simplified cross-sections. The results are compared with
those obtained by a numerical method, and analytical properties of cascades in photon gas are investigated and discussed.
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1 Introduction

Electron-photon cascades developing in astrophysical envi-
ronments are closely investigated by numerical and Monte
Carlo methods [1, 2], though analytical approaches to solve
cascades in magnetic fields and photon gas are not yet
succeeded. In those cases, the cross-sections are not ex-
pressed by the ratio of the primary and secondary energies,
and Mellin transforms of the diffusion equation results in
the differential-difference equation, so that the traditional
Landau-Rumer method [3, 4] cannot solve the problem
anymore. We have found a method to solve the differential-
difference equation and found the exact analytical solution
of cascades in the photon gas assuming simplified cross-
sections valid in a certain range of particle energies. Ana-
lytical properties of the results are also investigated.

2 Diffusion equation for the cascades in pho-
ton gas

We proposed the diffusion equation for the electron-photon
cascades in photon gas [5]:
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for the differential energy spectra of shower electrons
π(κ, t)dκ and photons γ(λ, t)dλ, with

κ ≡ ω0εe and λ ≡ ω0εγ , (3)

where εe, εγ , and ω0 denote the energies of the shower
electron, shower photon, and background photon in units
of mc2, respectively, and u ≡ εe/εγ and v ≡ εγ/εe de-
note fractional energies. t denotes the penetration depth of
mono-energetic and isotropic photon gas, though we take
the unit X(G)

∗ twice of Aharonian and Plyasheshnikov’s
X

(G)
0 [1] this time, for the sake of analytical simplicity:
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where κ0 denotes κ or λ of the incident particle. Then
dNIC(εγ)

dεγ
≡ 3σT

4κεe
φ(κ, v) and dNPP(εe)

dεe
≡ 3σT

4λεγ
ψ(λ, u) de-

note the cross-sections for the inverse Compton scattering
and the photon-photon pair production, respectively, as de-
scribed in Aharonian [6] and Zdziarski [7], with σT of the
Thomson cross-section. They are
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Figure 1: The normalized cross-sections for the inverse
Compton scattering φ(κ, v) ≡ dNIC(εγ)

dεγ
/ 3σT

4κεe
, where

κ = .1, .2, .5, · · · , 100, from bottom to top (left), and the
photon-photon pair production ψ(λ, u) ≡ dNPP(εe)

dεe
/ 3σT

4λεγ
,

where λ = 1.5, 3, 5, 10, 30, 100, from bottom to top (right).
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as indicated in Fig. 1.

3 Analytical investigations of electromag-
netic cascade processes in photon gas

3.1 Simplified cross-sections

We assume

φ(κ, v) � 1, and ψ(λ, u) � 1, (7)

or simply approximate the cross-sections to be

dNIC(εγ)

dεγ
� 3σT

4κεe
, and

dNPP(εe)

dεe
� 3σT

4λεγ
, (8)

which are valid in energy ranges of κ and λ of Eq. (3), from
a few to ten.

3.2 Analytical solutions for shower equation with
the simplified cross-sections

The diffusion equations (1) and (2) under the simplified
cross-sections (7) are described as1

∂
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We solve the problem for the shower initiated by photon
with the incident energy of κ0;

π(κ, 0) = 0, and γ(κ, 0) = δ(κ− κ0). (11)

We apply Mellin transforms
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then the diffusion equations become the differential-
difference equations,
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and the differential spectra of shower particles become
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Initial conditions of (11) correspond to

M(s, 0) = 0, and N (s, 0) = 1. (16)

We derive the approximated solution for Eq. (13) by divid-
ing t with n equal stepsizes, Δt ≡ t/n, and solve
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where

R[0](s) ≡ 1 and R[k](s) ≡ R(s)·R(s−1) · · ·R(s−k+1).
(19)

Applying the inverse Mellin transforms, we have the ap-
proximated differential electron spectrum πn(κ, t) as
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where R[k]
1,2(s) denotes the 1,2 element of R[k](s),
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1. The energy parameter λ of photon is also described as κ,
hereafter.
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Figure 2: Exact differential spectra (left) and transition curves (right, lines) of electrons in photon-initiated electron-
photon cascades in photon gas under the simplified cross-sections (7). Transition curves obtained by a numerical method
under the same conditions are also plotted (right, points).

R
[k]
1,2(s) have poles of the first order at s = −1 for k =
1, 2 and at s = −1, 0, k − 2 for k ≥ 3, so we can derive
κπn(κ, t) as
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=
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using residues at the poles. Residues for k ≥ 3 are ex-
pressed by the empirical formulae
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The residues are 0, 0, −2 for k = 1 and 0, 0, −4 for k = 2
and are not expressed by these formulae, nevertheless the
formulae give accurate results as a whole to the summation
at k = 1 and k = 2. Thus we have
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At the limit of n → ∞, we have the solution π(κ, t) of Eq.
(9),
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)
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Likewise we have the approximated differential spectra of
photon components,
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thus at n → ∞, we have the solution γ(κ, t) of Eq. (10),
κγ(κ, t) = κδ(κ− κ0)e

−t

+
t

3

(
t− t− 2

κ0/κ

)
e−t − 2

3

κt

κ0
e−κ0t/κ. (28)

The results are indicated in Figs. 2 and 3. It should be noted
that the solutions (26) and (28) are exact as they satisfy the
diffusion equations (9), (10), and the initial conditions (11).
Limiting values of

κπ(κ, t)→ (2/3)t2e−t, κγ(κ, t)→ (1/3)t2e−t (29)

for κ/κ0 � 1 well explain the differential spectra at the
corresponding energies in Fig. 2 and 3, and limiting value

κπ(κ, t)→ (2κ/κ0)te
−t (30)

for κ/κ0 → 1 well explains the differential spectra of elec-
tron in Fig. 2 at the higher energies, especially at t � 1.
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Figure 3: Exact differential spectra (left) and transition curves (right, lines) of photons in photon-initiated electron-photon
cascades in photon gas under the simplified cross-sections (7). Transition curves obtained by a numerical method under
the same conditions are also plotted (right, points).

3.3 Integrated spectra of shower particles, or
transition curves

Integrating the spectra (26) and (28), we have the exact in-
tegrated spectra or transition curves of electron and photon,
Π(κ, t) ≡

∫ κ0

κ
π(κ, t)dκ and Γ(κ, t) ≡

∫ κ0

κ
γ(κ, t)dκ, as

Π(κ, t) =
2

3
t

{
(2− t)(1− κ

κ0
)e−t + te−t ln
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+E2(t)−
κ

κ0
E2(
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, (31)

Γ(κ, t) = e−t +
t

3

{
(2− t)(1− κ
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)e−t

+te−t ln
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κ
+ 2E2(t)−

2κ

κ0
E2(

κ0t

κ
)

}
, (32)

where

E2(z) ≡
∫ ∞

1

e−zt

t2
dt (33)

denotes the exponential integral function. Results are com-
pared in Figs. 2 and 3 with those obtained by a numerical
method [5] with tentative converging conditions, assuming
the same cross-sections of (7). Both agree well in case of
small incident energies, though some improved conditions
should be required for the numerical method to agree with
the analytical solutions in case of large incident energies.
Limiting values of

Π(κ, t) → 2(1− κ/κ0)te
−t, (34)

Γ(κ, t) → e−t + (4/3)(1− κ/κ0)te
−t (35)

for κ0/κ → 1 well explain the shape of transition curves
of low incident energies in Fig. 2 and 3. It shows the peak
position tm of transition curve in Fig. 2 approaches to 1 for
small incident energies, though it approaches to 2 for large
incident energies due to the asymptotic attribute

Π(κ, t) ∼ (2/3)t2e−t ln(κ0/κ) (36)

of Eq. (31) for κ0/κ 	 1, which gives an analytical confir-
mation of Aharonian and Plyasheshnikov’s numerical pre-
diction [1], tm ∼ 1–2. So that the peak value of Π(κ, t) in-
creases almost as (8/3e2) ln(κ0/κ) with increase of κ0/κ.

4 Conclusions

The diffusion equation for the electron-photon cascades
developing in photon gas is solved analytically, by solv-
ing differential-difference equations assuming simplified
cross-sections. Analytical properties of the differential en-
ergy spectra and the transition curves are investigated. The
solutions will valuable for examining the reliability of other
numerical and Monte Carlo methods by comparing results
derived under the same approximated cross-sections. The
method will also be applicable to other cascade equations
which the traditional Landau-Rumer method cannot solve.
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