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Bottomonium and charmonium, representing quarkonia states, are scrutinized under the point of view 
of the information theory, in the AdS/QCD holographic setup. A logarithmic measure of information, 
comprised by the configurational entropy, is here employed to quantitatively study quarkonia radially 
excited S-wave states. The configurational entropy provides data regarding the relative dominance and 
the abundance of the bottomonium and charmonium states, whose underlying information is more 
compressed, in the Shannon’s theory meaning. The derived configurational entropy, therefore, identifies 
the lower phenomenological prevalence of higher S-wave resonances and higher masses quarkonia in 
Nature.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The configurational (CE) entropy is a paradigm, contemporarily 
proposed on the beginning of this decade [1,2], that considers fore-
seeable aspects of information into general systems. The configura-
tional entropy, as a logarithmic quantity of information, measures 
the form intricacy of localized, Lebesgue-integrable, physical con-
figurations of general systems [2–4]. The CE, which directly mea-
sures the compression of lossless data into the frequency modes 
of a system, is derived from the physical system configuration via 
a Fourier transform. It expresses the quantity of the organizational 
capacity enciphered into the energy density describing a physical 
system, as the temporal component of the energy–momentum ten-
sor of the theory. Beyond the principle of least action, where phys-
ical systems extremize the corresponding action, the CE, in addi-
tion, points to either more stable states, or to more abundant/dom-
inant ones. Physical states with higher CE either require more en-
ergy to be produced in Nature, or are less observed/detected than 
their CE-stable peer states, or even both. The lattice approach of 
Shannon information entropy has the information dimension, driv-
ing data distributions, as an upper bound for the compression data 
rate of any variable in a distribution. Statistical-mechanics grounds 
were introduced in this context, in the literature [5]. The CE en-
codes the precise measurement of information that is mandatory 

* Corresponding author.
E-mail addresses: braga@if.ufrj.br (N.R.F. Braga), roldao.rocha@ufabc.edu.br

(R. da Rocha).
https://doi.org/10.1016/j.physletb.2017.11.034
0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
to account the spatial shape of Lebesgue-integrable functions, with 
respect to their parametrical arguments.

The CE has been used to derive the abundance of light-flavor 
mesons in AdS/QCD holographic models, both in the asymptoti-
cally AdS5 metric of D3 brane systems and in the Sakai–Sugimoto 
D4-D8 system, as well, in Ref. [5]. Besides, glueball phenomenol-
ogy, their stability and the relative dominance of their states, ac-
cording to their spin, were investigated in the context of the CE, 
in the AdS/QCD setup [6]. The CE was also used in QCD models 
to study and refine cross-sections of hadrons in the color-glass 
condensate [7,8]. Moreover, the CE was employed to study AdS-
Schwarzschild black holes [9,10], in a consistent setup that corrob-
orates to the consistency of the Hawking–Page phase transition [9], 
and also to study compact stars [11,12], including the prediction of 
the Chandrasekhar critical density of a Bose–Einstein condensate 
of gravitons into compact stars, on fluid branes [13]. Solitons in a 
cold quark–gluon plasma were further investigated with the CE, in 
Ref. [14], to derive the pulse soliton width for which the soliton 
spatial profile has more compressed information, matching phe-
nomenological data. In addition, the CE was successfully utilized 
in particle physics to determine the Higgs boson mass [15] and to 
derive the precise mass of an axion that interacts with neutrinos 
and photons [16]. Other topological defects were also scrutinized 
in the context of the CE [17,18].

The fundamental theory of strong interactions, quantum chro-
modynamics (QCD), presents a coupling constant that increases 
as the energy decreases. This is the reason why there are many 
important hadronic properties that can not be perturbatively de-
scribed by QCD. An interesting complementary tool for studying 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2017.11.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:braga@if.ufrj.br
mailto:roldao.rocha@ufabc.edu.br
https://doi.org/10.1016/j.physletb.2017.11.034
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2017.11.034&domain=pdf


N.R.F. Braga, R. da Rocha / Physics Letters B 776 (2018) 78–83 79
hadronic states in the vacuum or at finite temperature and (or) 
density are the AdS/QCD models. This approach is motivated by the 
AdS/CFT correspondence [19–21], relating weakly coupled super-
gravity in five dimensional anti-de Sitter space (AdS5) to a confor-
mal super Yang–Mills theory on the boundary. Phenomenological 
AdS/QCD models assume the existence of a similar type of duality 
in cases where conformal invariance is broken by the introduction 
of an energy parameter in the AdS background, representing an 
infrared (IR) cut-off – mass scale – in the gauge theory. The sim-
plest one is the hard wall model, proposed in Refs. [22–24], that 
consists in placing a hard cut-off in anti-de Sitter (AdS) space. An-
other AdS/QCD model is the soft wall one, that has the property 
that the square of the mass linearly grows with the radial exci-
tation number [25]. In this case, the background involves an AdS 
space and a scalar field that effectively acts as a smooth infrared 
cut-off. A review of AdS/QCD models can be found in Ref. [26].

Quarkonia are hadronic states made of a heavy quark–antiquark 
pair. For the vectorial case, they are the charmonium J/ψ me-
son, composed by a charmed c̄c pair, the bottomonium ϒ meson, 
made of a b̄b pair, and their corresponding radial excitations. Due 
to the high mass of the top quark, toponium does not exist. In 
fact, the top quark decays through the electroweak interaction be-
fore a bound state can form, providing a rare example of a weak 
process proceeding more quickly than a strong process. Usually in 
the literature, the word quarkonium refers only to charmonium 
and bottomonium, and not to any of the lighter quark–antiquark 
states [27].

A consistent AdS/QCD model for charmonium and bottomonium 
in the vacuum was recently proposed in [28], extended to finite 
temperature in [29] and to finite density and temperature in [30]. 
There are two different energy parameters in this model. One in-
frared mass scale and one large ultraviolet scale, related to the non 
hadronic decay of the heavy vector mesons. The model of Ref. [28]
leads to decay constants that decrease with the radial excitation 
number of the meson states. Such a behavior is experimentally ob-
served and was not reproduced by the standard previous AdS/QCD 
models. Here we will develop the calculation of the CE for heavy 
vector mesons, using this model that provides consistent spectra 
of masses and decay constants.

This work is organized as follows: in Sect. 2, the CE is briefly re-
viewed, and Sect. 3 is devoted to review the AdS/QCD holographic 
model for heavy vector mesons, relating the decay constants to the 
two-point correlation function. Then, in Sect. 4, the holographic 
model for quarkonia is employed to calculate the CE for bottomo-
nium and charmonium states, as a function of the radial excitation 
level, where scaling relations can be observed. Our final conclu-
sions are drawn in Sect. 5.

2. Configurational entropy and Shannon information entropy

The CE shall be here applied to study the entropic information 
content of quarkonia, within the AdS/QCD setup. The CE, based on 
the Shannon’s information theory, comprises a procedure that log-
arithmically measures the underlying information of quadratically 
Lebesgue-integrable functions, denoted hereon by ρ(x) to further 
represent the energy density that underlies the system to be ana-
lyzed, defined on Rd . The Fourier transform

ρ(k) =
∫
Rd

ddx ρ(x)e−ik·x, (1)

is the main ingredient to construct the modal fraction [2]

ρ̌(k) = |ρ(k)|2∫
ddk|ρ(k)|2 , (2)
Rd
which represents the weight of every single mode tagged by k. 
Hence the CE, associated with the system energy density, is given 
by [2]

S[ρ] = −
∫
Rd

ddk ρ̌(k) log ρ̌(k). (3)

The underlying informational features in Eq. (3) are apparent by 
its analogy to the entropy defined by Shannon, S = − 

∑
k pk log pk , 

where the {p j} denotes a set of probability densities inherent to 
any data set A1, manifesting into a string encrypted in another 
A2 data set [2,5,14]. The quantity of information that is necessary 
to decipher the regarded string relies upon the code employed. 
The less information is necessary for the data decodification, the 
more compressed the information itself may be. The intensity of 
the information compression is yielded by the Shannon’s entropy. 
Therefore, considering the CE, the profile of a spatially bounded, 
Lebesgue-integrable, function ρ(x) emulates a string in the orig-
inal data set, it being the case that its Fourier transform ρ(k)

represents the profile encoded into the momentum data set, la-
belled by {k}. In addition, the modal fraction in Eq. (2) regards the 
share of the configuration, in momentum space, to the profile of 
ρ(x). Hence, the CE represents the inherent informational content 
in general physical systems that have (localized) energy density 
configurations ρ(x).

In the next section, we describe the holographic model that de-
scribes the S-wave radial resonances of quarkonia.

3. Holographic model for quarkonia

Thermal properties of heavy vector mesons into a plasma of 
quarks and gluons are useful instruments for investigating heavy 
ion collisions [31]. The dissociation of quarkonia states inside a 
plasma was described in the AdS/QCD holographic framework in 
Ref. [29] (see also [30,32]). The first radial excitations 1S, 2S and 
3S were revealed as spectral function peaks, whose height increase 
according to the decrement of the temperature. This description 
was obtained by extending to finite temperature the model pro-
posed in [28], for decay constants and masses of heavy vector 
mesons.

Vector mesons are represented, in the soft wall model [25], by 
a vector field Vm = (Vμ, V z) (μ = 0, 1, 2, 3) living in AdS space, as-
sumed to be dual to the gauge theory current Jμ(x) = q̄(x)γ μq(x), 
for quark spinor fields q(x). The action for the vector field reads:

I =
∫

dz d4x
√−g e−�(z)

(
− 1

4g2
5

Fmn F mn

)
, (4)

where Fmn = ∂m Vn − ∂n Vm and �(z) = κ2z2 denotes the soft wall 
dilaton background, responsible for the IR cut-off. The energy pa-
rameter κ is related to the mass scale. The anti-de Sitter space 
AdS5 is endowed with a metric

ds2 = gmndxmdxn = e2A(z)(−dt2 + d�x · d�x + dz2) , (5)

with warp factor A(z) = − log(z/R), for z ∈ (0, ∞). With the gauge 
choice V z = 0, the boundary value of the vector field V 0

μ(x) =
limz→0 Vμ(x, z) spacetime components play the role of sources of 
the correlation functions for the boundary current operator Jμ(x)

〈0| Jμ(x) Jν(x′) |0〉 = δ

δV 0 (x)

δ

δV 0(x′)
e−Ion shell , (6)
μ ν
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where Ion shell denotes the on shell action, obtained by the bound-
ary term:

Ion shell = − 1

2g̃2
5

∫
d4x

e−κ2 z2
V μ∂z Vμ

z

∣∣∣
z→0

. (7)

The effective dimensionless coupling is driven by g̃2
5 = g2

5
R . Since 

we want to describe particle states, one goes to momentum space 
with respect to the coordinates xμ and split the vector field as

Vμ(p, z) = v(p, z)V 0
μ(p) , (8)

where v(p, z) is known as the bulk-to-boundary propagator, satis-
fying the following equation of motion:(
∂2

z − 2κ2z2∂z + p2
)

v(p, z) = 0 . (9)

The boundary condition v(p, z)|z→0 = 1 must be imposed in such 
a way that V 0

μ(p) plays the role of the source of the gauge theory 
currents correlators.

In momentum space, the so-called two-point function �(p2)

is associated with the current–current correlator by the following 
expression:(

p2ημν − pμpν

)
�(p2) =

∫
d4x′e−ip·x′ 〈0| Jμ(x′) Jν(0) |0〉, (10)

where ημν denotes the boundary metric components. So, the two-
point can be holographically represented as

�(p2) = 1

g̃2
5 (−p2)

e−κ2 z2

z
v(p, z)∂z v(p, z)

∣∣∣
z→0

. (11)

On the other hand, the two-point function possess a spectral de-
composition, with respect to the masses, mn , and to the states 
decay constants, fn , given by:

�(p2) =
∞∑

n=1

f 2
n

(−p2) − m2
n + iε

. (12)

As discussed in Refs. [25,28], the soft wall model yields the masses 
and decay constants, respectively, as

mn = 4κ2n , fn =
√

2κ

g̃5
, (13)

where n = 1, 2, 3, . . . . This means that, in the soft wall model, all 
the vector meson radial excitations have the same decay constant. 
This differs from the result obtained from experimental data that 
shows a decrement of the decay constants decrease as the radial 
excitation level n increases.

In order to overcome this problem with the decay constants, an 
alternative holographic model for heavy vector mesons was pro-
posed in Ref. [28]. In contrast to the original soft wall model, that 
contains only one dimensionfull parameter κ , Ref. [28] introduces 
an additional parameter, by holographically calculating the opera-
tor product of currents in Eq. (6), when the radial coordinate has 
a finite location z = z0, whose inverse corresponds to an ultravi-
olet (UV) energy scale. The bulk-to-boundary propagator is then 
expressed as a solution of Eq. (9), precluding the range 0 < z < z0

and satisfying the new boundary condition, v(p, z)|z→z0 = 1,

v(p, z) =
U

(
p2

4κ2 ,0, κ2z2
)

U
(

p2

2 ,0, κ2z2
0

) , (14)
4κ
where U (a, b, c) denotes the Tricomi’s confluent hypergeometric 
function. As the boundary is placed at z = z0, hence the on shell 
action reads

Ion shell = − 1

2g̃2
5

∫
d4x

e−κ2 z2
V μ∂z Vμ

z

∣∣
z→z0

, (15)

and the two-point function has the following expression:

�(p2) = 1

g̃2
5 (−p2)

e−κ2 z2

z
v(p, z)∂z v(p, z)

∣∣∣
z→z0

. (16)

Then, using the bulk-to-boundary propagator in Eq. (14), and a re-
cursion iteration for the Tricomi’s functions one finds:

�(p2) = 1

2g̃2
5

U
(

1 + p2

4κ2 ,1, κ2z2
0

)
U

(
p2

4κ2 ,0, κ2z2
0

) e−κ2 z2
0 . (17)

In this approach [28], the masses and decay constants are acquired 
from the analysis of the two-point function poles. The singularities 
arise from the zeroes of the denominator in Eq. (17). Hence, the 
masses of the states at radial excitation level n read m2

n = −p2
n , 

with U
(

p2
n

4κ2 ,0, κ2z2
0

)
= 0.

Near an open neighbourhood at p2 = p2
n , which corresponds to 

a simple pole, the two-point function can be approximated by

�(p2) ≈ f 2
n

(−p2) + p2
n

∣∣∣
p2→p2

n

, (18)

and one identifies the coefficients of the expression near the pole 
to the decay constant fn , by Eq. (12). In the non hadronic decay, 
a heavy vector meson annihilates into light leptons. Then, the UV 
scale has the order of the heavy meson masses and the parameter 
κ is identified to the heavy quark mass. The found decay constants 
using this approach decrease with respect to with respect to the 
excitation level, as observed from experiments. The coupling g̃2

5 =
g2

5/R can be acquired by using the analogy to QCD [25], yielding 
g̃5 = 2π .

In the next section we compute the CE underlying the char-
monium and bottomonium states using this model. For a similar 
model for heavy mesons see [33] and for holographic models for 
heavy-light mesons see, for example [34,35]

4. Configurational entropy of quarkonia

The localized, quadratically integrable function ρ(z) in Eq. (1)
corresponds to the energy density of the considered system. The 
energy momentum tensor for an action integral of the form I =∫

d4xdz
√−g L reads

Tmn(z) = 2√−g

⎡
⎣∂(

√−gL)

∂ gmn
− ∂

∂xr

∂(
√−gL)

∂
(

∂ gmn

∂xr

)
⎤
⎦ . (19)

Quarkonia states are described by the vector fields Vμ with action 
integral given by Eq. (4). In this case, the second term of Eq. (19)
is absent, since the action does not depend on derivatives of the 
metric. The energy density corresponds to the T00 component of 
the energy momentum tensor, that reads

ρ(z) = T00(z) = e−κ2 z2

g2
5

[
g00

(
1

4
gmp gnq Fmn F pq

)

−gmn F0n F0m

]
. (20)
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Table 1
Masses and configurational entropies of charmonium states as a function of their 
radial excitation level.

Chamonium

S-wave resonance Masses (MeV) CE

1S 2410.03 1.42952
2S 3409.87 1.75312
3S 4174.54 1.92768
4S 4820.13 2.05353
5S 5388.12 2.15396
6S 5901.73 2.23796
7S 6374.14 2.31022
8S 6813.79 2.37361

Taking a plane wave solution in the meson rest frame Vμ =
εμv(p, z)e−imt , without loss of generality, with εμ = (0, 1, 0, 0), 
yields

ρ(z) = z2e−κ2 z2

2g2
5 R2

(
− (∂z v)2 + m2 v2

)
. (21)

Note that for the plane wave complex solution the appropriate 
field strength term in the action (4) is F ∗

mn F mn . The solution for 
v(p, z) is given by Eq. (14). Considering the heavy meson states 
at radial excitation level n to be on shell, p2 = −m2

n , the solution 
reads

vn(mn, z) =
U

(
− m2

n
4κ2 ,0, κ2z2

)
U

(
− m2

n
4κ2 ,0, κ2z2

0

) . (22)

Denoting by κc and κb the values of the parameter κ , respec-
tively for charmonium and bottomonium, a suitable fit to the ex-
isting experimental data of [36] is obtained, using κc = 1.2 GeV, 
κb = 3.4 GeV, and z0 = 0.08 GeV−1 as in Ref. [28]. We show on 
Tables 1 and 2 the masses of the states of charmonium and bot-
tomonium, respectively, obtained from the roots of the algebraic 
equation U

(
− m2

n
4κ2 ,0, κ2z2

0

)
= 0.

In the present case the energy density is a function of just one 
variable, the coordinate z, that is defined in the range z0 ≤ z < ∞. 
So, we can write Eq. (1) in the form ρ(k) = C(k) + i S(k) where:

C(k) =
∞∫

z0

ρ(z) cos(kz)dz, S(k) =
∞∫

z0

ρ(z) sin(kz)dz. (23)

Then our version of Eq. (2) is taken in the form

ρ̌(k) = C2(k) + S2(k)∫ ∞
0 dk′ [C2(k′) + S2(k′)

] , (24)

and the configurational entropy is written as

S[ρ] = −
∞∫

0

dk ρ̌(k) log ρ̌(k). (25)

Eqs. (21)–(25) are then used together to compute the CE for the 
quarkonia states, using the appropriate values of the parameters. 
Our results are listed in Tables 1 and 2.

Figs. 1–6 show that the CE increases as value of the quarkonia 
radial excitation level increases, indicating that quarkonia states 
with lower excitation level have more dominance. By taking the 
logarithm of the configurational entropy as a function of the char-
monium radial excitation level, the possibility of a scaling rela-
tion between the CE and the charmonium excitation level can be 
Table 2
Masses and configurational entropies of bottomonium states as a function of their 
radial excitation level.

Bottomonium

S-wave resonances Masses (MeV) CE

1S 7011.34 2.42517
2S 9883.82 2.81458
3S 12077.60 2.98732
4S 13923.91 3.11226
5S 15546.11 3.21205
6S 17011.72 3.29546
7S 18358.19 3.36716
8S 19610.34 3.43002

Fig. 1. Masses of quarkonia states as a function of their radial excitation level.

Fig. 2. Configurational entropy (CE) of quarkonia as a function of the radial excita-
tion level for S-wave resonances.

Fig. 3. Configurational entropy (CE) as a function of the charmonium state radial 
excitation level (gray list plot); the dashed line represents a quadratic interpolation.



82 N.R.F. Braga, R. da Rocha / Physics Letters B 776 (2018) 78–83
Fig. 4. Logarithm of the configurational entropy (CE) as a function of the charmo-
nium state radial excitation level (gray list plot); the black line refers to the linear 
regression and the dashed line represents a quadratic fit, both accomplished in the 
range 1 < n ≤ 8.

Fig. 5. Configurational entropy (CE) as a function of the bottomonium state radial 
excitation level (orange list plot); the dashed line stands for a quadratic interpola-
tion. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 6. Logarithm of the configurational entropy (CE) as a function of the bottomo-
nium state excitation level (orange list plot); the black line refers to the linear 
regression and the dashed line represents a quadratic fit, both accomplished in the 
range 1 < n ≤ 8. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

derived, which is illustrated in Fig. 4. In fact, the logarithm of 
the CE can be remarkably approximated by the linear function 
Log(CE(n)) = 0.0483n + 0.5025, at least in the range 1 < n ≤ 8, 
when we implement the linear regression procedure as a linear 
interpolation approach for modelling the relationship between the 
CE and the charmonium states excitation n level. This linearization 
method is depicted as the black line in Fig. 4. The involved error 
underlying this linear approach is a tiny one, consisting of 4.1%. 
Besides, the logarithm of the CE can be also quadratically interpo-
lated by the equation Log(CE(n)) = −0.0052n2 + 0.1104n + 0.3721, 
plot into the dashed line in Fig. 4. The very small value of the 
quadratic coefficient in this last quadratic polynomial equation 
yields a quadratic scaling relation between the logarithm of the 
CE and charmonium states radial excitation level n, with an error 
of 0.2%, in the range 1 < n ≤ 8.

Analogously, a similar analysis can be accomplished for the log-
arithm of the CE, as a function of the bottomonium state radial 
excitation n level. Indeed, the logarithm of the CE can be lin-
early approximated by Log(CE(n)) = 0.0318n + 0.9938, with an 
error of 4.6%, in the range 1 < n ≤ 8. The linearization procedure 
implemented by the linear regression method in then illustrated 
by the black line in Fig. 5. Moreover, the logarithm of the CE 
can be quadratically interpolated by the equation Log(CE(n)) =
−0.0037n2 + 0.0693n + 0.9151, in the range 1 < n ≤ 8. This 
quadratic fit has an error of 0.3%. Analogously to the charmonium 
states, the logarithm of the CE has then a linear scaling with the 
bottomonium states radial excitation level.

5. Concluding remarks and outlook

As discussed in Sects. 1 and 2, recent studies indicate that the 
configurational entropy (CE) provides information about either the 
relative stability or dominance, among different states of a physical 
system. Here we have calculated the CE for heavy vector mesons 
by considering their supergravity holographic AdS/QCD duals. The 
results obtained for both bottomonium and charmonium states are 
that the CE increases with respect to the radial excitation level. 
This result is consistent with the observed fact that the higher ex-
cited states are in general less produced, or less abundant, that 
the lower states. Such a result reinforces the expectation of uni-
versality of the role of the CE. Our results here presented might be 
further generalized to other cases when the warp factor in Eq. (5)
yields non-conformal deformations of the AdS5 metric [37]. Strictly 
in the context of the CE, this model has been successfully applied, 
for providing information on the stability of the glueball states, 
as well as their relative dominance according to their spin, in 
Ref. [6]. In addition, this model was also used to study light-flavor 
mesons [5] and might be adapted to encompass the setup devel-
oped in Sect. 3. Nevertheless, it is still far beyond the proposed 
theme, regarding our results, and to carefully settle this setup has 
been revealing an intricate task.
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