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Boundary conformal field theories have several additional terms in the trace anomaly of the stress tensor
associated purely with the boundary. We constrain the corresponding boundary central charges in three-
and four-dimensional conformal field theories in terms of two- and three-point correlation functions of the
displacement operator. We provide a general derivation by comparing the trace anomaly with scale
dependent contact terms in the correlation functions. We conjecture a relation between the a-type boundary
charge in three dimensions and the stress tensor two-point function near the boundary. We check our results
for several free theories.
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There is a strong argument for considering, from an
abstract point of view, boundaries in quantum field theory
(QFT). Boundary effects can be seen as a unifying theme in
several areas where there has been enormous progress in
theoretical physics. They are essential to understanding
condensedmatter systems such as topological insulators and
quantum impurity models. D-branes, i.e., the boundaries of
fundamental strings, gave us nonperturbative insight into
string theory and led to the second superstring revolution in
the late 1990s. In gauge-gravity duality, which provides
windows both on strongly interacting quantum field theories
and on quantum gravity, quantum fields fluctuate on the
conformal boundary of anti-de Sitter space. Entanglement
entropy in field theory is usually defined with respect to
spatial regions, introducing an “entangling” surface which
separates the regions. Entanglement has given us new
insight into renormalization group flow [1–3], and has
deepened our understanding of black hole thermodynamics
[4] and energy conditions [5].
Conformal field theories (CFTs) play a central role in

QFT as fixed points of the renormalization group flow. It
seems reasonable that boundary conformal field theories
(bCFTs) should play a similarly central role in the study of
QFT with a boundary. More specifically, given the impor-
tant role of trace anomalies in CFTwithout a boundary, it is
reasonable to expect that boundary terms in the trace
anomaly should be important as well.

We begin with a general discussion of the boundary
terms in the trace anomaly including definitions of the
anomaly coefficients að3DÞ, b, b1, and b2. We prove that the
coefficients b and b2 are related to two- and three-point
functions of the displacement operator. Our main results are
Eqs. (11) and (20). We conjecture that the að3DÞ coefficient
satisfies a related constraint [Eq. (23)], from which follows
a lower bound [Ref. (24)] on að3DÞ=b. We then demonstrate
that our relations hold for free theories.
Trace anomalies and boundary central charges.—We are

interested in a classically Weyl-invariant theory embedded in
a curved spacetime with a smooth and compact codimen-
sion-one boundary. The quantization requires regularization
which results in a nonvanishing expectation value of the
stress tensor trace. The trace anomaly in a compact space-
time is well known [6]. In particular, there is no anomaly in
odd dimensions. In the presence of a boundary, however,
there are anomalies localized on the boundary, in both odd
and even dimensions. These new anomalies have rich
geometric structure and they introduce new central charges
that could be used to characterize the theories.
Define the induced metric on the boundary as hμν¼gμν−

nμnν, where nμ is an outward-pointing normal vector. The
extrinsic curvature is Kμν ¼ hλμhσν∇λnσ where ∇λ is the bulk
covariant derivative. We denote the traceless part of the extri-
nsic curvature as K̂μν ¼ Kμν − ðhμν=d − 1ÞK, which trans-
forms covariantly under theWeyl transformation, and it plays
an important role in constructing boundary Weyl invariants.
In d ¼ 3 spacetime dimensions with a two-dimensional

boundary, the anomaly only appears on the boundary, and it is
given by [7]

hTμ
μid¼3 ¼ δðx⊥Þ

4π
ðað3DÞR

∘ þ btrK̂2Þ; ð1Þ
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where δðx⊥Þ is a Dirac delta function with support on the

boundary, and trK̂2 ¼ trK2 − 1
2
K2; R

∘
is the boundary Ricci

scalar. For free fields, the values of these boundary charges

were computed in the literature [8–10]: as¼0;ðDÞ
ð3DÞ ¼ − 1

96
,

as¼0;ðRÞ
ð3DÞ ¼ 1

96
and as¼ð1=2Þ

ð3DÞ ¼ 0, where (D) and (R) represent

the Dirichlet and Robin boundary conditions, respectively
boundary condition. (In our notation, s is the spin of the free
field.) Theað3DÞ coefficient has been argued to decrease under
boundary renormalization group flow [8].
The structure becomes much richer in d ¼ 4 CFTs.

The complete classification was recently given in
Ref. [11]. Dropping a regularization dependent term, the
trace anomaly reads

hTμ
μid¼4¼ 1

16π2
ðcW2

μνλρ−að4DÞE4Þ

þδðx⊥Þ
16π2

ðað4DÞEðbryÞ
4 −b1trK̂

3−b2hαγK̂
βδWαβγδÞ;

ð2Þ

where E4 is the bulk Euler density in d ¼ 4, and Wμνρσ is
the Weyl tensor. In the presence of a boundary, the
boundary term of the Euler characteristic, EðbryÞ, is added
in order to preserve the topological invariance. We refer
readers to the literature for the values of the að4DÞ and
c charges; these are the familiar central charges character-
izing theories on a compact manifold. Let us list the

values of the b1 charge for free fields: bs¼0;ðDÞ
1 ¼ 2

35
[12],

bs¼0;ðRÞ
1 ¼ 2

45
[13], bs¼ð1=2Þ

1 ¼ 2
7
[10], bs¼1

1 ¼ 16
35

[10].
References [14,15] observed that a relation b2 ¼ 8c is

universal for free theories. Such a relation can be better
understood by studying the stress tensor two-point function
carefullywith a boundary. Two of us have argued [16] that the
relation need not hold once interactions are included. For a
theorywith a line of fixed points, parametrized by g, we found
that, perturbatively in the coupling, b2 ¼ 8cþOðg2Þ. Note
that Wess-Zumino consistency implies that a-type central
charges cannot depend on marginal couplings [17].
The motivation of this Letter is to generalize Ref. [16] to

consider other boundary charges in d ¼ 3 and d ¼ 4 CFTs.
It turns out that the general strategy is similar: one simply
looks at the correlation functions of the displacement
operator in flat space. But there are several differences
when compared with the computation of the b2 charge. The
first difference is that theseb andb1 boundary charges do not
talk to bulk charges, while the b2 structure is intimately
related to the surface term generated from varying the bulk
c-type anomaly effective action. The second difference is
that in order to compute b1 in d ¼ 4, one has to look not at
two-point functions but at a boundary three-point function.
Wewill conjecture a relation forað3DÞ, in terms of a boundary
limit of the two-point function of the stress tensor.

Displacement operator and general relations.—To set
the notation, let W be the generating functional for con-
nected Green’s functions. The stress tensor in Euclidean
signature is

hTμνðxÞi ¼ −
2
ffiffiffi
g

p δW
gμνðxÞ : ð3Þ

Let us first consider d ¼ 3 CFTs with a boundary.
Denote ~W as the anomalous part of W. The anomaly
effective action in dimensional regularization is

~W ¼ μϵ

ϵ

1

4π

�
að3DÞ

Z

∂M
R
∘ þ b

Z

∂M
trK̂2

�
: ð4Þ

Consider the special case where ∂M is almost the planar
surface at y ¼ 0, and can be described by a small
displacement δyðxAÞ, which is a function of the directions
tangent to the boundary, denoted by xA. In this situation, the
normal vector is well approximated by

nμ ¼ ð∂Aδy; 1Þ: ð5Þ

The extrinsic curvature then becomes KAB ¼ ∂A∂Bδy, and
we have

Z

∂M
trK̂2 ¼ 1

2

Z

∂M
δy□

∘ 2
δy; ð6Þ

where □
∘ 2 ¼ ∂A∂A acts only on the boundary.

Correlation functions of the displacement operator
DnðxÞ can be generated by varying W with respect to
δyðxAÞ. Note that diffeomorphisms act on both the metric
and the embedding function δyðxAÞ. As the effective action
W is diffeomorphism invariant, there is a Ward identity that
relates the stress tensor to the displacement operator, an
integrated version of which in the flat limit becomes

Tnnj∂M ¼ Dn: ð7Þ

Because the displacement operator lives inside the boun-
dary surface, and because we have conformal symmetry in
this surface, the two point function is fixed up to a constant,
which we call cnn:

hDnðxÞDnð0Þi ¼ cnn
x2d : ð8Þ

(In the notation of Ref. [16], cnn was called αð1Þ through its
relation to the two point function of the stress tensor.)
Replacing the expression Eq. (8) with a regularized version
[18,19] in the case of interest d ¼ 3,

hDnðxÞDnð0Þi ¼ cð3DÞnn

512
□
∘ 3ðlog μ2x2Þ2; ð9Þ

the scale-dependent part is then
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μ
∂
∂μ hD

nðxÞDnð0Þi ¼ π
cð3DÞnn

32
□
∘ 2
δðxÞ: ð10Þ

Equating the scale dependent pieces yields

b ¼ π2

8
cð3DÞnn : ð11Þ

This relation was conjectured in Ref. [16], based on free
theories [8,10]. Here we have provided a general derivation.
A similar calculation for the case of a codimension-two
defect in four dimensions was presented in Ref. [20] in the
context of entanglement entropy. Note that the b charge can
change under marginal deformations, although here we do
not discuss a 3D example.
Next we consider d ¼ 4. The constraint on the b2

boundary charge was found in Ref. [16], and it reads

b2 ¼
2π4

15
cð4DÞnn : ð12Þ

In flat space, the two-point function is not enough to
constrain the b1 boundary charge, since the related Weyl
anomaly has a OðK3Þ structure. Thus, we will need to
consider the three-point function.
The relevant anomaly effective action is

~Wðb1Þ ¼ b1
16π2

μϵ

ϵ

Z

∂M
trK̂3: ð13Þ

We again consider ∂M to be nearly flat and described by a
small displacement, δyðxAÞ. Approximating the normal
vector by nμ ¼ ð∂Aδy; 1Þ, we obtain

Z

∂M
trK̂3 ¼

Z

∂M

�
tr½ð∂A∂BδyÞ3�

− ð□∘ δyÞtr½ð∂A∂BδyÞ2� þ
2

9
ð□∘ δyÞ3

�
: ð14Þ

We will relate this b charge with the displacement operator
three-point function defined by

hDnðxÞDnðx0ÞDnð0Þi ¼ cnnn
jxj4jx0j4jx − x0j4 ; ð15Þ

where cnnn is a constant. The full structure of the stress
tensor three-point function with a boundary has not been
studied yet. But, as mentioned earlier, to constrain these
boundary charges one can simply look at the purely
normal-normal component of the stress-tensor correlation
functions that represent the displacement operator
contributions.
While it is not obvious how to proceed in position space,

we note that the Fourier transform of the three-point
function of operators O1, O2, and O3 is generally [21,22]

C123

Z
∞

0

dxxα
Y3

j¼1

p
βj
j KβjðpjxÞ; ð16Þ

where KβjðxÞ denotes the modified Bessel function of the

second kind, and α ¼ δ
2
− 1, βj ¼ Δj − δ

2
; Δj is the con-

formal dimension of operator Oj and δ is the dimension of
the CFT. In this case, we are interested in the CFT living on
the boundary, so δ ¼ 3 while the scaling dimension of the
displacement operator is Δj ¼ 4. Taking c123 as the
corresponding coefficient of the position space three-point
function, one has [22]

cnnn ¼
105ffiffiffi
2

p
π5=2

Cnnn: ð17Þ

The 1=x term in a small x expansion of the integrand will
give rise to a logarithm in the position space three-point
function and a corresponding anomalous scale dependence.
Observe that the 1=x term is

3π3=2

32
ffiffiffi
2

p
x
ðp6

1 þ p6
2 þ p6

3 − p2
1p

4
2 − p2

1p
4
3 − p2

2p
4
1

− p2
2p

4
3 − p2

3p
4
1 − p2

3p
4
2 −

2

3
p2
1p

2
2p

2
3Þ: ð18Þ

Through integration by parts along the boundary, the above
expression can be rewritten as

9π3=2

4
ffiffiffi
2

p
x

�
ðp1 · p2Þðp2 · p3Þðp3 · p1Þ

− p2
1ðp2 · p3Þ2 þ

2

9
p2
1p

2
2p

2
3

�
: ð19Þ

The result matches exactly the derivative form Eq. (14) com-
puted from the b1 boundary trace anomaly. Including a factor
ð1=3!Þ coming fromvaryingwith respect to δy three times,we
obtain b1¼ð1=3!Þ×16π2ð9π3=2=4 ffiffiffi

2
p Þð ffiffiffi

2
p

π5=2=105Þcnnn,
which gives

b1 ¼
2π6

35
cnnn: ð20Þ

This boundary charge in d ¼ 4 can depend on marginal
interactions. In particular, if the charge b2 of the mixed-
dimensional quantumelectrodynamics (QED)dependson the
marginal interactions [16], so does b1.
Conjecture for að3DÞ.—From Refs. [16,23,24], we can

write down expressions for the near-boundary limit of the
stress-tensor two-point function:

hTμνðx; yÞTρσð0; y0Þi ¼ Aμν;ρσðx; y; y0Þ
1

jxj2d ; ð21Þ

where
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Ann;nnðx; y; y0Þ ¼ αðvÞ;
AnA;nBðx; y; y0Þ ¼ −γðvÞIABðx; y; y0Þ;

AAB;CDðx; y; y0Þ ¼ αðvÞ d
d − 1

IðdÞAB;CD

þ
�
2ϵðvÞ − d

d − 1
αðvÞ

�
Iðd−1ÞAB;CD; ð22Þ

where IABðxÞ¼δAB−2ðxAxB=x2Þ and IðdÞAB;CD ¼ 1
2
ðIACIBDþ

IADIBCÞ − 1
d δABδCD. The quantity v is a cross-ratio

v ¼ ½ðx − x0Þ2=ðx − x0Þ2 þ 4yy0�, which behaves as ∼1 −
ð4yy0=jxj2Þ near the boundary at v ¼ 1.
The functions α, γ, and ϵ are related to each other by two

differential constraints. Conservation of the stress tensor at
the boundary, conformal invariance, and unitarity together
impose that γ smoothly vanishes asv → 1, whileα is smooth,
and ϵ can blow up as ð1 − vÞδ−1 for a small anomalous
dimension δ > 0. Both α and ϵ may have Oð1 − vÞ0 terms,
which we refer to as αð1Þ and ϵð1Þ. (Note the relation
between αðvÞ and the Dn two-point function, αð1Þ ¼ cnn.)
The symmetries also allow for a boundary stress tensor

which would only arise from decoupled boundary degrees
of freedom. If present, it appears as a distributional term in

the two-point function CIðd−1ÞAB;CDδðyÞδðy0Þ.
We conjecture that the boundary anomaly coefficient

að3DÞ is a linear combination of αð1Þ, ϵð1Þ, and C. The
dependence on C is already fixed by the argument relating
the trace anomaly of a two-dimensional CFT to the two-
point function of its stress tensor. More precisely,
cð2DÞ ¼ 2πC, where cð2DÞ is the 2D central charge in the

Euler anomaly hTA
Ai ¼ δðyÞ½cð2DÞ=24π�R

∘
. The coefficient C

vanishes for a theory of free 3D scalars and for free 3D
fermions since these theories do not have extra decoupled
boundary degrees of freedom. We fix the dependence on
αð1Þ and ϵð1Þ by the known values for the conformal scalar
with Dirichlet and Robin boundary conditions, giving

að3DÞ ¼
π2

9

�
ϵð1Þ − 3

4
αð1Þ þ 3C

�
: ð23Þ

Note this conjecture gives the correct result for free

fermions, reproducing as¼ð1=2Þ
ð3DÞ ¼ 0.

In a general interacting bCFTwe suspect only αð1Þ to be
nonzero for the following reason. Interactions coupling
boundary degrees of freedom to the bulk ought to lead to a
unique stress tensor, leading to C ¼ 0. Meanwhile, ϵð1Þ
corresponds to a dimension-3 boundary operator appearing
in the boundary operator product expansion of TAB, but the
boundary conformal symmetry does not guarantee the
existence of such an operator.
Reflection positivity means that the functions αðvÞ and

ϵðvÞ are non-negative [16]. The coefficient C is also non-
negative. If ϵðvÞ is regular near the boundary, then ϵð1Þ is
non-negative, and comparing with the new result [Eq. (11)]
for b, we obtain the bound

að3DÞ
b

≥ −
2

3
; b ≥ 0 for d ¼ 3 bCFTs: ð24Þ

These bounds recall the Hofman-Maldacena [25] bounds
on d ¼ 4 bulk central charges. However, if ϵðvÞ is singular
near the boundary, then there is no constraint on the sign of
ϵð1Þ, and thus, no definite bound on að3DÞ charge. We note
that að3DÞ and b have been computed in a bottom-up
holographic model [26] and their ratio falls below our
proposed bound.
Two- and three-point functions in free theories.—We

would like to verify the general relations Eqs. (11) and (20)
in free theories, including a conformal scalar, a Dirac
fermion and, in d ¼ 4, Maxwell theory.
The stress tensor two-point functions with a planar

boundary for the scalar and fermion were already consid-
ered in Ref. [23]. More recently, Ref. [16] computed the
two-point functions for a Maxwell field. We will list the
relevant two-point function results for completeness, and
consider three-point functions with a boundary in free
theories. These latter results are, to our knowledge, new.
Considering first a vector of scalar fields, i.e., ϕ → ϕa

(the index a will be suppressed), we introduce comple-
mentary projectors Π� satisfying Πþ þ Π− ¼ 1 and
Π2

� ¼ Π�. The boundary conditions are ∂nðΠþϕÞjy¼0 ¼
0 and Π−ϕjy¼0 ¼ 0. The scalar displacement operator is

Tnn ¼ ð∂nϕÞ2 −
1

4

1

d − 1
½ðd − 2Þ∂2

n þ□�ϕ2; ð25Þ

which is the boundary limit of the normal-normal compo-
nent of the improved stress tensor. The two-point function
of the scalar field can be found using the image method:

hϕðxÞϕðx0Þi ¼ κ

�
1

jx − x0jd−2

þ χ

ððx − x0Þ2 þ ðyþ y0Þ2Þðd−2Þ=2
�
; ð26Þ

where the parameter χ ¼ Πþ − Π− is determined by boun-
dary conditions. We have adopted the normalization κ¼
½1=ðd−2ÞVolðSd−1Þ� where VolðSd−1Þ ¼ ½2πðd=2Þ=Γðd=2Þ�.
Note χ2 ¼ 1, and that an eigenvalue of χ is 1 for Neumann
and −1 for Dirichlet boundary conditions.
To keep the expressions simple, we will focus on the

displacement operator two-point function in d ¼ 3 and the
three-point function in d ¼ 4. These two quantities are
required in computing the boundary central charges from
the relations Eqs. (11) and (20).
A straightforward application of Wick’s theorem gives

hDnðxÞDnð0Þis¼0
3D ¼ trð1Þ

8π2x6
; ð27Þ

hDnðxÞDnðx0ÞDnð0Þis¼0
4D ¼ 1

9π6
8trð1Þ − trðχÞ

jxj4jx0j4jx − x0j4 : ð28Þ
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The result [Eq. (27)] implies that the b boundary charge (in
d ¼ 3) does not depend on boundary conditions for a free
scalar. Indeed, using the relation Eq. (20), we recover the
knownvalue of theb charge for ad ¼ 3 free scalar,b ¼ 1

64
. On

the other hand, clearly b1 is sensitive to boundary conditions
through the trðχÞ. Using the relation Eq. (20), we can verify
that b1 is

2
35
for a Dirichlet scalar and 2

45
for a Neumann scalar.

Next we consider a Dirac fermion. In Minkowski
(mostly plus) signature, fγμ; γνg ¼ −2ημν. The fermion’s
displacement operator and two-point function are

Tnn ¼
i
2
ð _̄ψγnψ − ψ̄γn _ψÞ; _ψ ≡ ∂nψ ð29Þ

hψðxÞψ̄ðx0Þi ¼ κf

�
iγ · ðx − x0Þ
jx − x0jd þ χ

iγ · ðx̄ − x0Þ
jx̄ − x0jd

�
; ð30Þ

where x̄ ¼ ð−y;xÞ and κf ¼ 1=VolðSd−1Þ and ψ̄ ¼ ψ†γ0.
The χ parameter satisfies

χγn ¼ −γnχ̄; χγA ¼ γAχ̄; χ2 ¼ χ̄2 ¼ 1; ð31Þ
where χ̄ ¼ γ0χ†γ0. Focusing on the fermion displacement
operator two-point function in d ¼ 3 and the three-point
function in d ¼ 4, we find

hDðxÞDð0Þis¼ð1=2Þ
3D ¼ 3

16π2
trγð1Þ
x6

; ð32Þ

hDðxÞDðx0ÞDð0Þis¼ð1=2Þ
4D ¼ 5

4π6
trγð1Þ

x4x04ðx − x0Þ4 ; ð33Þ

where trγð1Þ depends on the Clifford algebra one uses; we
will take trγð1Þ ¼ 2⌊d=2⌋. As χ2 ¼ 1, the boundary depend-
ence drops out of these two- and three-point functions. We
can again verify the relations Eqs. (11) and (20) for the
fermion.
Finally, we consider a Maxwell field in Feynman gauge.

As the field in d ¼ 3 is not conformal, we focus on the
d ¼ 4 case. The displacement operator is

Tnn ¼
1

2
FnAFn

A −
1

4
FABFAB; ð34Þ

and the gauge field two-point function is

hAμðxÞAνðx0Þi ¼ κ

�
δνμ

ðx − x0Þ2 þ
χνμ

½ðx − x0Þ2 þ ðyþ y0Þ2�2
�
:

ð35Þ
The χνμ parameter determines the boundary condition; it is
equal to δνμ up to a sign. For gauge fields one can consider
the absolute boundary condition where the normal com-
ponent of the field strength is zero, which gives ∂nAA ¼ 0
and An ¼ 0, or the relative boundary condition where
AA ¼ 0 which gives ∂nAn ¼ 0 when recalling the gauge
fixing. See Ref. [16] for more details. We find

hDnðxÞDnðx0ÞDnð0Þis¼1
4D ¼ 512κ3

jxj4jx0j4jx − x0j4 ; ð36Þ

independent of the choice of boundary conditions. From
the relation Eq. (20) we recover the value of b1 charge for
the d ¼ 4 Maxwell field with a boundary.
Discussion.—We presented new results for the boundary

terms in the trace anomaly for CFTs in 3D and 4D. By
relating b [Eq. (11)], b1 [Eq. (20)], b2 [Eq. (12)], and að3DÞ
[Eq, (23)] to two- and three-point functions of the displace-
ment operator and stress tensor in flat space, these results
make the boundary coefficients more straightforward to
compute.
While we proved the relations Eq. (11) and Eq. (20) in this

Letter, two of us demonstrated Eq. (12) previously [16], and
Eq. (23) remains a conjecture along with the lower bound
Eq. (24) that follows from it (with the caveat discussed there).
Ultimately, perhaps building on the bound Eq. (24), we hope
that a classification scheme for bCFTcanbe organized around
these coefficients. We suspect bounds on the 4D coefficients
b1 and b2 exist as well, beyond b2 ≥ 0 [16].
Finally, extending the 3D results to the case of a 4D bulk

and 2D defect, there are applications of these results to
quantum entanglement (see Ref. [20] for results along
these lines).
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