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Boundary conformal field theories have several additional terms in the trace anomaly of the stress tensor
associated purely with the boundary. We constrain the corresponding boundary central charges in three-
and four-dimensional conformal field theories in terms of two- and three-point correlation functions of the
displacement operator. We provide a general derivation by comparing the trace anomaly with scale
dependent contact terms in the correlation functions. We conjecture a relation between the a-type boundary
charge in three dimensions and the stress tensor two-point function near the boundary. We check our results

for several free theories.

DOI: 10.1103/PhysRevLett.120.021601

There is a strong argument for considering, from an
abstract point of view, boundaries in quantum field theory
(QFT). Boundary effects can be seen as a unifying theme in
several areas where there has been enormous progress in
theoretical physics. They are essential to understanding
condensed matter systems such as topological insulators and
quantum impurity models. D-branes, i.e., the boundaries of
fundamental strings, gave us nonperturbative insight into
string theory and led to the second superstring revolution in
the late 1990s. In gauge-gravity duality, which provides
windows both on strongly interacting quantum field theories
and on quantum gravity, quantum fields fluctuate on the
conformal boundary of anti-de Sitter space. Entanglement
entropy in field theory is usually defined with respect to
spatial regions, introducing an “entangling” surface which
separates the regions. Entanglement has given us new
insight into renormalization group flow [1-3], and has
deepened our understanding of black hole thermodynamics
[4] and energy conditions [5].

Conformal field theories (CFTs) play a central role in
QFT as fixed points of the renormalization group flow. It
seems reasonable that boundary conformal field theories
(bCFTs) should play a similarly central role in the study of
QFT with a boundary. More specifically, given the impor-
tant role of trace anomalies in CFT without a boundary, it is
reasonable to expect that boundary terms in the trace
anomaly should be important as well.
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We begin with a general discussion of the boundary
terms in the trace anomaly including definitions of the
anomaly coefficients a3p), b, by, and b,. We prove that the
coefficients b and b, are related to two- and three-point
functions of the displacement operator. Our main results are
Egs. (11) and (20). We conjecture that the a3p) coefficient
satisfies a related constraint [Eq. (23)], from which follows
a lower bound [Ref. (24)] on a3p)/b. We then demonstrate
that our relations hold for free theories.

Trace anomalies and boundary central charges.—We are
interested in a classically Weyl-invariant theory embedded in
a curved spacetime with a smooth and compact codimen-
sion-one boundary. The quantization requires regularization
which results in a nonvanishing expectation value of the
stress tensor trace. The trace anomaly in a compact space-
time is well known [6]. In particular, there is no anomaly in
odd dimensions. In the presence of a boundary, however,
there are anomalies localized on the boundary, in both odd
and even dimensions. These new anomalies have rich
geometric structure and they introduce new central charges
that could be used to characterize the theories.

Define the induced metric on the boundary as 4, =g,,—
Ny, where n, is an outward-pointing normal vector. The
extrinsic curvature is K, = h:hgV,n, where V, is the bulk
covariant derivative. We denote the traceless part of the extri-
nsic curvature as K w = K, = (hy,,/d— 1)K, which trans-
forms covariantly under the Weyl transformation, and it plays
an important role in constructing boundary Weyl invariants.

In d = 3 spacetime dimensions with a two-dimensional
boundary, the anomaly only appears on the boundary, and it is
given by [7]

n
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where (x ) is a Dirac delta function with support on the

boundary, and rk? = K> — LK% R is the boundary Ricci

scalar. For free fields, the values of these boundary charges
s=0,(D) 1

were computed in the literature [8-10]: Asp) = o
azfg)’(m = % and a‘(‘;g; D = 0, where (D) and (R) represent

the Dirichlet and Robin boundary conditions, respectively
boundary condition. (In our notation, s is the spin of the free
field.) The a3p) coefficient has been argued to decrease under
boundary renormalization group flow [8].

The structure becomes much richer in d =4 CFTs.
The complete classification was recently given in
Ref. [11]. Dropping a regularization dependent term, the
trace anomaly reads

_ 1
<Tz>d74 = W (CWﬁzzip - a(4D)E4)
OUL) (4o B ek — byht RPW
16”2 (a(4D> 4 —or -2 aﬂ75>7
(2)
where E, is the bulk Euler density in d = 4, and W, is

the Weyl tensor. In the presence of a boundary, the
boundary term of the Euler characteristic, E®Y) s added
in order to preserve the topological invariance. We refer
readers to the literature for the values of the ap) and
¢ charges; these are the familiar central charges character-
izing theories on a compact manifold. Let us list the

values of the b, charge for free fields: b‘;zo’(D) = % [12],

pi=® = 2 113), 577? = 2 10], b3 = 1S [10].

References [14,15] observed that a relation b, = 8¢ is
universal for free theories. Such a relation can be better
understood by studying the stress tensor two-point function
carefully with a boundary. Two of us have argued [16] that the
relation need not hold once interactions are included. For a
theory with a line of fixed points, parametrized by g, we found
that, perturbatively in the coupling, b, = 8¢ + O(g?). Note
that Wess-Zumino consistency implies that a-type central
charges cannot depend on marginal couplings [17].

The motivation of this Letter is to generalize Ref. [16] to
consider other boundary charges in d = 3 and d = 4 CFTs.
It turns out that the general strategy is similar: one simply
looks at the correlation functions of the displacement
operator in flat space. But there are several differences
when compared with the computation of the b, charge. The
first difference is that these b and b | boundary charges do not
talk to bulk charges, while the b, structure is intimately
related to the surface term generated from varying the bulk
c-type anomaly effective action. The second difference is
that in order to compute b; in d = 4, one has to look not at
two-point functions but at a boundary three-point function.
We will conjecture arelation for a3p), in terms of a boundary
limit of the two-point function of the stress tensor.

Displacement operator and general relations.—To set
the notation, let W be the generating functional for con-
nected Green’s functions. The stress tensor in Euclidean
signature is

2 oW
Vg (x)
Let us first consider d =3 CFTs with a boundary.

Denote W as the anomalous part of W. The anomaly
effective action in dimensional regularization is

~ /46 1 ° ~n
w=" R+b trk< ). 4
€ 4r <a(3D) /axvt * /6/\/1 ' > )

Consider the special case where 0 M is almost the planar
surface at y =0, and can be described by a small
displacement Sy (x*), which is a function of the directions
tangent to the boundary, denoted by x*. In this situation, the
normal vector is well approximated by

n, = (940y.1). (5)

The extrinsic curvature then becomes K,z = 04,058y, and
we have

(T (x)) = (3)

A 1 o2
/ trk? =~ / sy by, (6)
oM 2 Jom

where é2 = 910, acts only on the boundary.
Correlation functions of the displacement operator
D"(x) can be generated by varying W with respect to
5y(x*). Note that diffeomorphisms act on both the metric
and the embedding function 5y(x*). As the effective action
W is diffeomorphism invariant, there is a Ward identity that
relates the stress tensor to the displacement operator, an
integrated version of which in the flat limit becomes

T""[gp = D". (7)

Because the displacement operator lives inside the boun-
dary surface, and because we have conformal symmetry in
this surface, the two point function is fixed up to a constant,
which we call ¢,

cnn
(D"(x)D"(0)) = 3 (8)
(In the notation of Ref. [16], ¢,,, was called a(1) through its
relation to the two point function of the stress tensor.)

Replacing the expression Eq. (8) with a regularized version
[18,19] in the case of interest d = 3,

PRE R
D )p(0) = L B logt ()

the scale-dependent part is then
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(3D)

9 n n _ _Cnn
ﬂ8—ﬂ<D (x)D"(0)) = 7—3

o2

O 6(x). (10)

Equating the scale dependent pieces yields

2
b :%CE,?PJ. (11)

This relation was conjectured in Ref. [16], based on free
theories [8,10]. Here we have provided a general derivation.
A similar calculation for the case of a codimension-two
defect in four dimensions was presented in Ref. [20] in the
context of entanglement entropy. Note that the b charge can
change under marginal deformations, although here we do
not discuss a 3D example.

Next we consider d =4. The constraint on the b,
boundary charge was found in Ref. [16], and it reads

_ 27" )

b2 —ﬁcnn .

(12)
In flat space, the two-point function is not enough to
constrain the b; boundary charge, since the related Weyl
anomaly has a O(K?®) structure. Thus, we will need to
consider the three-point function.

The relevant anomaly effective action is

by p°

W(bl) _ L
167[2 € Jom

k. (13)

We again consider M to be nearly flat and described by a
small displacement, Sy(x?). Approximating the normal
vector by n, = (048y. 1), we obtain

[ k= [ (ul0,000

- a)ul(00u057] + 5 7). (14

We will relate this b charge with the displacement operator
three-point function defined by

(D" (x)D" ()D"(0) = et (19

where c,,, is a constant. The full structure of the stress
tensor three-point function with a boundary has not been
studied yet. But, as mentioned earlier, to constrain these
boundary charges one can simply look at the purely
normal-normal component of the stress-tensor correlation
functions that represent the displacement operator
contributions.

While it is not obvious how to proceed in position space,
we note that the Fourier transform of the three-point
function of operators O, O,, and O3 is generally [21,22]

- 3
Cins A dxx® P?! Kﬂ,- (ij), (16)
J=1

where K (x) denotes the modified Bessel function of the
second kind, and a =$—1, f; = A; =% A; is the con-
formal dimension of operator O; and § is the dimension of
the CFT. In this case, we are interested in the CFT living on
the boundary, so 6 = 3 while the scaling dimension of the
displacement operator is A; =4. Taking cjp; as the
corresponding coefficient of the position space three-point
function, one has [22]

105
Chnn = W Cnnn' (17)

The 1/x term in a small x expansion of the integrand will
give rise to a logarithm in the position space three-point
function and a corresponding anomalous scale dependence.
Observe that the 1/x term is

3/ 6 6 6 2.4 2 4 2 4
32\/5)6(171+P2+P3—P1P2—P1P3—P2P1

2
= P33 = P31 = P3P —3PiP3P3). (18)
Through integration by parts along the boundary, the above
expression can be rewritten as

973/2

m ((Pl “p2)(P2- p3)(p3-p1)

—pi(p2- p3)? +§p?P%p§>- (19)
The result matches exactly the derivative form Eq. (14) com-
puted from the b; boundary trace anomaly. Including a factor
(1/3!) coming from varying with respect to 8y three times, we
obtain by =(1/3!)x167%(973/%/4+/2)(v/275/2 ] 105) ¢y
which gives

27°

by = — -
| 35 Cnnn

(20)
This boundary charge in d =4 can depend on marginal
interactions. In particular, if the charge b, of the mixed-
dimensional quantum electrodynamics (QED) depends on the
marginal interactions [16], so does b;.

Conjecture for a(3D).—Fr0m Refs. [16,23,24], we can
write down expressions for the near-boundary limit of the
stress-tensor two-point function:

1
<T/w(X7y)T/m(0’ y/)> :A}HJ,/)(F(X’ y’yl)wv (21)

where
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Ann,nn(x’ Vs y/) = a(’[]),
AnA,nB(X’ ) y/) = _Y(U)IAB(X’ ) y/)7

d
a(”)ﬁlgb){cz)

+ <2€(U) -

AAB,CD(X»%)/) =

o0 ) 65, @2
where 145 (x) =845 ~2(x,xp/%) and Iy oy = 5Unclpp+
Iyplpc) — 55A35CD. The quantity » is a cross-ratio
v =[(x —x')?/(x = x')? + 4yy'], which behaves as ~1 —
(4yy'/|x|*) near the boundary at v = 1.

The functions @, y, and € are related to each other by two
differential constraints. Conservation of the stress tensor at
the boundary, conformal invariance, and unitarity together
impose that y smoothly vanishes as v — 1, while aris smooth,
and e can blow up as (1 —»)°"! for a small anomalous
dimension § > 0. Both a and ¢ may have O(1 — v)° terms,
which we refer to as a(1) and ¢(1). (Note the relation
between a(v) and the D" two-point function, a(1) = c,,,.)

The symmetries also allow for a boundary stress tensor
which would only arise from decoupled boundary degrees
of freedom. If present, it appears as a distributional term in
the two-point function CI%;IC)Dé(y)é(y’ ).

We conjecture that the boundary anomaly coefficient
a@p) is a linear combination of a(1), e(1), and C. The
dependence on C is already fixed by the argument relating
the trace anomaly of a two-dimensional CFT to the two-
point function of its stress tensor. More precisely,
¢@p) = 27C, where c¢(yp) is the 2D central charge in the

Euler anomaly (T%) = 6(y)[cap)/ 2471]103. The coefficient C
vanishes for a theory of free 3D scalars and for free 3D
fermions since these theories do not have extra decoupled
boundary degrees of freedom. We fix the dependence on
a(1) and ¢(1) by the known values for the conformal scalar
with Dirichlet and Robin boundary conditions, giving

7’ 3
Note this conjecture gives the correct result for free

fermions, reproducing a< (; 2 =0,

In a general interacting bCFT we suspect only a(1) to be
nonzero for the following reason. Interactions coupling
boundary degrees of freedom to the bulk ought to lead to a
unique stress tensor, leading to C = 0. Meanwhile, (1)
corresponds to a dimension-3 boundary operator appearing
in the boundary operator product expansion of 74, but the
boundary conformal symmetry does not guarantee the
existence of such an operator.

Reflection positivity means that the functions a(v) and
€(v) are non-negative [16]. The coefficient C is also non-
negative. If ¢(v) is regular near the boundary, then ¢(1) is
non-negative, and comparing with the new result [Eq. (11)]
for b, we obtain the bound

4(3p)
b

These bounds recall the Hofman-Maldacena [25] bounds
on d = 4 bulk central charges. However, if e(v) is singular
near the boundary, then there is no constraint on the sign of
€(1), and thus, no definite bound on a3p) charge. We note
that a3py and b have been computed in a bottom-up
holographic model [26] and their ratio falls below our
proposed bound.

Two- and three-point functions in free theories.—We
would like to verify the general relations Eqgs. (11) and (20)
in free theories, including a conformal scalar, a Dirac
fermion and, in d = 4, Maxwell theory.

The stress tensor two-point functions with a planar
boundary for the scalar and fermion were already consid-
ered in Ref. [23]. More recently, Ref. [16] computed the
two-point functions for a Maxwell field. We will list the
relevant two-point function results for completeness, and
consider three-point functions with a boundary in free
theories. These latter results are, to our knowledge, new.

Considering first a vector of scalar fields, i.e., ¢ — ¢
(the index a will be suppressed), we introduce comple-
mentary projectors I, satisfying II, +II_ =1 and
I3 =TI,. The boundary conditions are 9,(IL.¢)|,_o =
0 and TI_¢|,_, = 0. The scalar displacement operator is

L R e Y

nn = ( ﬂ¢) 4d _ 1
which is the boundary limit of the normal-normal compo-
nent of the improved stress tensor. The two-point function
of the scalar field can be found using the image method:

W0 (s

> -

UJI[\)

b >0 ford=3 bCFTs. (24)

R é + y’)2)<d—2>/2>’ (26)

where the parameter y = I, —II_ is determined by boun-
dary conditions. We have adopted the normalization k=
[1/(d—=2)Vol(5%1)] where Vol(S4~") = [22(%/?) /T(d/2)).
Note y*> = 1, and that an eigenvalue of y is 1 for Neumann
and —1 for Dirichlet boundary conditions.

To keep the expressions simple, we will focus on the
displacement operator two-point function in d = 3 and the
three-point function in d = 4. These two quantities are
required in computing the boundary central charges from
the relations Egs. (11) and (20).

A straightforward application of Wick’s theorem gives

(D"(x)D"(0))55° = ;;(2“ )6’ (27)
(D)D" ()P )55 = g S T )

[P = X
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The result [Eq. (27)] implies that the » boundary charge (in
d = 3) does not depend on boundary conditions for a free
scalar. Indeed, using the relation Eq. (20), we recover the
known value of the b charge fora d = 3 free scalar, b = 6%‘. On
the other hand, clearly b, is sensitive to boundary conditions
through the tr(y). Using the relation Eq. (20), we can verify
that b; is % for a Dirichlet scalar and % for a Neumann scalar.
Next we consider a Dirac fermion. In Minkowski
(mostly plus) signature, {y,.7,} = —2#,,. The fermion’s

displacement operator and two-point function are
i

iy - (% — X’)> C(0)

|x — /|4

Wy — Wrar).

N |

<wuwuww:w(”'“‘x”+z

e — x|

where X = (—y.x) and k; = 1/Vol(S%!) and & = yy".
The y parameter satisfies

F=r=1 (1)

where 7 = y%"y°. Focusing on the fermion displacement
operator two-point function in d = 3 and the three-point
function in d = 4, we find

XVn = ~Vuks Xra = 7aX:

=2 3 (1)

<D(X)D<0)>3D 1622 x° (32)
(D)D()DOYE = > il (33)

T 4nSxAx A (x - x)F

where tr, (1) depends on the Clifford algebra one uses; we
will take tr, (1) = 2l9/2]. As »* = 1, the boundary depend-
ence drops out of these two- and three-point functions. We
can again verify the relations Egs. (11) and (20) for the
fermion.

Finally, we consider a Maxwell field in Feynman gauge.
As the field in d = 3 is not conformal, we focus on the
d = 4 case. The displacement operator is

1 1

T :EFnAF,,A —ZFABFAB, (34)
and the gauge field two-point function is
611 ){l/
A AV A g H H
(A, (x)A"(x')) K((x —¥)? + [(x—x)2+ (y+ y/)2]2>

(35)

The y}, parameter determines the boundary condition; it is
equal to &, up to a sign. For gauge fields one can consider
the absolute boundary condition where the normal com-
ponent of the field strength is zero, which gives 9,44 =0
and A, =0, or the relative boundary condition where
A, =0 which gives 0,A" = 0 when recalling the gauge
fixing. See Ref. [16] for more details. We find

5123

n n(</ n s=1 _
<D (X)D (X )D (0)>4D - |X|4‘X/‘4|X —X'|4 ’ (36)
independent of the choice of boundary conditions. From
the relation Eq. (20) we recover the value of b; charge for
the d = 4 Maxwell field with a boundary.

Discussion.—We presented new results for the boundary
terms in the trace anomaly for CFTs in 3D and 4D. By
relating b [Eq. (11)], b; [Eq. (20)], b, [Eq. (12)], and a3p)
[Eq, (23)] to two- and three-point functions of the displace-
ment operator and stress tensor in flat space, these results
make the boundary coefficients more straightforward to
compute.

While we proved the relations Eq. (11) and Eq. (20) in this
Letter, two of us demonstrated Eq. (12) previously [16], and
Eq. (23) remains a conjecture along with the lower bound
Eq. (24) that follows from it (with the caveat discussed there).
Ultimately, perhaps building on the bound Eq. (24), we hope
that a classification scheme for bCFT can be organized around
these coefficients. We suspect bounds on the 4D coefficients
b, and b, exist as well, beyond b, > 0 [16].

Finally, extending the 3D results to the case of a 4D bulk
and 2D defect, there are applications of these results to
quantum entanglement (see Ref. [20] for results along
these lines).
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