ON CERTAIN UNITARY REPRESENTATIONS
WHICH ARTISE FROM A QUANTIZATION THEORY

by

Bertram Kostant#®

In this paper we are concerned with certain explicit conmstructions of
unitary representations which arise from a general theory relating quantization
and unitary representations. We shall not go into the general theory here but we
can refer the reader to a forthcoming publication entitled "Quantization and
Unitary Representations, Part I - Prequantization" which will appear as part of the
series "Lectures in Modern Analysis and Applications" edited by C. T. Taam, in
Lecture Notes in Mathematics published by Springer-Verlag. Those considerations

here for solvable groups are part of a joint work of L. Auslander and myself.

1. THE REPRESENTATION indG(ng,ﬂl

Let G be a Lie group, not necessarily connected, and let g be its Lie
algebra.

Now let g € g' be a linear functional on g and let gg be the Lie
algebra of the isotropy subgroup Gg S G with respect to the coadjoint representa-
tion of G on g'. Thus if Bg is the alternating bilinear form on ¢ given by
By (x,y) = {g,ly,x]) then

gg ={x ¢ g‘Bg(x,y) =0 for all y € g} .

That is gg is the radical of Bg'

We may regard g as a complex valued linear functional on 9 = g + ig.
A polarization at g is a complex subalgebra h < 9 such that

(1) gg S h and gg is stable under Ad Gg (note that Gg is not
necessarily connected even if G 1is connected)

(2) dimm gm/h =1/2 diniR g/gg (recall diu_»lR g/gg is even since gg is
the radical of Bg)
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(3) g|llh,h]l =0, 1i.e., g|h is a homomorphism
(4) h+h 1is a Lie algebra of 9
Now let d =hNg so that if dE =d + id one has
dm =h Q n
Also let e= (h+h) Ng so that if ep = et ie one has
em=h+E

Now clearly h 1is equal to its own orthogonal subspace relative to the
extension of Bg to gp. It follows easily then that d is the orthogonal sub-
space to ¢ relative to Bg and hence if % € ¢/d denotes the image of x € ¢
under the quotient map ¢ - ¢/d one defines a non-singular alternating bilinear

form ﬁg on ¢/d by the relation
(2235;) = {g,[y.x])
for x,y € ¢. Next note that we may identify (e/d)m with e,m/dm so that
(e/d)m = h/dm (3 EYdm

is a linear direct sum. Since HYdm = (E/am) relative to conjugation over the real

form e/d of (e/d)m one defines a non-singular operator j € FEnd e¢/d where

j2 = -1 and (upon complexification) j = -i on h/d(n and j =i on E/dm.

Remark 1. Note that if u € ¢/d one has
u + iju € h/dm and u - iju € H/dm
Let Sg be the bilinear form on e/d given by

{u,v} = (ju,v)

Proposition 1
S is a non-gingular symmetric bilinear form on e¢/d. Moreover, j is
orthogonal relative to both Sg and ﬁg . That is, 1f u,v € ¢/d one has

{ju,jv} = {u,v} and (Ju,jv) = (u,v)

Proof. It is clear that by definition h/dm is orthogonal to itself
relative to the extension of ﬁg to (e/d)m. Thus by Remark 1, one has for
u,v € e/d

0 = (u+ iju,v + ijv) = [(u,v} - (Ju,jv)] + i[(Gu,v) + (u,jiv)]
Since the imaginary part is zero this implies that

(Gu,v) = =(u,jv) = (Gv,u) . (1.1)
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That is {u,v} = {v,u} and hence Sg is symmetric. It is clearly non-singular
since j is non-singular. The relation (1.1) together with j2 = -1 clearly
implies j is orthogonal relative to both Sg and ﬁg'

We will say that the polarization h is positive in case S is a
positive definite bilinear form. (This includes the case where e/d = 0, that is
where h =T.)

Remark 2. A simple criterion for the positivity of the polarization &
without going to the quotient ¢/d is as follows: We assert that I is a positive

polarization if and only if
-i(z,z) 2 0

for all z € h. Indeed if z € i write z = x + iy where x,y € e. Thus y =§j§
and hence -i(z,z) = -i(x + iy,x - iy) = 2(y,x) = 2(;,%) = 2(j§,§) = 2{§,§}. Thé
relation then follows since the correspondence z v x maps # onto e/d.

Now let b = {x € d|{g,x)} = 0. It follows that b has codimension 1
in d if and only if g|d # 0.

Remark 3. If g is nilpotent one knows that g]gg # 0 and hence
g|d # 0 if and only if g # 0.

Now let DO and EO be the connected Lie subgroups of G corresponding

to d=hnNg and e= (W +h) Ng. Since h is stable under Ad Gg it follows

that D, and E, are normalized by G and D =GD  and E =G E  are sub-
0 0 g g0 g 0

groups of G.

Proposition 2

The groups D and Dy are closed in G. Also D, 18 the identity

component of D so that d +is the ILie algebra of D.

Proof. Since d and ¢ are each other's orthogonal subspaces relative

to Bg’ one has that if x € g then (x « g,y) =0 for all y € ¢ if and only if
x € d. Thus

{asg-g,y)=0

for all a € D0 and hence for all a € 56. But if x 1lies in the Lie algebra of

56 then clearly {x « g,y) =0 for all y € ¢ so that x € d. Thus D0 and ﬁb

have the same Lie algebras and hence D0 = 56.

Now let Dl be the identity component of D = DOGg. Then if a € Dl one

has (a s g - g,y) =0 for all a € D, and y € ¢. Then if dl is the Lie

algebra of D, one has dl < d. But of course dg dl since D, c D,. Thus
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d= dl so that DO =D

D 'is also closed and D0 is the identity component of D.

is the identity component of D. But DO € Dc D. Hence
QED
Y
Now consider the D-orbit D e g < g'. For any subspace a S g let a be

its orthogonal subspace in g'.

Proposition 3

D« g is an open set of the affine plane g + 3 in g'. Also D e g

Proof. We first observe that g + E is stable under the action of D.
ny
Indeed since ¢ 1is stable under Ad D clearly ¢ is stable under D. However,

N
since D=D G one has De g=D e+ g and hence if b € D and f € ¢ one has

be (g+ 1) ? g =aeg-g+hbe fo for some a € DO. But then b + (g + £f) - g €3
(as above) so that g + 2 is stable under D.

But now clearly d s« gga Z. On the other hand one has a natural iso-
morphism d « g Eﬁd/gg. But then dim d « g = dim d/gg = dim ¢. Hence d + g = ¢.
But d « g is the tangent space at g to the orbit DO e g g+ E. Thus D+ g
is open in g + Z. QED

We will say that the polarization # satisfies the Pukansky condition

(see [4]) if E o g is closed; in which case E is closed and

Deg=g+ Z . (1.2)

Lemma 1

If h satisfies the Pukansky condition then D0 N Gg = (Gg)o, the
identity component of Gg. Furthermore, if D, ig the simply comnected covering

s . -1 .
group to D. and t: D, > D. is the covering map then t ((Gg)o) = (Gg)l is

0 1 0

connected.

Proof. As a D0 homogeneous space one has D e g = DO . g DO/DO n Gg'
But since (Gg)O [= D0 one has that (Gg)0 is the identity component of D0 n Gg'
However by (1.2) one has that D0 « g 1is simply connected so that D0 n Gg is

= i =D G the
connected. Thus D, n Gg (Gg)o. But now also 51gce _gl/(cg)l 0/( g)o
simple connectivity of Dy 8 implies that (Gg)l =1 ((Gg)O) is also connected.
QED

Now g wvanishes on [gg,g] so that in particular g vanishes on

[gg,gg] or g|gg is a homomorphism gg +TR of Lie algebras. We will say

that g is integral if there exists a character ng: Gg + T whose differential is
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2wig|gg. That #s if for all x € gg

d .
rrs ng(exp £€x) = 27i{g,x)
t=20

When this is satisfied we will say that ng corresponds to g.

Remark 5. If G 1is connected and simply connected one knows that the
existence of n is equivalent to the integrality of the de Rham class of the
canonical symplectic 2-form on the orbit G « g < g' (see Kostant, Quantization
and Unitary Representations, Part I).

Now since {g,[d,e]) =0 then g|d also defines a Lie algebra homo-
morphism d - R.

Until otherwise stated we will assume g is integral and ng is a

character on Gg corresponding to g.

Proposition 4

If the Pukansky condition is satisfied then Ng extends to a unique
character
:D~>1
Xg
vhose differential is 2mig|d.

Proof. Now let the notation be as in Lemma 1 so that Dl is the simply-

connected covering group to D;. Now since {g,[d,d]) = 0 there exists a unique

character x;: D. > T whose differential is Zﬂigld. Now if the Pukansky condition

is satisfied, thin by Lemma 1 (Gg)1 is connected and clearly x;](Gg)l

= ng|(Gg)0 e 7, But then if Z dis the kernel of the covering map T: Dl -+ D0 one
has Z ¢ (Gg)1 = T_l((Gg)O) and x;IZ is trivial. Hence there exists a unique
charagter xgz D0 + T such that X; = Xg o T. Clearly Zﬂigld is the differential
of Xg'

Now Gg normalizes D0 and hence Gg operates on the character group of

DO. However, XO is invariant under this action since Gg e« g =g and hence
Gg . gld = g]d (of course a character on a connected Lie group is determined by its

differential). It follows then that if we form the semi-direct product Gg X D0

then (ng,xg) defines a character onthis group. However by Lemma 1 Gg N D0 = (Gg)O
and ng = xg on (Gg)O so that (ng,xg) is trivial on the kernel K of the
surjection o: Gg x DO +~ D given by (a,b) » ab. Thus (ng,xg) is of the form

Xg o Yy where Xg is a character on D satisfying the conditions of the proposi-

tion. As such it is unique since D = DOGg and Xg is obviously uniquely deter—

mined on Gg and DO' QED
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Assume that A 1is a polarization satisfying the Pukansky condition.

Now let X = E/D. Since EOD = E it ds clear that X is connected. On
the other hand since ﬁg is a non-singular alternating bilinear form on e¢/d which
is invariant under the action of D it is clear that X has a measure Hy in=-
variant under the action of E.

Now consider the space M(E,Xg) of all measurable functions ¢ on E
such that ¢(ab) = Xg(b)_l¢(a)_ for all a € E, b € D. Then M(E,Xg) is an
E-module where if a € E, ¢ € M(E,x ) then a * ¢ € M(E,x_) is given by
(a e ¢)() = ¢(a_1b). Then if ZK(E?X ) is the space of eiuivalence classes (de-
fined by sets of measure zero) of ¢g€ M(E,Xg) such that H¢H2 = |¢|2dUX is
finite then HXE,xg) is the Hilbert space associated with the unitary representa-
tion indEx. Since Hy is an E~invariant measure one has ((indEx)(a))¢ =ase ¢
for a € E, ¢ € K(E,x_ ) (conforming to the usual abuse of language).

Now recall hnh = dm and h+ 0 = ¢

If Cm(E) is the space of all c” functions on E we note that Cm(E)
is a right em module where if 2z = x + iy € % with x,y € ¢ then if ¢ € Cw(E)

one puts ¢ e z = ¢ ¢« x + ip + y and if a € E

(b« x)(a) = %E ¢(a exp - tx) .
t=20

Clearly if ¢ €C (E), a € E, z € ey then

‘

(aed)ez=as (¢ z) . (1.3)

Now if o € X = E/D 1is the coset D then the tangent space TO(X) at

0o may be identified with e/d. Hence upon complexification

(T, (D) = eg/dy = hidg @ /d, .

Proposition 5

There is an E-invariant complex structure on X such that h/dm is the

space of anti-holomorphic vectors at o.

Proof. We define a complex distribution F on X such that for any

p € X ome has
(Tp(x))m =F, 8T

by putting ?P = a*(h/dc) where a e 0 =p, a € E. This depends only on p and
not on a € E since h/dE is invariant under Ad D. Clearly F is E-invariant.
By Nirenberg-Newlander, to prove that Fp is the space of anti~holomorphic tangent
vectors at p, we have only to prove that F is involutory. That is, if £&,n
are two complex vector fields on X such that &£ ny € FP for all X then
Ep € FP for all p € X where 7 = [g,n]. But this condition is purely local. If
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p €X let Ug X be a neighborhood of p with the property that
o: U+ E

is a smooth section of the projection w: E -~ E/D = X, Then there exists an open

neighborhood V of the identity on D such that the map

G:UXV->WEE

[AYAY)
is a diffeomorphism onto an open set W < E where g(a,b) = og(a)b. But let ¢£&,n

be the complex vector fields on W defined by % = (3)*(5,0), % = (8)*(n,0).
Clearly F*% = E,w*ﬁ = n. But then if Fh is the left invariant complex distri-
bution on E defined by h, then Fh is involutory since h is a subalgebra (we
are in the group case). However, Ea’ﬁa (S (Fh)a for any a € W since
h = W;l(h/dm). Then [%,%]a € (Fh)a for any a € W. However, 7 = w*[%,%] since
E is m-related to £, and x is m-related to n. Thus (z)p € Fp for all p € U.
Hence F is involutory. QED
We can now speak of holomorphic functions on any open set V& X = E/D.

In fact if
m: E > X

is the quotient map then these are just the elements of ¢ € Cm(V) such that, for
all z € h,

(9emez=0 (1.4)

in w‘l(v).

Now let C(E,xg,h) be the set of all C  functions Y in M(E,Xg) such
that
Yoo oz = 21milg,2)Y

for all z € 4. By (1.3) it is clear that C(E,xg,h) is stable under the action of

E and hence if
( > g’ ) ( an9 ) ( ng)

(abuse of language) then ZK(E,ng,h) is stable under indE Xg'

Remark 6. Since Xg is determined by ng and h we use ng in the

notation rather than ¥y .
Proposition 6
3{(E,ng,h) 18 a closed subspace of the Hilbert space HKE,xg).
Proof. We may assume HKE,ng,h) #0. Let a€F and p = 1a € X. Since

JC(E,ng,h) # 0 there exists (by translation if necessary) an element ¢ € MXE,ng,h)

such that ¢(a) # 0. Let U be an open neighborhood of a with compact closure
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such that A > |y| > € >0 in U. Let V = n(U) S X.

Now if B ¢ M(E,xg) then clearly one has that B = (¢ o M)y in U where
¢ 1s a measurable function on V. Also ¢ € Cm(V) if and only if SIU € Cm(U).
But now B EJC(E,ng,h) so that for z € 1 one has 2mi{g,z)8 =8 * 2z
= (0 om) « 2P+ (¢om(y e+ z). But also ¢ * z = 2ni{g,z)y so that one has
((¢ o m) » z)p = 0 which implies (¢ * 7) * z = 0. Thus by (1.4) one has ¢ is

holomorphic and hence B+~ ¢ defines a map

K(E,ng,h) > By (M)

where (BO(V)) is the space of all bounded holomorphic functions in V.
On the other hand (taking U small enough) if zl,---,zm are the holo-
2

morphic coordinates in V then the measure i dzlA"'AdzmAdEiA"'Adzﬁ is abso-

lutely continuous with bounded (from above and below) Radon-Nikodyn derivative with
respect to uX[V. But now if B . is Cauchy in ZC(E,ng,h) and 6 = (¢n o M)y in
U where ¢n € BO(V) then clearly ¢ndzl/\---Adzm is Cauchy in B(V) using the
notation of (Weil, [5], p. 59). Since B(V) is complete (see again Weil, p. 59)

it follows that ¢ndzlA--'Adzm

> pdzl/\---/\dzn in B(V) where p dis holomorphic

in V. But ¢n converges to p uniformly on compact subsets of V by Proposition

5 in Weil. On the other hand if Bn -~ B in KC(E,xg) where B8 = (¢ o m)Y din U

for ¢ a measurable function on V one has ¢n > ¢ almost everywhere. Thus

¢ = p almost everywhere. But clearly ((p ° m)¢) » z = 2ri{g,z)(p e My on U

for z € h. Thus the equivalence class of £ contains an element in HXE,ng,h)

proving that SC(E,ng,h) is complete. QED
Now since 3(E,n_ ,h) is stable under indE\Xg it defines a sub-

representation indE(ng,h) of indE Xg But since

1ndG(1ndE Xg) = 1ndG Xg

it follows that if

lndG(ng,h) = 1ndG 1ndE(ng,h)
then indG(ng,h) is a subrepresentation of indE Xg' We denote the corresponding
Hilbert space by MKG,ng,h).

Remark 7. It is clear that if is a G-quasi invariant measure on

u
: A
G/E then HKG,ng,h) can be taken to be the set of all equivalence classes of
measurable functions ¢ on G such that ¢a EJC(E,ng,h) for all a € G, and such
that

[ e s @ <
z

where ¢a(b) = ¢(ab) for b €E and a € Z is the image of a in Z.



245

Remark 8. We recall for emphasis that indG(ng,h) is defined when (1)
g € g' 1is integral and (2) h is a polarization satisfying the Pukansky condition.
However it may reduce to the zero representation if 3(E,n ,n) reduces to zero.
From the point of vieﬁ of the general quantization theory indG(ng,h) is a "zero

cohomology" representation.

2. THE SOLVABLE CASE, EXISTENCE OF ADMISSIBLE POLARIZATIONS

Although one is forced into considering higher cohomology representations
in the case where G 1is semi-simple, L. Auslander and I have shown that the rep-
resentations of the\form indG(ng,h) for a solvable Lie group G of type I are
sufficient to give G, the set of equivalence classes of irreducible unitary rep~
resentations of G.

More precisely assume G is a solvable simply connected Lie group. Then
for one thing we have shown that G is of type I if and only if (1) g € g' are
integrable and (2) all orbits G e g = 05 g' are the intersections of a closed
and open set. Furthermore in such a case we may explicitly give G.

To do this consider first the maximal nilpotent ideal n < g. Let g €g
and let f = g|n € n'. Since n is stable under Ad G one may consider contra-
grediently the representation of G on n'. Let G_. be the isotropy subgroup of

f
G at f. Obviously Gg S G, and gg [ 9 where gf is the Lie algebra of G

£ £

A polarization h at g 1is called admissible in case (1) it is positive
(i.e., the bilinear form Sg on e/d is positive definite) and (2) h N nm is
stable under Gf and is a polarization at ¢£.

Then the following is proved in [1].
Theorem 1

For any g € g' whether or not G <s of type 1 there exists an admis-
sible polarization at g. Moreover, any admiseible polarization h satisfies the
Puykansky condition so that if g is integrable, indG(ng,h) i8 defined. Further-
more, assuming g i integrable then indG(ng,h) is independent of the choice of
polarizations h and if G is of type 1 then indG(ng,h) i8 1rreducible and
every irreducible unitary representation is equivalent to a representation of this

form. Pinally if G <s type 1 then indG(ng,h) and indG(n; ,hl) are equiva-
1

lent if and only if G e g =G = gy and g corresponds to n% under the aetion
1

of an element a € G such that a -+ g = g
We cannot go into the proof of this theorem here but we will prove two
relevant facts which are needed in the proof. The first of these asserts the in-

dependence of the polarization in the nilpotent- case. This generalizes a result of
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Kirillov who proved a similar theorem for the case of real polarizations, i.e.,
where h =h or e =d. One is forced into non-real polarizations by the second

fact to be proved. To begin with we need
Theorem 2

Assume that g 1is nilpotent, 0 # g € g' and the polarization h at g
is positive. Let b = Ker (g|d). Then b <is an ideal in e and o¢/b is a
Heisenberg Lie algebra with d/b as the l-dimensional center.

In particular d <s an ideal in ¢ and e/d is commutative.

Proof. If x € d let =(x) € End e¢/d be the operator on e¢/d induced
by ad x. Since ad x is nilpotent so is w(x). On the other hand the relation
(g,[d,e]) = 0 implies <(g,[d[e,el]}

‘m(x) 1is skew-symmetric relative to Eg' However, w(x) obviously commutes with jJ

0 since e is an algebra, it follows that

so that it is skew-symmetric relative to S . Thus w(x) is both nilpotent and
skew-symmetric relative to a positive definite bilinear form. Hence =(x) =0 so
that d is an ideal in e.

But the relation {g,[d,e]) = 0 then implies [d,e] € b so that in
particular [b,e] < b. Hence b 1is also an ideal in e. Furthermore d/b is
obviously central in e/b. Also d/b is l-dimensional since g # 0 (see Remark 3).

Now to prove that e¢/b is a Heisemberg Lie algebra with d/b as center,
it suffices to show that e/d is abelian and d/b is the center of e¢/b. But for
this it suffices only to show that e/d is abelian. Indeed if this were the case
then for x € e-d one has [x + b,y + b] € d/b for all y € e-d. But from the
non-singularity of B  we can choose y so that <{g,[y,x]) # 0. This however
implies [x + b,y + b] = d/b. Hence d/b is exactly the center of e/b.

We assert that to prove the theorem it suffices only to prove
Lemma 2

The center of e¢/d is stable under j.

Indeed assume Lemma 2 is true and let « be the center of e¢/d. Now Sg
is non-singular on a since S is positive definite. But since a is stable
under j it follows that B gs also non-singular on d. Let Vv be the ortho-
gonal complement to "~ d in e/d relative to ﬁg' We assert that v 1is a sub-

algebra. Indeed if $,z € v and x € & where x,y,z € ¢ we must show
(,[y,z]) =0 (2.1)

But (%,[y,2]) = {g,[x[y,z]11> = {g,[[x,ylz]) + (g,[y,[x,2]1). But [x,y],[x,z] €d
since a is central in e¢/d. But then [[x,ylz] and [y,[x,z]] lie in b since

[d,e] = b. This proves (2.1) so that v is a subalgebra. But it is obviously
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nilpotent so that if v # 0 then center v # 0. However, clearly center
v S cent ¢/d = a which is a contradiction. Thus v =0 so that a = e/d is

abelian. We proceed now to the

Proof of Lemma 2. Let u € center e/d. We must prove ju is central in

e/d. Let v € e¢/d. We first observe that
ilju,vl = [Ju,jvl . ‘ (2.2)

That is j commutes with ad ju. Indeed u + iju and v + ijv lie in h/dm and

since u is central
[u + iju,v + ijv] = -[Ju,jv] + i[ju,v]

However since h/dm is an algebra it follows that [ju,v] = -j[ju,jv]. Applying J
to both sides yields (2.2). Now let B = ad ju so the problem is to show that
B=0. Let A=23B+ Bt where superscript t denotes the transpose relative to

Sg' Hence A = At is a symmetric operator. We next establish the relation
{av,w} = {[jw,v],u} (2.3)

for any v,w € ¢/d. 1Indeed we first observe that for any 2 €ef/d, i=1,2,3 one

has
([Zl’zz] ,Z3) + ([22923]921) + ([23921]522) =0 . (2.4)

This of course follows from the relation ([zl,zz],z3) = (f,[y3,[yl,y2]]) where
v € e and vy = 2y

Now {Bv,w} = {[ju,vl,w} = (jl[ju,vl,w) = -([ju,v],jw) by (1.1). On the
other hand {Btv,w} = {v,Bw} = (jv,[ju,w]) = -(v,jlju,w]) again by (1.1). But
jlju,w] = [ju,jw] by (2.2) so that {Btv,w} = —([jw,ju),v) since %lf is alter-—
nating. Thus

{av,w) = -((TJu,v],3w) + (([3w,jul,v))

Hence {Av,w} = ([v,jw],ju) by (2.4). But then {Av,w} = (jljw,v],u) = {[jw,v],ul}
by (1.1) establishing (2.3).
As a consequence of (2.3) note that Au = 0 and since A is symmetric

one tBerefore has, by (2.3),

0 = (Av,u) = {{ju,v],u} (2.5)
for all v € ¢/d. We now assert that AB is skew-symmetric or that AB + (AB)t = 0.
That is since A 1is symmetric we assert

{ABv,w} + {Av,Bw} =0 (2.6)

for all v,w € e¢/d.

Indeed {ABv,w} = {Alju,v],w} = {[jw,[ju,v]],u} by (2.3) where [ju,v]
replaces v. On the other hand {Av,Bw} = {Av,[ju,w]} = {[jl[ju,w],v],u} by (2.3)
where [ju,w] replaces w. But jl[ju,w] = [ju,jwl by (2.2) so that
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{8 + (4B)“yv,w} = {([3w,[3u,v]] + [[du,jwl,v]),u}

{[3u, [jw,v]],u} 2.7)

by Jacobi. However, (2.7) vanishes by (2.5) where [jw,v] replaces v. This
proves AB is skew-symmetric.

Now AB = (B + BY)B = BZ

+ BB, But AB = -(aB)T = -B%A = -((8%)2 + B%B).

Thus B2 + BB = —(85)2 - BB or B2 + (85)% = _28%B. Therefore, A% = (3 + B5)?
=82+ 852 + 88% + B%8 = 88" - B'B. But then tr A2 = 0 since tr BB = ¢r BUB.
However, since A is symmetric A2 is positive semi-definite so that tr A2 =0

implies A = 0. Thus B is skew-symmetric. But B dis clearly nilpotent. Hence
B = 0. QED
One now deduces the following generalization of a result of Kirillov.

(See [3]).
Theorem 3

Let G be any simply connected nilpotent Lie group and let g be its
Lie algebra. Let g € n' and let h Dbe any positive polarization at g. Then

indG(ng,h) 18 irreducible and up to equivalence is independent of h.

Proof. (Sketched). It follows from Theorem 2 that indE(ng,h) is just
the Bargmann-Segal (see e.g., [2]) holomorphic construction of an irreducible uni-
tary representation of the Heisenberg group E/B. (B € E is the subgroup corres-
ponding to b = Ker g|d.) One knows therefore that indE(ng,h) is equivalent to
indE Bg where B <€ K S E, K/B is a maximal commutative subgroup of E/B and Sg
is the character on K whose differential is 2mig|k. Here Fk 1is the Lie algebra
of K. But then indG(ng,h) is equivalent to indG B8 . However, since K is
"half-way" between D and E it is also "half-way" between gg and g. One thus
has that k defines a real polarization at g. By Kirillov's result oné knows
that indG Bg is irreducible and that any real polarization gives rise to an
equivalent representation, . QED

Now returning to previous notation where ¢ is solvable one is forced
into considering complex polarizations of the nil-radical #n of g since, in
general, there exists no real polarization at f = g[n which is stable under Gf.
However, by the next lemma there exists complex polarizations and in fact positive

polarizations stable under G Since the commutator group G' < N where NS G

£
corresponds to #N it follows that G% € N so that the hypothesis of the following

lemma is satisfied where F = Gf.
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Lemma 3

. Let N be a simply connected nilpotent Lie group and let wn be its Lie
algebra. Let Aut n be the group of all Lie algebra automorphisms of n so that
Ad N is a subgroup of Aut n.

Regard Aut n as operating by contragredience on the dual n'. Let
fcn'., 4dssume F is a group and a homomorphism F » Aut n (so that F operates
on n and n') such that (1) the commutator subgroup TF' maps into Ad N and
(2) F e £ =1£. Then there exists a positive polarization hl at £ which is
stable under F.

Proof. We assume inductively that the result is true for all simply con-
nected nilpotent Lie groups of dimension smaller than dim #.

Let m = Ker f|center n. Assume this space has positive dimension.
Clearly m is an ideal in n which is stable under F. Thus F operates on
n/m inducing a map F -+ Aut n/m where F’ > Ad N/M if M is the subgroup cor-
responding to m. Moreover, if f0 € (n/m)' 4is induced by f then f is fixed

0
by F.. Now by induction there exists hO c (n/m)m, a positive polarization at £

0 0
stable under FO. But then ﬂ_lho = 7 is clearly a positive polarization at f
stable under F, where m: n »n/m is the quotient map (indeed e = ﬂ_leo, d
= n—ldo and e/d = eo/do). Thus we are done in this case so that we may assume

dim m = 0 and hence center n is one-dimensional, spanned by an element =z
where {f,z) = 1. Since f is fixed by F clearly z is also fixed under the
action of F.

Now consider £k = center n/(z) so that k = hl/(z) where kl & n is an
ideal. Clearly Aut n operates on #/(z) and kR is clearly stable under the
action of this group. However Ad N operates trivially on k since [n,hl] S Rz.
Thus the abelian group F/F' operates on k. Let p S k be an irreducible sub-
space under the action of F/F' so that dim p dis either 1 or 2. Now since

{£,2z) = 1 we may write k, = ho ® Rz where k., = Ker flkl. Since f is fixed

1 0
under F and hl is stable under F it follows that ko is stable under F and
that if w: n + n/(z) 1is the quotient map then 7 induces an F-isomorphism
ko + k. Let o = ko be the F-irreducible subspace corresponding to p < k. Note

then that F' must operate trivially on ho.

Case 1. Assume dim Py = 1 so that g =TRw. In this case we proceed
along the lines used by Kirillov. That is, let g € n' be the linear functional
defined by the relation [y,w] = {(g,y)z. One has g # 0 since otherwise w would
be central in n contradicting the fact that center n =1Rz. Thus there exists

x € g such that {[x,w] = z and hence

n=Rx & no
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where no = Ker g. But then no is the centralizer of w and hence no is a
subalgebra stable under F. However, since VLO has codimension 1 in #n and n

is nilpotent, no is an ideal in #xn. In particular N = XNO where X and NO

are the subgroups corresponding to Rx and no.

Now the action of F on no induces an epimorphism F ~ FO C Aut no

where F' » Fé. However, F' > Aan = AanAan0° But AanO operates trivially
on Rw since clearly w € center Ny On the other hand F' operates trivially on
w € PO as observed above. But since [x,w] = z no non-trivial element of Aan

operates trivially on w so we must have F' > Aan which implies F! < Adn K

0 0 0°
Now clearly f0 = flno is invariant under FO. Fur thermore, we assert
that .
(no)fo = ng ®Rw (2.8)

Indeed w € (VLO)fO since w, € center no. To see that ne [=4 (VLO)fO we have only
to observe that ne & N+ But this is clear since otherwise there exists y € ne

such that [y,w] = z. But then
1= (f,[Y,WD = _(y . f,W)

contradicting the fact that y » £ = 0. Also one has ne NRw = 0 since

{we £,x) = (£,[x,w]) = (£,2) = 1. Finally if y € (VLO)f let c = {y » £,x)

= {f,[%x,y]). But {cw ¢ £,x) = {f,cz) = ¢c. Thus {(y - gw) « £,x) = 0. But

(y - cw) f|yLO =(y - cw) = fo =0 since w € (no)fo. But then y - cw = vy € ne
so that y € nf +IRw. This establishes (2.8).

Now by induction there exists a positive polarization hO [= (VLO)m at fO

which is stable under FO. Clearly then one has
(nedg < ((”o)fo)m S hg s (ngdg s ng -
. . " - " . L] w — "
But since ho is "half-way' between ((Vlo)fo)m and (;/LO)(L it is also "half-way
between (nf)E and e because e has codimension 1 in (Wo)fo and n., has

0

codimension 1 in n. Thus, if & = hO it follows that fh is a positive polari-

zation at f which is stable under the action of F.

Now if dim Py = 2 we may write Py = Ewl $fmw2. If we define
gj €n', j=1,2 by the relation [y,wj] = (gj,y)z then g, and g, are
linearly independent since otherwise Py N center n # 0. But of course
po Ml center n = 0 since center n = Raz.

But then we may find elements X5 X, € n such that

[xi’wﬁl = Gijz . (2.9)

Clearly then

n =]Rx1 G)IRX2 & VLO (2.10)

where no = Ker g1 N Ker g, is the centralizer of the subspace po. Since po is
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stable under F it follows that ”0

since [n,n] annihilates kl 2 ko 2 Py» it follows that

is a subalgebra stable under F. 1In fact

[n,n] & o (2.11)
and hence g is an ideal in n. The action of F on e induces an epimorphism
F -~ FO S Aut o where F' maps into Fé. But the map Xl x X2 x NO >N 1is bi-
jective where (al,az,b) +—ala2b and where NO S N dis the subgroup corresponding

to n and X, 1is the subgroup corresponding to imxj, j =1,2. But now N0

operates trivially on S k.. But since no non-trivial element of X.X
P y Po = %o 1%2

operates trivially on by the relations (2.9) it follows that F' > Ad N and
P Py by o

hence F! < AdnoN

0 0°

Now let f0 = flno. By induction there exists a positive polarization
ho at f, which is stable under the action of F.
As in the case where dim Py = 1 one has [nf,po] =0 so that ne S ny
and hence
ne S (VLO)fO (2.12)
Next observe that
(mo)fo S ne +py = ne @ py (2.13)
Indeed if y € (VLO)fO and cj, j = 1,2 are defined by cj ={y » f,xj)
then g = (y-clwl— CZWZ) « £ 4is orthogonal to ]Rxl +ﬁBx2 by the relations (2.9).
However, clearly g 1is orthogonal to no so that g = 0 which implies y - cqvy

- ey, € ne and hence y € ne + py- Now n. n Py = 0 since by the relation
(2.9) any non-zero element w € po is such that z € Im ad w. But since (f,z)

# 0 this implies w € e Hence (2.13) is established.

Case 2. Assume [wl,wz] = 0. Then Py € My and hence Py & center ny

which implies po c (VLO)f . Thus by (2.12) and (2.13) one has (VLO)f = N 3 o
0 0

so that ne has codimension 2 in (no)fo. Since 9 has codimension 2 in »n

this implies that ho is "half-way" between (Vlf)m and ”G and hence h = ho

defines a positive polarization at f which is stable under F.

Case 3. Assume [Wl’WZ] # 0. Now since F' operates trivially on Po
it follows that F operates, irreducibly, as an abelian group on the 2-dimensional

space. The commuting ring in End po is therefore isomorphic to & and hence w

1
and v, may be chosen in Py so that Qu, Cu & (po)m are stable under the action
of F where u = w1 + /=1 W, and u = Wl - v-1 W Furthermore, it is clear that

since they are necessarily independent we may choose Wi, W, 80 that [Wl’WZ] = z,

and hence (2.10)

2
But then we may choose X and X, 80 that X =W, Xy = W,

becomes
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But then po n no =0 so that, since n_c (no)f c nf + po by (2.12) and (2.13)
0

£
has codimension 2 in n, it follows

one has ne = (no)fo. But then since oy
that hO fails by one dimension of being a maximum isotropic subspace (m.i.s.) of
nm relative to Bf.

Now put

h= ho + Cu

Since hO s (nO)G and u € (pO)E it follows that [u,ho] = 0 so that not only h
is a m.i.s. of ng but h is a subalgebra stable under the action of F. Also
since 1. < h it follows that h is stable under Ad N;. But now h+h = ho

+ Eb +Lu+ Lu = (ho + ﬁb) + (po) However, ho + Eb is a subalgebra since ho

e

is a polarization at f But ho + Eb c (VLO)m and since [po,no] =0 it follows

0
that h + i is a subalgebra since [(pO)E,(pO)m] =Lz and z € ne = (no)fo c h.
Thus h is a polarization at £. We have only to show that # is positive.

But now since Py N #, = 0 one has d=hnNn= hO Nn= ho Ny = do.

But if e = (h +.E) N n and 20 = (ho + Eb) Nn= (ho + ﬁb) n no then one has

e/d = ¢y/dy @ (dy @ po)/dy

But this is an orthogonal direct sum relative to both ﬁf and Sf. Indeed this is

clear since QO and d0 are orthogonal relative to Bg and hence relative to

B.. But also [po,eo] = 0, Furthermore (dO + po)/d0 is stable under j since

(po)m = (po)E nNhe (po)m N%=0u o Tu. But by assumption S; 1is positive
definite on eO/dO. However, it is positive definite on (do + po)/d0 since if
[wi] =w, + do,i = 1,2 one has j[wl] = [WZ] and j[W2] = —[wl]. Thus,
{[w;1,[w,13 = 0 and {[w;],[w;1} = GGlw l,[9; 1) = (Iw,],[w,]) = (£, 5w, 1)

= (f,z) = 1. Similarly {[WZ]’[WZ]} = 1, Hence S, is positive definite. QED

f
Lemma 3 shows that there exists a positive polarizatiomn hl at f which

is stable under Gf. Now let e = glgf. We assert there exists a positive polari-

zation hz at e (for the identity component (Gf)O of Gf) which is stable
under G . To see this one cannot directly apply Lemma 3 since gf is not

necessarily nilpotent. However, if nf = gf Nn and a = Ker f|nf then a is

ideal in 9 and gf/a is indeed nilpotent. Furthermore e induces a linear

£ the subgroup corresponding to nf, it
follows from Lemma 3 that hz exists by passing to the quotient gf/a. But now if

functional on gf/a and since Gé o N

we put h = hl + hz then it follows easily that h 1is an admissible polarization
at g. But then we may form indG(ng,h) giving the most general irreducible

unitary representation of a simply connected solvable Lie group of type I.



[1]

[2]

[3]

[4]

(5]

253

REFERENCES

Auslander, L. and Kostant, B., '"Quantization and Representations of Solvable
Lie Groups", to appear (see announcement in Bull. Amer. Math. Soc., 13,
692-695 (1967).

Bargmann, V., "On A Hilbert Space of Analytic Functions and An Associated
Integral Transform", Comm. Pure Appl. Math., 14, 187-214 (1961).

Kirillov, A. A., "Unitary Representations of Nilpotent Lie Groups', Uspehi.
Mat. Nauk., 17, 57-110 (1962).

Pukansky, L., "On The Theory of Exponential Groups", Trans. Amer. Math. Soc.
126, 487-507 (1967).

Weil, A., Variétés Kihleriennes, Hermann, Paris (1958).

3



