
ON CERTAIN UNITARY REPRESENTATIONS 
WHICH ARISE FROM A QUANTIZATION THEORY 

by 

Bertram Kostant* 

In this paper we are concerned with certain explicit constructions of 

unitary representations which arise from a general theory relating quantization 

and unitary representations. We shall not go into the general theory here but we 

can refer the reader to a forthcoming publication entitled "Quantization and 

Unitary Representations, Part I - Prequantization" which will appear as part of the 

series "Lectures in Modern Analysis and Applications" edited by C. T. Taem, in 

Lecture Notes in Mathematics published by Springer-Verlag. Those considerations 

here for solvable groups are part of a joint work of L. Auslander and myself. 

i. THE REPRESENTATION indG(ng,h) 

Let G be a Lie group, not necessarily connected, and let g be its Lie 

algebra. 

Now let g E g' be a linear functional on g and let gg be the Lie 

algebra of the isotropy subgroup G ~ G with respect to the coadjoint representa- 
g 

tion of G on g'. Thus if B is the alternating bilinear form on g given by 
g 

Bg(x,y) = <g,[y,x]> then 

gg = {x E glBg(x,y) = 0 for all y E g} 

That is gg is the radical of Bg. 

We may regard g as a complex valued linear functional on g~ = g + ig. 

A polarization at g is a complex subalgebra h ~ g~ such that 

(i) gg ~ h and gg is stable under Ad Gg (note that Gg is not 

necessarily connected even if G is connected) 

(2) dim~ g~/h = 1/2 di~ g/gg (recall di~R g/gg is even since gg is 

the radical of Bg) 
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(3) gi[h,h] = 0, i.e., gI h is a homomorphism 

(4) h + h is a Lie algebra of g~. 

Now let d = h N g so that if d~ = d + id one has 

d~=hnK 

Also let e = (h + ~) N g so that if e¢ = e + ie one has 

e~= h + ~  

Now clearly h is equal to its own orthogonal subspace relative to the 

extension of B to g~. It follows easily then that d is the orthogonal sub- 
g 

space to e relative to B and hence if x 6 e/d denotes the image of x E e 
g 

under the quotient map e ÷ e/d one defines a non-singular alternating bilinear 

form B on e/d by the relation 
g 

(~,y) = <g,[y,x]> 

for x,y E e. Next note that we may identify (e/d)~ with e~/d~ so that 

(e/d)~ = h/d~ ~ / d ~  

is a linear direct sum. Since ~/d~ = (~) relative to conjugation over the real 

form e/d of (e/d)~ one defines a non-singular operator j E End e/d where 
.2 
3 = -I and (upon complexification) j = -i on h/d~ and j = i on ~/d~. 

Let S 
g 

Remark i. Note that if u E e/d one has 

u + iju E h/d~ and u - iju E ~/d~ 

be the bilinear form on e/d given by 

{u,v} = (ju,v) 

Proposition i 

S is a non-singular symmetric bilinear form on e/d. Moreover, 
g 

orthogonal relative to both S and B That is, if u,v E e/d one has g g 

{ju,jv} = {u,v} and (ju,jv) = (u,v) 

j is 

Proof. It is clear that by definition h/d~ is orthogonal to itself 

relative to the extension of B to (e/d)~. Thus by Remark i, one has for 
g 

u,v E e/d 

0 = (u + iju,v + ijv) = [(u,v) - (ju,jv)] + i[(ju,v) + (u,jv)] 

Since the imaginary part is zero this implies that 

(ju,v) =-(u,jv) = (jr,u) (i.i) 
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That is {u,v} = {v,u} and hence S is symmetric. It is clearly non-singular 
g .2 

since j is non-singular. The relation (i.i) together with ] = -I clearly 

implies j is orthogonal relative to both S and B . 
g g 

We will say that the polarization h is positive in case S is a 
g 

positive definite bilinear form. (This includes the case where e/d = O, that is 

where h = ~.) 

Remark 2. 

without going to the quotient e/d 

polarization if and only if 

A simple criterion for the positivity of the polarization h 

is a positive is as follows: We assert that h 

-i(z,7) m 0 

write z = x + iy where x,y 6 e. Thus for all z 6 h. Indeed if z 6 h 

and hence -i(z,7) = -i(x + iy,x - iy) = 2(y,x) = 2(y,x) = 2(jx,x) = 2{x,x}. 

relation then follows since the correspondence z ~ x maps h onto e/d. 

in 

y = ~j~ 
J 

The 

Now let b = {x 6 dl<g,x>} = 0. It follows that b has codimension i 

d if and only if gI d # 0. 

Remark 3. If g is nilpotent one knows that glgg # 0 and hence 

gI d # 0 if and only if g # 0. 

Now let D O and E 0 be the connected Lie subgroups of G corresponding 

to d = h N g and e = (h + ~) N g. Since h is stable under Ad G it follows 
g 

that D O and E 0 are normalized by Gg and D = GgD 0 and E = GgE 0 are sub- 

groups of G. 

Proposition 2 

The groups D and D O are closed in G. Also D O is the identity 

component of D so that d is the Lie algebra of D. 

Proof. Since d and e are each other's orthogonal subspaces relative 

to Bg, one has that if x 6 g. then <x • g,y> = 0 for all y E e if and only if 

x E d. Thus 

<a • g - g,y> = 0 

for all a 6 D O and hence for all a 6 T 0. But if x lies in the Lie algebra of 

T 0 then clearly <x • g,y> = 0 for all y 6 e so that x 6 d. Thus D O and T 0 

have the same Lie algebras and hence D O = T 0. 

Now let D 1 be the identity component of D = DoGg. Then if a 6 D 1 

has <a • g - g,y> = 0 for all a 6 D I, and y 6 e. Then if d I is the Lie 

algebra of D I one has d I ~ d. But of course d = d I since D O ~ D I. Thus 

one 
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d = d I so that D O = D I is the identity component of D. But D O = D = D. 

D is also closed and D O is the identity component of D. 

Now consider the D-orbit D ° g = g'. For any subspace a ~ g let 

its orthogonal subspace in g'. 

Hence 

QED 

a be 

Proposition 3 

D • g is an open set of the affine plane g + e in g'. Also D • g 
= D O • g. 

Proof. We first observe that g + ~ is stable under the action of D. 

I n d e e d  s i n c e  e i s  s t a b l e  u n d e r  Ad D c l e a r l y  e i s  s t a b l e  u n d e r  D. However ,  

since D = DoGg one has D • g = D O • g and hence if b E D and f E e one has 

b • (g + f) - g = a • g - g + b • f for some a E D O • But then b • (g + f) - g ~ 

( a s  above)  so  t h a t  g + ~ i s  s t a b l e  u n d e r  D. 

But now clearly d • g ~ ~. On the other hand one has a natural iso- 

morphism d • g ~ d/gg. But then dim d • g = dim d/gg = dim e. Hence d • g = ~. 

But d • g i s  t h e  t a n g e n t  s p a c e  a t  g t o  t h e  o r b i t  D O • g ~ g + ~.  Thus D • g 

is open in g + e. QED 

We w i l l  s a y  t h a t  t h e  p o l a r i z a t i o n  h s a t i s f i e s  t h e  Pukansky  c o n d i t i o n  

(see [4]) if E • g is closed; in which case E is closed and 

D • g = g + e (1.2) 

Lemma i 

If h satisfies the Pukansky condition then D O N Gg = (Gg)0, the 

identity component of Gg. Furthermore, if D I is the simply connected covering 

group to D O and T: D I ÷ D O is the covering map then T-I((Gg)0 ) = (Gg) I is 

connected. 

Proof. As a D O homogeneous space one has D • g = D O ° g ~ D0/D 0 N Gg. 

But since (Gg)0 = D O one has that (Gg) 0 is the identity component of D O N Gg. 

However by (1.2) one has that D O • g is simply connected so that D O N Gg is 

connected. Thus D O N Gg = (Gg) 0. But now also since D~/(G )4 ~ D0/(Gg) 0 the 
i i g ± 

simple connectivity of D O • g implies that (Gg)l = t-~ ((Gg)0) is also connected. 

QED 

Now g vanishes on [gg,g] so that in particular g vanishes on 

[gg,gg] or glgg is a homomorphism gg ÷IR of Lie algebras. We will say 

that g is integral if there exists a character ng: Gg ÷ ~ whose differential is 
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2~iglgg. That i~ if for all x Egg 

d__dt ~g(eXp tx) t = 0 = 2~i(g,x> . 

When this is satisfied we will say that ~g corresponds to g. 

Remark 5. If G is connected and simply connected one knows that the 

existence of ~g is equivalent to the integrality of the de Rham class of the 

canonical symplectic 2-form on the orbit G ° g ~ g' (see Kostant, Quantization 

and Unitary Representations, Part I). 

Now since <g,[d,e]> = 0 then gld also defines a Lie algebra homo- 

morphism d ÷IR. 

Until otherwise stated we will assume g is integral and ~ is a 
g 

character on G corresponding to g. 
g 

Proposition 4 

If the Pukansky condition is satisfied then 

character 

Xg: D+~ 

whose differential is 2~igld. 

n extends to a unique 
g 

Proof. Now let the notation be as in Lemma i so that D I is the simply- 

connected covering group to D O . Now since <g,[d,d]> = 0 there exists a unique 

character X~: D 1 ÷ ~ whose differential is 2~ig[d. Now if the Pukansky condition 

is satisfied, then by Lemma 1 (Gg) 1 is connected and clearly X~](Gg) 1 

= ngl(Gg)0 o T. But then if Z 

has Z ~ (Gg) 1 = T-I((Gg)0) and 

0 
character Xg: D O ÷ ~ such that 

0 
of Xg. 

Now Gg normalizes D O 

is the kernel of the covering map T: D I + D O one 

Z trivial. Hence there exists a unique is 

1 0 
Xg = ×g Q -r. C l e a r l y  2~ig]d i s  t h e  d i f f e r e n t i a l  

and hence G operates on the character group of 
g 

0 
D O . However, Xg is invariant under this action since G • g = g and hence 

g 
G • g[d = gld (of course a character on a connected Lie group is determined by its 
g 

differential). It follows then that if we form the semi-direct product Gg × D O 

then (~g,X~) defines a character onthis group. However by Lemma 1 Gg N D O = (%)0 

and ~g = X~ on (Gg) 0 so that (~g,X0g) is trivial on the kernel K of the 

surjection o: Gg x D O , D given by (a,b) + ab. Thus (~g,X~) is of the form 

Xg o y where Xg is a character on D satisfying the conditions of the proposi- 

tion. As such it is unique since D = DoGg and Xg is obviously uniquely deter- 

mined on Gg and D O . QED 
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Assume that h is a polarization satisfying the Pukansky condition. 

Now let X = E/D. Since E0D = E it ~s clear that X is connected. On 

the other hand since B is a non-singular alternating bilinear form on e/d which 
g 

is invariant under the action of D it is clear that X has a measure ~X in- 

variant under the action of E. 

Now consider the space M(E,Xg ) of all measurable functions ~ on E 

such that ~(ab) = Xg(b)-l~(a) for all a 6 E, b E D. Then M(E,Xg) is an 

E-module where if a E E, ~ E M(E,Xg) then a • ~ E M(E,Xg) is given by 

(a • ~)(b) = ~(a-~). Then if ~C(E,Xg) is the space of equivalence classes (de- 

fined by sets of measure zero) of ~ 6 M(E,Xg) such that II~II 2 = [I~I2d~x is 

finite then ~C(E,Xg ) is the Hilbert space associated with the unitary representa- 

tion indEX. Since ~X is an E-invariant measure one has ((indEX)(a))~ = a • 

for a E E, ~ 6 ~(E,Xg) (conforming to the usual abuse of language). 

Now recall h N ~ = d~ and h + ~ = e~. 

If C~(E) is the space of all C ~ functions on E we note that C~(E) 

is a right e~ module where if z = x + iy E g~ with x,y E e then if # E C=(E) 

one puts ~ • z = ~ • x + i~ - y and if a E E 

Clearly if 

d 
(~ • x)(a) = ~ ~(a exp - tx) t = 0 

E C~(E), a E E, z 6 e~ then 

(a- ~) • z = a- (~ • z) (1.3) 

Now if o E X = E/D is the coset D then the tangent space To(X ) at 

o may be identified with e/d. Hence upon complexification 

(To(X)) ~ = e~/d¢ = h/dl • ~/dl 

Proposition 5 

There is an E-invariant complex structure on X such that h/d~ is the 

space of anti-holomorphic vectors at o. 

Proof. We define a complex distribution F on X such that for any 

p E X one has 

(Tp(X))¢ = F • g 
P P 

= by p u t t i n g  Fp a,(h/d~) w h e r e  a • o = p ,  a 6 E. T h i s  d e p e n d s  o n l y  on p and 

not on a E E since h/d~ is invariant under Ad D. Clearly F is E-invariant. 

By Nirenberg-Newlander, to prove that F is the space of anti-holomorphic tangent 
P 

vectors at p, we have only to prove that F is involutory. That is, if $,~ 

are two complex vector fields on X such that ~p,~p 6 Fp for all X then 

~p E Fp for all p E X where ~ = [~,q]. But this condition is purely local. If 
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p E X let U ~ X be a neighborhood of p with the property that 

~: U÷E 

is a smooth section of the projection ~: E ÷ E/D = X. Then there exists an open 

neighborhood V of the identity on D such that the map 

o: U×V÷WEE 

is a diffeomorphism onto an open set W = E where o(a,b) = o(a)b. But let $,n 

be the complex vector fields on W defined by ~ = (~),(~,0), ~ = (o),(n~ ,0). 

Clearly ~,$ = $,~,n = n. But then if Ph is the left invariant complex distri- 

bution on E defined by ~, then Fh is involutory since h is a subalgebra (we 

are in the group case). However, ~a,na E (F~) a for any a E W since 

l(h/d~) ~ ~ E (F~) a for any a E W. However, ~ = ~,[~,B] since h = ~, . Then [~'~]a 

is ~-related to ~, and n is n-related to n. Thus (~)p E Fp for all p E U. 

Hence F is involutory. QED 

We can now speak of holomorphic functions on any open set V ~ X = E/D. 

In fact if 

~: E÷X 

is the quotient map then these are just the elements of 

all z E h, 

6 C=(V) such that, for 

in -i (V). 

Now let 

that 

(4" ~) " z = 0 (1.4) 

C(E,Xg,h) be the set of all C ~ functions ~ in M(E,Xg ) such 

• z = 2~i(g,z>~ 

for all z E h. 

E and hence if 

By (1.3) it is clear that C(E,Xg,h) is stable under the action of 

~(E,~g,h) = C(E,Xg,h) N ~C(E,Xg) 

(abuse of language) then ~(E,Ng,h) is stable under ind E Xg. 

Remark 6. Since Xg is determined by ng and h we use ng in the 

notation rather than Xg. 

Proposition 6 

~(E,ng,h) is a closed subspace of the Hilbert space ~(E,Xg). 

Proof. We may assume ~(E,ng,h) ~ 0. Let a E E and p = ~a E X. Since 

~C(E,~g,h) # 0 there exists (by translation if necessary) an element ~ E ~C(E,~g,h) 

such that @(a) # 0. Let U be an open neighborhood of a with compact closure 
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such that A > I~I > E > 0 in U. Let V = ~(U) = X. 

Now if B E M(E,Xg) then clearly one has that B = (~ o ~)~ in U where 

is a measurable function on V. Also ~ E C~(V) if and only if BI U E C~(U). 

But now B E ~(E,ng,h) so that for z E ~ one has 2~i<g,z>B = B " z 

= ((~ o ~) • z)~ + (~ o ~)(~ • z). But also ~ • z = 2~i<g,z>~ so that one has 

((~ o ~) • z)~ = 0 which implies (# • ~) • z = 0. Thus by (1.4) one has ~ is 

holomorphie and hence B ~ ~ defines a map 

~(E,ng,~) ÷ Bo(V) 

where (Bo(V)) is the space of all bounded holomorphic functions in V. 

On the other han@ (taking U small enough) if z I m ,.-.,z are the holo- 
2 

morphic coordinates in V then the measure im dZlA'''AdZmAdZl ̂ '''Adam is abso- 

lutely continuous with bounded (from above and below) Radon-Nikodyn derivative with 

respect to ~xIV. But now if B n is Cauchy in ~C(E,ng,~) and ~n = (~n ° ~)~ in 

U where ~n E B0(V) then clearly ~ndzlA...Adz m is Cauchy in B(V) using the 

notation of (Weil, [5], p. 59). Since B(V) is complete (see again Weil, p. 59) 

it follows that ~ndzlA..'Adz TM ÷ pdzlA.-.Adz n in B(V) where p is holomorphic 

in V. But ~n converges to p uniformly on compact subsets of V by Proposition 

5 in Weil. On the other hand if B n ÷ ~ in ~(E,Xg) where ~ = (~ o ~)~ in U 

for ~ a measurable function on V one has ~n ÷ # almost everywhere. Thus 

= p almost everywhere. But clearly ((p o ~)~) . z = 2~i(g,z>(p ~ ~)~ on U 

for z ~ ~. Thus the equivalence class of ~ contains an element in ~C(E,~g,~) 

proving that ~(E,qg,~) is complete. QED 

Now since ~(E,~g,~) is stable under indE Xg it defines a sub- 

representation indE(~g,~) of ind E Xg. But since 

indG(ind E Xg) = ind G Xg 

it follows that if 

indG(~g,~) = ind G indE(~g,~) 

then indG(qg,~) is a subrepresentation of ind E Xg. We denote the corresponding 

Hilbert space by ~(G,~g,~). 

Remark 7. 

G/E then ~(G,~g,h) 

measurable functions 

that 

where #a(b) = #(ab) 

It is clear that if ~Z is a G-quasi invariant measure on 

can be taken to be the set of all equivalence classes of 

on G such that ~a E~(E,qg,h) for all a E G, and such 

IZll ~all 2d~z (7) < 

for b E E and ~ E Z is the image of a in Z. 
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Remark 8. We recall for emphasis that indG(ng,h ) is defined when (i) 

g E g' is integral and (2) h is a polarization satisfying the Pukansky condition. 

However it may reduce to the zero representation if ~(E,~g,h) reduces to zero. 

From the point of view of the general quantization theory indG(~g,h ) is a "zero 

cohomology" representation. 

2. THE SOLVABLE CASE~ EXISTENCE OF ADMISSIBLE POLARIZATIONS 

Although one is forced into considering higher cohomology representations 

in the case where G is semi-simple, L. Auslander and I have shown that the rep- 

resentations of the form indG(~g,h) for a solvable Lie group G of type I are 

sufficient to give G, the set of equivalence classes of irreducible unitary rep- 

resentations of G. 

More precisely assume G is a solvable simply connected Lie group. Then 

for one thing we have shown that G is of type I if and only if (i) g E g' are 

integrable and (2) all orbits G • g = O ~ g' are the intersections of a closed 

and open set. Furthermore in such a case we may explicitly give G. 

To do this consider first the maximal nilpotent ideal n ~ g. Let g E g 

and let f = gln E n'. Since n is stable under Ad G one may consider contra- 

grediently the representation of G on n'. Let Gf be the isotropy subgroup of 

G at f. Obviously Gg ~ Gf and gg ~ gf where gf is the Lie algebra of Gf. 

A polarization h at g is called admissible in case (i) it is positive 

(i.e. the bilinear form S on e/d is positive definite) and (2) h A n~ is ' g 

stable under Gf and is a polarization at f. 

Then the following is proved in [i]. 

Theorem i 

For any g E g' whether or not G is of type I there exists an admis- 

sible polarization at g. Moreover, any admissible polarization h satisfies the 

Pakansky condition so that if g is integrable, indG(ng,h) is defined. Further- 

more, assuming g is integrable then indG(ng,h) is independent of the choice of 

polarizations h and if G is of type I then indG(ng,h) is irreducible and 

every irreducible unitary representation is equivalent to a representation of this 

form. Finally if G is type I then indG(ng,h) and indG(ngl,hl) are equiva- 

lent if and only if G • g = G • gl and ng corresponds to ~I under the action 
i 

of an element a E G such that a • g = gl" 

We cannot go into the proof of this theorem here but we will prove two 

relevant facts which are needed in the proof. The first of these asserts the in- 

dependence of the polarization in the nilpotent-case. This generalizes a result of 
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Kirillov who proved a similar theorem for the case of real polarizations, i.e., 

where h = ~ or e = d. One is forced into non-real polarizations by the second 

fact to be proved. To begin with we need 

Theorem 2 

Assume that g is nilpotent, 0 # g E g' and the polarization h 

is positive. Let b = Ker (gld). Then b is an ideal in e and e/b is a 

Heisenberg Lie algebra with d/b as the 1-dimensional center. 

In particular d is an ideal in e and e/d is commutative. 

at g 

Proof. If x E d let ~(x) E End e/d be the operator on e/d induced 

by ad x. Since ad x is nilpotent so is ~(x). On the other hand the relation 

<g,[d,e]> = 0 implies (g,[d[e,e]]> = 0 since e is an algebra, it follows that 

~(x) is skew-symmetric relative to B . However, ~(x) obviously commutes with j 
g 

so that it is skew-symmetric relative to S . Thus n(x) is both nilpotent and 
g 

skew-symmetric relative to a positive definite bilinear form. Hence ~(x) = 0 so 

that d is an ideal in e. 

But the relation <g,[d,e]> = 0 then implies [d,e] a b so that in 

particular [b,e] ~ b. Hence b is also an ideal in e. Furthermore d/b is 

obviously central in e/b. Also d/b is 1-dimensional since g # 0 (see Remark 3). 

Now to prove that e/b is a Heisenberg Lie algebra with d/b as center, 

it suffices to show that e/d is abelian and d/b is the center of e/b. But for 

this it suffices only to show that e/d is abelian. Indeed if this were the case 

then for x E e-d one has [x + b,y + b] ~ d/b for all y E e-d. But from the 

non-singularity of B we can choose y so that <g,[y,x]> # 0. This however 
g 

implies [x + b,y + b] = d/b. Hence d/b is exactly the center of e/b. 

We assert that to prove the theorem it suffices only to prove 

Lemma 2 

The center of e/d is stable under j. 

Indeed assume Lemma 2 is true and let a be the center of e/d. Now S g 

is non-singular on a since S is positive definite. But since a is stable 
g 

under j it follows that B is also non-singular on a. Let v be the ortho- 
g 

gonal complement to a in e/d relative to B . We assert that v is a sub- 
g 

algebra. Indeed if y,z E V and x E a where x,y,z E e we must show 

( :~,[~,f~]) : 0 (2 .1 )  

But (x,[y,z]) = (g,[x[y,z]]> = <g,[[x,y]z]> + {g,[y,[x,z]]>. But [x,y],[x,z] E d 

since a is central in e/d. But then [[x,y]z] and [y,[x,z]] lie in b since 

[d,e] ~ b. This proves (2.1) so that v is a subalgebra. But it is obviously 
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nilpotent so that if v # 0 then center v # O. 

u = cent e/d = a which is a contradiction. Thus 

abelian. We proceed now to the 

However, clearly center 

v = 0 so that a = e/d is 

Proof of Lemma 2. Let u 6 center £/d. We must prove ju is central in 

e/d. Let v 6 e/d. We first observe that 

j[ju,v] = [ju,jv] • (2.2) 

That is j commutes with ad ju. Indeed u + iju and v + ijv lie in h/d~ and 

since u is central 

[u + iju,v + ijv] = -[ju,jv] + i[ju,v] 

However since h/d~ is an algebra it follows that [ju,v] = -j[ju,jv]. Applying j 

to both sides yields (2.2). Now let B = ad ju so the problem is to show that 

B = 0. Let A = B + B t where superscript t denotes the transpose relative to 

S . Hence A = A t is a symmetric operator. We next establish the relation 
g 

{Av,w} = {[jw,v],u} (2.3) 

for any v,w 6 e/d. Indeed we first observe that for any z. 6 e/d, i = 1,2,3 one 
i 

has 

([Zl,Z 2],z3) + ([z2,z3],Zl) + ([z3,zl],Z2) - 0 (2.4) 

This of course follows from the relation ([Zl,Z2],z3) = <f,[y3,[yl,Y2]]> where 

6 e and Yi = Yi z i • 

Now {Bv,w} = {[ju,v],w} = (j [ju,v] ,w) = -([ju,v],jw) by (i.i). On the 

other hand {Btv,w} = {v,Bw} = (jv,[ju,w]) =-(v,j[ju,w]) again by (i.i). But 

j[ju,w] = [ju,jw] by (2.2) so that {Btv,w} = -([jw,ju],v) since Bf is alter- 

nating. Thus 

{Av,w} =-(([ju,v],jw) + (([jw,ju],v)) 

Hence {Av,w} = ([v,jw],ju) by (2.4). But then {Av,w} = (j [jw,v] ,u) = {[jw,v],u} 

by (i.i) establishing (2.3). 

As a consequence of (2.3) note that Au = 0 and since A is symmetric 

one t~erefore has, by (2.3), 

0 = (Av,u) = {[ju,v],u} (2.5) 

for all v 6 £/d. We now assert that AB is skew-symmetric or that AB + (AB) t -- 0. 

That is since A is symmetric we assert 

{ABv,w} + {Av,Bw} = 0 (2.6) 

for all v,w 6 e/d. 

Indeed {ABv,w} = {A[ju,v],w} = {[jw,[ju,v]],u} by (2.3) where [ju,v] 

v. On the other hand {Av,Bw} = {Av,[ju,w]} = { [j [ju,w] ,v] ,u} by (2.3) 

[ju,w] replaces w. But j[ju,w] = [ju,jw] by (2.2) so that 

replaces 

where 
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{(AB + (AB)t)v,w} = {([jw,[ju,v]] + [[ju,jw],v]),u} 

= { [ju, [jw,v] ] ,u} (2.7) 

by Jacobi. However, (2.7) vanishes by (2.5) where [jw,v] replaces v. This 

proves AB is skew-symmetric. 

Now AB = (B + Bt)B = B 2 + BtB. But AB = -(AB) t = -BtA = -((Bt) 2 +BtB). 

Thus B 2 + BtB = -(Bt) 2 -BtB or B 2 + (Bt) 2 = -2BtB. Therefore, A 2 = (B + Bt) 2 

= B 2 + (Bt) 2 + BB t +BtB = BB t - BtB. But then tr A 2 = 0 since tr BB t = tr BtB. 

However, since A is symmetric A 2 is positive semi-definite so that tr A 2 = 0 

implies A = 0. Thus B is skew-symmetric. But B is clearly nilpotent. Hence 

B = 0. QED 

One now deduces the following generalization of a result of Kirillov. 

(See [3]). 

Theorem 3 

Let G be any simply connected nilpotent Lie group and let g be its 

Lie algebra. Let g 6 n' and let h ~e any positive polarization at g. Then 

indG(~g,h) is irreducible and up to equivalence is independent of h. 

Proof. (Sketched). It follows from Theorem 2 that indE(ng,h ) is just 

the Bargmann-Segal (see e.g., [2]) holomorphic construction of an irreducible uni- 

tary representation of the Heisenberg group E/B. (B = E is the subgroup corres- 

ponding to b = Ker gld.) One knows therefore that indE(ng,h) is equivalent to 

ind E ~g where B ~ K = E, K/B is a maximal commutative subgroup of E/B and Bg 

is the character on K whose differential is 2~iglk. Here k is the Lie algebra 

of K. But then indG(~g,h) is equivalent to ind G Bg. However, since K is 

"half-way" between D and E it is also "half-way" between gg and g. One thus 

has that k defines a real polarization at g. By Kirillov's result one knows 

that ind G Bg is irreducible and that any real polarization gives rise to an 

equivalent representation. QED 

Now returning to previous notation where g is solvable one is forced 

into considering complex polarizations of the nil-radical n of g since, in 

general, there exists no real polarization at f = gln which is stable under Gf. 

However, by the next lemma there exists complex polarizations and in fact positive 

polarizations stable under Gf. Since the commutator group G' = N where N ~ G 

' ~ N so that the hypothesis of the following corresponds to n it follows that Gf 

lemma is satisfied where F = Gf. 
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Lemma 3 

Let N be a simply connected nilpotent Lie group and let n be its Lie 

algebra. Let Aut n be the group of all Lie algebra automorphisms of n so that 

Ad N is a subgroup of Autn. 

Regard Aut n as operating by contragredience on the dual n'. Let 

f ~ n'. Assume F is a group and a homomorphism F ÷ Aut n (so that F operates 

on n and n') such that (i) the commutator subgroup F' maps into Ad N and 

(2) F • f = f. Then there exists a positive polarization h I at f which is 

stable under F. 

Proof. We assume inductively that the result is true for all simply con- 

nected nilpotent Lie groups of dimension smaller than dim n. 

Let m = Ker flcenter n. Assume this space has positive dimension. 

Clearly m is an ideal in n which is stable under F. Thus F operates on 

n/m inducing a map F ÷ Aut n/m where F I ÷ Ad N/M if M is the subgroup cor- 

responding to m. Moreover, if f0 E (n/m)' is induced by f then f0 is fixed 

by F 0. Now by induction there exists h 0 = (n/m)~, a positive polarization at f0 

stable under F 0. But then ~-lh 0 = h is clearly a positive polarization at f 

F, where ~: n ÷n/m is the quotient map (indeed e = q-le0, stable under d 

= ~-id 0 and e/d ~ eo/do). Thus we are done in this case so that we may assume 

dim m = 0 and hence center n is one-dimensional, spanned by an element z 

where (f,z> = i. Since f is fixed by F clearly z is also fixed under the 

action of F. 

Now consider k = center n/(z) so that k = kl/(Z) where k I ~ n is an 

ideal. Clearly Aut n operates on n/(z) and k is clearly stable under the 

action of this group. However Ad N operates trivially on k since [n,kl] ~IRz. 

Thus the abelian group F/F' operates on k. Let p ~ k be an irreducible sub- 

space under the action of F/F' so that dim p is either i or 2. Now since 

<f,z> = i we may write k I = k 0 @]Rz where k 0 = Ker flk I. Since f is fixed 

under F and k I is stable under F it follows that k 0 is stable under F and 

that if 7: ~ ÷ n/(z) is the quotient map then ~ induces an F-isomorphism 

k 0 ÷ k. Let P0 ~ ~0 be the F-irreducible subspace corresponding to p ~ k. Note 

then that F' must operate trivially on k 0. 

Case i. Assume dim P0 = i so that P0 =l~w. In this case we proceed 

along the lines used by Kirillov. That is, let g E n' be the linear functional 

defined by the relation [y,w] = (g,y>z. One has g # 0 since otherwise w would 

be central in n contradicting the fact that center n =]Rz. Thus there exists 

x E g such that [x,w] = z and hence 

n = ~ n  0 
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where n O = Ker g. But then n O is the centralizer of w and hence n O is a 

subalgebra stable under F. However, since n o has codimension i in n and n 

is nilpotent, n o is an ideal in n. In particular N = XN 0 where X and N O 

are the subgroups corresponding to IRx and R0" 

Now the action of F on n 0 induces an epimorphism F ÷ F 0 = Aut n o 

where F' ÷ F 0.' However, F' ÷ AdnN = AdnXAdnN 0. But AdnN 0 operates trivially 

on ~w since clearly w E center n o . On the other hand F' operates trivially on 

w E P0 as observed above. But since [x,w] = z no non-trivial element of AdnX 

operates trivially on w so we must have F' ÷ AdnN 0 

Now clearly f0 = fln0 is invariant under 

that 

(~0)f0 = nf OIRw 

which implies F~ = Ad n NO. 
0 

F 0. Furthermore, we assert 

(2.8)  

Indeed w 6 (n0)f0 since w 0 6 center n o . To see that ~f = (nO)f0 we have only 

to observe that nf ~ n o . But this is clear since otherwise there exists y E nf 

such that [y,w] = z. But then 

i = (f,[y,w]> = -<y • f,w> 

contradicting the fact that y • f = 0. Also one has nf N IRw = 0 since 

<w • f,x) = <f,[x,w]> = (f,z> = i. Finally if y E (n0)f0 let c = (y • f,x> 

= <f,[x,y]>. But <cw • f,x> <f,cz> = c. Thus <(y - cw) • f,x> = 0. But 

(y - cw) • fln 0 = (y - cw) • f0 = 0 since w E (n0)f0. But then y - cw = Yl 6 nf 

so that y E nf +IRw. This establishes (2.8). 

Now by induction there exists a positive polarization h 0 ~ (no) ~ at f0 

which is stable under F 0. Clearly then one has 

(nf)~ ~ ((n0)f0) ¢ ~ h 0 = (no) ~ ~ n~ 

But since h 0 is "half-way" between ((n0)f0) ~ and (n0) ~ it is also "half-way" 

between (nf)~ and n~ because nf has codimension i in (n0)f0 and n o has 

codimension i in n. Thus, if h = h 0 it follows that h is a positive polari- 

zation at f which is stable under the action of F. 

Now if dim PO = 2 we may write P0 =IRWl @IRw2" If we define 

gj E R', j = 1,2 by the relation [y,wj] = <gj,y>z then gl and g2 are 

linearly independent since otherwise P0 N center n ¢ 0. But of course 

P0 N center n = 0 since center n =]Rz. 

But then we may find elements Xl, x 2 E n such that 

[xi,w j] = Bijz (2.9) 

Clearly then 

where 

n =IRx I @]Rx 2 • n O (2.10) 

n o = Ker gl N Ker g2 is the centralizer of the subspace P0" Since P0 is 
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since [n,n] annihilates k I m k 0 m P0' it follows that 

In,n] ~ n o (2.11) 

and hence n O is an ideal in n. The action of F on n o induces an epimorphism 

F * F 0 ~ Aut n O where F' maps into F 0. But the map X 1 × X 2 × N O + N is bi- 

jective where (al,a2,b) + ala2b and where N O ~ N is the subgroup corresponding 

to n and X. is the subgroup corresponding to ]Rxj, j = 1,2. But now N O 
J 

operates trivially on P0 ~ k0" But since no non-trivial element of XIX 2 

operates trivially on P0 by the relations (2.9) it follows that F' ÷ AdnN 0 and 

hence F$ ~ Adn0N 0. 

Now let f0 = flno" By induction there exists a positive polarization 

h 0 at f0 which is stable under the action of F 0. 

and hence 

As in the case where dim P0 = i one has [nf'P0] = 0 so that nf ~ n o 

nf ~ (n0)f0 (2.12) 

Next observe that 

(n0)f 0 nf + P0 = nf @ P0 (2.13) 

Indeed if y E (n0)f0 and cj, j = 1,2 are defined by cj = (y • f,xj> 

then g = (y- ClW I- c2w2) • f is orthogonal to ]Rx I +]Rx 2 by the relations (2.9). 

However, clearly g is orthogonal to n O so that g = 0 which implies y - clw I 

- c2w 2 E nf and hence y E nf + P0" Now nf A P0 = 0 since by the relation 

(2.9) any non-zero element w E P0 is such that z EIm ad w. But since (f,z> 

# 0 this implies w E nf. Hence (2.13) is established. 

Case 2. Assume [Wl,W2] = 0. Then P0 ~ no and hence P0 ~ center n o 

which implies P0 ~ (n0)f 0" Thus by (2.12) and (2.13) one has (n0)f0 = nf ~ P0 

so that nf has codimension 2 in (n0)f0. Since n o has codimension 2 in n 

this implies that h 0 is "half-way" between (nf)~ and n~ and hence h = h 0 

defines a positive polarization at f which is stable under F. 

Case 3. Assume [Wl,W2] # 0. Now since F' operates trivially on P0 

it follows that F operates, irreducibly, as an abelian group on the 2-dimensional 

space. The commuting ring in End P0 is therefore isomorphic to ~ and hence w 1 

and w 2 may be chosen in P0 so that ~u, Cu ~ (p0)~ are stable under the action 

of F where u = w I + /~ w 2 and u = w I - -~-w 2. Furthermore, it is clear that 

since they are necessarily independent we may choose Wl, w 2 so that [Wl,W2] = z. 

But then we may choose x I and x 2 so that x I = Wl, x 2 = -w 2 and hence (2.10) 

becomes 

]Rw I e~w 2 @ n o = n 
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But then P0 N n o = 0 so that, since nf = (no)f0 = nf + P0 by (2.12) and (2.13) 

one has ~f = (n0)f0. But then since ~0 has codimension 2 in n, it follows 

that ~0 fails by one dimension of being a maximum isotropic subspace (m.i.s.) of 

n~ relative to Bf. 

Now put 

h = h 0 + ~u 

and u E (p0)~ it follows that [u,h0] = 0 so that not only h Since ~0 ~ (n0)E 

is a m.i.s, of n~ but h is a subalgebra stable under the action of F. Also 

since nf ~ h it follows that ~ is stable under Ad Nf. But now h + ~ = h 0 

+ h0 + ~u + ~u = (h 0 + h0 ) + (p0)~. However, h 0 + t 0 is a subalgebra since h 0 

is a polarization at f0" But h0 + ~0 ~ (n0)E and since [p0,~0] = 0 it follows 

that ~ + ~ is a subalgebra since [(p0)~,(p0)~] = ~z and z E nf = (n0)f0 ~ h. 

Thus h is a polarization at f. we have only to show that ~ is positive. 

But now since P0 N n o = 0 one has d = h A n = h 0 N n = h 0 N n o = d o . 

But if e = (h + ~) N n and e 0 = (h 0 + t 0) A n = (h 0 + ~0 ) N N 0 then one has 

e/d = eo/d 0 • (d o • po) /do 

But this is an orthogonal direct sum relative to both Bf and Sf. Indeed this is 

clear since e 0 and d o are orthogonal relative to Bf0 and hence relative to 

Bf. But also [P0,e0] = 0. Furthermore (d o + po)/do is stable under j since 

(p0)~. = (p0)~ N h @ (p0)~. N ~ = ~u @ ~u. But by assumption Sf is positive 

definite on eo/d O. However, it is positive definite on (d o + po)/do since if 

[wi] = w i + d0,i = 1,2 one has J[Wl] = [w2] and J[w2] = -[Wl]. Thus, 

{[Wl],[w2]} = 0 and {[Wl],[Wl]} = (J[Wl],[Wl]) = ([w2],[Wl]) = (f,[wl,w2]> 

= <f,z> = i. Similarly { [w2] , [w2] } = i. Hence Sf is positive definite. QED 

Lemma 3 shows that there exists a positive polarization h I at f which 

is stable under Gf. Now let e = glgf- We assert there exists a positive polari- 

zation h2 at e (for the identity component (Gf) 0 of Gf) which is stable 

under Gg. To see this one cannot directly apply Lemma 3 since gf is not 

necessarily nilpotent. However, if nf = gf N n and a = Ker f lnf then a is 

ideal in gf and gf/a is indeed nilpotent. Furthermore e induces a linear 

functional on ~f/a and since G' ~ Nf, the subgroup corresponding to nf, it 
g 

follows from Lemma 3 that h 2 exists by passing to the quotient gf/a. But now if 

we put h = h I + h 2 then it follows easily that h is an admissible polarization 

at g. But then we may form indG(ng,h) giving the most general irreducible 

unitary representation of a simply connected solvable Lie group of type I. 
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