
P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
0
2

Exploring the QCD phase diagram: Fluctuations and
Correlations

Volker Koch∗

Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA
E-mail: vkoch@lbl.gov

In this contribution an attempt is made to provide a status report on the exploration of the QCD

phase diagram via the study of fluctuations and correlationsin heavy ion collisions.

5th International Workshop on Critical Point and Onset of Deconfinement
June 8-12, 2009
Brookhaven National Laboratory, Long Island, New York, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
0
2

Exploring the QCD phase diagram: Fluctuations and Correlations Volker Koch

1. Introduction

The exploration of the QCD phase diagram, both experimentally and theoretically, is one of the
main thrusts of present day research in strong interaction physics. Experimentally, hot and dense
matter is created in the laboratory via the collision of heavy nuclei, and experiments have been
carried out at many facilities, starting from the BEVALAC atmoderate center of mass energies of√

s≈ 2.5AGeV to RHIC at
√

s= 200GeV and soon at the Large Hadron Collider (LHC) at
√

s≈
5TeV. Theoretically, the properties of hot and dense strongly interacting matter are explored with a
variety of approaches and strategies, ranging from LatticeQCD to perturbative QCD and effective
models. Since interesting structures in the phase diagram such as co-existence regions, critical
points etc. are most likely associated with non-perturbative phenomena, at present Lattice QCD
(LQCD) is the only available method to explore the phase structure directly within QCD. However,
rigorous LQCD calculations so far only allow for the calculation of quantities at vanishing baryon
number chemical potential, where it has been shown that the QCD transition, often referred to as
the deconfinement or chiral restoration transition, is an analytic cross over [1]. On the other hand,
effective chiral models, such as the linear sigma model or the Nambu Jona-Lasinio model, find a
first order phase transition at small temperatures and largebaryon-number chemical potential (for
a review see e.g. [2]). Together with the cross over at zero baryon density, this suggests that there
should be a critical endpoint, where the first order coexistence stops. While this is seen in the
effective models, so far the existence of a critical end point has not been rigorously established in
Lattice QCD. Several methods to explore the region of finite baryon density have been developed
[3, 4, 5] but they are restricted to either the region of smallbaryon-number chemical potential or to
systems with small volume. In addition new ideas about a possible “quarkyonic” phase [6] based
on largeNc arguments have emerged. As a result, the schematic phase diagram depicted in Fig.1
may indeed be much richer than shown.

While the existence and the location of a QCD critical point,phase co-existence region or
other phases is not yet rigorously established theoretically, this should not prevent an experimental
exploration of a possible structures in the QCD phase diagram. Indeed, this has been one of the
main driving forces of relativistic heavy ion research. By tuning the beam energy one can influence
the temperature and density region of the system under investigation. This is evidenced by the
systematics of hadronic abundances, see e.g. [7], where thetemperature and chemical potential
needed to describe the observed hadron abundances change with beam energy. In addition to tuning
the beam energy one of course needs robust observables, which indicate that the system has indeed
undergone a phase change. This is a rather non-trivial task and we will try to review the status of
some of these observables in this contribution.

This contribution is organized as follows: In the next section we briefly remind the reader about
the nuclear liquid gas transition. Then we turn to the QCD phase diagram and try to summarize the
various techniques that have been developed to explore the existence of a critical point by means of
Lattice QCD. After a more general discussion of observableswe will then review the present status
of some of the observables which already have been measured over a wide range of beam energies.
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Figure 1: Schematic QCD phasediagram

2. The (Nuclear)Liquid-Gas Phase Transition

Conventional nuclear matter has a first order phase transition from a dense (liquid) to a dilute
(gas) phase which ends at a critical point at temperatureT ≃ 16 MeV. The fact that nuclear matter
has such a phase transition is not at all surprising. The nuclear force, with its short range repulsion
and intermediate range attraction, is very similar to a van der Waals force which is used as a
textbook example to introduce real gases with phasetransitions between a gaseous a liquid phase
(see e.g.[8] ). Therefore, conceptually the phase transition of nuclear matter, often referred to as the
“nuclear liquid-gas phasetransition”, is rather straightforward and its existence has been predicted
already in the seventies, e.g. [9].

In addition, the phases are easily identified even for a smallsystem such as it is produced in a
collision of nuclei: the low density (gas) phase is nothing but a gas of nucleons whereas the high
density (liquid) phase is made out of droplets or rather clusters of nucleons, often referred to as
intermediate mass fragments. This is quite different in case of the QCD transition. There, the low
density phase is a hadron gas, which is easily identified but the high density phase is most likely
some kind of deconfined matter, which is not so easily detected in an actual experiment.

Experiments searching for the nuclear liquid-gas phasetransition in intermediate energy nu-
clear collisions have been carried out for more than 20 yearsand the existence of a liquid-gas
co-existence has been established by several different methods (for a recent compilation of the
state of the art see [10]). Most relevant for the task of identifying a possible phase co-existence
region in the QCD diagram is likely the identification of phenomena related to a spinodal insta-
bility [11, 12, 13]. If a system moves sufficiently fast into the co-existence region it can enter the
mechanically unstable regime, the spinodal region, which in turn results in dynamical (spinodal)
instabilities. These instabilities lead to the formation of blobs of typical size, which is determined
by the length scales of the underlying interaction. In case of the nuclear liquid-gas phasetransi-
tion, spinodal instabilities were predicted to lead to event classes which are characterized by a
very narrow distribution in the size of the final fragments. This has been convincingly observed in
experiment by the INDRA collaboration [14].
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3. The QCD Phase Diagram

As already mentioned in the introduction, the QCD phase diagram is reasonable well under-
stood for vanishing baryon number. Here, Lattice QCD with staggered fermions finds an analytic
crossover [1] at a temperature ofTc = 170− 190 MeV. While the actual value of the crossover
transition temperature is still being disputed [15, 16], the fact that the transition is a crossover is
agreed upon by all Lattice groups. At finite baryon density, or equivalently baryon number chem-
ical potential,µB, the situation is less clear. Lattice simulations are very difficult if not impossible
to carry out due to the complex phase in the fermion determinant, which arises at finiteµB. There
are, however, several methods to circumvent this problem. On the one hand there are the so-called
reweighting methods. The pioneering work [17] in this approach has indeed located a critical point.
With realistic quark masses, this method predicts its location atT ≃ 160MeV andµB ≃ 360MeV
[3]. However, the method employed can not easily be extendedto larger volumes and, therefore,
one does not know if the signal survives in the infinite volumelimit. Other approaches calculate
the free energy at finite chemical potential as a Taylor expansion in terms of the chemical potential
(see e.g [5, 18]). The expansion coefficients are given by thebaryon number cumulants or suscep-
tibilities. While this method does not allow to extract a critical point directly it can provide limits
for its location. At present a conservative limit for its chemical potential isµB & Tc ([5, 19]), where
Tc ∼ 180MeV is the transition temperature at vanishing baryon number density.

Another way to analyze models and also Lattice QCD results inthe region of small chemical
potentials is to find the critical quark mass for which one obtains a second order transition [20].
This is depicted in Fig.2. Most chiral models predict that the critical quark mass increases with the
chemical potential (right panel of Fig.2). In this case, oneexpects a critical point at finite chemical
potential once the critical quark mass coincides with the physical quark mass, as can be seen in
the figure. Lattice QCD, on the other hand, seems to favor the opposite trend, namely a decreasing
critical quark mass (left panel of Fig.2). This is the resultof [20, 21] obtained in an expansion up to
fourth order in the chemical potentialµB on a rather small lattice. If these lattice results hold up for
larger lattices it seems that the chiral dynamics does not predict the smallµB behavior of the critical
quark mass correctly and other effects are more dominant. One possibility would be a repulsive
vector coupling, which is neither constrained nor ruled outby symmetry arguments. As shown in
[22] a suitable choice of a repulsive vector coupling can indeed reproduce the trend seen on the
lattice. However, at this conference O. Phillipsen reported first results with larger lattices where he
sees a somewhat reduced curvature, consistent with zero. Therefore, at present, the situation is still
open. Also, calculations in a linear sigma model including thermal fluctuations finds two critical
points [23] for a pion mass ofmπ = 35 MeV, indicating that the critical surface depicted in Fig.2
may bend back at higher temperatures. For a physical pion mass, this model exhibits only one
critical point at largeµB consistent with all other mean field treatments of the sigma and Nambu
Jona-Lasinio model (for a compilation see [2]).

Obviously there is only limited theoretical guidance for anexperimental search for the critical
point as the model predictions for its location vary quite a bit. From hadronic freeze out systematics
[7], on the other hand, one knows that the chemical potentialof the system created depends on the
center-of-mass energy of the collision. Unless the temperature of the critical point is unexpectedly
low, one can explore regions up to aboutµB ≤ 500MeV in the chemical potential by lowering the
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Figure 2: Behavior of the critical line as a function of chemical potential µB. Left panel: Scenario favored
by Lattice QCD [20, 21] where critical line moves towards smaller quark masses. Right panel: Standard
scenario predicted by most chiral models, where critical line moves towards higher quark masses. The
figure is adapted from [20].

beam energy to about
√

s≃ 5GeV. Hence, the strategy for a search is to study excitationfunctions
of various observables and see if they show non-monotonic behavior at the same beam energy,
indicating the location of the critical point or of the first order phase co-existence region

4. Fluctuation and Correlations: From theory to observables

Fluctuations and correlations are unique signatures for phase transitions. Therefore, an exper-
imental search for a possible critical point and a first orderco-existence region in the QCD phase
diagram is intimately connected with the study and measurement of fluctuations and correlations.
Before we will discuss presently available data let us briefly review the underlying concepts of
fluctuations and correlation in the context of the system in thermodynamic equilibrium.

A system in thermal equilibrium (for a grand-canonical ensemble) is characterized by its par-
tition function

Z = Tr

[

exp

(

−H −∑i µiQi

T

)]

(4.1)

whereH is the Hamiltonian of the system, andQi and µi denote the conserved charges and the
corresponding chemical potentials, respectively. In caseof three flavor QCD these are strangeness,
baryon-number, and electric charge, or, equivalently, thethree quark flavors up, down, and strange.
The mean and the (co)-variances are then expressed in terms of derivatives of the partition function
with respect to the appropriate chemical potentials,

〈Qi〉 = T
∂

∂ µi
log(Z) (4.2)

〈

δQiδQ j
〉

= T2 ∂ 2

∂ µi∂ µ j
log(Z) ≡VTχi, j (4.3)

with δQi = Qi −〈Qi〉. Here we have introduced the susceptibilities

χi, j =
T
V

∂ 2

∂ µi∂ µ j
log(Z) (4.4)
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which are generally quoted as a measure of the (co)-variances. The diagonal susceptibilities,χi,i ,
are a measure for the fluctuations of the system, whereas the off-diagonal susceptibilities,χi, j ; i 6= j,
characterize the correlations between the conserved chargesQi andQ j . We note that the suscepti-
bilities are directly related to the well known cumulants instatistics [24].

One can define and study higher order susceptibilities or cumulants, by differentiating multiple
times with respect to the appropriate chemical potentials

χ (ni ,nj ,nk) ≡ 1
VT

∂ ni

∂ (µi/T)ni

∂ nj

∂ (µ j/T)nj

∂ nk

∂ (µk/T)nk
logZ. (4.5)

Higher order cumulants up to the sixth [18, 25, 26, 27] and even eighth [5] order have been
calculated in Lattice QCD.

Susceptibilities are related to integrals of equal time correlation functions of the appropriate
charge-densities. Here we will restrict ourselves to the second order susceptibilities keeping in
mind that the higher order susceptibilities can also be expressed in terms of appropriate (higher
order) correlation functions.

Consider a density fluctuationδρi(x) = ρi(x)− ρ̄i at locationx, whereρ̄i denotes the spatially
averaged density of the chargeQi . Then the susceptibilities are given by the following integral over
the density-density correlation functions:

χi, j =
1

VT

∫

d3xd3y
〈

δρi(x)δρ j (y)
〉

=
1
T

ρ̄iδi, j +
1
T

∫

d3rCi, j(r). (4.6)

The correlation functions

Ci, j(~r) =
〈

δρi(~r)δρ j(0)
〉

− ρ̄iδi, jδ (~r) ∼ exp[−r/ξi, j ]

r
(4.7)

are characterized by typical correlation lengthsξi, j . The correlation length provides a measure for
the strength and type of the correlation. For example, in case of a second order phase transition the
correlation length diverges with a characteristic critical exponent, usually denoted asν .

To illustrate this point let us first consider the case of a classical ideal gas. This will also
serve as useful reference for comparison with LQCD results.Since a classical ideal gas has no
correlations, by construction its correlation functions vanish,Cidealgas= 0, and the susceptibilities
are given by the first, local term in Eq. 4.6,∼ ρ̄iδi, j , implying that all co-variances vanish. As a
consequence, the fluctuations are proportional to the number of particles in the system, and thus
grow linearly with the system size,V.

〈

(δQi)
2〉 ∼V (4.8)

The more relevant case concerning the QCD critical point corresponds to a second order phase
transition. In this case, the correlation length diverges at the critical temperature

ξ ∼ |T −Tc|−ν (4.9)

whereν > 0 is relevant critical exponents characterizing a second order phase transition in a given
universality class [28]. In this case, the volume dependence of the susceptibilities is governed by
the integral of the correlation function

χi, j ∼ ξ 2 ∼V2/3 (4.10)

6
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so that the fluctuations grow like1

〈

(δQi)
2〉 ∼V5/3, secondorder. (4.11)

In case of a first order transition we have co-existence of phases with different densities, and
the correlation function is a constant,C(r) = const 6= 0. Consequently, the fluctuations scale like

〈

(δQi)
2〉 ∼V2, firstorder. (4.12)

Most other systems, including systems with a cross over, such as QCD at vanishing chemical
potential [1], will exhibit a finite correlation length. Consequently, the susceptibility is independent
of the volume, and the fluctuations scale linearly with the volume, just as in the case of an ideal gas

〈

(δQi)
2〉 ∼V, nophase− transition. (4.13)

In principle, one could utilize the above volume scaling of the fluctuations in heavy-ion ex-
periments by studying the system size dependence of, e.g., baryon-number fluctuations. However,
in case of the second order phase-transition, the phenomenon of critical slowing down limits the
actual size of correlation length due to the finite life-timeof the system created in these collisions.
A maximum correlation length ofξ ∼ 2.5fm has been estimated in ref. [29] which is much smaller
than the typical size of a system created in these reactions.Consequently, such a system would
just behave like any other with a constant correlation-length and, therefore, would not exhibit the
system size dependence discussed above.

After these more formal consideration let us next turn to actual observables. Since the baryon
density is an order parameter for the phase transition at finite density, baryon number fluctuations
are the natural observable to consider. However, as discussed in detail in [30] baryon number
conservation imposes serious limitations on this observable, especially for low center-of-mass en-
ergies. In addition, the measurement of the baryon number requires the detection of neutrons,
which is difficult. As argued in [31], it may be sufficient to study proton number fluctuations, as
the iso-vector channel does not show critical behavior. However, if the baryon-number fluctuations
are suppressed due to global baryon-number conservation, one has to be careful that the remain-
ing fluctuations, which one observes in an actual experiment, are not simply isospin fluctuations.
Those will not be indicative of the QCD phase structure at finite density.

In addition, even if the system reaches the critical point, the correlation length, which diverges
in a thermal system, would be finite due to critical slowing down together with the finite time the
system has to develop the correlations. In [29] a correlation length ofξ ≃ 2.5fm has been estimated
based on these considerations. Therefore, it may be advantageous to study higher order cumulants
which depend on higher powers of the correlations length [32]. Indeed the fourth order cumulant
χ (4) scales like the seventh power of the correlation length,∼ ξ 7 [32]. Thus if the correlation length
increases only by 10% in the vicinity of the critical point, one should see an enhancement by a
factor of two in the fourth order cumulant, whereas the second order cumulant, i.e. the fluctuations,
would only increase by 20%. A first measurement of these higher order cumulants has been carried

1The correct scaling of the susceptibility with the volume actually involves the critical exponents,χ ∼Vγ/(3ν). Our
example here is correct for so called mean field exponents. For details see [28].
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out by the STAR collaboration at full RHIC energies [33], where no significant signal is found,
consistent with expectations based on the absence of any phase transition at smallµB.

Initially transverse momentum fluctuations have been proposed as a signature for the critical
point [34, 35], since close to the critical point the system should develop large, and mostly long
range, i.e low momentum, fluctuations. Therefore, it was suggested that an excitation function of
the transverse momentum fluctuations should show non-monotonic behavior, especially for small
transverse momenta. In the meantime, such an excitation function has been measured and it is
shown in Fig.3 for different charge combinations and different cuts on the transverse momentum.
Critical fluctuations, corrected for critical slowing downand expansion of the system [29] would
lead to a bump which should be at least a factor of two larger than the statistical background.
Obviously, the data shown in Fig.3 do not show such a behavior, even for small transverse momenta.
The results at RHIC [36] are consistent with the data from SPS. Hence, so far there is no indication
of a critical point in the transverse momentum fluctuation measurements. Of course it could be that
the signal is too weak to be seen and it may also be washed out bysubsequent hadronic interactions.
To address this issue, higher cumulants, as discussed above, need to be measured as they should
show a stronger enhancement close to the critical point. Furthermore, on the theoretical side, one
needs to get a better understanding of the degradation of theproposed signals in the hadronic phase.
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Figure 3: Preliminary data on the energy dependence ofpt fluctuations from the NA49 collaboration [37]
for all charged particles and for positively and negativelycharged particles. The panels show the fluctuations
for different cuts in the transverse momentum. The figure is adapted from [37].

The only observable which shows a strong beam energy dependence are the fluctuations of
the kaon-to-pion ratio, shown in Fig.4, and neither a transport approach nor the statistical hadron
gas model can reproduce these data [38, 39]. However,σ2

dynamic scales with the inverseaccepted
multiplicity (see e.g. [30]), and the observed rise may verywell be partially due to the changing
acceptance of the fixed target NA49 experiment. That this mayactually be the case, has been
investigated in [40], where several scaling prescriptionshave been used to predict the excitation
function of the kaon to pion ratio fluctuations. The results,shown in Fig.4, indicate that a large
part of this enhancement may actually be due to the dependence of σdynamical on the multiplicity
of accepted particles. While an additional enhancement cannot be ruled out at this time, it is still
not clear if it would be related to the critical point. Close to the critical point one would expect the
fluctuations of the pion number to be enhanced. But this wouldimply also enhanced fluctuations
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Figure 4: Fluctuations of the kaon to pion ratio as a function of beam energy. The data are from the NA49
[38] and the STAR collaboration [41]. The lines represent several ways to scale the

√
s= 200 GeV data

taking into account the actual accepted multiplicities. For details see [40].

of the proton-to-pion ratio, which is not observed in experiment [38], where the data are well
reproduced by the URQMD calculations. In addition, in this case the effects due to multiplicity
scaling are small [40].

While most of the attention is presently on the QCD critical point and its detection, let us
emphasize that it might be more beneficial to look for and identify the first order co-existence
region. Finding one implies finding the other as they are intimately related. Contrary to the critical
point, the first order transition corresponds to an entireregion in theT −ρ phase diagram. Thus it
is more likely for the system to cross this region rather thanthe critical point. It is also more likely
for the system to spend sufficient time in this region in orderto develop measurable effects. One
example is the development of spinodal instabilities, which are a generic phenomenon of dynamical
first order transitions [11]. Spinodal instabilities have been studied and successfully identified in
the context of the nuclear liquid gas phase transition [14].In the case of the QCD first order
transition, spinodal instabilities could lead to kinematic correlations among particles [13] and to
enhanced fluctuations of strangeness [42]. And indeed the observed enhancement of the kaon-to-
pion fluctuations, if real, may be due to these enhanced fluctuations in the strangeness sector [42].
However, just as for the critical point, there has been no quantitative calculation of the effect due
to hadronic re-scattering on the observables. In addition,presently there is no dynamical model
which carries the system through the spinodal region. In thecase of the nuclear liquid gas phase-
transition such models proved to be extremely useful in guiding the experimental searches. These
models have also helped to develop unique observables, suchas the variance of the cluster size
which subsequently could be identified in experiment[14]. This analysis lead to a rather convicing
case for the existence of a first order phase co-existence region for nuclear matter. In order to
build a similar dynamical model for the QCD case, additionalinformation is needed. While fluid-
dynamics appears to be a reasonable framework, it needs to beextended to include finite range
effects. It is these finite range effects which determine thetypical size of the blobs created by the

9
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dynamical instability characteristic of the spinodal region. A first step towards such a development
has been carried out in [43] and has been reported at this conference. But the development of [43]
requires the knowledge of a length scale characterizing thefinite range effects. At present this is
not known for the QCD phasetransition whereas in case of the nuclear liquid gas transition it is
directly associated with the range of the nuclear interaction. One way to extract this information is
to study the interface energy and thickness in lattice QCD.

Although this contribution is about fluctuations, in closing let us briefly mention other observ-
ables which are discussed in the context of the critical point. Most prominently is the idea to look
for soft modes in the low-mass dilepton invariant mass spectrum. However, it is not clear if the soft
modes, responsible for the large density fluctuations closeto the critical point, are visible in the
dilepton channel, since they are of space-like origin. Indeed, an analysis of the fluctuations close
to the critical point carried out in the Nambu model with finite quark masses [44, 45] shows that
the sigma-meson remains gaped at the critical point, contrary to the chiral transition in the limit
of vanishing quark masses. Thus, in this model no significantchange due to the critical point has
been seen in the time-like spectrum, which is accessible to dilepton spectroscopy.

There are a number of other possibilities which have not yet been explored theoretically. For
example, it maybe interesting to further explore the co-variances between the baryon density fluc-
tuations and other quantities which couple to the baryon density, such as e.g. dileptons. These
co-variances are expected to become large and could possibly be developed into practical observ-
ables, which will not be affected by baryon number conservation.

5. Conclusions

To conclude, let us remind ourselves that the field of relativistic heavy ion collisions started out
with the quest to find and identify the QCD phase transition. While many interesting phenomena
have been discovered on the way, such as the surprisingly large elliptic flow, the quest is still on.
In view of the fact that Lattice QCD predicts the transition at vanishing baryon density to be a
crossover, going to even higher energies is not the right direction to explore structures in the QCD
phasediagram. Instead, a beam energy scan towards lower energies, as planned for RHIC, is the
right way to explore the phasediagram in the high density region, where true phase transition are
expected. For such a program to be successful one needs not only guidance from theory for the
location of a possible phase transition but also for observables that are most sensitive and robust for
an actual measurement. This aspect is not yet very well developed, and it may be useful to adapt
some of the strategies developed for the identification of the nuclear liquid gas phase transition.

Acknowledgments

This work is supported by the Director, Office of Energy Research, Office of High Energy and
Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

10



P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
0
2

Exploring the QCD phase diagram: Fluctuations and Correlations Volker Koch

References

[1] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. SzaboNature443675–678 (2006) ,
arXiv:hep-lat/0611014.

[2] M. A. StephanovProg. Theor. Phys. Suppl.153139–156 (2004) ,arXiv:hep-ph/0402115.

[3] Z. Fodor and S. D. KatzJHEP04050 (2004) ,arXiv:hep-lat/0402006.

[4] M. Chenget al. Phys. Rev.D79074505 (2009) ,arXiv:0811.1006 [hep-lat].

[5] R. V. Gavai and S. GuptaarXiv:0806.2233 [hep-lat].

[6] L. McLerran and R. D. PisarskiNucl. Phys.A79683–100 (2007) ,arXiv:0706.2191
[hep-ph].

[7] P. Braun-Munzinger, K. Redlich, and J. Stachelnucl-th/0304013.

[8] F. Reif,Fundamentals of Statistical and Thermal Physics. McGraw-Hill, 1984.

[9] G. SauerNucl. Phys.A264221 (1976) .

[10] “Dynamics and thermodynamics with nuclear degrees of freedom.” Eur. phys. j a31, 2006.

[11] P. Chomaz, M. Colonna, and J. RandrupPhys. Rept.389263–440 (2004) .

[12] J. RandrupPhys. Rev. Lett.92122301 (2004) ,arXiv:hep-ph/0308271.

[13] J. RandrupActa Phys. Hung.A22 69–82 (2005) .

[14] B. Borderieet al., INDRA CollaborationPhys. Rev. Lett.863252–3255 (2001) ,
arXiv:nucl-ex/0103009.

[15] M. Chenget al. Phys. Rev.D74054507 (2006) ,arXiv:hep-lat/0608013.

[16] Y. Aoki, Z. Fodor, S. D. Katz, and K. K. SzaboPhys. Lett.B64346–54 (2006) ,
arXiv:hep-lat/0609068.

[17] Z. Fodor and S. D. KatzJHEP03014 (2002) ,hep-lat/0106002.

[18] C. R. Alltonet al. Phys. Rev.D71054508 (2005) ,hep-lat/0501030.

[19] F. Karsch,RBC CollaborationarXiv:0804.4148 [hep-lat].

[20] P. de Forcrand and O. PhilipsenJHEP01077 (2007) ,arXiv:hep-lat/0607017.

[21] P. de Forcrand and O. PhilipsenarXiv:0808.1096 [hep-lat].

[22] K. FukushimaarXiv:0809.3080.

[23] E. S. Bowman and J. I. KapustaPhys. Rev.C79015202 (2009) ,arXiv:0810.0042
[nucl-th].

[24] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions. Dover Publications, 1972.

[25] R. V. Gavai and S. GuptaPhys. Rev.D73014004 (2006) ,hep-lat/0510044.

[26] C. Schmidt,RBC-Bielefeld CollaborationarXiv:0805.0236 [hep-lat].

[27] C. Schmidt,RBC-Bielefeld CollaborationarXiv:0810.0375 [hep-lat].

[28] L. Landau and L. Lifshitz,Statistical Physics. Pergamon Press, New York, 1980.

[29] B. Berdnikov and K. RajagopalPhys. Rev.D61 105017 (2000) ,hep-ph/9912274.

11



P
o
S
(
C
P
O
D
 
2
0
0
9
)
0
0
2

Exploring the QCD phase diagram: Fluctuations and Correlations Volker Koch

[30] V. KocharXiv:0810.2520 [nucl-th].

[31] Y. Hatta and M. A. StephanovPhys. Rev. Lett.91 102003 (2003) ,arXiv:hep-ph/0302002.

[32] M. StephanovarXiv:0809.3450[hep-ph].

[33] T. K. Nayak and for the STAR CollaborationarXiv:0907.4542 [nucl-ex].

[34] M. A. Stephanov, K. Rajagopal, and E. V. ShuryakPhys. Rev. Lett.81 4816–4819 (1998) ,
hep-ph/9806219.

[35] M. A. Stephanov, K. Rajagopal, and E. V. ShuryakPhys. Rev.D60 114028 (1999) ,
hep-ph/9903292.

[36] J. Adamset al., STAR CollaborationPhys. Rev.C71 064906 (2005) ,arXiv:nucl-ex/0308033.

[37] K. Grebieszkowet al., NA49 CollaborationPoSCPOD07 022 (2007) ,arXiv:0707.4608
[nucl-ex].

[38] C. Alt et al., NA49 CollaborationarXiv:0808.1237 [nucl-ex].

[39] G. Torrieri Int. J. Mod. Phys.E16 1783–1789 (2007) ,arXiv:nucl-th/0702062.

[40] V. Schusterin preparation.

[41] B. Abelevet al., STAR CollaborationarXiv:0901.1795 [nucl-ex].

[42] V. Koch, A. Majumder, and J. RandrupPhys. Rev.C72 064903 (2005) ,
arXiv:nucl-th/0509030.

[43] J. RandrupPhys. Rev.C79 054911 (2009) ,arXiv:0903.4736 [nucl-th].

[44] H. Fujii and M. OhtaniarXiv:hep-ph/0403039.

[45] H. Fujii and M. OhtaniProg. Theor. Phys. Suppl.153 157–164 (2004) ,arXiv:hep-ph/0401028.

12


