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Abstract

Cosmic inflation is our current best theory for what occurred in the universe in the first

instances of time. It postulates a brief period of exponential expansion in which quantum

fluctuations are magnified to cosmic size and become the seeds for the growth of all struc-

ture in the Universe. Inflation makes a number of predictions, the most unique of which is

the production of primordial gravitational waves (PGWs). Most of the predictions have since

been tested, but the discovery of PGWs has eluded us to this day. The polarized Cosmic Mi-

crowave Background (CMB) is a powerful probe of these predictions, including the exciting

possible existence of PGWs.

This thesis provides a detailed account of the development of an optimal multi-component

spectral-based likelihood analysis framework for joint analyses of heterogeneous multi-frequency

CMB datasets, and its subsequent use for joint analysis of Bicep/Keck, Planck and WMAP

CMB polarization data to derive the tightest constraints available on PGWs, parametrized by

the tensor-to-scalar ratio.

The manuscript also details the development of a spectral-based Fisher projection frame-

work, specifically targeted towards optimizing tensor-to-scalar parameter constraints in the
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presence of galactic foregrounds and gravitational lensing of the CMB, that directly uses in-

formation from current Bicep/Keck achieved performances, to robustly forecast the science

reach of upcoming CMB-polarization endeavors. This methodology allows for rapid iteration

over experimental configurations and offers a flexible way to optimize the design of future ex-

periments given a scientific goal. We document the use of this framework to perform forecasts

for the next iteration of Bicep/Keck instrument – Bicep Array, as well as the next genera-

tion ground-based CMB experiment – CMB-S4.
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All you really need to know for the moment is

that the universe is a lot more complicated than

you might think, even if you start from a posi-

tion of thinking it’s pretty damn complicated in

the first place.

Douglas Adams

1
Introduction and Motivation

Cosmic inflation is our current best theory for what occurred in the universe in the first in-

stances of time. It postulates a brief period of exponential expansion in which quantum fluc-

tuations get magnified to cosmic size and become the seeds for the growth of all structure in

the Universe. It was first put forward in Guth (1981) to explain the lack of observed mag-

netic monopoles and to solve the Flatness and Horizon problems (discussed in detail below)
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and has since been a very active field of research. Inflation makes a number of predictions,

the most unique of which is the production of primordial gravitational waves (PGWs). Most

of the predictions have been since tested, but the discovery of PGWs has eluded us to this

day. In this chapter, we will discuss the theory of inflation and its predictions, and explain

how the Cosmic Microwave Background (CMB) is a powerful tool to test these predictions,

including the exciting possible existence of PGWs.

1.1 The Cosmic Microwave Background

The hot Big Bang model dictates that the early universe was much hotter and denser than

today. When the universe was 380,000 years old, it was a hot and dense plasma of electrons,

protons and photons. As the universe cooled and expanded, electrons and protons could com-

bine to form neutral hydrogen, in a period called recombination. As a result, photons unen-

cumbered by (Thompson) scattering with charged particles could finally free stream. This

moment in the history of the universe, which occurred at redshift z = 1100, is called the sur-

face of last scattering. The photons from this surface continue traveling through the universe

and are known as the Cosmic Microwave Background (CMB). As the universe expands fur-

ther, the CMB photons are redshifted (their wavelength expands with the universe and their

energy – E = hc/λ – decreases) from temperatures of around T = 3000K to O(few K) now.

The first observation of the CMB was performed at Bell Laboratories by Penzias & Wil-

son (1965), in which they measured an isotropic black-body signal with T = (3.5 ± 1.0)K
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Figure 1.1: The 2018 Planck map of the temeprature anisotropies of the CMB, extracted using the
SMICA method. The gray outline shows the extent of the confidence mask. Figure from Planck Col-
laboration 2018 IV (2018)

across the sky. The original discovery of this relic black-body radiation solidified the Big

Bang model as the status quo explanation for the origin of the universe. Since then, these

measurements have been refined to T = (2.72548 ± 0.00057) K (Fixsen (2009)) and it has

been discovered that while the CMB temperature is extremely uniform (to 1 part in 105), it

still possesses anisotropies (as seen in Fig1.2). The history of CMB measurements is rich, and

takes place over multiple decades; a comprehensive review of early CMB measurements can

be found in Peebles et al. (2009).

Temperature anisotropies were first measured by the COBE satellite (Bennett et al.

(1992)) and are an abundant source of information. On the sky, they are best decomposed
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in spherical harmonics Ylm

∆T (θ, ϕ) =
∞∑
l=1

l∑
m=−l

aTlmYlm(θ, ϕ).

Under the assumption that the alm coefficients are drawn from a Gaussian distribution, the

information is entirely contained in the two-point function, or alternatively, the power spec-

trum. While the mean of the coefficients < alm > is zero, their variance – the power-spectrum

– is non-trivial

CXY
l =

1

2l + 1

l∑
m=−l

aX∗
lm aYlm. (1.1)

Here X and Y represent different possible anisotropy maps, where an example of such a map

is represented in Figure 1.2. X = Y corresponds to an auto-power-spectrum, while X ̸= Y

corresponds to a cross-power-spectrum. This represents the cumulative power in a given mul-

tipole l ∼ 180◦/θ, where θ is the characteristic angular scale. The temperature power spec-

trum (CTT
l ) has been measured by a number of experiments, with the most accurate measure-

ments to date coming from the Planck satellite (showcased in Figure 1.2). This spectrum is

extremely rich in information, and allows us to constrain multiple cosmological parameters

to high precision. The first peak allows one to infer that the universe is close to spatially flat.

The second peak indicates substantial amounts of dark baryons, consistent with nucleosyn-

thesis inferences. The third peak yields insight into the physical density of the dark matter.

Finally, the damping tail serves as a consistency check on assumptions about recombination
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Figure 1.2: Planck 2018 temperature power spectrum in red. The base-ΛCDM theoretical spectrum
best fit to the likelihoods is plotted in light blue in the upper panel. Residuals with respect to this
model are shown in the lower panel. Figure from Planck Collaboration 2018 VI (2018)

and initial conditions. For an in-depth review of how the CMB temperature power-spectrum

provides all this information, the reader is referred to Dodelson (2003) and Hu & Sugiyama

(1995).

Given that we are measuring one surface of one universe, the number of samples we may

draw of a given alm is limited. This fundamental limit places an uncertainty on how well we

can measure a given power-spectrum and is called the cosmic variance limit

∆Cl

Cl
=

√
2

2l + 1
.
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Our current measurements, presented in Figure 1.2, are cosmic variance limited below l ∼

2500.

1.2 Inflation

We start this sub-chapter by laying out some foundational concepts from Cosmology and

General Relativity. We describe the aforementioned Flatness and Horizon problems and ex-

plain how a period of cosmic inflation solves them. We then lay the basis for studying infla-

tionary dynamics by introducing some crucial components from classical field theory and go

on to use them in the context of slow-roll inflation. Next, we discuss the production of PGWs

during inflation, and follow that with a sub-chapter on how CMB polarization measurements

can allow us to test this prediction.

1.2.1 Fundamentals and Motivation

Einstein’s field equations relate the geometry of space-time to the distribution of matter and

energy in the universe. They can be written in an extremely compact form (Einstein (1917))

Gµν = Rµν −
1

2
gµνR = 8πGTµν ,

using Einstein notation; G here is Newton’s constant. The following few equations introduce

the precise mathematical definitions we need, characterizing the variation of the space-time

metric along the various possible directions. For an in-depth discussion of these concepts we

6



direct the reader to any introductory book on General Relativity. Rµ
νλσ – the Riemann curva-

ture tensor takes the form:

Rµ
νλσ = ∂λΓ

µ
νσ − ∂σΓ

µ
νλ + Γµ

ρλΓ
ρ
νσ − Γµ

ρσΓ
ρ
νλ,

where ∂µ = ∂
∂xµ . Where the Christoffel symbol – Γµ

αβ – is defined as follows

Γµ
αβ =

1

2
gµλ[∂αgβλ + ∂βgαλ − ∂λgαβ ].

The Ricci tensor is a contracted version (summed over one index) of the Riemann curvature

Rνσ ≡ Rµ
νµσ and the Ricci scalar is the fully-contracted version (summed over all indices) of

the Ricci tensor R = gµνRµν . Finally, the stress-energy tensor, Tµν , represents how the energy

and pressure of matter is distributed within the space-time.

In this chapter we will focus on a special space-time called the Friedmann-Roberston-

Walker (FRW) space-time (Weinberg (2008)), which bears a remarkable resemblance to our

observable universe on large scales. However, the formalism we will build in this chapter can

be applied to any generic space-time. We start with the observation that while our universe

is very lumpy in its matter distribution on small scales, on the largest observable scales it is

exceptionally smooth. As we have mentioned, CMB temperature observations indicate that

the universe is uniform to 1 part in 105, offering us strong reasons to believe that is no pre-

ferred direction (isotropy) and no preferred special point (homogeneity) in the universe. With
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the assumptions of isotropy and homogeneity in mind, the most general space-time we can

write is the FRW space-time

ds2 = gµνdx
µdxν = −dt2 + a(t)2

[ dr2

1−Kr2
+ r2(dθ2 + sin θ2dϕ2)

]
, (1.2)

where K is the curvature of the space-time, and a(t) is a dimensionless scale factor that

parametrizes the relative expansion of the universe.

The same two assumptions also restrict the FRW stress-energy tensor to take the perfect-

fluid form Tµν = (ρ + p)uµuν + pgµν (Weinberg (2008)), where uµ is the normalized 4-

velocity, and ρ and p are the matter density and pressure. In the frame comoving with the

fluid uµ = (1, 0, 0, 0) we obtain

T00 = ρ,

Tij = pgij .

(1.3)

For an FRW metric, considering the tt (or 00) component of the Einstein field equations,

we obtain

3
( ȧ2
a

+
K

a2

)
= 8πGρ.

Rearranging this expression we arrive at the well known Friedmann equation

H2 =
8πG

3
ρ− K

a2
. (1.4)
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We can see that there exists a critical value for the energy density ρcr = 3H2

8πG such that the

curvature term vanishes. Therefore, a universe with ρ = ρcr will have zero curvature K = 0;

a universe with ρ > ρcr will have positive curvature K > 0; and a universe with ρ < ρcr

will have negative curvature K < 0. Alternatively, one can introduce the quantity Ω = ρ
ρcr

,

to obtain that Ω = 1 corresponds to a spatially flat universe; Ω > 1 to a positively curved

one; and Ω < 1 to a negatively curved one. Rewriting the Friedmann equation in terms of Ω

allows us to usefully quantify the deviation of this quantity from unity

Ω− 1

Ω
=

K
a2ρ

, (1.5)

where K ≡ 3K
8πG . Further dynamical information comes from considering the ij components of

the Einstein’s field equations

−gij

(
H2 +

2ä

a
+

K

a2

)
= 8πGpgij ,

or, for the nonzero components of gij

H2 +
2ä

a
= −8πGp− K

a2
.

Subtracting Eq.1.4 from above we get

ä

a
= −4πG

3
(ρ+ 3p). (1.6)
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This equation relates the matter density and pressure to the rate of acceleration of the expan-

sion of the universe.

Another important property of the energy-momentum tensor is that it is conserved un-

der covariant differentiation

DαT µν = ∂αT µν + Γµ
αβT

νβ + Γν
αβT µβ = 0.

For an FRW space-time this yields

DνT tν = ρ̇+ 3
ȧ

a
(ρ+ p) = 0.

Because ρ and p depend only on t in an FRW space-time, it is often useful to consider their

ratio, w ≡ p/ρ, which only varies with time and must take the same value throughout space

at any given moment of time. The relation p = wρ is known as the equation of state. If w is

constant, the solution to the differential equation above yields

ρ(t) = ρ0a(t)
−3(1+w), (1.7)

where ρ0 is the initial value of the energy density. One can prove that for regular matter the

equation of state has w = 0, whilst for relativistic matter w = 1/3 (Carroll (2003)). For

both these cases, the energy density decreases as the universe expands as ρ(t) = ρ0a(t)
−3

and ρ(t) = ρ0a(t)
−4, respectively. This, however, means that for a flat universe, i.e. ρ = ρcr
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(Ω = 1), there is an unstable equilibrium, i.e. any deviation from unity increases over time

as Ω−1
Ω ∝ a−2(t)ρ(t)−1. Current measurements from the Planck Collaboration 2018 VI (2018)

tell us Ω− 1 = 0.0007± 0.0010. For the universe to be as flat as it currently is, it would have

had to have bene orders of magnitude flatter at earlier times!

For instance, taking the measured value cited above for Ω − 1 today, and assuming a

universe with negligible curvature that has been dominated by radiation will yield Ω − 1 ≈

10−20 at the time of big-bang nucleosynthesis (BBN), when the universe was roughly t = 1

seconds old. Here we see that the universe would have had to have been extremely fine-tuned

at its inception in order for us to currently observe a universe as flat as ours. This constitutes

the Flatness Problem.

Another important problem in cosmology is the Horizon Problem. It arises due to the

difficulty in explaining the observed homogeneity of causally disconnected regions of space in

the absence of a mechanism that sets the same initial conditions everywhere. First, we define

the conformal time

τ ≡
∫ t

0

dt′

a(t′)
=

∫ a

0

da

a(aH)
,

which can be interpreted as a clock that slows down with the expansion of the universe.

Then, the maximum comoving distance light can propagate between ti and tf – called

the comoving particle horizon – is given by

χp(τ) = c(τf − τi) =

∫ tf

ti

cdt

a(t)
=

∫ a

0

cda

a(aH)
.
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This is, of course, the fraction of the universe in causal contact. Combining Eq.1.4 and Eq.1.7

we have

1

aH
=

a
1
2
(1+3w)

H0
,

which leads to

χ ∝


a, for radiation,

a1/2, for matter.

We see here that the comoving horizon grows monotonically with time, i.e. scales that are

entering the horizon today were completely outside the horizon at the time of last scattering.

The near-homogeneity of the CMB dictates that the universe was homogeneous at the time

of CMB decoupling at scales that according to the argument above would have been causally

independent. This constitutes the Horizon Problem.

Both the Flatness and Horizon problems arise if we assume types of matter that we can

currently see today, i.e. w ≥ 0. If, on the other hand, we had some type of exotic matter

with w < −1/3 we note that Eq.1.7 would yield ρ(t) = ρ0a
n with n > −2 which in turn

will allow Eq.1.5 to take the form (Ω − 1)/Ω = K/am with m > 0. A deviation from unity

in Ω will no longer grow over time; in fact, the opposite is true. Note also that Eq.1.6 will

yield precisely ä > 0 when w < −1/3. Therefore, we conclude that a possible solution to the

Flatness Problem is the existence of a period in the evolution of the universe during which it

is filled with some type of matter that obeys w < −1/3 and during which it undergoes an

accelerated expansion.
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Figure 1.3: Conformal diagram showing the history of the universe since recombination, assuming
no inflationary epoch. The past light cones of two locations in the surface of last scattering do not
overlap, and hence were never in causal contact. Figure adapted from Baumann (2009)

Similarly, for the Horizon problem an w < −1/3 will lead to

χp(τ) =
c

H0

∫ a

0
a

1
2
(−1+3w)da =

c

H0

∫ a

0
a−nda = ∞ , for w<-1/3, or n>1,

which is large enough to put the entire observable universe in the causal path of any reference

point in space-time.

Cosmic Inflation is a process that satisfies both w < −1/3 and ä > 0, and therefore

solves both the Flatness and Horizon problem.
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1.2.2 Matter Fields; Actions and Motions

We have seen that in order to solve the flatness and horizon problems we require that some

of the matter filling the universe behaves according to an equation of state with w < −1/3.

In this section, we introduce matter fields and the required machinery to study their behavior

in curved space-times. We will see how to relate components such as ρ and p to the matter

fields and their derivatives. This will allow us to see under what conditions matter might be-

have such that w < −1/3.

First, what is a field and why is it a useful quantity? From classical mechanics we know

that for a small number of particles, it is fairly straightforward to write the Lagrangian or

the Hamiltonian of the system and solve for the equations of motion. This process becomes

cumbersome quickly as we start to increase the number of particles. One has to find another

way to encode this information, and one useful way to do so is through densities. These can

be densities of matter, energy, momentum, etc. Densities can be further simplified by encod-

ing information in fields.

The reader is already familiar with some types of matter and energy that are repre-

sented through fields. Namely, let us consider the electric field, which can be used to express

information about the electromagnetic energy density. This specific case of the electric field

is called a vector field, since it has a magnitude and a direction. One can introduce even sim-

pler structures that don’t depend on direction and are single-valued at any point in space and

time. These quantities are dubbed scalar fields. Temperature is an example of such a field.
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One can measure the temperature at every location in space, repeat the measurements over

time, and represent the results with a single scalar field T (xµ). By analogy, here we intro-

duce a scalar field ϕ, which we will call the matter field, and it will encode all the information

about the matter density in the universe.

To study the behavior of matter fields, we introduce the concept of an action. The ac-

tion – S – is an integral over all space and time of the Lagrangian density – L.

Given that we would like to express the contents of the universe through a single scalar

matter field, the action is just sum of the gravitational Einstein-Hilbert action – S(G) – which

is the component that describes the curvature of a given space-time, and the action of the

scalar field describing matter – S(M)

S = S(G) + S(M) =

∫
dVol(L(G) + L(M)). (1.8)

The Lagrangian density for the gravitational field in General Relativity takes the form L =

1
16πGR(x) (Weinberg (2008)), where R(x) is the Ricci scalar – the quantity that contains all

the information about the curvature of space-time. In this chapter we are not concerned with

this part, and would instead like to focus on constructing the Lagrangian density for matter

L(M). The Lagrangian for a system consists of the kinetic energy minus the potential energy

L(M) = KEfield − Vfield.
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We will leave the shape of the potential term arbitrary, pursuing generality, and thus turn our

attention to the kinetic term. Consider an analogy with a mechanical system that consists of

a ball of unit mass moving along a trajectory x(t). The kinetic term for this system is just

KEball =
1
2 ẋ

2. By analogy, a field with trajectory ϕ(xµ) will have

KEfield = −1

2
gµν

∂ϕ

∂xµ
∂ϕ

∂xν
=

1

2
gµν∂ϕµ∂ϕν ,

where we use ∂µ = ∂
∂xµ . The last piece we need in order to construct the matter field is the

invariant volume of space-time dVol. For an Euclidean four-dimensional space-time dVol =

d4x. However, we require an invariant notion that works in the context of a generic curved

space-time. We can obtain one by including an additional factor that will compensate for

the variation of the space-time volume under a coordinate transformation. From General Rel-

ativity, we know that this factor is presicely √
−g, where g = Det[gµν ]. The minus sign is

necessary because usually we treat at least one of the metric components as being negative.

For this particular manuscript we will choose a mostly positive form of the metric. Hence, the

invariant form of the integration measure is dV ol = d4x
√
−g. The action takes the form

S =

∫
d4x

√
−g
( 1

16πG
R(x)− 1

2
gµν∂ϕµ∂ϕν − V(ϕ)

)
.

In order to find the equations of motion, we would like to know how S(ϕ, ∂µϕ) varies

with respect to the field ϕ for arbitrary variations ϕ → ϕ+ δϕ, and under what conditions the
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action remains stationary. We note right away that L(G) does not depend on ϕ, so the only

portion that varies is the matter portion of the action.

The variation of the action is therefore

δS =

∫
d4x

√
−g
[(∂L(M)

∂ϕ

)
δϕ+

∂L(M)

∂(∂µϕ)

)
∂µ(δϕ)

]
.

First, we can absorb the √
−g inside the parentheses as it does not depend on the field ϕ.

Second, we can integrate the second term by parts, which will send ∂µ(δϕ) to δϕ and will

introduce a negative sign. We will also introduce a surface term in this process, but this term

gives a null contribution as we require that the variation δϕ vanishes at infinity. With this in

mind, the variation of the action becomes

δS =

∫
d4x
[√

−g
(∂L(M)

∂ϕ

)
− ∂µ

(√
−g

∂L(M)

∂(∂µϕ)

)]
δϕ.

If we require the action to be stationary, i.e. δS = 0, for arbitrary δϕ, we obtain the Euler-

Lagrange Equation for a generic curved space-time

∂L(M)

∂ϕ
− 1√

−g
∂µ

(√
−g

∂L(M)

∂(∂µϕ)

)
= 0.

It is not difficult to observe by analogy with the simple ball example that if we take the famil-
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iar Euler-Lagrange equations

∂L(M)

∂ϕ
− d

dt

(∂L(M)

∂ϕ̇

)
= 0,

and promote the derivative with respect to one coordinate to a derivative with respect to four

coordinates ∂µ, making sure that we take the derivative right for a given metric (i.e. have a

factor of √−g), we obtain the same Euler-Lagrange equation as we just did from extremizing

the action. Now, differentiating the Lagrangian density with respect to ϕ, we obtain

∂L(M)

∂ϕ
= −∂V

∂ϕ
≡ −V,ϕ.

To differentiate with respect to ∂µ, first relabel the indices in L(M), in order to avoid confu-

sion about which indices are summed over, and then differentiate

∂L(M)

∂(∂µϕ)
=

∂

∂(∂µϕ)

[
− 1

2
gαβ∂αϕ∂βϕ

]
= −1

2
gαβ
[
δµα∂βϕ+ ∂αϕδ

µ
β

]
= −1

2

[
gµβ∂βϕ+ ∂αϕg

αµ
]
= −gµβ∂βϕ.

Where the fourth line comes from relabeling indices in the second term of the third line,

and from assuming that the metric is symmetric gµβ = gβµ. Combining the above equations,

we obtain

1√
−g

∂µ

(√
−ggµν∂νϕ

)
− V,ϕ = 0.
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The first term of this equation is the covariant d’Alembertian operator, denoted as □. Notice,

for a Minkowski space (√−g = 1), we recover the form of the d’Alembertian that we are used

to □ = ∂µ∂
µ. With this in mind, the final equation of motion becomes

□ϕ− V,ϕ = 0. (1.9)

This equation works for any curved space-time within which we can describe matter with a

scalar field, and for any choice of potential.

The next step is to calculate Tµν for a universe filled with a single scalar matter field

ϕ for a generic curved space. The most general way to find functional forms for the stress-

energy tensors is by varying the action with respect to the metric

Tµν =
−2√
−g

δS(M)

δgµν
,

where S(M) =
∫
d4x

√
−gL(M). Therefore

δS(M)

δgµν
=

δ
√
−g

δgµν
L(M) +

√
−g

δL(M)

δgµν
.

To evaluate this, we need to know the variation of √−g with the metric, for which we use the

identity δg = ggµνδgµν = −ggµνδg
µν (Carroll (2003)). Applying the chain rule we find

δ
√
−g = − 1

2
√
−g

δg = −1

2

√
−ggµνδg

µν ,
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which allows us to write

δS(M)

δgµν
= −1

2

√
−ggµνL(M) +

√
−g(−1

2
∂µϕ∂νϕ),

and finally

Tµν = ∂µϕ∂νϕ− gµν

[1
2
gαβ∂αϕ∂βϕ+ V(ϕ)

]
. (1.10)

Just like Eq.1.9, this is extremely general.

Next, we would like to apply the developed formalism to our universe and so we consider

the case of a Friedmann-Robertson-Walker cosmology.

As we have seen, the FRW metric takes the following form

gµν =



−1 0 0 0

0 a2

1−Kr2
0 0

0 0 a2r2 0

0 0 0 a2r2 sin2 θ


,

yielding √
−g = a3(t)f(r, θ). An FRW cosmology is spatially homogeneous and isotropic,

i.e. ϕ(xµ) = ϕ(t) or ∂νϕ = ϕ̇δν0. This symmetry allows us to significantly simplify the
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d’Alambertian of ϕ

□ϕ =
1√
−g

∂µ

(√
−ggµν∂νϕ

)
=

1

a3(t)f(r, θ)
∂µ

[
− a3(t)f(r, θ)ϕ̇δµ0

]
=

1

a3(t)f(r, θ)
∂t

[
− a3(t)f(r, θ)ϕ̇

]
=

1

a3(t)

[
− a3(t)ϕ̈− 3a2(t) ˙a(t)ϕ̇

]
= −ϕ̈− 3Hϕ̇,

where we have used the definition for the Hubble parameter H = ˙a(t)/a(t). Plugging the

result in Eq. 1.9, the equation of motion for ϕ becomes

ϕ̈+ 3Hϕ̇+ V,ϕ = 0. (1.11)

This equation governs the evolution of ϕ(t). In order to find the solution to this equation one

needs to know how the Hubble parameter H = ˙a(t)/a(t) evolves with time. The behavior of

a(t) depends on the composition of the universe, expressed in Eq.1.10. Using the homogeneity

of FRW, we obtain for the 00 (or tt) component

T00 = ∂tϕ∂tϕ− gtt

[1
2
gtt∂tϕ∂tϕ+

1

2
gij∂iϕ∂jϕ+ V(ϕ)

]
= ϕ̇2 − (−1)

[1
2
(−1)ϕ̇2 + V(ϕ)

]
=

1

2
ϕ̇2 + V(ϕ).
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Likewise for the ij component

Tij = ∂iϕ∂jϕ− gij

[1
2
gtt∂tϕ∂tϕ+

1

2
gij∂iϕ∂jϕ+ V(ϕ)

]
= 0− gij

[1
2
(−1)ϕ̇2 + V(ϕ)

]
= gij

[1
2
ϕ̇2 − V(ϕ)

]
.

Combining with equations 1.3 we may write

ρ =
1

2
ϕ̇2 + V(ϕ),

p =
1

2
ϕ̇2 − V(ϕ).

(1.12)

Equation 1.11 tells us how the matter field evolves in an FRW space-time and the expressions

in 1.12 in turn determine how the space-time itself evolves. These are all the necessary tools

to study the dynamics of an FRW cosmology filled with a single matter field.

1.2.3 Inflationary Dynamics and Slow Roll Parameters

There are a multitude of ways to drive inflation, one particular way is to assume a period

during which the potential energy stored in the fields is much larger than the kinetic energy,

i.e. V(ϕ) >> 1
2 ϕ̇

2. One can imagine that the field starts at a given value of V(ϕ) in a shallow

convex potential, and slowly rolls to the minimum. This is termed slow-roll inflation. This

condition yields p ≃ −ρ according to Eq.1.12, or alternatively w = −1. In particular using
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Eq.1.6 and Eq.1.12 we obtain

ä

a
≃ 8πG

3
V(ϕ).

Meanwhile Eq.1.4 becomes

H2 ≃ 8πG

3
V(ϕ)− K

a2
≃ 8πG

3
V(ϕ), (1.13)

where we again have used V(ϕ) >> 1
2 ϕ̇

2 and the fact that as the universe accelerates, its size,

parametrized by the dimensionless scale factor a(t), will grow, and the curvature term will

become negligible. We have thus found that under these assumptions H2 ≃ ä/a. Taking the

time derivative of H = ȧ/a, we have

Ḣ =
ä

a
− ȧ2

a2
=

ä

a
−H2. (1.14)

Therefore, when H2 ≃ ä/a holds, Ḣ ≃ 0, and the Hubble parameter is constant over the

period of inflation. This allows us to simply integrate the expression for a(t)

H =
ȧ

a
=

1

a

da

dt
→ da

a
= Hdt → a(t) = a0 expH(t− t0),

to obtain exponential expansion. Another observation is that for w = −1, Eq.1.7 leads to

ρ = ρ0 constant, i.e. as the universe becomes exponentially larger, its energy density remains

constant. At first glance this appears to imply a violation of the conservation of energy; how-
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ever, energy is precisely compensated by the negative potential energy of the gravitational

field, which grows as there is more and more space for gravity to permeate as the universe

expands. In fact, because of this exponential expansion, the universe does not need to obey

w = −1 everywhere. It is sufficient to have a small patch of it following this equation of state

– in very short time the small inflating patch will become most of the universe – and, once

inflation starts, it does not need to stop, leading to the possibility of eternal inflation. How-

ever, as inflation proceeds, the kinetic term of the field is slowly growing and at some point

the equations above will not hold because we are not in the slow-rolling regime anymore. To

quantify this effect, we introduce the slow-roll parameters ϵ and η

ϵ ≡ − Ḣ

H2
,

η ≡ ϵ− ϕ̈

Hϕ̇
.

(1.15)

With some algebraic manipulation, both can be related to the curvature of the potential

(Kaiser (2011))

ϵ ≃ 1

16πG

(V,ϕ

V

)2
,

η ≃ 1

8πG

(V,ϕ

V

)
.

(1.16)

These parameters are small at the beginning of inflation, and, since Ḣ << 1 and |ϕ̈| << 1,

they grow steadily throughout inflation. Inflation ends when either of these slow-roll param-

eters becomes of order 1. From Eq.1.13 we see that ϵ = 1 leads to Ḣ = −H2 and therefore
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implies ä = 0. The slow-roll parameters are a convenient way to summarize the predictions

of an inflationary model and, as we can see, they are related to the potential V(ϕ) and its

derivatives. Extracting the values of ϵ and η from cosmological data is therefore equivalent

to probing the inflationary potential! In the next section we will see how we can relate these

abstract quantities to real observables.

1.2.4 Inflationary Perturbations

The uncertainty principle is a fundamental property of quantum mechanics. It states that

there is a limit to the precision with which physical properties of a particle (such as momen-

tum and position, or energy and time) can be known. This gives rise to brief changes, or

quantum fluctuations, in the amount of energy at any and all points in space, allowing for

the creation of particle-antiparticle pairs of virtual particles. The seemingly empty vacuum

of space is actually bubbling with the creation and annihilation of such pairs. During cosmic

inflation, virtual particles near the causal horizon can cross it and become real, then become

stretched to astrophysical size, and succeed in making cosmological perturbations, providing

the initial seeds for structure formation. In general, the symmetries of an FRW space-time

allow for a clean decomposition of the possible types of perturbations into independent scalar,

vector, and tensor components. This independence is crucial because it allows for the sepa-

rate evolution of these perturbations.

During inflation we can define perturbations around the homogeneous background solu-
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tions for the matter field ϕ̄(t) and the metric ḡµν(t)

ϕ(t, x⃗) = ϕ̄(t) + δϕ(t, x⃗), gµν(t, x⃗) = ḡµν(t) + δgµν(t, x⃗).

Scalar perturbations δϕ lead to density perturbations δρ, which become observable as temper-

ature anisotropies in the CMB. Vector perturbations decay away as a(t)−2 (Dodelson (2003)).

Tensor perturbations δgµν(t, x⃗) give rise to primordial gravitational waves, which produce ob-

servable distortions in the CMB, as will be described further below.

The variance of the primordial scalar perturbations can be written as (Baumann (2009))

< RkRk′ >= (2π)3δ(k + k′)PR(k), ∆2
s = ∆2

R =
k3

2π2
PR(k).

∆2
s is the dimensionless scalar power spectrum

∆2
s = ∆2

R =
k3

2π2
PR(k) =

1

8π2

1

ϵ

H2

M2
p

∣∣∣∣∣
k=aH

, (1.17)

where Mp = 1/
√
8πG is the reduced Planck mass and k = aH indicates horizon crossing. The

scale dependence of the scalar power spectrum is defined as

ns − 1 ≡ d ln∆2
s

d ln k
.

While a perfectly invariant spectrum has ns = 1, slow-roll inflation predicts ns = 1 − 6ϵ +
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2η (Liddle & Lyth (2000)). With both slow-roll parameters being positive and ϵ ∼ η, we

note that this implies ns < 1. The current observational constraints on ns were measured by

Planck Collaboration 2018 VI (2018) to be ns = 0.965± 0.004.

Similarly, the variance of the primordial tensor perturbations is given by

< hkhk′ >= (2π)3δ(k + k′)Ph(k), ∆2
t = 2∆2

h = 2
k3

2π2
Ph(k),

where the factor of 2 in ∆2
t = 2∆2

h arises from there being two polarization modes – h+, h× –

of gravitational waves. The dimensionless tensor power spectrum ∆2
t is given by

∆2
t = 2∆2

h = 2
k3

2π2
Ph(k) =

2

π2

H2

M2
p

∣∣∣∣∣
k=aH

. (1.18)

The scale dependence is defined similarly to the scalar case, modulo the subtraction by 1

nt ≡
d ln∆2

t

d ln k
,

indicating that nt = 0 will give an invariant spectrum. Slow-roll inflation predicts nt = −2ϵ.

The tensor power spectrum and its spectral tilt has not been measured yet. Measuring this

spectrum is an active area of research, and what most the work described in this manuscript

is dedicated to. In general, as we have seen, measuring ns and nt probe inflation directly

through the slow-roll parameters, and are therefore a direct probe of the early universe.

Usually the tensor power spectrum is normalized relative to the measured scalar power
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spectrum. Therefore, a useful quantity to define is the tensor-to-scalar ratio

r ≡ ∆2
t (k)

∆2
s(k)

.

This ratio is a direct measure of the energy scale of inflation (Liddle & Lyth (2000))

V 1/4 ∝
( r

0.01

)1/4
1016GeV,

with values of r > 0.01 corresponding to inflation taking place at grand unified theory (GUT)

scales – the energy level above which we believe the electromagnetic force, weak force, and

strong force become equal in strength and unify to one force. Probing this level of energy is

incredibly interesting, providing rich opportunities of new physics.

Combining equations 1.17, 1.18, and 1.15, we can rewrite the tensor-to-scalar ratio in

terms of the matter field

r = 16ϵ =
8

M2
p

( ϕ̇

H

)2
=

8

M2
p

( dϕ

dN

)2
,

where N is the number of e-foldings. Therefore the total field excursion between the end of

inflation and when the CMB fluctuations exited the horizon is given by

∆ϕ

Mp
=

∫ Ncmb

Nend

dN

√
r

8
.

According to Liddle & Lyth (2000), during inflation r(N) varies very slowly, allowing us to
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write

∆ϕ

Mp
= O(1)×

( r

0.01

)1/2
.

For values of r > 0.01, the field traverse is larger than the Planck mass – this is called the

Lyth Bound. A detection at this level would provide evidence that theories of quantum grav-

ity must accomodate a Planckian field range for the inflaton. The tightest constraints to date

on r and ns are presented in Figure 1.4. The work in this manuscript has contributed consid-

erably towards these state-of-the-art measurements.

It is clear that a possible detection of primordial gravitational waves created by infla-

tion (r > 0) would offer a direct and unique window into the early universe, with profound

implications for high-energy physics and the quantum nature of gravity (Krauss & Wilczek

(2014)). In the next sub-chapter we will look at observable imprints of PGWs on CMB polar-

ization, and will discuss how we can leverage the CMB to constrain inflation.

1.3 CMB Polarization

The CMB radiation is expected to be polarized because of Compton scattering (the relativis-

tic case of Thomson scattering) at the time of decoupling (Dodelson (2003)). Light traveling

in the z-direction will have electric and magnetic field oscillating in the x − y plane. Under

the assumption that the intensity from the two transverse directions is equal, the scattered

light will be unpolarized. If, however, the intensities are not equal, we will obtain a net po-

larization. Consider the first case shown in Figure 1.5, which represents an unpolarized ray
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Figure 1.4: Constraints in the r vs. ns plane when using Planck plus additional data, and when
also adding Bicep2/Keck data through the end of the 2015 season—the constraint on r tightens from
r0.05 < 0.12 to r0.05 < 0.06. Figure from BICEP2 Collaboration et al. (2018)

incident from the +ẑ direction, which has equal intensities in the x̂ and ŷ directions. This

ray is scattered by the electron at the origin. Under the assumption that the deflection takes

the ray in the ŷ direction, the electric and magnetic field will lie in the x − z plane. However,

since we started with no intensity in the ẑ direction, the result is a net polarization in the x̂

direction (perpendicular to both the incoming and the outgoing directions).

In reality we will have rays from all directions. Consider the next case: isotropic radi-

ation from every direction (monopole), shown in the 2nd panel of Figure 1.5 as two rays

incoming from x̂ and ẑ. In this case, the x̂ intensity of the outgoing ŷ ray comes from the

incoming ẑ ray, as before, and the intensity in the ẑ comes from the incoming x̂ ray. If the

intensities are uniform, as assumed, then the result is an unpolarized ray.
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Figure 1.5: A temperature quadrupole around a last-scattering electron is required to generate polar-
ization along the line of sight (dot-dashed line); neither a monopole nor a dipole can create polariza-
tion. Figure adapted from Hu & White (1997).

Now let us consider the simplest anisotropic case: a dipole pattern, shown in the 3rd

panel of Figure 1.5 as rays coming from hot and cold spots at ±ẑ and from average temper-

ature spot at ŷ. The hot and cold spots will result in an average intensity along the x̂ direc-

tion for the scattered ray, and the average ŷ spot will yield average intensity along ẑ. Yet

again, we achieve an unpolarized state.

Finally, we consider the case of a quadrupolar pattern, shown in the 4th panel of Figure

1.5. The ray from the hot spot at ẑ produces higher intensity along the x̂ for the outgoing

wave that the ray from the cold spot at x̂ does along the ẑ. This results in a net polarization.

We conclude therefore that one needs a quadrupolar anisotropy to obtain a polarized state.
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The last panel of Figure 1.5 depicts polarization in the x − z plane, preferentially in the

x̂ direction. However, if the incident rays were rotated by π/4 we would have outgoing polar-

ization along axes that are rotated by π/4 from the x and z axes. We can therefore depict

polarization as a headless vector oriented along the axis for which the intensity is highest and

with length corresponding to its magnitude. In the direction perpendicular to propagation,

we can write the intensity as a 2D matrix

Iij =

T +Q U

U T −Q

 ,

yielding U = I12, Q = 1
2(I11 − I22) and T = 1

2(I11 + I22). Here T is the temperature field

discussed in Section 1.1, and Q and U are parameters that describe polarization. Together,

they are three of the four Stokes parameters. The fourth parameter, V , is only non-zero if

we have circular polarization, a phenomenon that is expected to occur in the early universe,

allowing us to set V = 0. The total polarization magnitude and angle are P =
√

Q2 + U2 and

α = 1/2 arctan−1(U/Q).

The Stokes parameters are clearly coordinate dependent. Given that it is desirable to

work with invariant quantities, we introduce instead two quantities called E-modes and B-

modes. We start with a harmonic analysis of Q± iU , which requires an expansion in terms of

spin-2 harmonics

(Q± iU)(n̂) =
∑
l,m

a±2,lm±2Ylm(n̂),
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where ±2Ylm are the spin-2 spherical harmonics. We then switch from the a±2,lm basis to

aE,lm ≡ −1

2
(a2,lm + a−2,lm), aB,lm ≡ − 1

2i
(a2,lm + a−2,lm),

which allows us to define two spin-0 fields

E(n̂) =
∑
l,m

aE,lmYlm(n̂), B(n̂) =
∑
l,m

aB,lmYlm(n̂).

These are coordinate independent, but behave differently under parity transformations (E-

modes are even and B-modes are odd). Similarly to temperature fluctuations (Eq. 1.1) we

can write the power spectrum for polarization as well

CXY
l =

1

2l + 1

l∑
m=−l

aX∗
lm aYlm, (1.19)

for X,Y = T,E,B. It is worth noting that only the auto-spectra TT , EE, BB and the cross-

correlation TE survive, while TB and EB vanish due to symmetry (Baumann (2009)), under

the assumption that parity is not violated.

We can use the same framework as we did for the Q,U to discuss the patterns produced

by E and B-modes. Consider the inhomogeneous density field that produced the observed

temperature anisotropies. In particular, pick a density wave that has peaks and troughs

as depicted in the first panel of Figure 1.6. This type of wave corresponds to an m = 0

quadrupole, which is azimuthally symmetric about the k̂ direction, and will yield a scattered
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Figure 1.6: A density wave creates polarization in the CMB varying at 0 or 90 with respect to the
wavevector, resulting in an E-mode pattern. Figure from the Bicep2 Collaboration.

net 0◦ or 90◦ polarization, as presented in the second panel of Figure 1.6. We can visually

see that this type of pattern is even under parity inversion. The sum of many waves of this

kind still produces an E-mode pattern, which is a curl-free polarization component. E-mode

polarization was first detected by Kovac et al. (2002) and has since been measured to great

precision, as shown in Figure 1.8. Since E modes are produced by the same acoustic oscilla-

tions that generate temperature anisotropies, and the velocity of the photon-baryon fluid is

maximized for modes that are halfway between compression and rarefaction at recombination,

the peaks of the TT and EE spectra are out of phase.

Similarly, consider a tensor wave with an m± 2 quadrupolar pattern, as depicted in first

panel of Figure 1.7. This type of wave will squeeze and stretch space-time as shown, and cre-

ate a net polarization of ±45◦ with respect to the projected wave-vector (Kamionkowski et al.

(1997)). Such polarization patterns are divergence-free and can only be created by tensor

modes, which implies that B-mode measurements are not sample-variance restricted as the
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E-modes are. Therefore, B-mode polarization is a powerful measure for PGWs (parametrized

by the tensor-to-scalar ratio r). Primordial B-modes are expected to peak at degree angular

scales, corresponding to the horizon scale at recombination.

In addition to primordial B-modes, there are also so-called “lensing B-modes.” These are

E-modes that get distorted into B-modes as photons get deflected by large-scale structure on

their way from recombination to now. However, its contribution can be reduced by knowing

the cumulative gravitational lensing potential ϕ along the line of sight, and having a faith-

ful E-mode map. Together, the two can be combined to form a lensing B-mode template by

lensing the E-mode map with the ϕ field and subtracting this template from the measured

B-mode map. This technique is known in the field as delensing. Lensing B-modes have been

measured by a number of experiments, as shown in Figure 1.8. A detection of PGWs, how-

ever, has so far eluded us. PGWs are the only prediction of inflation which has not been con-

firmed so far. Other predictions: superhorizon fluctuations, gaussian perturbations, adiabatic

fluctuations, spatial flatness, and a nearly invariant scalar spectral tilt, have all been tested,

most recently in Planck Collaboration et al. (2018b). Detecting PGWs has the potential to

definitively confirm inflation, or a process similar to it, as we currently do not have another

framework to produce them.
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Figure 1.7: A gravitational wave generates polarization in the CMB varying at 45 with respect to
the wavevector, resulting in a B-mode pattern. Gravitational waves can also generate E modes and
add power to the temperature sky. Figure from the Bicep2 Collaboration.

1.4 Thesis Outline

The main focus of this thesis is the development of two major tools that have allowed the

CMB field to forge ahead in constraining PGWs with present and future experiments. The

first one, presented in Chapter 3, is an optimal multi-component spectral-based likelihood

analysis framework for joint analyses of heterogeneous multi-frequency CMB datasets. The

second one, presented in Chapter 7, is a spectral-based Fisher projection framework that

directly uses information from current achieved performances to robustly forecast the sci-

ence reach of upcoming CMB-polarization endeavors. Chapter 2 provides an overview of

the Bicep/Keck series of instruments and analysis pipeline from time ordered data (TOD)

to power spectra. Chapters 4-6 describe applications of the multi-component framework to

various datasets (Bicep/Keck Planck/ and WMAP) and document sequential framework up-
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Figure 1.8: A compilation of recent CMB angular power spectrum measurements. The plot shows
the power spectra of the temperature and E-mode and B-mode polarization signals. Note that for
Planck, ACTPol, and SPTpol, the EE points with large error bars are not plotted (to avoid clutter).
The dashed line shows the best-fit ΛCDM model to the Planck temperature, polarization, and lensing
data. Figure adapted from Planck Collaboration et al. (2018a).

dates. Finally, Chapter 8 provides a conclusion and discusses the path forward for the CMB

field.
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If you think this Universe is bad, you should see

some of the others.

Philip K. Dick

2
BICEP/Keck in a Nutshell

Bicep and the Keck Array are a series of telescopes, designed from the ground up to specif-

ically target B-mode polarization at degree angular scales, where the signal from PGWs is

expected to be brightest. A number of thorough manuscripts have been written about the

Bicep/Keck instruments, and the Bicep/Keck pipeline, in full detail (James Tolan (2014),

Sarah Kernasovskiy (2014), Chin Lin Wong (2014), Kirit Karkare (2017)). In this chapter, we
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provide only a brief summary of the Bicep/Keck program and offer an overview of the neces-

sary pipeline analysis steps that allow us to go from time ordered data to final power spectra.

2.1 The BICEP/Keck Series of Instruments

Bicep2 and the Keck array are a set of cryogenically cooled telescopes with refracting, com-

pact, on-axis optics with an aperture of 26.4 cm. Both are sited at the South Pole in Antarc-

tica, taking advantage of the dry atmosphere and stable observing conditions. Bicep2 had

256 dual polarization pixels in the focal plane for a total of 512 antenna-coupled transition

edge sensor (TES) bolometers read with a SQUID-based time domain multiplexing system.

Each detector had a temperature sensitivity of ∼ 300µKCMB
√
s, and all detectors observed

at 150 GHz. The Keck Array is a series of five Bicep2 like tubes, which started with a com-

bined imaging array of 2500 TES bolometers at 150 GHz, and has since been continuously

upgraded to have focal planes at various frequencies. In addition to the all-cold optics, these

telescopes have two features which aid greatly in the suppression and characterization of in-

strumental systematics: first, they are equipped with co-moving absorptive forebaffles, re-

sulting in extremely low far side-lobe response, and second, the entire instrument can be ro-

tated about the line of sight, allowing modulation of polarized signal; since Bicep/Keck focal

planes all have the dual-polarization pixels oriented in the same direction, and since there is

no sky rotation at the South Pole, these instruments need boresight rotation to make Stokes

Q/U maps.
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The program has had a few iterations over the years, starting with Bicep1 in 2006-

2008, continuing with Bicep2 in 2009-2012, the Keck array in 2011-Present, Bicep3 in 2015-

present, and culminating in Bicep Array which will start deployment in 2019. Table 2.1

summarizes all the receivers deployed since 2010, including Bicep3, which we do not dis-

cuss in this text. This manuscript will focus on placing cosmological constraints with data

from Bicep2 and the Keck array in conjunction with the satellite-based missions WMAP

and Planck.

Throughout the years Bicep2 and all five Keck Array telescopes observed the same low-

foreground patch of the southern sky. In principle, the telescope observes around 600 square

degrees of the sky, but factoring in the lower sensitivity around the edges brings the effective

sky fraction closer to 400 square degrees. This patch, shown in Figure 2.1, represents a ∼ 1%

region of sky, centered at RA 0h, Dec. 57.5◦, and has the advantage of being observable 24/7

throughout the year.

2.2 From Timestreams to Power Spectra

A brief outline of the Bicep/Keck data acquisition and analysis pipeline is presented.

During observations, the telescope scans in azimuth at constant elevation. Once the

entire length of the patch is covered (64.2 degrees), the telescope reverses its azimuth direc-

tion and scans again. A scan in a single direction is called a halfscan. Halfscans are grouped

in batches of ∼ 100, performed over the course of 50 minutes, totaling to a full scanset. At
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2010 2011 2012
Bicep Mount B2 (500, 150GHz) B2 (500, 150GHz) B2 (500, 150GHz)
Keck Rx0 K3 (500, 150GHz) K3 (500, 150GHz)
Keck Rx1 K2 (500, 150GHz) K2 (500, 150GHz)
Keck Rx2 K1 (500, 150GHz) K1 (500, 150GHz)
Keck Rx3 K4 (500, 150GHz)
Keck Rx4 K5 (500, 150GHz)

2013 2014 2015
Bicep Mount B3 (1080, 95GHz)
Keck Rx0 K3 (500, 150GHz) K3 (272, 95GHz) K3 (272, 95GHz)
Keck Rx1 K2 (500, 150GHz) K2 (500, 150GHz) K2 (500, 220GHz)
Keck Rx2 K1 (500, 150GHz) K1 (272, 95GHz) K1 (272, 95GHz)
Keck Rx3 K4 (500, 150GHz) K4 (500, 150GHz) K4 (500, 220GHz)
Keck Rx4 K5 (500, 150GHz) K5 (500, 150GHz) K5 (500, 150GHz)

2016 2017 2018
Bicep Mount B3 (2400, 95GHz) B3 (2400, 95GHz) B3 (2400, 95GHz)
Keck Rx0 K3 (500, 210GHz) K3 (500, 210GHz) K3 (500, 210GHz)
Keck Rx1 K2 (500, 220GHz) K2 (500, 220GHz) K2 (500, 220GHz)
Keck Rx2 K1 (500, 210GHz) K1 (500, 210GHz) K1 (500, 210GHz)
Keck Rx3 K4 (500, 220GHz) K4 (500, 220GHz) K4 (500, 220GHz)
Keck Rx4 K5 (500, 150GHz) K5 (500, 270GHz) K5 (500, 270GHz)

Table 2.1: Bicep/Keck Array receivers deployed since 2010. Receiver names, nominal number of
optically-coupled detectors, and frequencies are indicated. “B2” refers to Bicep2, “B3” refers to
Bicep3, and “K” indicates a particular Keck Array cryostat. Table adapted from Kirit Karkare (2017).
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Figure 2.1: The Bicep and Keck Array observing field shown against the predicted polarization in-
tensity in the Planck Sky Model. This low-foreground patch is often referred to as the Southern Hole.
Figure from Bicep2 Collaboration I (2014).

the end of each scanset, the elevation is updated by 0.25◦, and another scanset is performed.

Each scanset begins by being centered at an azimuthal coordinate corresponding to RA=0,

and halfscans are performed about this point. This step is crucial in allowing us to disentan-

gle azimuthally fixed signals, such as ground pick-up, from sky signals, which rotate. Finally,

scansets are grouped together in 10 hour long increments called observation phases. Observa-

tion phases are performed in 2-day increments, driven by the fridge cycle, and are all done at

the same deck angle.

As scansets are performed, data from the TES detectors are recorded in a sequence

of time-ordered data (TOD’s), or timestreams, which also records thermometry and tele-

scope pointing information. The readout multi-channel electronics (MCE) low-pass filters and

downsamples the timestreams and passes them to the control computer running gcp software.
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The data is written to disk in archive files. The first step in the low-level data reduction is

deconvolving the temporal response of the MCE and gcp filtering. Next, delta function spikes

and discontinuous steps in the data are removed in a step called deglitching and destepping.

Following these procedures, we calibrate our instrument in two steps. The first is a rel-

ative calibration process, used to correct the difference between polarization pairs and to

combine pairs over the array optimally. Every hour of observation, a small 1◦ elevation nod

(elnod) is performed, and the atmospheric temperature gradient is fitted for. This allows for

the calculation of the relative detector gains against the median of the entire experiment, and

their normalization, in analog to digital units (ADU). The second is an absolute calibration

from ADU to real temperature units (µKCMB). This is usually done by comparing the power

spectrum of the temperature map with the Planck 143 GHz map and is performed later in

the analysis, usually after map-making.

Once the timestreams have been normalized, the timestreams of orthogonal detector

pairs are summed and differenced. The pair-summed timestreams are used to make unpolar-

ized measurements of temperature, while the pair-differenced timestreams are used to make

timestream Stokes [Q,U ] measurements of polarization.

To bin the timestreams into pixels with the appropriate right ascension and declination,

pointing information is required. The three axes of the telescope mount encode the pointing

direction for a particular observation. A star camera – a near-infrared camera that observes

a number of stars with known positions – is then used to translate between these mount en-

coder positions and actual sky coordinates. This procedure is termed boresight pointing. To
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determine the pointing of each detector relative to the boresight pointing, we form cross spec-

tra of each full-year detector map with the Planck temperature map. Detector maps are first

made with an approximate location, and then the cross-correlations are used to derive correc-

tions.

Before [Q,U ] maps are made, a number of other steps are taken. First, a selection of

data cuts is performed. The cuts framework is a complex, multi-level algorithm that identifies

and removes faulty timestream data related to a number of possible pathologies. A detailed

review of this procedure is detailed in Sarah Kernasovskiy (2014). In short, there are three

rounds of cuts. Round 1 cut parameters are calculated and applied for individual halfscans;

this round primarily cuts data with glitches, steps, and skipped samples. Round 2 cuts are

calculated at the scanset level; this round has three major categories of cuts pertaining to

calibration, data quality, and telescope performance. Finally, a number of channels which are

deemed faulty are completely cut. After all of these cuts, an average of 50% of the data is

retained. Following the cut procedure, a set of timestream filtering operations is performed.

First, to remove low frequency 1/f atmospheric fluctuations, a third-order polynomial is fit

and subtracted from each halfscan. Then, a template of ground fixed signals is constructed

for each scanset, and it is removed from the timestreams. This serves to remove azimuthally-

fixed signals, which are a potential systematic contamination.

The pair-summed and pair-differenced timestreams are weighted separately based on

the variance during a scanset and then binned into a two-dimensional map of the sky. The

maps constructed from multiple phases of data are combined using a weighted average. An
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inversion from the pair difference map to Stokes [Q,U ] maps is then performed, using the

pointing information discussed earlier.

Two actions worth noting that are also performed at this step are the deprojection of

leading order temperature to polarization leakage terms, due to imperfect differencing be-

tween orthogonal pairs of detectors, and the adjustment of the absolute polarization angle to

minimize the EB cross spectrum. The latter procedure is termed self-calibration and oper-

ates under the assumption that parity is not violated, i.e., there is zero on sky TB and EB

power. Given this assumption, the absolute polarization angle of the experiment is adjusted

until the TB and EB spectra are minimized. See Ref. Bicep2 Collaboration I (2014) for more

information.

We apodize to downweight the regions around the edge of the observed area, with the

apodization set equal to a map of the weights coadded over the full data set, the Q/U maps

are Fourier transformed and converted to the E/B basis in which a possible PGW signal is

expected to be most distinct from the standard ΛCDM signal. To suppress E to B leakage,

due to the skycut and filtering, we use the matrix purification technique which we have devel-

oped Bicep2 Collaboration I (2014), Keck Array and Bicep2 Collaobrations VII (2016) and

James Tolan (2014). We then take the variance within annuli (of fixed width l ∼ 35)of the

Fourier plane to estimate the angular power spectra bandpowers.

Next, we create noise-only simulations based on the full data set (see Section 2.2.1) and

test their accuracy through standard jackknife tests (Bicep2 Collaboration I (2014)). These

jackknifes exist to test the real data for systematic contamination, and the noise simulations
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are only as accurate as the data used to generate them. These simulations provide an esti-

mate of noise in the power spectra of the real data, so we calculate the power spectra of the

noise maps and subtract their mean level from the real data. This method is called noise

debiasing. While the mean is removed, the variance of the noise is preserved and used as a

contribution to the final uncertainty of the measured spectra.

Finally, we correct the measured power spectra for the filter/beam suppression factor –

the combined effect of polynomial filtering, ground subtraction, deprojection, and the matrix

purification have had on each mode in the map. This factor is obtained by passing simulated

input skies with power in only one multipole (δ(l)-function) through all the enumerated steps

and obtaining the sky response at each multipole as observed by the pipeline (i.e., the band-

power window function). The unnormalized integral of the bandpower window functions are

the desired suppression factors. Once these are obtained, real measured bandpowers are di-

vided by the suppression factor to obtain estimated true-sky bandpowers.

2.2.1 Noise Simulations

Realistic noise simulations are a necessary component in our analysis. To that end we cre-

ate sign-flip noise realizations. These are created directly from the data. A large number of

scansets is produced every year. This method multiplies each scanset by a randomly assigned

positive or negative sign, such that the positive and negative halves are equally weighed.

When these are added, the random signs lead to the signal component in the map cancelling,

leaving only the noise component, which naturally contains noise correlations between de-
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tectors. Because of the large number of degrees of freedom associated with the number of

scansets, even though the same scansets are used, the 499 simulations we create are largely

independent. This method is discussed in detail in van Engelen et al. (2012).

2.2.2 Signal Simulations

We also generate 499 realizations of lensed and unlensed ΛCDM by resampling timestreams

created from simulated input maps and passing them through the full analysis pipeline. The

unlensed simulations are useful to empirically determine the purity delivered by the matrix

purification algorithm which is used to extract the B-mode signal in the presence of a much

stronger E-mode. We also use these simulations for the construction of our bandpower covari-

ance matrix, as detailed in Section 3.5.
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Trying to understand the way nature works

involves a most terrible test of human reasoning

ability. It involves subtle trickery, beautiful

tightropes of logic on which one has to walk in

order not to make a mistake in predicting what

will happen.

Richard P. Feynman

3
Multi-component Likelihood Analysis

Framework

In this chapter, we describe the development of an optimal multi-component, multi-frequency,

spectral-based likelihood analysis framework. The goal of this tool is to allow us to analyze

multiple heterogeneous CMB polarization datasets (from Bicep/Keck Planck, and WMAP)
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in order to disentangle any PGW signal from signals of galactic origin. In addition to the

lensing B-mode signal, at low frequencies, charged particles in our galaxy’s magnetic field

produce synchrotron radiation; at high frequencies, polarized rotating dust particles create a

signal of their own, with intricacies we do not yet fully understand.

We start this chapter with a historical motivation and a bird’s eye overview of the frame-

work. We then introduce all the necessary experimental inputs, the assumed signal theory

model, and the likelihood approximations that will be used. An important sub-chapter is ded-

icated towards the construction of a semi-analytic bandpower covariance matrix from explicit

signal and noise simulations, which allows for rescaling to any signal theory, and for reducing

Monte Carlo noise given the modest number of simulations. Finally, chapters 4-6 describe the

application of this framework, and its evolution, with each iteration of the aforementioned

datasets, as they become available.

The framework presented in this manuscript has been described and used to produce the

analysis and figures presented in the following published and peer-reviewed articles: Bicep2/Keck

and Planck Collaborations (2015), Keck Array and Bicep2 Collaborations VI (2016), BICEP2

Collaboration et al. (2018). Therefore, where it is deemed appropriate, this manuscript fol-

lows the cited publications.
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3.1 Motivation & Overview

In March 2014, the Bicep2 team announced the detection of excess degree-scale (multipole

range of 30 < l < 150) B-mode power at 150 GHz over the base lensed-ΛCDM expecta-

tion, inconsistent with the null hypothesis at a significance of > 5σ Bicep2 Collaboration I

(2014). The signal was compatible with one of inflationary origin with r = 0.20+0.07
−0.05. Cross-

correlating against WMAP 23 GHz maps showed that Galactic synchrotron made a negligi-

ble contribution to the observed signal. The several polarized dust emission models consid-

ered at the time offered estimates of foreground contributions that were subdominant to the

signal by a factor of ∼ 5 − 10. However, these models were not sufficiently constrained by

external public data to exclude the possibility of dust emission bright enough to explain the

entire excess signal.

A later release by the Planck collaboration (Planck Collaboration Int. XXX (2016)),

showing measurements of polarized dust over the entire sky, suggested that the polarized frac-

tion of high-galactic latitude dust was higher than the models were predicting. The conclu-

sion was that the entire Bicep2 B-mode signal could be explained by dust. However, while

the Planck data brought new insights into dust physics and allowed a rough determination

of the level of contamination for the Bicep2 CMB polarization experiments, it was not suf-

ficiently constraining to determine the origin of the signal with certainty. The two teams

decided that a dedicated joint analysis, incorporating all the pertinent observational details

of the two data sets, was necessary in order to assess the dust contributions to the observed
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B-mode signal by Bicep2.

To that end, we developed a multi-component, multi-frequency, spectral-based likelihood

analysis that allowed for joint consideration of CMB polarization data from multiple exper-

iments. It is worth noting that while this was the first fully-fledged framework for analysis

of multiple CMB polarization datasets, which included Bicep2/Keck data, previous efforts

towards joint analyses existed prior to this one. Figure 3.1 shows a schematic representation

of this likelihood framework. In the subsections that follow we will discuss all the modules in

detail. We will begin by describing the individual experiments and the preparation of the

data to power spectra. Following that, we present the multi-component theoretical signal

model used to calculate the theory expectation values, the construction of a re-scalable semi-

analytic bandpower covariance matrix (BPCM), and the likelihood approximation method

used in analyses of Bicep/Keck data.

3.2 Experiment Description & Real Bandpowers

While the framework is entirely flexible and can accommodate any number and flavor of

CMB polarization datasets, for the purposes of this manuscript, we will focus on data from

four different instruments: Bicep2 Keck WMAP and Planck. The Bicep2 and Keck Array

experiments and the necessary analysis steps from maps to power spectra have already been

described in Chapter 2. In our analyses, we primarily use the Bicep2/Keck combined maps,

as described in Keck Array and Bicep2 Collaborations V (2015). The Planck maps used for
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Figure 3.1: Schematic representation of the Bicep/Keck multi-component multi-frequency spectral
based likelihood framework
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cross-correlation with Bicep2/Keck are the full-mission polarized maps from Planck science

release 1. In more recent analyses we have also folded in the WMAP9 maps at 23 GHz (K-

band) and 33 GHz (Ka-band) Bennett et al. (2012).

While the Planck maps are filtered only by the instrument beam (the effective beam

defined in Refs. Planck Collaboration IV (2014) and Planck Collaboration VII (2014)), the

Bicep2/Keck maps are also filtered due to the observation strategy and analysis process as

described in Chapter 2. In order to facilitate comparison, we, therefore, prepare Planck maps

“reobserved by Bicep2/Keck”. First, we use the healpix 2 Górski et al. (2005) package to

resmooth the Planck maps with the Bicep2/Keck beam profile. We perform a coordinate

rotation of the T , Q, and U maps from Galactic to celestial coordinates using alteralm in

healpix. Next, we pass these through the steps in Chapter 2 to produce maps that include

the filtering of modes occurring in the data processing pipeline (these include the polynomial

filtering, ground subtraction, and deprojection). The WMAP maps go through an equivalent

process.

We convert the maps to power spectra using the methods described in Chapter 2, includ-

ing the matrix based purification operation to prevent E to B mixing. We generate separate

purification matrices to match the filtering of the Bicep/Keck maps at each frequency. We

take all possible auto-power spectra between these bands. As described in Chapter 2, these

are the variance within annuli of the Fourier plane for two copies of the same map. We also

1https://pla.esac.esa.int/#maps
2http://healpix.sourceforge.net/
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take all possible cross-spectra between bands. The cross-spectrum is equivalent in mathe-

matical definition to the auto-spectrum with the caveat that the two input maps are distinct

rather than the same (which is the case for auto-spectra).

The cumulative collection of these auto- and cross- bandpowers represent the set of real

bandpowers that we use in our analyses to calculate joint likelihoods of the dataset ensemble.

3.3 Multi-component Model

The likelihood analysis uses a parametrized model to describe the bandpower expectation val-

ues as a combination of cosmological and foreground signals. In our model, we have four dis-

tinct signal types: CMB (lensing contribution + tensor contribution), uncorrelated Galactic

dust, uncorrelated Galactic synchrotron (sync), and a spatially correlated component between

dust and synchrotron. In addition, we also consider dust and synchrotron frequency decorre-

lation parameters which allow for dust/sync cross-spectral power suppression.

We assume that each signal component is independent, i.e., different signals have zero-

cross power. Therefore, for a given spectrum, the code steps through the model components,

combines the appropriate amplitude functions for the two experiments contributing to the

spectrum and applies the bandpower window functions to get the binned expectation values.

Finally, it sums over model components to get the total expectation value for that spectrum.

Equation 3.1 outlines the contributions to the BB auto- or cross-spectrum between maps

at frequencies ν1 and ν2 (ν1 = ν2 for an auto-spectrum) from dust, synchrotron, and the
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spatially-correlated component of dust and synchrotron.

Dν1×ν2
ℓ,BB =Adust∆

′
df

ν1
d fν2

d

(
ℓ

80

)αd

+Async∆
′
sf

ν1
s fν2

s

(
ℓ

80

)αs

+

± ϵ
√

AdustAsync(f
ν1
d fν2

s + fν1
s fν2

d )

(
ℓ

80

)(αd+αs)/2

.

(3.1)

The parameter Adust specifies the dust power in units of µK2
cmb at a pivot frequency

353 GHz and angular scale ℓ = 80. The parameter Async specifies synchrotron power in units

of µK2
cmb at a pivot frequency of 23 GHz and angular scale ℓ = 80. The dust and synchrotron

components scale as power laws in ℓ with slopes αd and αs, respectively. The parameters αd

and αs are defined as the ℓ scaling of Dℓ ≡ ℓ (ℓ+ 1)Cl/2π.

The parameter ϵ sets the level of spatial correlation between dust and synchrotron. This

correlation coefficient is assumed to be constant across all ℓ, and the ℓ scaling of the corre-

lated component has a slope that is the average of αd and αs. If either Adust or Async are

negative, the contribution of the correlated component to the expectation value flips sign.

Negative foreground amplitudes are technically nonphysical, but this analytic continuation

will become important in later validation steps when we want to explore the entire parameter

phase-space.

The additional coefficients fν
d and fν

s , given by Equations 3.2 and 3.3, describe the scal-

ing of dust and synchrotron power from the pivot frequencies to the measured bandpasses of

the maps at frequencies ν1 and ν2. This scaling has two contributions: first, from the fore-

ground SED, and second, from the conversion between units at the target map bandpass and
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at the pivot frequency.

The SED model used for dust is a blackbody with temperature Td = 19.6K multiplied

by a power law with emissivity spectral index βd Planck Collaboration Int. XXII (2015).

This is also known as a greybody spectrum. This simplifying assumption about the behavior

of dust holds over the range of frequencies that we consider. The SED model used for syn-

chrotron is defined relative to a Rayleigh-Jeans spectrum as a power law with spectral index

βs. We are required to choose a bandpass convention when we perform the integration of the

SED a unit conversion factors over a particular map bandpass. We adopt the same conven-

tion as used by Planck Collaboration IX (2014), in which our bandpass functions are defined

to be proportional to the response as a function of frequency to a beam-filling source with

uniform spectral radiance.

For a greybody signal with spectral index βd and temperature Td, the relative scaling for

an experiment with bandpass R(ν) and pivot frequency νpivot is given by

fν
d =

∫
dνR1(ν)ν

3+βd

(
exp hν

kTd
− 1
)−1

ν3+βd
pivot

(
exp

hνpivot
kTd

− 1
)−1 ×

ν4 exp
hνpivot
kTCMB

(
exp

hνpivot
kTCMB

− 1
)−2

∫
dνR1(ν)ν4 exp

hν
kTCMB

(
exp hν

kTCMB
− 1
)−2 . (3.2)

The first ratio on the right-hand side of the equation is the greybody scaling between the two

bandpasses while the second ratio is the conversion between CMB temperature units. For a
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synchrotron power-law scaling with spectral index βs the formula is modified to:

fν
s =

∫
dνR1(ν)ν

2+βd

ν2+βd
pivot

×
ν4 exp

hνpivot
kTCMB

(
exp

hνpivot
kTCMB

− 1
)−2

∫
dνR1(ν)ν4 exp

hν
kTCMB

(
exp hν

kTCMB
− 1
)−2 . (3.3)

We also consider dust and synchrotron frequency decorrelation. The simplest possible

model of a polarized foreground component is that with a fixed spatial pattern on the sky

which scales with frequency according to a single SED. In this case, the cross-spectrum be-

tween two frequencies is the geometric mean of the respective auto-spectra. In reality, the

polarization pattern inevitably varies as a function of frequency, leading to the cross-spectra

being suppressed with respect to the geometric mean of the auto-spectra Planck Collabora-

tion Int. L (2017). We refer to this phenomenon as decorrelation.

We define the correlation ratio of the dust

∆d =
D80(217× 353)√

D80(217× 217)D80(353× 353)
, (3.4)

where D80 is the dust power at ℓ = 80. Here ∆d < 1 corresponds to decorrelation. We scale

to other frequency combinations using the factor suggested by Planck Collaboration Int. L

(2017)

f(ν1, ν2) =
(log(ν1/ν2))

2

(log(217/353))2
, (3.5)

Similarly, based on suggestions from Planck Collaboration Int. L (2017) we consider two
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possible scalings

g(ℓ) =


1 flat case

(ℓ/80) linear case
. (3.6)

The ℓ range in which we have high signal-to-noise measurements is farily narrow, therefore

this choice turns out to make little practical difference.

The scalings above can produce extreme, and non-physical, behavior for frequencies that

have a wide separation, or for wide ℓ ranges. We therefore re-map the nominal value using

the following function

∆′
d(ν1, ν2, ℓ) = exp [log(∆d) f(ν1, ν2) g(ℓ)] . (3.7)

According to this re-mapping, ∆′
d remains in the range 0 to 1 for all values of f and g. This

frequency scaling has been shown to correspond to a Gaussian spatial variation in the fore-

ground spectral index (Vansyngel et al. (2017)). In a similar vein, we define the parameter

∆′
s, which describes decorrelation of the synchrotron pattern, but in practice, we do not use

this parameter.

We also currently do not include foreground decorrelation parameters in the dust–synchrotron

correlated component. In general, we expect a complete foreground model to include all possi-

ble correlations between galactic foregrounds at ν1 and ν2, but the current measurements are

not sensitive enough to guide us about the form of these correlations. In our analysis, we only

consider decorrelation when ϵ = 0.
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The foreground contribution to EE is similar, with Ad and Async scaled by the EE/BB

ratios for dust and synchrotron, which are both assumed to be equal to 2 Planck Collabora-

tion 2018 XI (2018), Krachmalnicoff et al. (2018). The model has no EB contributions since

we do not expect parity symmetry to be broken. We also do not include TT/TE/TB spectra

in the likelihood analysis, nor do we model unpolarized foregrounds.

In addition to foregrounds, we also include CMB lensing and a possible tensor contribu-

tion. Using CMB temperature units, the BB spectrum is given by:

Dν1×ν2
l,BB =

r

0.1
Dtensor

l,BB +ALD
lensing
l,BB , (3.8)

where Dtensor
l,BB is the BB spectrum produced by a tensor signal with r = 0.1, and Dlensing

l,BB is

the expected lensing BB spectrum for ΛCDM. These are obtained using the CAMB 3 package.

Similarly for EE:

Dν1×ν2
l,EE =

r

0.1
Dtensor

l,EE +Dlensing
l,EE . (3.9)

We expect that the second term dominates the EE contribution unless r is very large. Also,

the EE lensing component does not vary with AL as the lensing of B-modes into E-modes is

assumed to be negligible compared to the E-mode expectation from ΛCDM.

3https://camb.info/
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3.4 Simulations

3.4.1 Signal Simulations

As described in Section 2.2.2 we generate 499 realizations of lensed and unlensed ΛCDM by

timestream resampling from simulated input maps and applying the full analysis pipeline.

We also explicitly simulate simple dust input maps as power-law Gaussian realizations

(with amplitude set to Ad = 3.75µK2
CMB) and pass these through the timestream sampling

and pipeline re-mapping operation. They are then added to the lensed-ΛCDM and noise

maps, and taken through to power spectra. We use these when it is important to match the

fluctuations present in the real data in detail, such as in the bandpower covariance matrix

construction described below.

3.4.2 Noise Simulations

For Bicep/Keck we use the sign-flip noise simulations describe in Section 2.2.1. To evaluate

uncertainties due to Planck instrumental noise, we use 499 noise simulations of each map;

these are the standard set of time-ordered data noise simulations projected into sky maps

(the FFP8 simulations defined in Planck Collaboration 2015 XII (2015)). For WMAP we use

simple inhomogeneous white noise simulations derived from the provided variance maps.
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3.5 Semi-analytic Bandpower Covariance Matrix

Appendix B presents the full derivation of our semi-analytic bandpower covariance matrix for-

mulation. In short, from the simulated signal-cross-signal, noise-cross-noise and signal-cross-

noise spectra, for the full set of experiments under consideration, we can construct the band-

power covariance matrix appropriate for any model containing a set of signal components

with given SEDs. When we do this, we set to zero any term which has an expectation value

of zero (under the assumption that signal and noise are uncorrelated, and different signals

are uncorrelated) to reduce the Monte Carlo error in the resulting covariance matrix given

the relatively modest number of realizations used. We also set to zero the covariance between

bandpowers that are separated by more than one bin in l, but, importantly, preserve the co-

variance between the auto- and cross-spectra of the different frequency bands.

3.6 Likelihood Approximation

For Bicep2 & Keck Array the effective number of degrees of freedom per bandpower (l-bin)

is small, leading to significant non-Gaussianity of the likelihood, particularly in the lowest

l-bins. Therefore, we choose not to use a Gaussian likelihood approximation, but instead to

calculate bandpower likelihoods from our power spectra using the Hamimeche & Lewis likeli-

hood approximation (Hamimeche & Lewis (2008)).
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The H-L likelihood takes the following form (equation 49 of Hamimeche & Lewis (2008)):

− 2 logL = [Xg]
T
l

[
M−1

f

]
ll′
[Xg]l′

[Xg]l = vecp
(
C

1/2
fl g[C

−1/2
l ĈlC

−1/2
l ]C

1/2
fl

) (3.10)

Here, Cfl are the fiducial model bandpowers, Mf is the bandpower covariance matrix

for the fiducial model, Cl are the theory bandpower expectation values (different at each

point in parameter space), and Ĉl are the real data bandpowers. Each of these sets of band-

powers is written in a symmetric matrix form, with auto-spectra on the diagonal and cross-

spectra off-diagonal. For example, if we use E and B modes from BK and P353, then the

bandpower matrix is 4× 4 with the following form (color-coded by spectrum type):

Ĉl =



BKE ×BKE BKE ×BKB BKE × P353E BKE × P353B

BKB ×BKE BKB ×BKB BKB × P353E BKB × P353B

P353E ×BKE P353E ×BKB P353E × P353E P353E × P353B

P353B ×BKE P353B ×BKB P353B × P353E P353B × P353B



These bandpowers all include the noise bias that we ordinarily subtract out of the real

data bandpowers. In the case of the fiducial model or theory bandpowers, the noise bias is

added to the calculated expectation values. We expect that only the diagonal entries of this

matrix should have significant noise bias. In practice, we allow the off-diagonal noise biases to

be non-zero, but we also confirm that they are quite small.
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The matrix operation g applied to C
−1/2
l ĈlC

−1/2
l involves finding the eigenvalues of this

matrix combination and applying the function g(x) = sign(x − 1)
√
2(x− ln(x)− 1). This

function is only real-valued for x > 0, meaning that the matrix is positive-definite. The C
−1/2
l

terms should always be positive-definite. For the usual H-L case, using all the auto and cross-

spectra from a set of maps, positive-definiteness is guaranteed for Ĉl by a triangle inequality

(the amount of power obtained from taking the cross-spectrum of two maps can’t exceed the

geometric mean of the auto-spectrum power in those maps).

The fiducial model and the associated covariance matrix are fixed during the likelihood

calculation, so only the g varies. The function g(x) is equal to zero for x = 1, which oc-

curs when the theory expectation values equal the data bandpowers, i.e., the matrix product

C
−1/2
l ĈlC

−1/2
l equals the identity matrix. This gives the minimum value for |Xg| and hence

the maximum likelihood. Since the bandpower noise bias terms are added into both the data

bandpowers and the theory expectation values, the maximum likelihood solution should not

depend strongly on the values used for the noise bias. However, these values do affect the

shape of the likelihood, because of the non-linear functional form for g(x). Larger values for

the noise bias mean that a particular range of theories will explore a smaller range of x and

therefore g(x) will appear more linear.

Note that the unnormalized likelihood values do depend strongly on the noise bias, due

to its inclusion in Cfl, but this divides out during any normalization step or in likelihood

ratios.

Given a particular parameter space, we sample the likelihood over the entire space us-
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ing either a grid evaluation or, for higher-dimensional likelihoods, a Markov-Chain Monte

Carlo engine, namely COSMOMC 4. The COSMOMC module we developed, containing all the in-

puts and the model described above, is available for download at http://bicepkeck.org. In

certain cases, when sampling, we use priors on the frequency spectral behaviors of dust and

synchrotron emission from previous analyses of WMAP and Planck data in other regions of

the sky.

4https://cosmologist.info/cosmomc/
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It doesn’t matter how beautiful your theory

is, it doesn’t matter how smart you are. If it

doesn’t agree with experiment, it’s wrong.

Richard P. Feynman

4
A Joint Analysis of Bicep2/Keck and

Planck Data

4.1 Introduction

In this chapter, we demonstrate the first application of the likelihood methodology discussed

in Chapter 3, to derive cosmological parameter constraints with data from Bicep2 the Keck
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array and the Planck satellite. This was the first joint analysis of these data-sets, meant to

allow us to distinguish whether the B-mode signal reported in Bicep2 Collaboration I (2014)

was of Galactic or primordial origin. Section 3.1 describes in detail the history and motiva-

tion for this investigation. This analysis includes data from Bicep2 (2010-2012) (presented

in Bicep2 Collaboration I (2014), Bicep2 Collaboration II (2014), and Bicep2 Collabora-

tion III (2015)), Planck PR2 science release (presented in Planck Collaboration Int. XXX

(2016)), and the Keck Array (2012-2013) (presented in Keck Array and Bicep2 Collaborations

V (2015)).

We first introduce the experiments and their corresponding maps and power-spectra.

We then define the analysis baseline and present likelihood results from this fiducial analysis

choice. Next, we investigate a set of analysis and data variations and show likelihood results

for these. Finally, we present a likelihood validation procedure that tests the robustness of

the framework under the updated fiducial analysis and offer concluding remarks.

The framework presented in this manuscript has been used to produce all the analysis

and figures discussed below. These have been peer-reviewed and published in Bicep2/Keck

and Planck Collaborations (2015). Therefore, where it is deemed appropriate, this chapter

follows the publication closely. Hereafter we refer to this analysis as BKP.
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4.2 Maps and Power Spectra

The processing of the maps proceeds as described in Section 3.2 and Chapter 2. We use the

BICEP2/Keck combined maps, as described in Keck Array and Bicep2 Collaborations V

(2015). In certain cases, we also use the Bicep2-only and Keck-only maps for cross-checks.

Due to potential systematic effects in the Planck maps, the Planck auto-spectra are computed

as the cross-power spectra of two data-split maps, in which the data are split into two subsets

with independent noise. We consider three data split maps: (i) detector-set maps (DS1/DS2),

in which the detectors for a particular frequency are separated into two groups, (ii) yearly

maps (Y1/Y2), in which the data from two different years are used for the two maps, and (iii)

half-ring maps (HR1/HR2), in which each pointing period is divided into halves.

One particular place where this becomes important is in the Hamimeche-Lewis (H-L)

approximation described in Section 3.6. As mentioned, usually in H-L using all the auto and

cross-spectra from a set of maps guarantees positive-definiteness for Ĉl (the amount of power

obtained from taking the cross-spectrum of two maps can’t exceed the geometric mean of the

auto-spectrum power in those maps). However, this is not the case for our treatment of the

bandpowers here. For example, the P353DS1
B × P353DS2

B cross-spectrum, which is used as the

auto-spectrum for P353B, and occupies a diagonal position in the bandpower matrix, could

fluctuate low due to chance anti-correlation of noise in the first and second halves of the data

split. Note that the usual noise bias which is added in the H-L formalism is, in this case, zero

since we are essentially operating with a cross-spectrum. To fix this, we follow Appendix C of
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Hamimeche & Lewis (2008) and inject a cross-spectrum noise bias

N
(H1×H2)
l =

1

X
mean

(
N

(H1)
l , N

(H2)
l

)

to regularize the Ĉl matrix, and check that this has little effect on our constraints.

Figure 4.1 shows the resmoothed Planck 353 GHz T, Q, and U maps before and after

filtering.

The maps are processed to auto- and cross-power-spectra as described in Section 3.2 and

Chapter 2. Figure 4.2 shows the results for Bicep2/Keck and Planck 353 GHz for TT , TE,

EE, and BB. While these are the auto- and cross- spectra for just one pair of experiments,

we compute all possible auto- and cross- spectra. See Section II of Bicep2/Keck and Planck

Collaborations (2015) for more details.

4.3 Likelihood Analysis

We use the framework described in Chapter 3 to perform a joint analysis on all the auto-

and cross-spectra. We form our bandpower covariance matrix from simulations with lensed-

ΛCDM + noise + tensors (with r = 0.2). The fiducial model for the Hamimeche-Lewis

approximation is a dust-only model with r = 0, As = 0 and Ad = 3.6 µK2
CMB. For the

Planck single-frequency case, the cross-spectrum of detector-sets (DS1×DS2) is used, fol-

lowing Planck Collaboration Int. XXX (2016). The baseline analysis, discussed in Section

III.B. of Bicep2/Keck and Planck Collaborations (2015), is chosen to be the following: the
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Figure 4.1: Planck 353 GHz T , Q, and U maps before (left) and after (right) the application of
Bicep2/Keck filtering. The maps have been multiplied by the Bicep2/Keck apodization mask. The
Planck maps are presmoothed to the Bicep2/Keck beam profile and have the mean subtracted. The
filtering, in particular the third order polynominal subtraction to suppress atmospheric pickup, re-
moves large-angular scale signal along the Bicep2/Keck scanning direction (parallel to the right as-
cension direction in the maps here). Figure and caption from Bicep2/Keck and Planck Collaborations
(2015)
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Figure 4.2: Single- and cross-frequency spectra between Bicep2/Keck maps at 150 GHz and Planck
maps at 353 GHz. The red curves show the lensed-ΛCDM expectations. The left column shows single-
frequency spectra of the Bicep2, Keck Array and combined Bicep2/Keck maps. The center column
shows cross-frequency spectra between Bicep2/Keck maps and Planck 353 GHz maps. The right col-
umn shows Planck 353 GHz data-split cross-spectra. In all cases, the error bars are the standard de-
viations of lensed-ΛCDM+noise simulations. For EE and BB the χ2 and χ (sum of deviations) ver-
sus lensed-ΛCDM for the nine bandpowers shown is marked at upper/lower left (for the combined
Bicep2/Keck points and DS1×DS2). In the bottom row (for BB) the center and right panels have a
scaling applied such that signal from dust with the fiducial frequency spectrum would produce a signal
with the same apparent amplitude as in the 150 GHz panel on the left (as indicated by the right-side
y-axes). The significant excess apparent in the bottom center panel points to the fact that a substan-
tial amount of the signal detected at 150 GHz by Bicep2 and Keck Array could be due to dust. Figure
and caption from Bicep2/Keck and Planck Collaborations (2015)
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frequency selection is restricted to BK150, P217, and P353, the ℓ range is restricted to use

the first five bandpowers (20 < ℓ < 200) of the spectra, the likelihood parameter space is

restricted to a three dimensional space r, Ad and βd, over which we perform a simple grid

evaluation.

Using Bicep2/Keck and Planck cross spectral bandpowers alone, it is not possible to

constrain βd. Therefore, a tight Gaussian prior βd = 1.59 ± 0.11 is imposed. This prior as-

sumes that the SED of dust polarization at intermediate latitudes applies to the high latitude

BICEP2/Keck field (Planck Collaboration Int. XXX (2016)). We also assume nt = 0 and a

scalar pivot scale of ks = 0.05Mpc−1; all values of r quoted in this chapter are r0.05.

4.3.1 Baseline Likelihood Results
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Figure 4.3: Likelihood results from a lensed-ΛCDM+r+dust model, fitting BB auto- and cross-
spectra taken between maps at 150 GHz, 217, and 353 GHz. The 217 and 353 GHz maps come from
Planck. The primary results (heavy black) use the 150 GHz combined maps from Bicep2/Keck. Alter-
nate curves (light blue and red) show how the results vary when the Bicep2 and Keck Array only
maps are used. In all cases a Gaussian prior is placed on the dust frequency spectrum parameter
βd = 1.59 ± 0.11. In the right panel the two dimensional contours enclose 68% and 95% of the total
likelihood. Figure and caption from Bicep2/Keck and Planck Collaborations (2015)

Figure 4.3 shows the marginalized 1D and 2D likelihoods of the baseline analysis. The
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combined curves (BK+P) in the left and center panels yield: r = 0.048+0.035
−0.032, r < 0.12 at

95% confidence, and Ad = 3.3+0.9
−0.8. For r the zero-to-peak likelihood ratio is 0.38. Taking

1
2 (1− f (−2 logL0/Lpeak)), where f is the χ2 cdf (for one degree of freedom), we estimate

that the probability to get a number smaller than this is 8% if if the null model is correct

(i.e., if r = 0). For Ad the zero-to-peak ratio is 1.8 × 10−6 corresponding to a smaller-than

probability of 1.4× 10−7, and a 5.1σ detection of dust power. The maximum likelihood model

has parameters r = 0.05, Ad = 3.30µK2 (and βd = 1.6).

4.3.2 Likelihood Variations

Next, we investigate a number of variations and observe the effects of these choices on the

final constraints. The results of these options are presented in Figure 4.4.

• Choice of Planck data split: we switch the Planck split from DS1xDS2 to Y1xY2.

This is the blue line in Figure 4.4. The result hardly changes.

• Using only BK150 and P353: dropping the 217 GHz spectra also has little effect.

This corresponds to the red line in Figure 4.4.

• Using only one auto-spectrum (BK150×BK150) and one cross-spectrum

(BK150×P353): since the statistical weight of the BK150×BK150 and BK150×P353

spectra dominate, excluding the 353 GHz single-frequency spectrum from consideration

makes little difference. This corresponds to the yellow line in Figure 4.4.
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Figure 4.4: Likelihood results when varying the data sets used and the model priors—see Sec 4.3.2
for details. Figure from Bicep2/Keck and Planck Collaborations (2015)

• Extending the bandpower range: extending the multipole range to use all 9 band-

powers (corresponding to 20 < ℓ < 330) makes very little difference, since the dominant

statistical weight is with the lower bandpowers. This corresponds to the magenta line

in Figure 4.4.

• Including EE spectra: we can also include the EE spectra. As discussed in Section

3.3, Planck Collaboration Int. XXX (2016) shows that the level of EE from Galactic

dust is twice the level of BB. We set EE/BB = 2 and find that the constraint on the

dust amplitude narrows, while the r constraint changes little. This corresponds to the

dashed black line in Figure 4.4.
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• Relaxing the prior on βd: we relax the prior on the dust spectral index to βd =

1.59 ± 0.33. This corresponds to the cyan line in Figure 4.4. We note that this pushes

the peak of the marginalized 1D r likelihood up. However, as discussed in Section 3.3,

it is important to realize that such a strong variation of the spectral index can lead

to decorrelation, which is not accounted for in this analysis. Therefore we focus on

the original narrow prior. In addition to this prior change, we also try two other prior

choices: βd = 1.3 ± 0.11 and βd = 1.9 ± 0.11, for which the peak of the marginalized r

likelihood shifts down to r = 0.021 and up to r = 0.073 respectively.

• Using a Gaussian determinant likelihood: as discussed in Section 3.6, by default

we use the Hamimeche-Lewis (H-L) likelihood approximation. A usual alternative is to

recompute the bandpower covariance matrix C at each point in parameter space and

take a Gaussian determinant form for the likelihood L = det (C)−1/2 exp (−(dTC−1d)/2),

where d is the deviation of the observed bandpowers from the model expectation val-

ues. This corresponds to the green line in Figure 4.4. We note that this change results

in a r constraint which peaks slightly lower.

• Varying the HL fiducial model: as mentioned in Section 3.6, the HL formalism re-

quires fiducial model expectation values and covariance matrix. Our default fiducial

model matches the one for the simulations with dust. In this variation, we change to a

model with lensed-ΛCDM+r=0.2. According to Hamimeche & Lewis (2008), changing

the fiducial model should cause no ensemble average change in the recovered parame-
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ters, though variations for any given realizations do occur. We observe this effect in our

analysis, which corresponds to the dashed red line in Figure 4.4.

Two other variations, which are presented separately, are the expansion of the sampled

likelihood parameter space to include the synchrotron amplitude (Async) and to include the

lensing amplitude (AL).
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Figure 4.5: Likelihood results for a fit when adding the lower frequency bands of Planck, and extend-
ing the model to include a synchrotron component. The results for two different assumed degrees of
correlation between the dust and synchrotron sky patterns are compared to those for the comparable
model without synchrotron (see text for details). Figure and caption from Bicep2/Keck and Planck
Collaborations (2015)

Adding synchrotron: Here we perform a fit including all the polarized bands of Planck

and adding a synchrotron component to the base lensed-ΛCDM+noise+r+dust model. We

switch to the Y1×Y2 split for this variant since the DS1×DS2 data-split is not available for

the Planck LFI bands. Therefore, we compare to the Y1×Y2 case in Figure 4.4 as opposed to
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the fiducial analysis. The results are presented in Figure 4.5.

We take synchrotron to have a power law spectrum Dℓ ∝ ℓ−0.6 Dunkley et al. (2009),

with free amplitude Async. For this particular analysis, the pivot frequency differs from the

one described in Section 3.3, in particular Async is the amplitude at 150 GHz. The frequency

spectral index is set to βs = −3.3 (the mean value within the Bicep2 field of the MCMC

“Model f” spectral index map provided by WMAP Bennett et al. (2013)).

When adding synchrotron and dust separately, we also have to assume a choice about

the degree of correlation between the sky patterns of these two foregrounds. Figure 4.5 shows

results for the uncorrelated and fully correlated cases. Marginalizing over r and Ad we find

Async < 0.0003µK2 at 95% confidence for the uncorrelated case, and much smaller for the cor-

related case. This synchrotron limit is driven almost entirely by the low-frequency informa-

tion in the Planck 30 GHz band—if we add just this band to the fiducial dataset, we obtain

almost identical results. If we instead change the spectral index to βs = −3.0 the limit on

Async is doubled for the uncorrelated case and reduced for the correlated.

Varying the lensing amplitude: In our fiducial analysis we fix the lensing amplitude to

the ΛCDM expectation value (AL = 1). The Planck collaboration constraint at the time was

AL = 0.99 ± 0.05 Planck Collaboration XVI (2014). Here, we use the entire ℓ range available

to us, and we allow AL to vary. The results are presented in Figure 4.6. Marginalizing over

r and Ad we find AL = 1.13 ± 0.18 with a likelihood ratio between zero and peak of 3 ×

10−11. Taking 1
2 (1− f (−2 logL0/Lpeak)), where f is the χ2 cdf (for one degree of freedom),
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all nine bandpowers. Marginalizing over r and Ad, we find that AL = 1.13 ± 0.18 and AL = 0 is ruled
out with 7.0σ significance. Figure and caption from Bicep2/Keck and Planck Collaborations (2015)

this corresponds to a smaller-than probability of 2 × 10−12, which is equivalent to a 7.0σ

detection of lensing in the BB spectrum. We note that this was the most significant direct

measurement of lensing in B-mode polarization at the time.

4.3.3 Likelihood Validation

To validate our likelihood machinery, we perform tests on two types of simulations: first, we

use the same lensed-ΛCDM + Gaussian dust + noise simulations as used for the BPCM con-

struction for the fiducial model, and second, we use Planck Sky Model (PSM; version 1.7.8)

simulations Delabrouille et al. (2013), since these are not necessarily Gaussian, and have

much larger variation in the dust amplitude.

We run the fiducial analysis for all 499 Gaussian dust simulations. We present the marginal-
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similar to that favored by the real data (Ad = 3.6µK2). Half of the r curves peak at zero as expected.
Figure and caption from Bicep2/Keck and Planck Collaborations (2015)

ized 1D constraints on r and Ad for 100 realizations in Figure 4.7. As expected for an unbi-

ased estimator, approximately 50% of the r likelihoods peak above zero. The median 95%

upper limit is r < 0.075. We find that 8% of the realizations have a ratio L0/Lpeak less than

the 0.38 observed in the real data, in agreement with the estimate in Sec. 4.3.1.

To prepare the PSM simulations, we take the Planck Sky Model evaluated in the Planck

353 GHz band, and pull out the 352 |b|> 35 deg partially overlapping regions used in Planck

Collaboration Int. XXX (2016). We scale the obtained maps to other bands and form spectra

as we have done for the real Planck maps. We cut out regions with dust power that is much

larger than the real data (Ad < 20µK2), selecting 139 regions. Figure 4.8 presents the result-

ing marginalized curves. We notice that the r likelihoods broaden as Ad increases, and it is
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therefore unsurprising that the fraction of realizations peaking at a value higher than the real

data is increased compared to the Gaussian dust simulations with Ad = 3.6µK2.

We expect on average that 50% of realizations will peak above r = 0, and around 8%

of realizations to have a L0/Lpeak ratio less than the 0.38 observed in the real data. We find

57% and 7%, respectively, consistent with the expected values.
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Figure 4.8: Constraints obtained when adding dust realizations from the Planck Sky Model version
1.7.8 to the base lensed-ΛCDM+noise simulations. (Curves for 139 regions with peak Ad < 20µK2

are plotted.) We see that the results for r are unbiased in the presence of dust realizations which do
not necessarily follow the ℓ−0.42 power law or have Gaussian fluctuations about it. Figure and caption
from Bicep2/Keck and Planck Collaborations (2015)

4.4 Discussion and Conclusions

In this chapter, we showed the first application of our multicomponent framework towards a

joint analysis of CMB polarization data. We found that the excess B-mode signal detected by

Bicep2 contains a large contribution from Galactic dust. The marginalized likelihood on r
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peaks at r = 0.05, however, the zero-to-peak ratio is only 0.38. As noted, we expect this to

happen by chance 8% of the time, which we confirm using Gaussian dust simulations. This

significance is too low to be interpreted as a detection of primordial B-modes. We analyzed a

number of variations and found the result to be robust under these changes.

In order to further constrain or detect PGWs, additional data with signal-to-noise com-

parable to that achieved by Bicep2/Keck at 150 GHz are required at more than one fre-

quency. The Bicep2/Keck noise is much lower in the Bicep2/Keck field than the Planck

noise, however, since dust emission is dramatically brighter at 353 GHz, the Planck data is

required to detect dust. We do not detect synchrotron in this analysis.

During the 2014 season, two of the Keck Array receivers observed in the 95 GHz band,

which is closer to the polarized foreground minimum (∼ 80 − 90GHz). In the next Chapter,

we will present results which include this data.
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The important thing is not to stop questioning.

Curiosity has its own reason for existence. One

cannot help but be in awe when he contem-

plates the mysteries of eternity, of life, of the

marvelous structure of reality. It is enough if

one tries merely to comprehend a little of this

mystery each day.

Albert Einstein

5
Adding Bicep2/Keck observations for the

2014 Season

5.1 Introduction

In this chapter, we apply the likelihood methodology discussed in Chapter 3 to derive cosmo-

logical parameter constraints when adding new data taken by Keck Array in the 2014 season,
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including three 150 GHz receivers, and, for the first time, two 95 GHz receivers. We also

include, for the first time in our baseline analysis, all seven polarization auto-spectra from

Planck (30-353 GHz), and add two WMAP frequencies at 23 and 33 GHz.

As in the previous chapter, we begin by introducing the experiments and their corre-

sponding maps and power spectra. After defining the new analysis baseline, we derive likeli-

hood results using this fiducial analysis choice. We then vary the analysis and data selection

and demonstrate likelihood results for these. In conclusion, we validate the robustness of our

likelihood framework under the updated fiducial analysis and offer a brief discussion.

The work in this manuscript: the likelihood framework, the analysis results presented,

and the accompanying figures below, has been peer-reviewed and published in Keck Array

and Bicep2 Collaborations VI (2016). Therefore, where it is deemed appropriate, this chap-

ter follows the publication closely. Hereafter we refer to this analysis as BK14.

5.2 Maps and Power Spectra

We form new maps and power spectra as described in Section 2 and Section 3.2, and simi-

larly to Section 4.2. One difference is that in this analysis we use the Public Release 2 “full

mission” maps available from the Planck Legacy Archive 1, and use full auto-spectra for the

Planck as opposed to single-frequency splits.

Figures 5.1 and 5.2 show the 95 & 150 GHz Q/U maps combining data from Bicep2

1http://www.cosmos.esa.int/web/planck/pla or http://irsa.ipac.caltech.edu/data/
Planck/release_2/all-sky-maps
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Figure 5.1: T , Q, U maps at 150 GHz using all Bicep2/Keck data up to and including the 2014 ob-
serving season—we refer to these maps as BK14150. The left column shows the pipeline processed
signal maps. The right column shows a noise realization. These maps are filtered by the instrument
beam (FWHM 30 arcmin), timestream processing, and (for Q & U) deprojection of beam systematics,
as described in Chapter 2. The horizontal/vertical and 45 deg structures seen in the Q and U signal
maps are expected for an E-mode dominated sky. Figure from Keck Array and Bicep2 Collaborations
VI (2016)
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Figure 5.2: T , Q, U maps at 95 GHz using data taken by two receivers of Keck Array during the
2014 season—we refer to these maps as BK1495. These maps are directly analogous to the 150 GHz
maps shown in Figure 5.1 except that the instrument beam filtering is in this case 43 arcmin FWHM.
Figure and caption from Keck Array and Bicep2 Collaborations VI (2016)

(2010–2012) and Keck Array (2012–2014). The 150 GHz maps include three more receiver

years over the BKP analysis, improving the Q/U sensitivity from 57 nK deg to 50 nK deg

(3.0 µK arcmin) over an effective area of 395 square degrees. The Q/U sensitivity of the

95 GHz maps, which contain two receiver years of data, is 127 nK deg (7.6 µK arcmin) over an

effective area of 375 square degrees. Save for the difference in noise level and beam size (43

arcmin versus 30 arcmin FWHM), the degree scale structure, dominated by CMB E-modes, is
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Figure 5.3: EE and BB auto- and cross-spectra between 95 & 150 GHz using all Bicep2/Keck data
up to and including that taken during the 2014 observing season—we refer to these spectra as BK14.
The points are offset horizontally. The solid black curves show the lensed-ΛCDM theory spectra. The
error bars are the standard deviations of the lensed-ΛCDM+noise simulations. The χ2 and χ (sum of
deviations) against lensed-ΛCDM for the lowest five bandpowers are given and can be compared to
their expectation value/standard-deviation of 5/3.1 and 0/2.2 respectively The dashed lines show a
lensed-ΛCDM+dust model derived from our previous analysis. Figure and caption from Keck Array
and Bicep2 Collaborations VI (2016)

near identical in both maps.

In Figure 5.3 we present EE and BB auto- and cross- spectra between the BK1495 and

BK14150 maps. In Figure 5.4 we show all BB auto- and cross-spectra between the BK14

95 & 150 GHz maps and the WMAP and Planck bands. These represent the set of baseline

bandpowers.

5.3 Likelihood Analysis

The Likelihood analysis proceeds as in Chapter 4. The evolution of the baseline analysis is

presented in the following subsection. For this analysis, we switch to forming our bandpower
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Figure 5.4: BB auto- and cross-spectra between the BK14 95 & 150 GHz maps and bands of
WMAP and Planck. We plot ℓ (ℓ+ 1)Cl/2π (µK2). The black curves show the lensed-ΛCDM the-
ory spectrum. The error bars are the standard deviations of the lensed-ΛCDM+noise simulations. The
blue dashed lines show a baseline lensed-ΛCDM+dust model (Ad,353 = 4.3µK2, βd = 1.6, αd = −0.4).
The red dashed lines show an upper limit lensed-ΛCDM+synchrotron model (Async,23 = 3.8µK2,
βs = −3.1, αs = −0.6). Figure and caption from Keck Array and Bicep2 Collaborations VI (2016)
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covariance matrix from lensed-ΛCDM+noise only simulations (as opposed to simulations that

have tensors or dust). This significantly simplifies the data structure that we have to gener-

ate. The covariance matrix is then scaled to the desired fiducial model (which is the same as

BKP and includes dust) for the H-L likelihood approximation. In this analysis, we expand

the parameter space appreciably, and since a grid evaluation becomes prohibitively expensive,

we switch to exploring the space with an MCMC, as described in Section 3.6.

5.3.1 Likelihood Evolution

In this analysis, we extend the baseline from BKP to:

• Use BK1495, BK14150, all Planck frequencies (including auto-spectra), and two WMAP

frequencies at 23 and 33 GHz.

• Use the full range of multipoles, i.e., we use bins 1-9 by default (20 < ℓ < 330).

• Extend the model to include Async, with an updated central value for the spectral in-

dex βs = −3.1, and a conservative prior of βs = −3.1± 0.3 (Fuskeland et al. (2014)). In

this analysis we switch the synchrotron pivot frequency from the 150 GHz considered

in BKP, to 23 GHz, as described in Section 3.3.

• Extend the model to allow for dust/synchrotron correlation, and marginalize over a

generous range of 0 < ϵ < 1.

• Extend the model to marginalize over generous ranges of spatial indices −1 < αs < 0
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and −1 < αd < 0 in case true dust and synchrotron deviate from a pure power-law ℓ

scaling.

We perform likelihood analyses for each evolution documented above, in order to observe the

effects on the marginalized constraints caused by each individual change. The results for this

evolution sequence are presented in Figure 5.5. We note that with the exception of the addi-

tion of the new BK data at 95 and 150 GHz, the rest of the changes have little effect on the

r constraints. The addition of WMAP data and full Planck auto-spectra, the inclusion of

dust/sync correlation, and the updated spectral index, all serve to improve the synchrotron

constraints.
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Figure 5.5: Evolution of the BKP analysis to the “baseline” analysis as defined for BK14 Figure
from Keck Array and Bicep2 Collaborations VI (2016)

5.3.2 Baseline Likelihood Results

Figure 5.6 shows the results of this baseline analysis. We obtain the following statistics: r0.05 =

0.028+0.026
−0.025, r0.05 < 0.090 at 95% confidence, Ad,353 = 4.3+1.2

−1.0 µK2, and Async,23 < 3.8µK2 at
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Figure 5.6: Results of the multicomponent multi-spectral likelihood analysis BK14 data. The faint
red curves are the primary result from the previous BKP analysis. The bold black curves are the new
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to r0.05 < 0.07. This figure is adapted from Figure 21 of Ref. Planck Collaboration 2015 XIII (2016)—
see there for further details. Figure from Keck Array and Bicep2 Collaborations VI (2016)

95% confidence. The zero-to-peak likelihood ration for r is 0.63. Taking 1
2 (1− f (−2 logL0/Lpeak)),

where f is the χ2 cdf (for one degree of freedom), the probability to get a ration smaller than

the one for the real data is 18% under the null-model assumption. Running the analysis on

the lensed-ΛCDM+dust+noise simulations produces a similar number. The zero-to-peak like-

lihood ratio for Ad indicates a detection of dust at > 8σ. The maximum likelihood model

(including priors) has parameters r = 0.026, Ad,353 = 4.1µK2, Async,23 = 1.4µK2, βd = 1.6,

βs = −3.1, αd = −0.19, αs = −0.56, and ϵ = 0.00.
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The constraint on r further tightens when including Planck temperature data. The

analysis of Planck full mission TT data in conjunction with external data produces a cos-

mic variance limited constraint of r0.002 < 0.11 (r0.05 < 0.12) at 95% confidence (“Planck

TT+lowP+lensing+ext” in Equation 39b of Ref. Planck Collaboration 2015 XIII (2016)).

The baseline BK14 result is the first B-mode constraint which surpasses those from tem-

perature anisotropies. We use COSMOMC to include all the same datasets to reproduce the

Ref. Planck Collaboration 2015 XIII (2016)’s result, in the r vs. ns plane, and show the ef-

fect of adding in our BK14 B-mode data. This is presented in Figure 5.7. The joint result

produces a constraint of r0.05 < 0.07 (95%), which represents the best PGW constraint at the

time of this analysis. Note that this constraint excludes the ϕ2 model at many sigma. This

particular model very alluring for a significant period of time because it has only one free

parameter m, which, once determined by the level of the scalar perturbations, is enough to

predict all the other early universe properties. Ruling out this simplistic model suggests that

the inflaton field was doing something more complicated as it rolled towards the minimum.

For a comprehensive discussion about the implications of the constraints presented in this

chapter for various inflationary models, see Planck Collaboration et al. (2018b).

5.3.3 Likelihood Variation

Similar to the BKP analysis, we perform several variations, the results of which are presented

in Figure 5.8.

The considered options are as follows:

91



0 0.04 0.08 0.12 0.16 0.2
0

0.2

0.4

0.6

0.8

1

L/
L pe

ak

r
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

A
d
 @ l=80 & 353 GHz [µK2]

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

A
sync

 @ l=80 & 23 GHz [µK2]

 

 

Baseline Analysis
no β

d
 prior

−4<β
s
<−2

no Planck LFI
no WMAP
ε=0.2
inc. EE (EE/BB=2)
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Array and Bicep2 Collaborations VI (2016)

• No βd prior: we remove the prior on the dust frequency spectral index βd. This cor-

responds to the cyan line in Figure 5.8. The marginalized constraint on βd is approx-

imately Gaussian, with mean/σ of 1.82/0.26. For this variant, the dust amplitude

Ad shifts up, as does the r constraint. The posterior on r is characterized by r =

0.043+0.033
−0.031 with a zero-to-peak likelihood ratio of 0.44 (10% likely if r = 0).

• Relax the βs prior: we relax the prior on the synchrotron frequency spectral index to

−4 < βs < −2. This corresponds to the green line in Figure 5.8. We can see that this

has very little effect

• Remove the Planck low-frequency (LFI) data: we remove all the Planck LFI

bands from consideration. This corresponds to the magenta line in Figure 5.8. The

peak of the r constraint shifts slightly down, while the Async constraint peaks strongly

away from zero.
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• Remove the WMAP data: we repeat the exercise above but this time remove low-

frequency data from WMAP. This corresponds to the dark yellow line in Figure 5.8.

Yet again, this change slightly decreases the zero-to-peak ratio of the r constraint and

significantly tightens the Async constraint.

• Fix the dust/sync correlation: recently, Choi & Page (2015) found modest evi-

dence for dust/sync correlation, with ϵ = 0.2. We explore this variant here, represented

by the dashed red line in Figure 5.8, and observe that it makes almost no difference to

any of the constraints.

• Add E-mode data: finally, just as we did for BKP, we add in E-mode data with

a fixed EE/BB ratio of 2 for both synchrotron and dust. This corresponds to the

dashed black line in Figure 5.8. Assuming this fixed ratio holds, this offers extra con-

straining power – we see the r curve shift up and narrow slightly, similarly for Ad,

while As peaks strongly away from zero. Unfortunately, there is no good estimate for a

prior on the EE/BB ratios, so we cannot confidently make this extra information part

of the baseline analysis.

5.3.4 Likelihood Validation

Similarly to the BKP analysis, we would like to validate that the likelihood framework recov-

ers unbiased estimates under our new baseline analysis. We test this against the same lensed-

ΛCDM + noise + Gaussian dust simulations as in BKP. Since we have switched to using
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COSMOMC, we can no longer explore negative amplitudes (negative power leads to a tech-

nical issue within COSMOMC). Therefore, in this chapter, we cannot perform full likelihood

evaluations as we have done for Section 4.3.3. Instead, we implement a Maximum Likelihood

search that uses minuit 2 to find the global likelihood maximum. In fact, since we would like

to impose the same priors as we do for the baseline analysis, this is technically a maximum

posterior exploration. Figure 5.9 shows the results—the input values are recovered in the

mean as expected.

An additional statistic that comes from this particular study is the standard deviation of

the recovered ML values for r. Unlike the width of the marginalized posterior, which depends

on the peak position of the curve, this new estimate does not suffer from this and is, there-

fore, a more robust measure of the intrinsic constraining power of the experimental data.
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Figure 5.9: Results of validation tests running the likelihood on simulations of a lensed-ΛCDM+dust
model (Ad,353 = 3.75µK2, βd = 1.59 and αd = −0.42). The blue histograms are the recovered ML
values with the red line marking their means. The black line shows the input value. In the left panel
σ(r) = 0.024. See Section 5.3.4 for details. Figure from Keck Array and Bicep2 Collaborations VI
(2016)

2https://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/
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353 GHz, and are plotted at horizontal positions such that they can be compared vertically with the
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5.4 Discussion and Conclusions

The analysis presented in this chapter is significantly evolved from the one in Chapter 4: we

have expanded our foreground parametrization and folded in new data-sets. We have seen

that with the addition of extra data we are able to further tighten the constraints on r from

r0.05 < 0.12 at 95% confidence to r0.05 < 0.07. With this result, B-modes have become the

most powerful probe of PGWs, surpassing constraints from temperature data for the first

time. These constraints are set to only get better from here. Figure 5.10 compares signal

levels and current noise uncertainties at ℓ ∼ 80. During the 2015 season, the Keck Array

has observed at three frequencies: 95, 150, 220 GHz, and will push these noise levels down,

allowing us to improve the separation between foregrounds and a possible PGW signal. In

the next chapter, we will add data from this season and describe further updates to our likeli-

hood framework, which help us increase the robustness of our constraints.
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Life is a marathon, not a steeplechase.

Iurie Cuza

6
Adding Bicep2/Keck Observations for the

2015 Season

6.1 Introduction

In this chapter, we apply the likelihood methodology discussed in Chapter 3 to derive cos-

mological parameter constraints when adding new data taken by Keck Array in the 2015 sea-
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son, including two 95 GHz receivers, a single 150 GHz receiver, and, for the first time, two

220 GHz receivers. Compared to the dataset used in the previous chapter, this analysis dou-

bles the 95 GHz dataset to four receiver-years and adds a new higher frequency band that

significantly improves the constraints on the dust contribution compared to those given by

using the Planck data alone.

From 2010 to 2013, Bicep2 and Keck Array jointly recorded a total of 13 receiver-years

of data in a band centered on 150 GHz. Two of the Keck receivers were switched to 95 GHz

before the 2014 season and two more were switched to 220 GHz before the 2015 season. The

dataset used in this chapter – the BK15 dataset – thus consists of 4/17/2 receiver-years at

95/150/220 GHz respectively.

As in the previous two chapters, we describe experiments and how their corresponding

maps and power-spectra are formed. We proceed by defining the new analysis baseline and

present the fiducial likelihood results. Next, we study a set of analysis and data variations

and demonstrate likelihood results for these. Finally, we present a likelihood validation proce-

dure that tests the robustness of the framework under the updated analysis choices.

The likelihood analysis presented in this chapter has been peer-reviewed and published

in BICEP2 Collaboration et al. (2018), and is a direct result of the work described in this

manuscript. Therefore, where it is deemed appropriate, this chapter follows the publication

closely. Hereafter we refer to this analysis as BK15.
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6.2 Maps and Power Spectra

We make maps and power spectra using the same procedures as used for BKP and BK14,

described in Chapters 4 and 5. The full set of Bicep/Keck T/Q/U maps are presented in

Figure 6.1, Figure 6.2, Figure 6.3.

In this analysis, we used the three bands of Bicep2/Keck plus the 23 & 33 GHz bands

of WMAPand all seven polarized bands of Planck. As before, we take all possible auto- and

cross-power spectra between these bands. The full set of spectra are shown in Figure 6.4.

Here, for the first time, in Figure 6.5, we choose to show the noise spectra for the three

BK15 bands after correction for the filter and beam suppression, and the effective observed

sky fraction inferred from the noise fluctuations. The turn up at low-ℓ at least in part due to

residual atmospheric 1/f in the pair-difference data. We note that it is weakest in the 95 GHz

band, where water vapor emission is lowest. These quantities provide a useful synoptic mea-

sure of the loss of information due to noise, filtering, and EE/BB separation in the lowest

bandpowers.

6.3 Likelihood Analysis

We perform likelihood analysis using the methods introduced in Chapter 2, which were used

in BKP and refined in BK14. Here, as in our previous analysis of BK14 data, the bandpower

covariance matrix is derived from 499 simulations of lensed-ΛCDM + noise according to the

prescription described in B. We rescale the covariance matrix to the same fiducial model as
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Figure 6.1: T , Q, U maps at 95 GHz using data taken by two receivers of Keck Array during the
2014 & 2015 seasons—we refer to these maps as BK1595. The left column shows the real data maps
processed through the analysis pipeline. The right column shows a noise realization. These maps
are filtered by the instrument beam (FWHM 43 arcmin Keck Array and Bicep2 Collaborations XI
(2018)), timestream processing, and (for Q & U) deprojection of beam systematics. The horizon-
tal/vertical and 45 deg structures seen in the Q and U signal maps are indicative of an E-mode domi-
nated sky. Figure and caption from BICEP2 Collaboration et al. (2018)
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Figure 6.2: T , Q, U maps at 150 GHz using all Bicep2/Keck data up to and including that taken
during the 2015 observing season—we refer to these maps as BK15150. These maps are directly analo-
gous to the 95 GHz maps shown in Figure 6.1 except that the instrument beam filtering is in this case
30 arcmin FWHM Figure and caption from BICEP2 Collaboration et al. (2018).

BKP and BK14 (r = 0, Ad = 3.6, As = 0, βd = 1.59, αd = −0.42, Td = 19.6K)

6.3.1 Likelihood Evolution

We make only one change to the baseline analysis choices of BK14, expanding the prior on

the dust/sync correlation parameter from 0 < ϵ < 1 to −1 < ϵ < 1. This choice was made

based on the fact the in BK14 the posterior on ϵ was peaking sharply at zero, and while there
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Figure 6.3: T , Q, U maps at 220 GHz using data taken by two receivers of Keck Array during the
2015 season—we refer to these maps as BK15220. These maps are directly analogous to the 95 GHz
maps shown in Figure 6.1 except that the instrument beam filtering is in this case 20 arcmin FWHM
Figure and caption from BICEP2 Collaboration et al. (2018).

is no current theoretical motivation for negative correlation values, anti-correlation of dust

and synchrotron spatial patterns is mathematically possible.

In Figure 6.6 we show the evolution of the BK14 baseline to the current one. First, we

make the change in the ϵ prior, then we update the 95 and 150 GHz selection to include data

from Keck taken during the 2015 season, and finally, we add in the new Keck data at 220

GHz. We note that the net result is a tightening and a slight downward shift of the r poste-
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Figure 6.4: The full set of BB auto- and cross-spectra from which the joint model likelihood is de-
rived. The quantity plotted is 100ℓCℓ/2π (). Spectra involving Bicep2/Keck data are shown as black
points; those using only WMAP/Planck data are shown as blue points. The black lines show the ex-
pectation values for lensed-ΛCDM, the red lines show the expectation values of the maximum likeli-
hood lensed-ΛCDM+r+dust+synchrotron model (r = 0.02, Ad,353 = 4.7µK2, βd = 1.6, αd = −0.58,
Async,23 = 1.5µK2, βs = −3.0, αs = −0.27, ϵ = −0.38), and the error bars are scaled to that model.
Figure and caption from BICEP2 Collaboration et al. (2018)
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Figure 6.5: Upper: The noise spectra of the BK15 maps for 95 GHz (red), 150 GHz (green) and
220 GHz (blue) after correction for signal filtering. No ℓ2 scaling is applied. Lower: The effective
sky fraction as calculated from the ratio of the mean noise realization bandpowers to their fluctua-
tion fsky(ℓ) = 1

2ℓ∆ℓ

(√
2N̄b

σ(Nb)

)2
, i.e. the observed number of B-mode degrees of freedom divided by the

nominal full-sky number. The turn-down at low ℓ is due to mode loss to the timestream filtering and
matrix purification. Figure from BICEP2 Collaboration et al. (2018)

rior.

6.3.2 Baseline Likelihood Results

Figure 6.7 shows the results of the BK15 baseline analysis. We obtain the following statis-

tics: r0.05 = 0.020+0.021
−0.018 (r0.05 < 0.072 at 95% confidence), Ad,353 = 4.6+1.1

−0.9 µK2 and

Async,23 = 1.0+1.2
−0.8 µK2 (Async,23 < 3.7 µK2 at 95% confidence). For r, the zero-to-peak likeli-

hood ratio is 0.66. Taking 1
2 (1− f (−2 logL0/Lpeak)), where f is the χ2 CDF (for one degree
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Figure 6.6: Evolution of the BK14 analysis to the “baseline” analysis. Figure from BICEP2 Collabo-
ration et al. (2018)

of freedom), we estimate that the probability to get a likelihood ratio smaller than this is

18% if, under the null hypothesis. Compared to the baseline result in BK14, the marginal-

ized posterior on r slightly tightens, and shifts down. The posterior on the dust amplitude

seems saturated by the sample variance of dust. The posterior on the synchrotron amplitude

does not have the double-peak feature anymore due to the new prior on ϵ; this significantly

increases the zero-to-peak likelihood ratio.

The maximum likelihood model (including priors) has parameters r0.05 = 0.020, Ad,353 =

4.7 µK2, Async,23 = 1.5 µK2, βd = 1.6, βs = 3.0, αd = 0.58, αs = 0.27, and ϵ = 0.38.

Using this same baseline, we repeat the r vs ns analysis as in BK14. Figure 6.8 shows

the constraints in the r vs. ns plane for Planck 2015 plus additional data (r0.05 < 0.12) and

when adding in also BK15 (r0.05 < 0.057). We note that the ϕ model, as well as the entire

class of single-field monomial models ϕp, now lies entirely outside of the 95% contour. This is

a significant reduction of inflationary model parameter space.
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6.3.3 Likelihood Variations

As in the previous two chapters, we consider a number of variations to the baseline analysis.

In this particular case, because of the additional constraining power coming from the new

bands and extra data at existing frequencies, we can test a larger set of data selection choices.

Therefore, we split the variations into two types: “data set selection” and “analysis selection”.
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6.3.3.1 Analysis Variations

The first set of analysis variations is similar in nature to the alternatives considered in BK14.
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Figure 6.9: Likelihood results when varying the analysis choices—see Section 6.3.3 for details. Figure
from BICEP2 Collaboration et al. (2018)

• Alternative fiducial models: we try exchanging the fiducial model used in the H-L

approximation from the default model (with Ad,353 = 3.6 µK2, As = 0, r = 0) used

for BKP, BK14, and in the baseline analysis here, to a model with Ad,353 = 5 µK2,

Async = 0, r = 0.05 or one with Ad,353 = 5 µK2, Async,23 = 2 µK2, r = 0.05. These

correspond to the blue and red lines in Figure 6.9. We note that the corresponding

changes are very small.

• Relaxing the prior on βd: Similarly to BKP and BK14, we remove the prior from

Planck on βd. This corresponds to the magenta line in Figure 6.9. In BK14 we ob-

served that this led to an upward shift in r, and a significant broadening of Ad. Here,

because of the new data at 220 GHz, the changes are much smaller. The βd constraint
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curve (not shown) is roughly Gaussian, with mean/σ of 1.65/0.20. We note that with

further data additions from the Keck Array at high frequencies, we should no longer

need the external prior on βd, thereby removing the uncertainty from the assumption

that the average behavior over large sky regions is a good stand-in for dust behavior in

our sky patch.

• Relaxing the prior on βs: We extend our prior on the synchrotron spectral index

from a Gaussian prior with βs = −3.1 ± 0.3 to a uniform prior with −4.5 < βs < −2.0.

This corresponds to the green line in Figure 6.9. We note that this choice has hardly

any effect on the final marginalized posteriors. This is unsurprising given that we are

not yet detecting synchrotron.

• Fixing ϵ to zero: We fix the value of the dust/sync correlation to ϵ = 0. This corre-

sponds to the cyan line in Figure 6.9. This choice produces a small downshift in r, as

expected from Figure 6.6. We include this variant because we will use it when adding

in dust decorrelation as an analysis variant (see Figure 6.10 and the appropriate discus-

sion).

• Setting a Gaussian prior on ϵ: We see a similar shift if we instead choose to im-

pose a Gaussian prior on the dust/sync correlation with mean/σ of 0.48/0.50 (Planck

Collaboration 2018 XI (2018)). This corresponds to the yellow line in Figure 6.9.

• Marginalizing over bandpass uncertainty: We add to the model a set of param-
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eters which describe the uncertainty in the measured Bicep/Keck bandpasses. These

are quantified by the fractional shift in the band center. We include one parameter for

each frequency plus a correlated shift applied to all three channels. For each parame-

ter, we use a Gaussian prior with mean/σ of 0/0.02. This corresponds to the dashed

black line in Figure 6.9. We note that the band-center shifts have little effect on the

likelihoods.

A further variation we consider is including dust decorrelation as part of our sampled pa-

rameter space. In Section 3.3 we discussed the origin and phenomenology of foreground decor-

relation. The motivation for adding this parameter comes from Planck Collaboration Int. L

(2017). This particular study claimed the existence of evidence for a cross-spectrum suppres-

sion effect, such as the one coming from decorrelation, which increased with ℓ, in particular

for cleaner regions of the sky. More recently, Sheehy & Slosar (2018) and Planck Collabora-

tion 2018 XI (2018) re-analyzed the Planck data and found no evidence for detection of dust

decorrelation.

In general, in order to place robust cosmological constraints, we require a good under-

standing of foregrounds. Therefore, we would like to search for evidence of decorrelation di-

rectly in our observed field (as opposed to studies which analyze large swaths of the sky).

To that end, we include this parameter as described in Section 3.3 and explore the effect it

has on our baseline posteriors. We consider several choices of prior on the ∆d parameter: i)

Based on Table 1 of sheehy17 and Table 3 of Planck Collaboration 2018 XI (2018) we set a
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Gaussian prior with mean/σ of 0.95/0.05 (truncated above 1), flat with ℓ. ii) A Gaussian

prior with mean/σ of 1.00/0.05, linear with ℓ. iii) A uniform prior 0 to 1, linear with ℓ. The

results of this investigation are presented in Figure 6.10. All of these variants result in the r

posterior shifting down and peaking at zero. It is important to note that marginalizing over

truncated parameter spaces, such as one set by demanding physically meaningful ranges (in

this case r > 0 and ∆d ≤ 1), can result in systematic downward biases on r even if no decor-

relation is present.
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Figure 6.10: Likelihood results when allowing dust decorrelation—see Section 6.3.3 for details. Fig-
ure from BICEP2 Collaboration et al. (2018)

In our baseline analyses, we usually fix the lensing amplitude to its ΛCDM expectation

value of (ABB
L = 1). Here we also explore letting the lensing amplitude free. The results

are presented in Figure 6.11. Setting a uniform prior, and marginalizing over all other pa-

rameters, we obtain AL = 1.15+0.16
−0.14 (blue contours). The zero-to-peak likelihood ratio is

1.3 × 10−17, and the probability of having a lower value is 5.8 × 10−19, which corresponds

to an 8.8σ detection. This is the most significant detection of lensing using B-mode polariza-

tion to date. We observe that there is some degeneracy between r and AL, which pushes the
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r posterior down. If we instead impose a prior from Planck, A = 0.95 ± 0.04 (Planck Collab-

oration 2015 XIII 2016), the recovered r likelihood curve is almost indistinguishable from the

baseline case.
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Figure 6.11: Likelihood results when allowing the lensing amplitude to be a free parameter. Figure
from BICEP2 Collaboration et al. (2018)

6.3.3.2 Data Selection Variations

We also consider a set of data selection variations. The results for these are presented in Fig-

ure 6.12. Using the Bicep2/Keck data only (magenta) the r posterior peaks at zero, while

the Ad posterior broadens slightly. An impressive conclusion is that the constraints on r

only degrade by 10-15% when going from the full dataset to just the Bicep2/Keck data.

This is a massive statement about the sensitivity of the Bicep2/Keck data, and our abil-

ity to constrain foregrounds without relying on full-sky surveys. Unsurprisingly, the con-

straints on Async deteriorates considerably, given that there are no Bicep/Keck low-frequency

bands. Adding in some low-frequency information in the form of WMAP (green) shifts the
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r even more aggressively towards zero, while Async becomes better constrained. Switching

LFI for WMAP (green to yellow) brings r back up a bit and pushes Async down. Adding

high-frequency external information in the form of Planck HFI (green to red) pushes r up

and leaves Async unchanged. Bicep/Keck+Planck (blue) has almost exactly the same r curve

as the baseline but a considerably wider Async curve. We can understand the difference in

behaviors for synchrotron when including LFI vs WMAP by noting that in Figure 6.4 the

BK95×W23 bandpowers are positive while the BK95×P30 bandpowers are negative.
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Figure 6.12: Likelihood results when varying the data set selection Figure from BICEP2 Collabora-
tion et al. (2018)

6.3.4 Likelihood Validation

Similar to the validation exercise performed in BK14, and presented in Figure 5.9, we carry

out full likelihood evaluations of our baseline model for 499 simulations with lensed-ΛCDM

+ Gaussian dust + noise. The results are shown in Figure 6.13. We note that the constrain-

ing power on r, calculated as the standard deviation of the maximum likelihood recovered r
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values, increases by 20% when going from BK14 to BK15 (this means a decrease in σ(r) from

0.025 to 0.020).
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Figure 6.13: Results of a validation test running maximum likelihood search on simulations of a
lensed-ΛCDM+dust+noise model with no synchrotron (Ad,353 = 3.75µK2, βd = 1.6, αd = −0.4,
Async,23 = 0). The baseline priors are applied on βd, βs, αd, αs and ϵ. The blue histograms are the
recovered maximum likelihood values with the red lines marking their means and the black lines show-
ing the input values. In the left panel σ(r) = 0.020. Figure from BICEP2 Collaboration et al. (2018)

To check that the framework remains unbiased when running maximum likelihood searches

with decorrelation, we repeat the validation exercise described above while including the

decorrelation parameter ∆d. When we add ∆d in our search, we allow it to take values greater

than one. To do this in a symmetrical manner we use

∆′
d(ν1, ν2, ℓ) = 2− exp [log(2−∆d) f(ν0, ν1) g(ℓ)] . (6.1)

In this exercise we take the linear ℓ scaling. The results of this validation exercise are shown

in Figure 6.14.

An additional validation test we perform is to run full COSMOMC likelihood evaluations on
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Figure 6.14: Validation tests running the likelihood with the dust decorrelation parameter ∆d in-
cluded. Upper row: Results for the same lensed-ΛCDM+dust+noise simulations shown in Fig ure 6.13.
Lower row: Results for the toy highly decorrelated dust model. The blue histograms are the recovered
maximum likelihood values with the red lines marking their means and the black lines showing the
input values. Figure from BICEP2 Collaboration et al. (2018)

the same ensemble of simulations as above, with the baseline analysis parametrization. The

left panel for Figure 6.15 shows the resulting marginalized posteriors on r, while the right

panel shows that the CDF of the zero-to-peak likelihood ratios closely follows the simple an-

alytic ansatz 1
2 (1− f (−2 logL0/Lpeak)) where f is the χ2 CDF (for one degree of freedom).

We find that 53% of the simulations peak at zero, and 19% have a lower zero-to-peak ratio

than the real data. This is powerful empirical evidence that the real data 1D likelihood on r

can be taken at face value, assuming that the chosen foreground parameterization accurately

reflects reality. When we repeat this exercise but include the decorrelation parameter in the

analysis, we find that 72% of the r curves peak at zero.
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Figure 6.15: Left: Likelihood curves for r when running the baseline analysis on each of the lensed-
ΛCDM+dust+noise simulations. We find that 50% of them peak at zero. The real data curve is
shown overplotted in heavy black. Right: The CDF of the zero-to-peak ratio (red) of the curves shown
at right as compared to the simple analytic ansatz (solid black) 1

2 (1− f (−2 logL0/Lpeak)) where f
is the χ2 CDF (for one degree of freedom). About one fifth of the simulations offer more evidence
for non-zero r than the real data when the true value is actually zero (dashed black). Figure from
BICEP2 Collaboration et al. (2018)

A number of other validation tests on simulations with third-party foreground models

are presented in Appendix E.4. of BICEP2 Collaboration et al. (2018).

6.4 Discussion and Conclusions

The previous BK14 analysis yielded the constraint r0.05 < 0.090 (95%). Adding the Keck

Array data taken during 2015 we obtain the BK15 result r0.05 < 0.072. The distributions of

maximum likelihood r values in simulations where the true value of r is zero give σ(r0.05) =

0.024 and σ(r0.05) = 0.020 for BK14 and BK15 respectively.

Figure 6.16 shows the BK15 noise uncertainties in the ℓ ≈ 80 bandpowers. The new

Keck 220 GHz band has approximately the same dust sensitivity as Planck 353 GHz with just
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two receiver-years of operation. Going forward, we expect that if we fold the eight receiver-

years of data recorded in the 2016 and 2017 seasons, the noise in the 220 × 220 & 150 × 220

spectra will reduce by a factor of 5 &
√
5 respectively. Furthermore, in 2017 alone Bicep3

recorded twice as much data in the 95 GHz band as is included in the current result. Extra

sensitivity in this band offers a better handle on synchrotron (through all the cross-spectra

with Planck and WMAP), as well as a measurement of the CMB in the foreground minimum.

The next data release will include all this data and is expected to improve substantially on

the current results.

Looking beyond 2017, the Bicep/Keck program has planned a number of upgrades

which should help to constrain PGWs further. We also expect joint work with SPT-3G to-

wards a demonstration of CMB delensing to become very crucial, as the sample variance from

the lensing signal is quickly becoming a dominant bottleneck in our ability to further reduce

σ(r). Beyond Bicep/Keck and SPT-3G, the next generation of ground-based CMB polariza-

tion experiment (CMB-S4) is set to take-off within the decade, and yet again improve our

ability to tease out a signal of primordial origin, should one exist. To understand the science

reach of these upcoming endeavours we turn to the following chapter, where we introduce a

new forecasting framework.
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Figure 6.16: Expectation values and noise uncertainties for the ℓ ∼ 80 BB bandpower in the
Bicep2/Keck field. The solid and dashed black lines show the expected signal power of lensed-ΛCDM
and r0.05 = 0.05 & 0.01. The blue/red bands show the 1 and 2σ ranges of dust and synchrotron in the
baseline analysis including the uncertainties in the amplitude and frequency spectral index parameters
(Async,23, βs and Ad,353, βd). The Bicep2/Keck auto-spectrum noise uncertainties are shown as large
blue circles, and the noise uncertainties of the WMAP/Planck single-frequency spectra evaluated in
the Bicep2/Keck field are shown in black. The blue crosses show the noise uncertainty of selected
cross-spectra, and are plotted at horizontal positions such that they can be compared vertically with
the dust and sync curves. Figure from BICEP2 Collaboration et al. (2018)
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It never always gets worse.

David Horton

7
Performance-based Forecasted Constraints

on Primordial Gravitational Waves

All CMB collaborations face the challenge of faithfully predicting the science reach of their

future experiments. Through multiple rounds of published results with Bicep/Keck we have

learned that the only reliable way to compute forecasts that match our achieved results is to
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base them on B-mode noise spectra and covariance matrices derived from on-sky multi-year

maps that have passed jackknife resampling tests.

To that end, we developed a spectral-based Fisher projection framework, targeted ex-

plicitly towards optimizing tensor-to-scalar parameter constraints in the presence of galac-

tic foregrounds and gravitational lensing of the CMB, that directly uses information from

current Bicep/Keck achieved performances to forecast the science reach of upcoming CMB-

polarization endeavors robustly. This methodology allows for rapid iteration over experi-

mental configurations and offers a flexible way to optimize the design of future experiments

given a science goal. This framework is different from others of this kind through its direct

implementation of real-life experimental inefficiencies, including, but not limited to: imper-

fect detector yield, non-uniform detector performance, read-out noise, observing inefficiency,

time-stream filtering, beam smoothing, and non-uniform sky coverage.

In this chapter, we describe the development of this forecasting framework and present

two applications for future CMB experiments: Bicep Array – the next instrument in the

Bicep/Keck series, to be deployed in 2019 – and CMB-S4 – the ultimate ground-based CMB

polarization experiment, due to start observations in 2027. We will discuss how we have used

this tool to compute performance-based forecasts on r for Bicep Array and determine the

optimal frequency coverage and survey design for its nominal five-year operation. We will

also demonstrate how we have leveraged this work for CMB-S4 to explore the effects of sky

coverage, telescope aperture, optics, and beam size, number of detectors, detector sensitivity,

number of observing bands, and atmospheric properties, under various foreground assump-
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tions. The results of these studies have been instrumental in establishing the current baseline

CMB-S4 experiment and have contributed to the publication of the CMB-S4 Science Book

Abazajian et al. (2016), the Concept Definition Task Force Report to the Astronomy and As-

trophysics Advisory Committee, and the ongoing writing of the Astronomy and Astrophysics

Decadal Survey Report.

We finalize by presenting a validation of the forecasts through suites of map-level sim-

ulations representing experimental configurations with varying degrees of realism and sky

models with increasing levels of foreground complexity.

7.1 Fisher Optimization Framework

7.1.1 Fisher Formalism

At its core, this framework is a Fisherized version of the Bicep/Keck likelihood analysis

presented in Chapter 3, and our belief in the projections is grounded in that connection to

achieved performance and published results. In particular, we emphasize the importance

of using map-level signal and noise simulations as a starting point. These simulations are a

good description of the maps because they pass jackknife tests derived from them.

Figure 7.1 is a schematic representation of the framework, identifying the user inputs,

code modules, and outputs of said modules. This section describes this framework in detail.
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Figure 7.1: This is a schematic representation of our Fisher Machinery. Grey boxes represent user
inputs, white boxes represent code modules, and yellow boxes represent code outputs.
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Given a likelihood function of the form

L(θ; d) ∼
exp

[
−1

2(d− µ(θ))TΣ(θ)−1(d− µ(θ))
]√

det(Σ(θ))
, (7.1)

where d are the data bandpowers, θ are the theory parameters, µ(θ) are the expectation val-

ues given the parameters, and Σ(θ) is the bandpower covariance matrix, which can also be a

function of the parameters. We can introduce the Fisher Information Matrix

Fij = − <
∂2log(L(θ; d))

∂θi∂θj
>, (7.2)

which is the ensemble average of the log-likelihood curvature, evaluated at the position of the

best fit model. This matrix measures how steeply the likelihood falls as we move away from

the best fit model, and F−1 can be thought of as the best possible covariance matrix for the

measurement errors on the parameters θi. It can be shown that
√
(F−1)ii is the minimum

obtainable standard deviation on the desired parameters Tegmark (1997).

After some algebraic manipulations we can arrive at

Fij =
∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

2
Tr(Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj
). (7.3)

And we calculate our parameter constraints as

σii =
√
(F−1)ii. (7.4)
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In all the projections below we choose to fix Σ(θ) = Σ. Eq. 7.3 makes it clear that the con-

struction of the covariance matrix Σ directly impacts the final constraints, and that a misesti-

mation of it could lead to constraints that are far too optimistic. It is with this in mind that

we have decided to base our calculations on scaled achieved performances.

7.1.2 Inputs

This section describes the inputs to the Fisher forecasting code.

Achieved Performance: the code takes information derived from signal and noise simu-

lations of the BICEP/Keck dataset, but could be adapted to use similar information from

another experiment. More specifically, we use signal-only, noise-only, and signal x noise band-

power covariance terms, as well as the ensemble-averaged signal and noise bandpowers. These

inputs contain information about the actual map noise achieved from multiple receiver-years

at {95, 150, 220} GHz, including the real penalties for detector yield, distribution of detec-

tor performance, weather, and observing efficiency. These inputs also fold in the incomplete

mode coverage due to sky coverage, scan strategy, beam smoothing, and filtering in data

analysis. For projections, we assume that we can scale down the noise based on increased

detector count and integration time and that we can apply beam-size and NET rescaling to

estimate performance at other frequencies. We operate under the assumption that detector

noise is uncorrelated and we don’t suffer heavily from common-mode atmospheric noise.

Instrument Specifications: number of frequencies and bandpass data specifying observing
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frequency response for each experiment included in the analysis, beam size, bandpower win-

dow functions specifying the response of each observed bandpower to each multipole on the

sky, number of detectors per each frequency, and ideal per-detector noise-equivalent temper-

atures (NET’s) per each frequency. The last two items can be used to perform an idealized

calculation of the instrument sensitivity. We use these ideal performance numbers only for

scaling purposes by comparing to the ideal sensitivity of BICEP/Keck and calculating the

appropriate noise scaling factors. These factors are applied to the achieved sensitivities of

BICEP/Keck to obtain performance-based sensitivities in our new bands.

Signal Fiducial Model: parameters used to calculate the multicomponent model. Our stan-

dard model has fourteen parameters, discussed in the section below.

Priors: if we have prior knowledge of a given parameter θi, we can easily introduce this in-

formation into the Fisher Matrix by simply adding Pi = 1/σ2
i to the diagonal of the Fisher

Matrix, where σi is the width of the prior.

7.1.3 Multicomponent Theory Model

This code module calculates the parametrized model of one or more signal fields, including

how the different signals scale to the various observing frequencies. Our model includes four

signal components: a CMB component, parametrized by r and the lensing amplitude AL, and

components of dust, synchrotron, and correlated dust and synchrotron, which has a frequency

scaling that depends on the relative strength of dust and synchrotron. We assume that the
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synchrotron scales as a simple power law in both frequency and l, while for the dust we as-

sume a power law scaling in l, and a greybody spectral energy distribution (SED) for the

frequency dependence. In addition, we also consider dust and synchrotron frequency decor-

relation parameters which allow for dust/sync cross-spectral power suppression. A detailed

description of the full parametric model is presented in Chapter 3. While this model is easily

extendable, other models could be substituted here.

The 14 model parameters are:

- r, tensor-to-scalar ratio, at pivot scale kt = 0.05

- AL, lensing amplitude

- Adust, dust amplitude, in µK2
CMB, at 353 GHz and l = 80

- βdust, dust spectral index

- Tdust, dust greybody temperature

- αdust, dust spatial spectral index

- ∆dust, dust frequency decorrelation,at 217× 353 GHz and l = 80

- EE/BB, ratio for dust

- Async, synchrotron amplitude, in µK2
CMB, at 23 GHz and l = 80

- βsync, synchrotron spectral index

- αsync, synchrotron spatial spectral index

- ∆sync, synchrotron frequency decorrelation, at 23× 33 GHz and l = 80

- EE/BB, ratio for synchroton

- ϵ, synchrotron-dust spatial correlation

126



Since each signal component is independent, different signals have zero-cross power.

Therefore, for a given spectrum, the code steps through the model components, combines

the appropriate amplitude functions for the two experiments contributing to the spectrum

and applies the bandpower window functions to get the binned expectation values. Finally,

it sums over model components to get the total expectation value for that spectrum. In ad-

dition, since a Fisher forecast requires knowledge about the response of the model expecta-

tion values with respect to the model parameters, the code also outputs the derivatives of the

model expectation values.

The Fisher matrix we consider is usually 10-dimensional. The parameters we are con-

straining are: {r, Adust, βdust, αdust, ∆dust, Async, βsync, αsync, ∆sync, ϵ}. We fix Tdust =

19.6K and AL is varied separately to account for various levels of lensing power, i.e., vari-

ous levels of delensing efficiencies. The EE/BB ratios are not relevant for the calculations

in this manuscript because we are focusing on constraints from B-mode measurements only.

The fiducial model for the Fisher forecasting is centered at r of 0 or 0.003, with Adust =

4.25µK2
CMB (best-fit value from BK14) and Async = 3.8µK2

CMB (95% upper limit from

BK14). The spatial and frequency spectral indices are centered at the preferred Planck val-

ues βdust = 1.59 (with Gaussian prior of width 0.11), βsync = −3.10 (with a Gaussian prior

of width 0.30), αdust = −0.42, αsync = −0.6, and the dust/sync correlation is centered at

ϵ = 0. The central dust decorrelation value is taken to be ∆dust = 0.97 and the synchrotron

decorrelation value is assumed to be ∆sync = 1. Unless otherwise stated, the parameters have

flat unbounded priors.
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7.1.4 Bandpower Covariance Matrix Rescaling

Signal Scaling: the output model expectation values can also be useful in the construction

of our bandpower covariance matrix (BPCM). To construct the bandpower covariance matrix

components we use lensed-ΛCDM + dust + noise BICEP/Keck simulations (described in

Chapter 3). However, because we have the individual signal-only, noise-only, and signal x

noise terms, we can record all the BPCM components

– sig = signal-only terms Cov(Si × Sj , Sk × Sl)

– noi = noise-only terms Cov(Ni ×Nj , Nk ×Nl)

– sn1 = signal×noise terms Cov(Si ×Nj , Sk ×Nl)

– sn2 = signal×noise terms Cov(Si ×Nj , Nk × Sl)

– sn3 = signal×noise terms Cov(Ni × Sj, Sk ×Nl)

– sn4 = signal×noise terms Cov(Ni × Sj , Nk × Sl)

And then rescale and combine them to create a bandpower covariance matrix for a

new desired multicomponent model. Here, S are signal simulations, N are noise simulations,

and the indices i, j, k, l run over fields in the analysis, i.e. all combinations of a map type

(T,E,B) and an experiment (BK95, BK150, etc.). As described in Chapter 3, for many com-

binations of indices, we set certain covariance terms to be identically zero. It is worth noting

that having all of these terms allows us to have different numbers of degrees of freedom per

bandpower for noise than for signal, a complication that is often ignored in other analyses by

setting the noise and signal degrees of freedom to be identical.
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While calculating the covariances from the signal and noise simulations, we record the

average signal bandpowers from the simulations. For a new signal model, we can calculate

the new bandpower expectation values, and rescale the signal components in the bandpower

covariance matrix by the appropriate power of the ratio of the recorded average signal band-

powers, and the newly calculated expectation values.

The ability to get a BPCM for any model means only one set of simulations is necessary,

and one does not have to run simulations for any and all conceivable scenarios. As mentioned,

in all the projections below we choose to fix Σ(θ) = Σ and hence we only apply the step

above once, i.e., we do not rescale our BPCM at every step of the way.

Noise Scaling: In addition to scaling from one signal model to the other, recording

all of the covariance terms allows us to rescale the noise parts as well. Given a dataset for

which we have simulations, the noise scaling can go one of two ways. The first allows one to

take a frequency present in the dataset and scale down the noise in the BPCM by the desired

amount. The second one allows one to add a frequency by taking an existing one, scaling

down the noise by the desired amount, and then expanding the BPCM and filling it in with

the appropriate variance and covariance terms between this new band and all the existing

ones. These two tools allow us to set up a new data structure to explore any combination of

frequency bands, with any sensitivity in each band.

We want to base our noise scaling factors on achieved sensitivities rather than ideal per-

formances. To that end, we use the achieved survey weights from BICEP/Keck at {95, 150, 220}

GHz to obtain projected weights for any channel of a future CMB experiment. The aver-
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age achieved per detector-year survey weights are calculated directly from final multi-year

Bicep/Keck maps, and therefore include all the non-idealities described in the sections above.

These are wper−det−yr
BK,achieved = {83.3, 58.6, 3.9}µK−2 (BICEP2 Collaboration et al. (2018)).

Once we have these numbers, we can write the achieved per-detector-year survey weight

as follows

wper−det−yr
BK,achieved =

tobs
αideal/BK,achievedNET 2

BK,ideal

, (7.5)

where tobs
αideal/BK,achieved

is the reality factor that encapsulates the less-than-ideal observing

time, receiver performance, cuts, etc. It is the factor that takes us from the ideal scenario

to reality. We never have to actively calculate this factor because we operate with ratios of

survey weights. To obtain the achieved survey weight at a new frequency, one rescales the

achieved survey weight as follows

wNew,achieved = wper−det−yr
BK,achievedN

det−yr
New

NET 2
BK,ideal

NET 2
New,ideal

, (7.6)

where N det−yr
New is the number of detector-years assumed for the new experiment at any partic-

ular frequency. The implicit assumption that is made here is that the reality factor for this

new frequency is exactly the same as the one from which we are scaling. To not abuse this

assumption, the survey weight scaling is always done from the closest frequency that we have

an achieved survey weight for, as that is the performance that should guide us.

Therefore, to obtain Nl’s for one channel by scaling the achieved Nl’s of another channel
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we have first to scale them by the ratio of the survey weight and then scale by the ratio of

the beams squared. Achieved performance inputs fold in the actual Bicep/Keck Bl’s, but we

rescale based on Gaussian approximations of the beams, which closely follow the Bicep/Keck

beams. Under the assumption of Gaussian beams, we can write the full relation as

Nl,New = Nl,BK
wBK,achieved

wNew,achieved

B2
l,New

B2
l,BK

, (7.7)

where B2
l,ν = exp −l(l+1)θ2ν

8 log(2) , and θν is the FWHM (in radians) of the Gaussian beam. With

the Nl’s scalings on hand, we can perform the above mentioned BPCM operations to arrive

at a scaled BPCM for a new experiment, that encompasses all the intricacies of reality that

BICEP/Keck does.

7.2 Bicep/Keck Forecasts

In this section, we present an application of the forecasting framework to the Bicep2/Keck

series of experiments. As described in Chapter 2, the Bicep2/Keck program has seen a num-

ber of iterations of instruments. We started with Bicep2, which introduced a new genera-

tion of compact refracting polarimeter. Bicep2 was upgraded to Keck, which had five copies

of Bicep2, each fully optimized for a single frequency band. The third generation receiver

– BICEP3 – scaled up the individual Keck receiver to have throughput greater than all of

Keck Array. Finally, Bicep Array being built at the time of this writing, is set to deploy four

BICEP3-sized receivers, with each telescope optimized for a different frequency. This progres-
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Figure 7.2: The progression of the Bicep/Keck experimental program leading to the Bicep
Array. In the bottom row the beam patterns of the focal planes on the sky are shown on a
common scale. Figure from the Bicep/Keck Collaboration.

sion is presented in Figure 7.2. One of the key features of this progression is multi-frequency

observing in order to disentangle a possible PGW signal, which is frequency independent,

from signals of galactic origin, which vary with frequency. To fully understand the science

reach of these instruments, as well as determine the optimal deployment strategy, we turned

to the Fisher framework described above.
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7.2.1 Fisher Constraints vs Published Bicep/Keck Constraints

The first test we perform is a comparison of Fisher derived constraints on PGWs, parametrized

by r, with baseline published BKP, BK14, and BK15 constraints. Section 7.1.2 lists the re-

quired inputs to the Fisher framework. In this particular case, because we have available sim-

ulations that directly correspond to these specific data-sets, we do not need to rescale our

achieved performance or add new bands. Therefore, the bandpower covariance formulation

simply follows without requiring any other instrument specifications, as described in Section

3.5 and 7.1.4. The data selection, dimensionality of the parameter space, and prior choice are

matched directly to the baseline analyses described in Bicep2/Keck and Planck Collabora-

tions (2015), Keck Array and Bicep2 Collaborations VI (2016), and BICEP2 Collaboration

et al. (2018). The fiducial signal models used to calculate model bandpower expectation val-

ues, and the derivatives of the expectation values with respect to each parameter, are picked

to exactly match the maximum likelihood models derived in the publications cited above.

The resulting Fisher constraints are transformed to Fisher ellipses (emulating 68% confidence

intervals) and Gaussian 1D probability density functions, as described below, which are then

compared to the marginalized 1D and 2D baseline likelihood evaluations.

To obtain Fisher ellipses, for each pair of parameters {θi, θj}, we take the following sub-
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matrix of the inverse of the Fisher information matrix

F−1
[i,j] =

 σ2
i σij

σij σ2
j

 ,

and calculate the ellipse parameters {a, b, α} – the semi-major, semi-minor, and projection

angle – as follows

a2 =
σ2
i + σ2

j

2
+

√
(σ2

i − σ2
j )

2

4
+ σ2

ij ,

b2 =
σ2
i + σ2

j

2
−

√
(σ2

i − σ2
j )

2

4
+ σ2

ij ,

tan 2α =
2σij

σ2
i − σ2

j

.

To form a 1D Gaussian probability density function we calculate

P (θi) =
1√
2πσ2

i

exp
(
− (θ − θ̄)2

2σ2
i

)
,

where θ̄ is the fiducial model value of the parameter θ.

The comparisons of the Fisher constraints with published Bicep/Keck constraints are

presented in Figures 7.3, 7.4, and 7.5. In general, we do not expect perfect agreement in the

tails because the Fisher ellipses will always be Gaussian by construction, whilst the real con-

tours are manifestly non-Gaussian probability density functions due to the inherent χ2 dis-

tributions of the Bicep/Keck bandpowers. On a similar note, the real analysis also uses the
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Hammimeche-Lewis likelihood approximation, which predicts non-Gaussian tails. With that

in mind, the focus should be on the curvature of the likelihood at the peak, for which we see

good agreement between the two results.

7.2.2 Keck Array high-frequency channel selection

We performed one of the first applications of this forecasting machinery for Bicep/Keck in

2015. It was an exercise to determine the optimal high-frequency channel distribution in or-

der to achieve the highest sensitivity on dust. At the time the Keck Array was operating with

two receivers at 95 GHz, one at 150 GHz and two at 220 GHz. The 2015 season was the first

year of observation with the high-frequency camera, and it was apparent that one of the bot-

tlenecks to reducing the variance on r was the lack of high S/N dust maps. The Planck 353

GHz map was quickly becoming an insufficient handle on dust. The strategy for 2016 was

set to be four receivers at 220 GHz and one at 150 GHz. The decision to swap out the 95

GHz receiver was taken due to the promising performance of BICEP3 (all at 95 GHz). The

three options considered for the 2017 season of Keck Array were: all five receivers at 220 GHz,

three receivers at 220 GHz and two with broadband 250 GHz cameras, and three receivers at

220 GHz and two at 270 GHz. The receiver parameters were calculated using an internal ver-

sion of NETlib.py 1 and are summarized in Table 7.1. Using these parameters, and pinning

the Fisher signal model to the BK14 fiducial model, with the exception of setting r = 0 for an

upper limit calculation, we obtain σr results for the three options (presented in Table 7.2).

1cmb-s4.org/wiki/index.php/New_NET_Calculator_and_Validation
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Figure 7.3: Projected constraints compared to published BKP constraints (Bicep2/Keck and
Planck Collaborations (2015)). The data selection for the forecasts matches that of the real analysis:
BK13150, P217 and P353. The space constrained by the Fisher calculation matches the BKP parame-
ter space: r,Ad,353, βd. The fiducal model itself is picked to be the maximum likelihood model derived
from the data: r = 0.05, Ad = 3.3 µK2, βd = 1.59, αd = −0.42, Td = 19.6K, with a prior on
βd = 1.59± 0.11 from the full sky Planck analysis (Planck Collaboration 2015 X (2016))
.
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Figure 7.4: Projected constraints compared to published BK14 constraints (Keck Array and Bicep2
Collaborations VI (2016)). The data selection for the forecasts matches that of the real analysis:
BK1495, BK14150, all seven polarized bands from Planck 30 to 353GHz, and two bands from WMAP
at 23 and 33 GHz. The space constrained by the Fisher calculation matches the BKP parameter space:
r,Ad,353, βd, αd, Async,23, βs, αs, ϵ. The fiducal model itself is picked to be the maximum likelihood
model derived from the data: r = 0.028, Ad,353 = 4.25 µK2, βd = 1.62, αd = −0.42, Td = 19.6K,
Async,23 = 1.05 µK2, βs = −3.1, αs = −0.6, ϵ = 0 with a prior on βd = 1.59± 0.11 and βs = −3.1± 0.3
from the full sky Planck analysis (Planck Collaboration 2015 X (2016))
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Figure 7.5: Projected constraints compared to published BK14 constraints (BICEP2 Collabora-
tion et al. (2018)). The data selection for the forecasts matches that of the real analysis: BK1595,
BK15150, BK15220, all seven polarized bands from Planck 30 to 353GHz, and two bands from
WMAP at 23 and 33 GHz. The space constrained by the Fisher calculation matches the BKP parame-
ter space: r,Ad,353, βd, αd, Async,23, βs, αs, ϵ. The fiducal model itself is picked to be the maximum like-
lihood model derived from the data: r = 0.021, Ad,353 = 4.5 µK2, βd = 1.62, αd = −0.63, Td = 19.6K,
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βs = −3.1± 0.3 from the full sky Planck analysis (Planck Collaboration 2015 X (2016))
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Receiver Fractional Nominal Nominal Single Beam Survey Weight
Observing Band Bandwidth Number of Detector NET FWHM Per Year
(GHz) ∆ν/ν Detectors ( µKcmb

√
s ) (arcmin) (µKcmb)

−2 yr−1

Keck Array
220 0.17 512 837 21 2,000
250 0.32 512 756 18 2,500
270 0.17 512 1310 17 800

Table 7.1: Keck Array high-frequency receiver parameters as used in sensitivity projections.
Boldface numbers are actual/achieved quantities for existing receivers. The non-bolded values
in the survey weight column are scaled from the achieved survey weights using only the ratio
of the number of detectors, plus, if necessary to change frequency, the ratio of nominal NET
values squared.

Keck Array 5× 220 GHz 3× 220 GHz 3× 220 GHz
Option 2× 250 GHz 2× 270 GHz
σr(AL = 1.0)× 103 8.8 8.4 8.5
σr(AL = 0.5)× 103 6.8 6.4 6.5
σr(AL = 0.2)× 103 5.6 5.2 5.3

Table 7.2: Keck Array projections under three high-frequency receiver options, for three lev-
els of delensing: AL = 1.0 (no delensing), AL = 0.5 (conservative delensing), AL = 0.2
(optimistic delensing).

Given these results, it was decided that the way forward was the option with three re-

ceivers at 220 GHz and two at 270 GHz. While it was certainly the case that the 250 broad-

band cameras offered a slightly lower σr, the technical challenges associated with building

a high-frequency broadband camera, as well as the larger level arm offered by the 270 GHz

channels, swayed the decision in favor of the 270 GHz solution.

Since then, we have gathered on-sky data from the 220 and 270 GHz Keck receivers,

and while we have confirmed the projected performance of the 220 channels, the 270 chan-

139



nels have mostly underperformed by a factor of ∼ 2 in survey weight. With that in mind,

the decision to deploy two receivers at 270 GHz was reversed, and the Keck Array has since

been populated with four receivers at 220 GHz and one at 270 GHz. This is reflected in the

schedule and sensitivity projections for the entire Bicep/Keck program presented in Figure

7.9 (discussed in the next section).

7.2.3 Bicep Array Deployment Strategy and Forecasts

In addition to the Keck Array, the Bicep/Keck team has been operating BICEP3 – a sin-

gle telescope at 95 GHz with throughput equal to the entire Keck Array (see Figure 7.6),

and is soon set to deploy Bicep Array– a set of four BICEP3-like receivers, all at different

frequencies. In preparation for this deployment, it was important to understand what op-

timal observing strategy minimized σr. To that end, the team iterated over a set of focal

plane designs and arrived at the receiver parameters presented in Table 7.3. The table con-

tains achieved quantities from existing receivers, and quantities scaled from these achieved

performances, as discussed in Section 7.1.4. In addition, we also present a visual representa-

tion of the Bicep Array bandpasses in comparison with the atmospheric transmission at the

South Pole in Figure 7.7. It is worth noting, that while we do not present this in the current

manuscript, the 30/40 GHz checkerboard choice was itself a result of a low-frequency fore-

casting study using this Fisher framework, presented in detail in Buza (2017). The study in

question looked at four options: 30 GHz only, 40 GHz only, 30/40 GHz checkerboard, and

30/40 dichroic detectors. It tested these choices under a number of assumptions about the
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behaviour of low-frequency foregrounds, in particular, synchrotron radiation, and determined

the 30/40 checkerboard solution to yield the lowest synchrotron residuals and therefore the

lowest σr.
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Figure 7.6: A comparison of 95 GHz Q maps between four receiver-years of Keck (left) and
a single receiver-year (2017) of Bicep3 (right). The increased angular resolution and field-
of-view, and the increase in sensitivity can be seen. The observed pattern is due to the dom-
inant E-mode signal, and is detected with high S/N . The colorscale range is ±4µK. Figure
from the Bicep/Keck Collaboration.

We use the receiver parameters presented in Table 7.3 to perform a Fisher optimization

on σr, over the receiver parameter space, under the assumption that we begin deployment

with one receiver, then add two more receivers the following year, and add the fourth and

final receiver in the third year. We pick the fiducial model to match the BK14 maximum like-

lihood model and restrict ourselves to the Bicep2/Keck patch for the purposes of this cal-

culation. The optimal deployment strategy offered by this calculation required the following

deployment: 30/40 GHz first, followed by the two receivers at 95 GHz and 220/270 GHz and

finishing with the 150 GHz receiver. This result makes intuitive sense – while Bicep/Keck

will have achieved map sensitivities of (2.0, 3.0, 8.0) µK-arcmin at (95, 150, 220) GHz by the
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Receiver Nominal Nominal Single Beam Survey Weight
Observing Band Number of Detector NET FWHM Per Year
(GHz) Detectors ( µKcmb

√
s ) (arcmin) (µKcmb)

−2 yr−1

Keck Array
95 288 288 43 24,000
150 512 313 30 30,000
220 512 837 21 2,000
270 512 1310 17 800

Bicep3
95 2560 288 24 213,000

Bicep Array⟨ 30
40

192
300

260
318

76
57

19, 500
20, 500

95 4056 288 24 337, 400
150 8664 313 15 509, 000⟨ 220
270

8112
13068

837
1310

11
9

32, 000
21, 000

Table 7.3: Receiver parameters as used in sensitivity projections. Boldface numbers are ac-
tual/achieved quantities for existing receivers. The non-bolded values in the survey weight
column are scaled from the achieved survey weights using only the ratio of the number of de-
tectors, plus, if necessary to change frequency, the ratio of nominal NET values squared.

year 2020 (see Figure 7.9), when Bicep Array is set to deploy its first receiver, the program

still lacks high S/N low-frequency measurements, making synchrotron residuals a significant

contributor to the overall error on r. Therefore, the optimization prefers the 30/40 GHz chan-

nel to be the first. Next, it requires more depth at the frequency where CMB is brightest (95

GHz) and where dust sensitivity is highest (220/270 GHz), leaving the 150 GHz channel last.

While the theoretical calculation can offer a definitive formal solution, experimental

constraints do not always allow for the implementation of this solution. For instance, the

220/270 focal plane is set to have over 20,000 detectors, posing a significant challenge which
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Figure 7.7: Left: Comparison of atmospheric transmission and the bandpasses of
Bicep/Keck and Bicep Array. Median atmospheric transmission during the observing sea-
son is shown in black, bracketed by the 10th and 90th percentiles. Right: Minimally processed
timestream pair-sum and pair-diff noise spectra. For 95/150/220 GHz the median perfor-
mance is shown for a typical mid-winter 2015 scanset; the 270 GHz line shows a successful
subset of our prototype 270 GHz detectors for a typical mid-winter 2017 scanset. The stable
Antarctic atmosphere enables observations at all of these frequencies that are low-noise across
the indicated “science band” from 0.1–1 Hz, corresponding to 25 ≲ ℓ ≲ 250. Figure from the
Bicep/Keck Collaboration.

will require the development of novel manufacturing methods over a lengthy period of time.

Additionally, the formal solution relies on a particular foreground parametrization, which

might not be the actual foreground content of the true sky. It is always prudent to not blindly

trust the theoretical calculation and build-in experience-based safety factors. With that in

mind, it was decided that the 30/40 GHz will stay as the first receiver. The 220/270 GHz re-

ceiver will be built last. Given that Bicep3 will have acquired significant amounts of data

at 95 GHz, to balance the survey weight distribution the 150 GHz receiver will be deployed

at the same time as the 30/40 GHz one, and finally the 95 GHz receiver will be deployed at

the same time as the 220/270 GHz receiver. This is the current ideal scenario deployment of
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SPT-3G 2019 2020 2021 2022 2023 2024 2025 2026 2027
(End of Year)
Effective AL 0.622 0.496 0.426 0.380 0.347 0.315 0.295 0.280 0.270

Table 7.4: SPT-3G delensing projections derived with an internal linear combination (ILC)
method, using SPT-3G90/150/220GHz noise derived from on-sky performance, and an EB
iterative estimator (described in Smith et al. (2012))

Bicep Array and is presented in Figure 7.9 as the baseline deployment strategy. The nomi-

nal plan of operation sees Bicep Array taking data from the start of 2020 to the end of 2023,

but it is likely that the program will continue until 2027 when CMB-S4 is set to start making

observations. Therefore, Figure 7.9 extends to 2027. Figure 7.8 shows the noise uncertain-

ties in the Bicep/Keck field under the nominal operation of Bicep Array(in addition to Keck

and Bicep3), which shows that we are soon set to measure all three foregrounds (dust, syn-

chrotron, CMB lensing) with high S/N in the maps.

As discussed in Section 6.4, as we continue to acquire data, the noise of our maps de-

creases, and the dominant residual foreground becomes the sample variance from the lens-

ing signal. This can be removed with high S/N arc-minute-scale measurements of the CMB

temperature and polarization, such as the ones from SPT-3G. Therefore, in addition to the

Bicep/Keck degree-scale measurements, we fold in delensing predictions obtained from the

SPT-3G team. These are effective AL levels (summarized in Table 7.4) derived with an in-

ternal linear combination (ILC) method, using SPT-3G 90/150/220GHz noise derived from

on-sky performance, and an EB iterative estimator (described in Smith et al. (2012)). The

results are presented in Figure 7.9.
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Figure 7.8: Expectation values and noise uncertainties for the B-mode power spectrum at
degree angular scales in the Bicep/Keck field under the nominal operation of Bicep Array.
The existing conestraints on the SEDs of dust (blue band) and synchrotron (red band) are
presented. We also show the levels of the lensing B-mode and two potential PGW signals
(black lines). Since CMB units are used, these last are flat with frequency. These can be com-
pared to the noise uncertainties of WMAP/Planck and Bicep/Keck shown as the points for
the various observing frequencies. The blue points show the BK15 data set and the red the
projected noise levels. Figure from the Bicep/Keck Collaboration.
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Figure 7.9: Projected sensitivity of the ongoing and planned Bicep/Keck observational pro-
gram. Top panel: Schematic representation of the receiver throughput (Stage 2 vs. 3) at vari-
ous frequencies by observing season. Colors are labeled in the next panel. Middle panel: Map
depth at each frequency as a function of time. Bottom panel: Sensitivity to r both with and
without this proposal, assuming marginalization over the seven parameter foreground model
described in the BK14 paper. The raw (no foregrounds) sensitivity is also shown. Note:
These projections involve direct scalings from published end-to-end analyses and hence in-
clude all real-world inefficiencies—the black X’s mark the sensitivities achieved in the BKP,
BK14 and BK15 papers Bicep2/Keck and Planck Collaborations (2015), Keck Array and
Bicep2 Collaborations VI (2016), BICEP2 Collaboration et al. (2018)
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We notice that by the end of 2023, Bicep Array and SPT-3G are set to achieve σr ≈

2.0× 10−3 in a non-detection scenario. If we extend the timeline to 2027, this result improves

by 10− 15%. This appears to indicate that there is a saturation of our S/N measurements on

the modes available in the Bicep2/Keck patch and that a larger sky area is required. While

larger sky area increases the noise per mode, it also increases the number of modes avail-

able. This is a trade-off that can be formally solved for a particular level of effort. The rule

of thumb is that for an r = 0 scenario, it is more beneficial to make deep measurements on a

smaller patch to obtain a precise handle on the foregrounds such that these can be removed

in the process of teasing out a possible small PGW signal. In practice, even with Bicep3 we

are already mapping a larger area of sky, and are likely set to map an effective ∼ 3 − 4%

of the southern sky with and Bicep3; this will also match the SPT-3G survey, which is

performing measurements over 1500 square degrees. It is left as a future exercise to design

a forecast that combines experiments with different S/N and different on-sky coverage.

7.2.4 Inflationary constraints from the Bicep/Keck program

As discussed in Chapter 1, measurements on r have direct implications on inflationary mod-

els. In this section, we use the forecasts on r presented in the previous section, as well as fore-

casts on ns coming from Planck and SPT-3G to place constraints in the r − ns plane, where

inflationary predictions are most visually apparent. We show forecasts for a non-detection

case r = 0 as well as a non-zero PGW signal case r = 0.015. The results are presented in

Figure 7.10. Below we discuss the implications of these findings.
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Figure 7.10: Constraints on the inflationary parameters r and ns from our most recent pub-
lished analysis (BK15) are shown in blue, as compared to projected constraints with this pro-
posal in red (BK23+SPT-3G), and a range of theoretical models. Left: With no detection we
would be able to constrain a large class of models. In particular, natural inflation and all of
the single-field ϕp monomial models would be ruled out or strongly disfavored. This calcula-
tion includes the expected modest improvements on σ(ns) from SPT-3G and fixes ns at the
current Planck value. Right: The scenario where r = 0.015. With BK23+SPT-3G we would
be able to make a clear detection if r is at this level or above. This would put candidate infla-
tion models in sharp focus and enable detailed characterizations of tensor modes.

First, a detection of primordial B-modes would rule out alternative, non-inflationary,

early universe theories which do not predict detectable levels of tensor modes Khoury et al.

(2001), Boyle et al. (2004). A signal at the level of r = 0.01 or higher would mean that infla-

tion happened at the GUT scale, and the inflaton field range is larger than the Planck mass

(∆ϕ > Mpl). Therefore, a detection at this level would provide evidence that the theory

of quantum gravity must accommodate a super-Planckian field range for the inflaton. This

would open up an observational window into quantum gravity and new high-energy theories.

The absence of a signal would also have major implications. In Bicep2/Keck and Planck
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Collaborations (2015) we found that a once compelling inflation model m2ϕ2 is now strongly

disfavored. This particular model was alluring because it has only one free parameter m,

which, once determined by the level of the scalar perturbations, is enough to predict all the

other early universe properties. Ruling out this simplistic model suggests that the inflaton

field was doing something more complicated as it rolled towards the minimum. This is a

great example of a highly impactful non-detection.

The significance of an upper limit on tensors at r < 0.005 (95%) depends on how well

motivated the models that would be ruled out by the measurements are. One such model is

natural inflation Freese et al. (1990), Adams et al. (1993). It produces a flat potential by in-

voking a pseudo-Nambu-Goldstone boson, commonly occurring elsewhere in particle physics.

Another prominent class of models is chaotic inflation with monomial potentials ϕp. All

single-field models with p ≥ 2 are now strongly disfavored by our most recent published anal-

ysis BICEP2 Collaboration et al. (2018). Models with p ≤ 1 have super-Planckian field

ranges and can be realized naturally by axions in the context of string theory Silverstein &

Westphal (2008), McAllister et al. (2010). In particular, the models with p = 1, 23 are the spe-

cific examples of the axion monodromy models. The results in Figure 7.10 imply that both

these classes of inflation models would be ruled out.

There also exists a model-insensitive way to appreciate the significance of constraining

single-field ϕp, summarized in Abazajian et al. (2016). First, we note that the observed depar-

ture from scale-invariance ns − 1 is on the order ∼ 1/N∗, where N∗ denotes the number of

e-folds between the horizon crossing of the CMB pivot scale and the end of inflation. If the
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slow-roll parameters were to scale with 1/N during inflation the observed level of deviation

would be naturally explained. This assumption leads to only two classes of single-field, slow-

roll models, with ϕp being one of them.

This means that the upper limit on r placed by Bicep Array and SPT-3G would rule

out one of the only two classes of models that naturally explain the observed value of the

scalar spectral index. This would leave the remaining class represented by Higgs inflation, the

Starobinsky model, and the α attractors with small α’s Ellis et al. (2013), Kallosh & Linde

(2013).

7.3 CMB-S4 Forecasts

In this section, we present the application of our forecasting framework to the development of

the CMB-S4 straw-person concept. CMB-S4, due to start observations in 2027, is meant to

be the ultimate ground-based CMB polarization experiment. It is set to cross critical thresh-

olds in constraining the B-mode polarization signature of primordial gravitational waves, the

number and masses of the neutrinos, possible new light relics, the nature of dark energy, and

General Relativity on large scales. To achieve these goals it requires a significant increase

in sensitivity, from O(2 − 4 × 104) detectors in Stage 3 experiments such as Bicep Array,

to O(5 × 105) detectors (see Figure 7.11). Given that Stage 3 detectors are background-

limited, and focal planes maximally packed, CMB-S4 will require multiple telescopes, each

with a maximally outfitted focal plane of pixels utilizing superconducting, background lim-
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ited, CMB detectors. Based on current achieved performances of various types of CMB tele-

scopes, to pursue a high-precision measurement of degree scale B-mode polarization from the

ground, one requires small aperture telescopes such as the ones developed in the Bicep/Keck

program. It is therefore the default plan for CMB-S4 to include dedicated small aperture tele-

scopes, and to target the recombination bump, with E-mode and B-mode polarization down

to l ∼ 30 in order to measure a possible PGW signal.
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Figure 7.11: Schematic timeline showing the expected increase in sensitivity (µK2) and the cor-
responding improvement for a few of the key cosmological parameters for Stage-3, along with the
threshold-crossing aspirational goals targeted for CMB-S4. Figure from Abazajian et al. (2016)

The CMB-S4 concept, described below, evolved from flowing down science requirements
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to measurement and instrument requirements, based on our understanding of the impact of

astrophysical foregrounds, instrumental systematics, delensing non-idealities, and analysis

methodology. Determining all these specifications requires, in principle, full time ordered

data simulations. In the absence of these, we rely on semi-analytic tools for the setting of

our measurement requirements, as such tools generally offer sufficient speed to allow for op-

timization. To ensure realism, our general CMB-S4 forecast/simulation approach has been

to:

1. Develop a (semi-) analytic spectral forecast that makes use of noise performance that

is informed by scaling from actual analyses of real experiments from time-streams to

power spectra.

2. Use this forecasting tool to optimize the allocation of detector effort across frequencies,

determining certain baseline “checkpoints” in survey definition space.

3. Validate these checkpoint configurations with standardized, version-numbered map-

based data challenges. If independent analyses show recovery of science parameters

from these challenge maps that does not match analytic forecasts (either in terms of

variance or bias), we revise the forecasts accordingly.

4. Iterate between 1 and 3 above, injecting increasing realism in the form of (a) sky model

complexity informed by the latest data and modeling efforts, and (b) systematics whose

form, parameterization, and likely amplitude is likewise guided by real-world experi-

ence.
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This loop is represented schematically in Figure 7.12

7.3.1 Experiment Specification

We start our CMB-S4 optimization by assuming eight low-resolution channels at {30, 40, 85,

95, 145, 155, 215, 270} GHz and one high-resolution channel at 20 GHz, in four atmospheric

windows, see Figure 7.13. The procedure used to come up with the split in each window was

to separate the overlapping bands as far as possible while still keeping the calculated per-

detector NET within 10-15% of the NET for a detector that spans the full window.

The ideal NET’s per detector were calculated with NETlib.py 2 and are assumed to be

{214, 177, 224, 270, 238, 309, 331, 747, 1281} µKCMB
√
s. These NET’s are calculated for a

100mK thermal bath, as opposed to 250mK for the Science Book, and are therefore lower.

We want to emphasize that these NET numbers are only used to determine the scalings be-

tween different channels, and not to calculate sensitivities.

For the low-resolution instruments we pick 0.52m apertures. For the 20 GHz channel,

a 0.52m aperture would result in a very broad beam which would dominate the noise at the

relevant scales; to circumvent this we place this low frequency channel on a large aperture

instrument, and while the scaling of the noise is still done from achieved performance, we

choose a more appropriate lknee = 200 and θν = 11′ FWHM, keeping the slope γ the same as

for the small-aperture noise (see Eq.7.7). In addition to the low-resolution effort, we assume

a separate high-resolution instrument for delensing purposes, described in Section 7.3.4.4. We

2cmb-s4.org/wiki/index.php/New_NET_Calculator_and_Validation
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Figure 7.12: Schematic representation of the CMB-S4 Forecasting Loop. We start with achieved
performances from Stage 3 datasets, in the form of full covariance matrices and noise spectra, and
a set of scalable instrument specifications as well as a fiducial sky model. These are fed as inputs to
the Fisher optimization framework, yielding an optimized detector allocation, and a baseline survey
definition. Based on this definition, we develop standard Data Challenge noise maps, as well as a suite
of signal maps with various degree of complexity. We proceed by analyzing these maps, with multiple
independent analysis methods, and check for parameter recovery and presence of biases. If the results
suggest a necessary change in survey definition, the process is iterated as needed.
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Figure 7.13: This figure shows calculated atmospheric brightness spectra (at zenith) for South Pole
at 0.5 mm PWV and Atacama at 1.0 mm PWV (both are near median values). Atmospheric spec-
tra are generated using Paine (2017). The tophat bands are plotted on top of these spectra, with the
height of each rectangle equal to the band-averaged brightness temperature using the South Pole spec-
trum.

also fold in information from two WMAP channels: {23, 33} GHz and seven Planck chan-

nels: {30, 44, 70,100, 143, 217, 353} GHz, though this extra information is only relevant in

the early stages of the optimization.

The optimization unit of effort is equivalent to 500 det-yrs at 150 GHz. For other chan-

nels, the number of detectors is calculated as ndet,150 ×
(

ν
150

)2, i.e. assuming comparable focal

plane area. The projections run out to a total of 3 × 106 det-yrs, which, if all at 150 GHz,

would be equivalent to 500,000 detectors operating for 6 yrs – this seems like a comfortable

upper bound for what might be conceivable for S4. S4 scale surveys seem likely to be in the

range of 106 to 3.0× 106 det-yrs.

The multipole range is assumed to be l = [30, 330], and using Bicep/Keck bandpower
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window functions and binning, we obtain 9 bins with nominal centers at l of {37.5, 72.5,

107.5, 142.5, 177.5, 212.5, 247.5, 282.5, 317.5}.

7.3.2 Delensing Treatment

As mentioned in Section 7.3.1, we assume a separate, high-resolution instrument dedicated to

measuring the medium- and small-scale information necessary to construct a template of lens-

ing B modes, so that their effect can be removed. In the semi-analytic optimization process,

this instrument is assumed to have 1-arcminute resolution and detector weight at a single fre-

quency. The translation between detector effort and map noise in the delensing instrument

is based on the method used for the low-resolution instrument (as described in Sec. 7.1.4 and

Eq. 7.8), but with certain non-idealities specific to low-resolution instruments and low-ℓ anal-

ysis (such as mode removal and non-uniform coverage) removed. Following the formalism

in Smith et al. (2012), we convert the map noise in the delensing survey to a delensing effi-

ciency, or equivalently a fractional residual in lensed B-mode power, specified by setting AL

to the corresponding residual.

The detector effort dedicated to the delensing instrument comes out of the total detec-

tor effort budget for the small-area r survey, and the distribution of effort between the low-

resolution and delensing instruments is part of the optimization process.
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7.3.3 Optimization and Parameter Constraints

In this section, we try to answer the following question: given a fixed amount of effort, and

the instrument specifications offered in the previous sections, what is the optimal effort distri-

bution for foreground cleaning and delensing such that a minimal constraint on r is achieved.

To do so we set-up an optimization that calculates the steepest descent through the 10 dimen-

sional space (9 foreground channels + 1 channel for delensing). At each step of the algorithm,

the code tries to allocate a fixed amount of effort in each dimension iteratively, rescaling the

BPCM accordingly, computing a new Fisher matrix, inverting it to marginalize over all the

parameters, and computing the resulting σr. Finding the dimension that offers the minimal

constraint, the code finally permanently assigns the step of effort to the particular dimension.

Though it is generally prohibitive to calculate the full 10D hypercube of σr’s, we have vali-

dated our approach with the detailed calculation at various points in the optimization. An

example of the final path is presented in Figure 7.14.

An additional dimension that is of different nature is the selection of sky fraction. Since

we are using Bicep/Keck products, which are defined for a particular mask with ∼ fBK
sky =

1%, we must scale them appropriately for all different fractions. We propagate the effects of

sky fraction in the noise spectra and BPCM in two ways: first, we inflate the Nl’s by a factor

β = fS4
sky/f

BK
sky which boosts the (signal × noise) and (noise × noise) terms of the covariance

matrix by β and β2, to take into account the redistribution of the achieved sensitivity onto

a larger patch. Note that the (signal × signal) component remains unchanged in this step.
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Second, we scale down the entire covariance matrix by a factor of β to increase the number

of degrees on freedom in the BPCM, accounting for the fact that we are now observing more

modes. This procedure scales the signal and noise degrees of freedom independently, preserv-

ing the relative effects that filtering, non-uniform coverage, etc have on the covariance struc-

ture. In the examples below we pick fS4
sky = 3% as we have done for the CMB-S4 Science

Book. The full exercise of optimizing over the fsky dimension in presented in Chapter 2 of

Abazajian et al. (2016) as well as Buza (2016).

Upon obtaining the optimized detector count distribution we can calculate the final S4

noise spectra according to Eq.7.7. In order to be able to use these spectra for the design of

noise simulations (see 7.3.4.1) it is useful to distill them to a few numbers, to that end we fit

them to the following formula

Nl,fit =
l(l + 1)

2π

Ωpix

B2
l

(
1 +

(
l

lknee

)γ)
σ2
map, (7.8)

and obtain the map depth σmap, slope γ, and lknee. For the small-aperture data, we find

ℓknee = 50–60 with γ of −2 to −3, depending on the frequency. The optimized map depths

are presented in Figure 7.14.

Figure 7.15 shows the optimized constrains on r as a function of total effort as well as

the fraction of effort spent on removing the lensing sample variance and the resulting map

rms lensing residual. To reach the desired science goal of σ(r) = 5 × 10−4 we note that 1.2 ×

106 150 GHz equivalent detector-years are necessary. The optimal distribution of this effort is
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summarized in Table 7.5.

Using this distribution, we also show forecasted r-ns constraints for r = 0 and r = 0.01

in Figures 7.18 and 7.17, and forecasted r-nt constraints for r = 0.01 and r = 0.05 in Figure

7.19. A detailed exploration of the implication of these results in presented in Chapter 2 of

Abazajian et al. (2016). Additionally, the discussion presented in Section 7.2.4 is also highly

relevant. Finally, Figure 7.16 showcases CMB-S4’s ability to constrain the shape of the tensor

spectrum given the chosen effort splitting.
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Figure 7.14: Optimized map-depth in each of the small-aperture channels as well as in the delensing
channel, for an fsky = 3%.
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Figure 7.15: Optimized constrains on r as a function of total effort as well as the fraction of effort
spent on removing the lensing sample variance and the resulting rms lensing residual.
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Figure 7.16: Bin-by-bin forecasted tensor constraints for r=0.01, fsky = 0.03, and the default de-
tector effort (106 detector years). The boxes denote the forecasted CMB-S4 erorr bars. Primordial
B-mode spectra are shown for two representative values of the tensor-to-scalar ratio: r=0.001 and
r=0.01. The dashed green line shows the ΛCDM expectation for the B modes induced by gravitational
lensing of E modes, with the solid line showing the residual lensing power after delensing. The dashed
blue and red lines show the dust and synchrotron (current upper limit) model assumed in the forecast-
ing, at the foreground minimum of 95 GHz. The levels of dust and synchrotron are equal to the ones
reported in BICEP2 and Keck Array Collaborations (2016). The contribution of dust and synchrotron
to the vertical error bars are shown in solid blue and red lines. Since these are calculated from a multi-
frequency optimization, the “effective frequency” at which these foreground residuals are defined varies
with each bin, allowing the residual lines to go above the input foreground model lines which are de-
fined at a fixed frequency of 95 GHz. Furthermore, due to the low frequency channels having larger
beam sizes than the higher frequency ones, in the higher bins, the primordial CMB component will
be constrained at a higher effective frequency. Defining the foreground residuals at these effective fre-
quencies will yield a higher amplitude for the dust residual, and a lower amplitude for the synchrotron
residual, resulting in the respective shapes of the solid blue and red lines. Figure from Abazajian et al.
(2016)
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Table 7.5: Instrument configuration satisfying the measurement requirements.

Frequency [GHz]

Science Item 20 30 40 85 95 145 155 220 270 Total
r . . . 14 x 0.5-m cameras

# detectors … 260 470 17 k 21 k 18 k 21 k 34 k 54 k 168 k
Angular resolution[FWHM] 77 58 27 24 16 15 11 8.5

1 x 6-m telescope
# detectors 130 250 500 … 25 k 25 k … 8.7 k 8.7 k 68 k
Angular resolution [FWHM] 11 7.0 5.2 … 2.2 1.4 … 1.0 0.8

×
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Figure 7.17: Forecast of CMB-S4 constraints in the ns–r plane for a fiducial model with r = 0.01.
Constraints on r are derived from the expected CMB-S4 sensitivity to the B-mode power spectrum as
described in Section 7.1.1. Constraints on ns are derived from expected CMB-S4 sensitivity to temper-
ature and E-mode power spectra as described in Section 8.10.2 of Abazajian et al. (2016). Also shown
are the current best constraints from BICEP2 and Keck Array Collaborations (2016). Chaotic infla-
tion with V (ϕ) = µ4−pϕp for p = 2/3, 1, 2 are shown as blue lines for 47 < N⋆ < 57 (with smaller
N⋆ predicting lower values of ns). The Starobinsky model and Higgs inflation are shown as small and
large filled orange circles, respectively. The lines show the classes of models discussed in Chapter 2 of
(Abazajian et al. (2016)). The green band shows the predictions for quartic hilltop models, and the
gray band shows the prediction of a sub-class of α-attractor models (Kallosh & Linde (2013)) Figure
from Abazajian et al. (2016).
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Figure 7.18: Forecast of CMB-S4 constraints in the ns–r plane for a fiducial model with r = 0. Con-
straints on r are derived from the expected CMB-S4 sensitivity to the B-mode power spectrum as
described in Section 7.1.1. Constraints on ns are derived from expected CMB-S4 sensitivity to temper-
ature and E-mode power spectra as described in Section 8.10.2 of Abazajian et al. (2016). Also shown
are the current best constraints from BICEP2 and Keck Array Collaborations (2016). The Starobinsky
model and Higgs inflation are shown as small and large filled orange circles. The lines show the classes
of models discussed in Chapter 2 of Abazajian et al. (2016) that naturally explain the observed value
of the scalar spectral index for different characteristic scales in the potential, M = MP/2, M = MP,
M = 2MP, and M = 5MP. Longer dashes correspond to larger values of the scale M . Figure from
Abazajian et al. (2016)

7.3.4 Simulations

Using simulations to optimize the design of a CMB experiment inevitably involves a trade-off

between the degree of detail that the simulations are able to capture and the computational

(and human) cost of generating and analyzing them. This trade-off includes the choice of do-

main in which the simulation is generated, ranging from the most detailed but most expen-

sive time domain through the map domain to the most simplified but most flexible spectral
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Figure 7.19: Forecasts for joint constraints on the tensor to scalar ratio r, and the tensor spectral
index, nt assuming fiducial values of r = 0.01 (left) or r = 0.05 (right). The pivot scale is set to
kt = 0.0099Mpc−1 to break the degeneracy. The forecasts assume fsky = 3% and fsky = 40% for the
fiducial values of r = 0.01 and r = 0.05, respectively.

domain. Inclusion of additional detail can help to validate general results, to explore their

sensitivity to assumptions about foreground models, sky coverage, and instrumental noise

and systematics, and in more mature stages of design can inform specific instrument and sur-

vey strategy choices.

Here we review the methods used to explore parameter space for the small-area survey,

including map level noise simulations, sky models, and observation strategy. We also describe

our approach to modeling instrumental systematics, the delensing survey, and the analysis

methods.

We also use these simulations to validate the spectral domain forecasts for configurations

where the approaches are directly comparable.
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7.3.4.1 Map Noise Simulations

As in the Science Book, we have mostly used a sky area of 3%, with some simulations also

done for 1% and 10%. We use 7.8 to obtain the desired noise presctiption and then gener-

ate Gaussian noise realizations at each band. Small-aperture cameras have a very wide in-

stantaneous field of view and hence the observed sky region necessarily has a large edge ta-

per. For the nominal 3% sky coverage simulations, we assumed a circular sky patch with full

coverage at r < 12 deg and “relative hits” tapering to zero with a cosine-squared shape for

12 deg < r < 27 deg. The noise realizations are divided by the square-root of this coverage

pattern such that the noise “blows up around the edge” as it does in real maps.

Future timestream simulations will include an explicit scan strategy on the sky and will

produce more realistic sky coverage patterns, but for the moment we regard the above as a

reasonable compromise between idealism and realty.

7.3.4.2 Foreground Models

To make simulated sky maps we add realizations of lensed CMB both without and with an r

component to models of the Galactic foregrounds. So far we have run simulations with seven

foreground models:

0. Simple Gaussian realizations of synchrotron and dust with power-law angular power

spectra at amplitudes set to match the observations in the BICEP/Keck field, and sim-

ple uniform SEDs (power law for synchrotron, greybody for dust).
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1. The PySM3 model a1d1f1s1, where the letters refer to anomalous microwave emission,

dust, free-free and synchrotron respectively, and the numbers are the base models de-

scribed in Thorne et al. (2016).

2. The PySM model a2d4f1s3, where the models have been updated to variants that are

also described in Thorne et al. (2016). Note that these include 2% polarized AME, a

curvature of the synchrotron SED, and a two-temperature model for dust.

3. The PySM model a2d7f1s3, where the dust model has been updated to a sophisticated

physical model of dust grains as described in Hensley (2015). This model is interesting

in that it does not necessarily conform to the greybody SED.

4. The dust model in 3 is replaced by a model of polarized dust emission that incorpo-

rates Hi column density maps as tracers of the dust intensity structures, and a phe-

nomenological description of the Galactic magnetic field as described in Ghosh et al.

(2017). The model is expanded beyond that described in the paper to produce a mod-

est amount of decorrelation of the dust emission pattern as a function of frequency mo-

tivated by the analysis of Planck data in Planck Collaboration (2017).

5. A toy model where the dust decorrelation suggested in Figure 3 of Planck Collabora-

tion (2017) is taken at face value (∆217×353
80 = 0.85, at ℓ = 80) and scaled to other

frequencies using the functional form given in appendix B of Vansyngel et al. (2017),

3https://github.com/bthorne93/PySM_public
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with a linear scaling in ℓ. While such a model is not ruled out by current data it ap-

pears to be very hard to produce such strong decorrelation in physics-based models.

We also note that Sheehy & Slosar (2017) have re-analyzed the same Planck data and,

while they find that the high level of decorrelation in this model is consistent with the

data, their best fit to that same data has no decorrelation.

6. A model based on MHD simulations (Kritsuk et al. 2017) of the Galactic magnetic

field, which naturally produces non-Gaussian correlated dust and synchrotron emission.

Models 1 to 4 use the actual large-scale modes of the real sky as measured above the

noise in the Planck data. This means that these models are intrinsically “single-realization,”

and this must be borne in mind when interpreting the results. The PySM models fill in the

small-scale structure with power-law Gaussian extrapolations, while models 4 and 6 naturally

produce non-Gaussian small-scale structure. However, all of these models are consistent with

current data, and we should be careful not to necessarily associate nominal sophistication

with greater probability to more closely reflect reality.

7.3.4.3 Instrumental Systematics

As discussed, control of instrumental systematics is a critical design consideration. However,

predicting and modeling these effects realistically is a difficult task that is dependent on ac-

tual instrument and survey design details, and in any case their impact on an actual result

comes not through the modeled effects but through unmodeled residuals. For this study we
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have taken the first steps in simulating various generic classes of additive systematic by in-

jecting additional noise-like components into the maps, and then re-analyzing them without

knowledge of what was put in. We have experimented with components that are both corre-

lated and uncorrelated across frequency bands, and which have white, 1/ℓ, and white + 1/ℓ

spectra, at varying levels compared to single-frequency map noise or, for correlated cases,

combined map noise. Examples of mechanisms that might produce map residuals within this

class, after modeling them and either correcting or filtering their leading-order effects, include

bandpass mismatches, beam and pointing variations, calibration variations, cross-talk effects,

half-wave-plate leakages, ground pickup, and readout irregularities.

Other classes of systematics can be simulated by manipulating the reanalysis procedure

only. Examples of such effects include bandpass, polarization angle, calibration, and beam

shape uncertainties.

For assessing the impact of instrumental systematics on measurement requirements, in

determining both the required survey depths and the maximum allowable levels of systematic

effects in the final single-frequency survey maps, our general procedure is to feed parame-

terizations of various systematic effects into semi-analytic forecasts to judge at what levels

classes of systematics introduce parameter biases or additional uncertainties that are signifi-

cant compared to science targets for those parameters.
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7.3.4.4 Delensing

We have generated high-resolution simulated maps on which we can run explicit lensing re-

construction and then include that information in the analysis. However, that process is not

yet converged, and so for the present we approximate delensing by scaling down the ΛCDM

lensing signal by the appropriate factor, as described in Section 7.3.2.

7.3.5 Analysis Methods

To make simulated maps the noise realizations described in Section 7.3.4.1 are added to the

sky models described in Section 7.3.4.2. For each realization one then has a stack of multi-

frequency I/Q/U maps containing non-uniform noise, foregrounds and signal, and the chal-

lenge is to re-analyze them to recover the parameter of interest (in this case r). This can be

done by different teams using different methods, and could be done in a blind manner, al-

though we have not done this yet.

So far we have experimented with two methods. The first is a map-based ILC cleaning

method (e.g., Eriksen et al. 2004), which seeks the linear combination of maps that minimizes

the remaining CMB signal, followed by a marginalization over residual foregrounds. This

method has the advantage that it does not need to know the bandpasses of the frequency

channels.

The second method is an evolution of the parametric multi-component fit to the ensem-

ble of auto- and cross-spectra as used for the BICEP/Keck analysis to date (BICEP2, Keck
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Array and Planck Collaborations 2015, BICEP2 and Keck Array Collaborations 2016). This

method fits the observed bandpowers to a model composed of the lensing expectation plus

dust and synchrotron contributions and a possible r component. Dust and synchrotron each

have an amplitude (Ad and As), a spatial spectral parameter (αd and αs), and a frequency

spectral parameter (βd and βs). We also allow dust/synchrotron correlation (ϵ), and decorre-

lation of the foreground patterns over frequency (∆d and ∆s).

Both of these analysis methods are only close to optimal when the foreground behavior

is close to uniform across the observing field. For analysis of larger fields, algorithms that fit,

for example, the frequency spectral indices individually in (large) pixels, will be required.

7.3.6 Results

Table 7.6 summarizes the results of the analysis for simulations of the CDT Configuration

(1.18 × 106 150-GHz-equivalent detector-years) and residual lensing power AL = 0.1. The

results from the parametric analysis naturally depend on whether a marginalization over

decorrelation is performed, while the ILC does not attempt to capture the effects of decorre-

lation on the recovery of r and σ(r). This is evidenced by the large bias for the ILC method

for Model 5 when compared to the parametric analysis that directly accounts for a possible

decorrelation (last column). In general, we see that for r = 0 the simple Gaussian foreground

Model 0 gives σ(r) ∼ 5 × 10−4, exactly as expected from the semi-analytic code. As we

progress to the more complex foreground models, σ(r) is generally in the range 5–8×10−4.

The level of biases is generally at ≲ 0.3σ for all the models. These simulations are sets
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of 500 realizations, so the statistical uncertainty on the bias is ≈ 0.04σ. However, the strong

decorrelation in Model 5 as well as the high-significance detection of decorrelation in Model

4 does significantly increase σ(r). While the parametric method is able to account for the

decorrelation, by construction information is lost, and in fact if one believed in such a sce-

nario, re-optimization to concentrate the sensitivity at closer-in frequencies would be called

for.

Table 7.6: Results of two analysis methods applied to map-based simulations assuming the straw-
person configuration and our suite of sky models. All simulations assume an instrument configuration
including a (high-resolution) 20 GHz channel, a survey of 3% of the sky with ∼ 1.2 × 106 150-GHz-
equivalent detector-years, and AL = 0.1.

ILC Parametric (no decorr.) Parametric (incl. decorr.)

r value Sky model σ(r)× 10−4 r bias ×10−4 σ(r)× 10−4 r bias ×10−4 σ(r)× 10−4 r bias ×10−4

0 0 5.4 0.3 4.4 0.2 5.6 0.3
1 8.6 1.1 4.7 6.9 6.4 5.3
2 8.0 −2.3 4.8 4.0 6.6 2.0
3 6.8 0.5 4.7 6.1 6.7 0.7
4 7.5 5.0 7.8 42.0 8.1 −5.8
5a 16 18 33.6 341.8 12.8 −0.3
6 5.7 −0.4 4.8 0.6 6.5 1.8

0.003 0 7.2 −4.0 6.2 0.3 8.1 0.4
1 10 0.2 6.5 7.0 8.5 5.5
2 10 −2.8 6.5 4.1 8.0 2.1
3 7.4 −1.4 6.6 6.8 8.7 1.1
4 10 5.8 9.9 49.7 10.3 −4.0
5a 20 20 36.1 351.7 14.1 −0.5
6 8.0 −0.4 7.1 1.6 8.6 2.6

a An extreme decorrelation model—see Section 7.3.4.2. The parametric analysis includes a decorrelation
parameter. No attempt is made in the ILC analysis to model decorrelation. The middle column shows
the parametric analysis when we don’t include the deccorelation parameter.

Table 7.7 shows results on detection significance for the strawperson configuration for
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sky Model 6. For r = 0, the 95% upper limit is about 2.1σ(r). The value of the tensor-to-

scalar ratio for which we expect a 5σ detection is expected after 4 years of operation is r =

0.004. For a tensor-to-scalar ratio of r = 0.003, the median detection significance after 4 years

is expected to be 4σ. If a detection were to be emerging at this point, extending the run time

to 8 years would be justified to reach a 5σ detection.

While for given assumptions σ(r) can be precisely forecast, the achieved detection level

for r depends on the realization of the B-mode field in the observed patch of sky and the in-

strument noise. Therefore we can only forecast a distribution of detection levels. For a tensor-

to-scalar ratio of r = 0.003 and the strawperson concept with 8 years of observing we expect

to achieve more than 3σ detection with a probability of 0.99, more than 4σ with a probabil-

ity of 0.93, more than 5σ with a probability of 0.53, and more than 6σ with a probability of

0.14. For simplicity we focus on σ(r), and on median detection levels as well as median 95%

confidence upper limits to state the typical outcome.

Table 7.7: Results on detection significance for the strawperson concept selected for CMB-S4, using
the two analysis methods.

ILC Parametric (incl. decorrelation)

r value Duration Sky model 95% CL UL Det. Sig. 95% CL UL Det. Sig.

0 . . . . . . . . . . . . . 4 years 6 1.0× 10−3 … 1.0× 10−3 …
0.003 . . . . . . . . . 4 years 6 … 4.0 … 4.2

8 years 6 … 5.1 … 5.6

The numbers in Table 7.6 clearly show dependence on the foreground model used in
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the simulation. If the actual foregrounds are substantially different from any of these cases,

then the biases could be larger. To get some understanding of how large the biases could

be, and what instrument modifications might help to reduce them, we have also looked at

ILC biases in the extreme case that the foreground residuals are not modeled, but simply

absorbed into the estimated B-mode power spectrum. Doing so with simulations based on

Sky Model 6 increases the magnitude of the bias on r from 0.4 × 10−4 to 1.3 × 10−4. The

dominant contribution to the bias comes from synchrotron residuals, which motivated plac-

ing one lower-frequency channel on the large-aperture. Doing this with the 20 GHz channel

improves the angular resolution from 76.6’ to 11’, while also increasing the noise power ℓknee

from 50 to 200. We found that this change reduced the magnitude of the bias from 4.0× 10−4

to 1.3× 10−4.

Table 7.8 summarizes the results of analysis of simulations including additive systematic

effects, in different combinations of uncorrelated and correlated contamination with vary-

ing spectra, added on top of foreground model 3. The levels of systematic contamination for

these simulations were chosen to predict biases on r of 1×10−4 in semi-analytic forecasts. We

can see that the different combinations explored increase biases on r by amounts that typi-

cally vary from 0.5–1.5×10−4 for the two different analyses, over the different cases. We find

that to restrict bias on r to this level, the sum of additive contamination effects needs to be

controlled to 3–7% of the single-frequency survey noise, or (in the case of correlated systemat-

ics) 6–11% of the total combined noise levels. Such percentages are consistent with the upper

limits currently achieved for residual additive systematic contamination compared to survey
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noise by small-aperture experiments (e.g., BICEP2 and Keck Array Collaborations 2016). As-

suming CMB-S4 will include a sustained effort to continue to control, understand, and model

systematic effects down to levels limited by survey noise, these percentages provide reason-

able benchmark requirements.

Table 7.8: Map-based simulation results for simulations containing systematics. Simulations are as
in Table 7.6 for sky model 3 and r = 0, with additive systematic effects in varying combinations, the
amplitudes of which are specified as percentages of survey noise.

Uncorrected Corrected ILC Parametric

Systematic A [%] B [%] A [%] B [%] σ(r)× 10−4 r bias ×10−4 σ(r)× 10−4 r bias ×10−4

None . . . . . . . . . . . . 0 0 0 0 5.3 0.0 7.2 0.0
Uncorrelated white 3.3 0 0 0 6.0 0.84 8.0 0.63
Uncorrelated 1/ℓ . . 0 6.8 0 0 5.0 0.99 7.0 0.85
Correlated white . . 0 0 5.8 0 6.3 1.2 7.3 1.41
Correlated 1/ℓ . . . . 0 0 0 10.5 5.2 1.0 6.7 0.97
Uncorr. white + 1/ℓ 1.6 3.5 0 0 5.6 0.89 7.5 0.76
Corr. white + 1/ℓ . 0 0 2.9 5.3 5.5 0.98 6.9 1.04
Both, white + 1/ℓ 0.8 1.7 1.5 2.6 5.6 1.1 7.9 0.98

Results of simulating systematic errors in the determination of bandpasses vary by anal-

ysis method. The construction of the ILC method makes it largely insensitive to such errors.

The parametric analysis, which includes parametrized models of the frequency spectra of dif-

ferent foregrounds, shows biases on r at the 1× 10−4 level for uncorrelated random deviations

in bandcenter determination of 0.8%, or for correlated deviations of 2%, which we adopt as

reasonable benchmark requirements to accommodate a variety of both blind and astrophysi-

cal foreground modeling approaches.

In the current simulations, the treatment of delensing is still somewhat crude. We have
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explored alternate methods of translating detector effort to map noise, including scaling di-

rectly from the noise in a fielded, high-resolution experiment (SPTpol), but with some as-

sumed modifications in per-detector sensitivity. The scaling using this alternate method is

slightly more pessimistic than the default scaling, and we adopt this more pessimistic scal-

ing for the numbers in the Science and Measurement Requirements section (Section 2). We

have also included multiple frequency bands in the delensing instrument in Section 2, because

we cannot conclusively rule out the possibility that non-Gaussianity in small-scale Galactic

foregrounds will cause a bias in a single-frequency delensing survey. The level of delensing

assumed in the optimization code is reproduced with the configuration in Section 2 if the

information from the two “CMB channels” (95 and 145 GHz) can be combined optimally

for CMB sensitivity. If instead we assume we have to combine frequency bands to explicitly

project out a dust component and a synchrotron component, the delensing efficiency degrades

by 5–10%. Effort is currently underway to include delensing with fully non-Gaussian small-

scale foregrounds in the Data Challenges. Separate simulations with one model of fully non-

Gaussian dust (Vansyngel et al. 2017) indicate that biases to delensing are negligible (also

see Challinor et al. 2017), but a larger parameter space of foreground models will need to be

explored.
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8
Conclusion

Over the coming decade we should see the field of CMB polarization mature considerably.

A number of collaborations are working arduously to pursue not just discovering primordial

gravitational waves, but also expanding our knowledge about the small scales by learning

more about the masses of the neutrinos, possible new light relics, the nature of dark energy,

cluster science, and lensing science, among many others. In Chapter 7, as well as in the con-
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cluding sections of Chapters 4, 5, 6, we have touched on the future of the Bicep/Keck pro-

gram as well as the next generation ground-based CMB experiment CMB-S4. In addition

to these, the Atacama Cosmology Telescope (ACT), the South Pole Telescope (SPT), the

Simons Observatory (SO), the Simons Array (SA), the “Searching For Echoes of Inflation”

(SPIDER) telescope, the Cosmology Large Angular Scales Surveyor (CLASS), and possible

other experiments, are set to continue developing new technologies and analysis methods

which will notably change the landscape of cosmology.

For detecting primordial B-modes, one of the main challenges is the aforementioned lens-

ing B-mode contribution from the weak lensing of E-modes as the CMB photons travel to

us. For instrument noise levels below 5 µK-arcmin, this lensing signal becomes the dominant

source of contamination and its sample variance significantly worsens our constraining power

on PGWs. Unlike galactic foregrounds, observing at multiple frequencies is not sufficient to

remove this signal. However, its contribution can be reduced by knowing the cumulative grav-

itational lensing potential ϕ along the line of sight, and having a faithful E-mode map. To-

gether, the two can be combined to form a lensing B-mode template by lensing the E-mode

map with the ϕ field and subtracting this template from the measured B-mode map. This

technique is known in the field as delensing.

Though the theoretical foundation for delensing in pursuit of PGWs was laid out over

a decade ago, in practice this analysis has never been done before. In addition, a proper de-

lensing analysis will need to account for galactic foregrounds at large scales (for PGWs) and

small scales (for the ϕ tracer). The likelihood framework described in this manuscript is able
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to do the former by including a lensing template as an extra virtual frequency band, and tak-

ing all the appropriate cross-correlations. There is ongoing effort from the Bicep/Keck and

SPT collaborations to use this framework to demonstrate delensing of the Bicep/Keck maps

by forming a lensing potential from the Cosmic Infrared Background (CIB) data from Planck

and an E-mode map from a combination of SPTpol, BK and Planck maps.

Going forward, as CMB data becomes more sensitive, the fractional value of delensing

with the CIB will become increasingly smaller, and we will need better data sets from which

to derive large-scale structure tracers. Since the gravitational lensing deflections of the CMB

are only on the order of 2 arcmin, we may reconstruct ϕ with high fidelity using high sensitiv-

ity, high angular resolution CMB polarization maps – specifically, in the case of Bicep/Keck,

using SPT-3G maps. The work described in Chapter 7 shows that after four years of observa-

tions with SPT-3G, we can reduce the effective lensing power by a factor of more than three,

and, in conjunction with Bicep Array, achieve a constraint of σ(r) ∼ 0.005. Over the coming

years, we should expect to see work towards build delensing pipelines to perform foreground

cleaning at small scales, produce unbiased tracers, and demonstrate that a large reduction in

lensing is possible. This will also serve as necessary groundwork for CMB-S4, for which the

calculations in Chapter 7 predict that we will need to reduce the lensing power by 90% in

order to achieve σ(r) ∼ 0.0005.

In the near future, first with Stage 3 experiments and later with CMB-S4, the CMB

community will encounter new data processing and analysis challenges that will stem from

significantly increasing detector counts and experimental complexity and pushing the de-
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sired science thresholds to unprecedented levels. Raising the number of detectors to 105 – 106

brings a new hurdle to data cuts and systematic studies – the data volume is large enough

that current methods are insufficient, and constructing multiple time-ordered-data simula-

tions may be prohibitive. Significant work will be needed to automate these processes and

perform end-to-end simulations for the aforementioned experiments.

Finally, as the CMB field evolves, improving parameter constraints will require combin-

ing different data sets from both CMB and large-scale structure experiments. For instance,

the CMB-S4 baseline includes both small-aperture telescopes (foreground mitigation for r)

and large-aperture telescopes (delensing for r); Bicep/Keck/SPT are collaborating; so are

other experiments in the field, such as Simons Array/Simons Observatory/AdvACT. Further-

more, cross-correlations of CMB data with DES, DESI, LSST, and Euclid will prove invalu-

able in constraining properties of dark energy, neutrino masses, General Relativity, lensing

and cluster science, and beyond.
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A
Gaussian variables and expectation values

This Appendix includes some useful calculations with Gaussian variables. The expressions

presented here are reproduced (with permission) from a set of notes put together by Colin

Bischoff. In this document, we will be working exclusively with Gaussian fields with zero

mean. We will denote the fields with lower case Roman letters, a, b, c, . . ., and variances σ2
a,

σ2
b , σ2

c , . . .
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The normalized probability density function for a Gaussian variable is given by

P (a) =
1√
2πσ2

a

exp

(
− a2

2σ2
a

)
. (A.1)

P (a) is an even function, so we immediately know that ⟨aζ⟩ = 0 for odd values of ζ. For even

values of ζ, ⟨aζ⟩ is non-zero. The following identities will be frequently used throughout this

document:

⟨
a0
⟩
=

∫ ∞

−∞
P (a)da = 1 (A.2)

⟨
a2
⟩
=

∫ ∞

−∞
a2P (a)da = σ2

a (A.3)

⟨
a4
⟩
=

∫ ∞

−∞
a4P (a)da = 3σ4

a (A.4)

A.1 Bandpowers

To measure power, we just take the square of the field, i.e. a2. We can see from Equation

(A.3) that the expectation value of this power estimate ⟨a2⟩ = σ2
a, as desired.

We can also measure the cross-power between two fields by taking their product, i.e. ab.

If fields a and b are uncorrelated, then the expectation value factorizes: ⟨ab⟩ = ⟨a⟩⟨b⟩ = 0.

On the other hand, if a and b are partially correlated, then we can rewrite them in terms of
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uncorrelated fields x, y, and z.

a = x+ y

b = λx+ z

where

σ2
a = σ2

x + σ2
y

σ2
b = λ2σ2

x + σ2
z .

Then we can calculate the expectation value of the cross-power as

ab = λx2 + xz + λxy + yz

⟨ab⟩ = λσ2
x.

For a bandpower, we will average the power estimates for many modes of the field. For

this document, I will use an abstract but simplified concept of modes for the field. In actual

data analysis, we start with a Gaussian map described in the pixel basis, then change basis

to Fourier space (statistics should still be Gaussian), and calculate bandpowers by averaging

over annuli. The number of points to average over depends on the Fourier plane gridding,

but these points are correlated with one another, leading to a smaller effective number of
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modes that is determined by the apodization mask and filtering. I will be working in the ba-

sis of these effective degrees-of-freedom, which I will take to be k independent modes, indexed

by subscripts ı or ȷ. As a further simplication, I will assume that all modes of the field have

identical variance (relaxing this assumption would just lead to more bookkeeping, with the ı

subscript attached to σ2
a).

Now the auto-spectrum bandpower for field a, and its expectation value, can be written

as

Caa =
1

k

k∑
ı=1

a2ı (A.5)

⟨Caa⟩ =
1

k

∑
ı

⟨
a2ı
⟩

(A.6)

=
1

k

∑
ı

σ2
a (A.7)

= σ2
a. (A.8)

The expectation value operation, denoted by angle brackets, is an average over independent

realizations of the field, not an average over modes ı (those are iterated using the summation

symbol).
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A.2 Bandpower covariance matrix

A.2.1 Variance of auto-spectrum

First, let’s calculate the variance of Caa.

Var(Caa) =
⟨
C2
aa

⟩
− ⟨Caa⟩2 (A.9)

⟨
C2
aa

⟩
=

1

k2

⟨(∑
ı

a2ı

)(∑
ȷ

a2ȷ

)⟩
. (A.10)

The product of these two summations contains k2 terms, which we can divide up into k terms

with ı = ȷ and k(k − 1) terms with ı ̸= ȷ.

⟨
C2
aa

⟩
=

1

k2

∑
ı

⟨
a4ı
⟩
+

(∑
ı

⟨
a2ı
⟩)∑

ȷ ̸=ı

⟨
a2ȷ
⟩ (A.11)

=
1

k2
[
3kσ4

a + k(k − 1)σ4
a

]
(A.12)

=

(
2

k
+ 1

)
σ4
a (A.13)

Var(Caa) =
(
2

k
+ 1

)
σ4
a − σ4

a (A.14)

=
2

k
σ4
a. (A.15)

We see that the bandpower variance is proportional to the square of the power and inversely

proportional to the number of modes observed.
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A.2.2 Variance of cross-spectrum

Next, consider the variance of a cross-spectrum bandpower, for the case where fields a and b

are uncorrelated.

Var(Cab) =
⟨
C2
ab

⟩
− ⟨Cab⟩2 (A.16)

⟨
C2
ab

⟩
=

1

k

⟨(∑
ı

aıbı

)(∑
ȷ

aȷbȷ

)⟩
(A.17)

=
1

k2

∑
ı

⟨
a2ı b

2
ı

⟩
+

(∑
ı

⟨aıbı⟩

)∑
ȷ ̸=ı

⟨aȷbȷ⟩

 (A.18)

=
1

k2
[
kσ2

aσ
2
b

]
(A.19)

=
1

k
σ2
aσ

2
b (A.20)

Var(Cab) =
1

k
σ2
aσ

2
b (A.21)

=
1

2

√
Var(Caa)Var(Cbb) (A.22)

We see that the variance of the ab cross-spectrum is one half the geometric mean of the vari-

ances for the aa and bb auto-spectra.

If fields a and b are totally correlated, then we can write b = λa and calculate the cross-
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spectrum variance.

Cbb = λ2Caa (A.23)

Var(Cbb) = λ4Var(Caa) (A.24)

Cab = λCaa (A.25)

Var(Cab) = λ2Var(Caa) (A.26)

=
√
Var(Caa)Var(Cbb) (A.27)

We see that for the full correlated case, there is no longer any factor of one half between the

variance of the cross-spectrum and the geometric mean of the auto-spectra variances.

For the most general case with partial correlation between a and b, we will switch to

uncorrelated fields x, y, z, as in Section A.1.
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Field a auto-spectrum:

Caa =
1

k

∑
ı

(x2ı + 2xıyı + y2ı ) (A.28)

⟨Caa⟩ = σ2
x + σ2

y (A.29)

⟨
C2
aa

⟩
=

1

k2

⟨(∑
ı

x2ı + 2xıyı + y2ı

)(∑
ȷ

x2ȷ + 2xȷyȷ + y2ȷ

)⟩
(A.30)

=
1

k2

[∑
ı

(⟨
x4ı
⟩
+ 4

⟨
x3ı yı

⟩
+ 2

⟨
x2ı y

2
ı

⟩
+ 4

⟨
x2ı y

2
ı

⟩
+ 4

⟨
xıy

3
ı

⟩
+
⟨
y4ı
⟩)

+

∑
ı

∑
ȷ ̸=ı

(⟨
x2ı x

2
ȷ

⟩
+ 4

⟨
x2ı xȷyȷ

⟩
+ 2

⟨
x2ı y

2
ȷ

⟩
+ 4 ⟨xıyıxȷyȷ⟩+ 4

⟨
xıyıy

2
ȷ

⟩
+
⟨
y2ı y

2
ȷ

⟩)
(A.31)

=
1

k2
[
3kσ4

x + 6kσ2
xσ

2
y + 3kσ4

y + k(k − 1)σ4
x + 2k(k − 1)σ2

xσ
2
y + k(k − 1)σ4

y

]
(A.32)

=

(
2

k
+ 1

)(
σ2
x + σ2

y

)2 (A.33)

Var(Caa) =
2

k

(
σ2
x + σ2

y

)2 (A.34)

Field b auto-spectrum:

Cbb =
1

k

∑
ı

(λ2x2ı + 2λxızı + z2ı ) (A.35)

⟨Cbb⟩ = λ2σ2
x + σ2

z (A.36)

Var(Cbb) =
2

k

(
λ2σ2

x + σ2
z

)2 (A.37)
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Cross-spectrum between a and b:

Cab =
1

k

∑
ı

(λx2ı + xızı + λxıyı + yızı) (A.38)

⟨Cab⟩ = λσ2
x (A.39)

Var(Cab) =
1

k

[
2λ2σ4

x + σ2
xσ

2
z + λ2σ2

xσ
2
y + σ2

yσ
2
z

]
(A.40)

=
1

2

√
Var(Caa)Var(Cbb) +

1

k
λ2σ4

x (A.41)

=
1

2

√
Var(Caa)Var(Cbb)

(
1 +

⟨Cab⟩2

⟨Caa⟩ ⟨Cbb⟩

)
(A.42)

When fields a and b are uncorrelated, ⟨Cab⟩ = 0 and Equation (A.42) reduces to the ex-

pression given in Equation (A.22). In the other limit, when the fields are totally correlated,

⟨Cab⟩2 = ⟨Caa⟩ ⟨Cbb⟩ and we obtain the expression from Equation (A.27).

A.2.3 Covariance for uncorrelated fields

The covariance between Caa and Cbb is zero if fields a and b are totally uncorrelated. We can

see this because, for that case,

Cov(Caa, Cbb) = ⟨CaaCbb⟩ − ⟨Caa⟩ ⟨Cbb⟩ (A.43)

= ⟨Caa⟩ ⟨Cbb⟩ − ⟨Caa⟩ ⟨Cbb⟩ (A.44)

= 0. (A.45)
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Next, consider the covariance between Caa and Cab, again for a and b uncorrelated.

Cov(Caa, Cab) = ⟨CaaCab⟩ − ⟨Caa⟩ ⟨Cab⟩ (A.46)

⟨Caa⟩ = σ2
a (A.47)

⟨Cab⟩ = 0 (A.48)

⟨CaaCab⟩ =
1

k2

⟨(∑
ı

a2ı

)(∑
ȷ

aȷbȷ

)⟩
(A.49)

=
1

k2

∑
ı

⟨
a3ı bı

⟩
+
∑
ı

∑
ȷ ̸=ı

⟨
a2ı aȷbȷ

⟩ (A.50)

= 0. (A.51)

So the (unsurprising) result for uncorrelated fields is that the bandpower covariance matrix is

diagonal.
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A.2.4 Covariance for correlated fields

If we work out the case of partially correlated a and b, we get the following covariance be-

tween auto-spectra:

Cov(Caa, Cbb) = Cov(Cxx + 2Cxy + Cyy, λ2Cxx + 2λCxz + Czz) (A.52)

= λ2Var(Cxx) (A.53)

=
2

k
λ2σ4

x (A.54)

=
√

Var(Caa)Var(Cbb)

(
⟨Cab⟩2

⟨Caa⟩ ⟨Cbb⟩

)
. (A.55)

The covariance between an auto-spectrum and the cross-spectrum is

Cov(Caa, Cab) = Cov(Cxx + 2Cxy + Cyy, λCxx + Cxz + λCxy + Cyz) (A.56)

= λVar(Cxx) + 2λVar(Cxy) (A.57)

=
2

k
λσ2

x

(
σ2
x + σ2

y

)
(A.58)

=
[
Var(Caa)3Var(Cbb)

]1/4 ⟨Caa⟩ ⟨Cab⟩√
⟨Caa⟩3 ⟨Cbb⟩

 . (A.59)

In the most general case, we have four fields, a, b, c, d, with an arbitrary covariance struc-

ture given by C (note: referring here to the field covariance, not bandpower covariance). We

can solve this by diagonalizing the covariance matrix, C = PTDP, where P contains eigen-

vectors that let us transform to an alternate basis of four fields, w, x, y, z, with diagonal co-

190



variance matrix D. Using this orthogonal basis, we can solve

Cov(Cab, Ccd) =
1

2
[Var(Caa)Var(Cbb)Var(Ccc)Var(Cdd)]1/4

(
⟨Cac⟩ ⟨Cbd⟩+ ⟨Cad⟩ ⟨Cbc⟩√

⟨Caa⟩ ⟨Cbb⟩ ⟨Ccc⟩ ⟨Cdd⟩

)
. (A.60)

It takes a lot of algebra to get to Equation (A.60), but you can pretty much guess at

it by inspection of Equations (A.42, A.55, A.59). The product of auto-spectrum variances

(term in square brackets) ensures that if you rescale any of the four fields, the covariance will

rescale properly. The correlations between fields are encoded in the ratios between expecta-

tion values of cross-spectra and the geometric mean of the auto-spectrum expectation values

(term in parentheses).
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B
Building a Semi-analytic Bandpower

Covariance Matrix

B.1 Introduction

This appendix describes the development of a framework to build a bandpower covariance

matrix (BPCM) that relies on analytic reasoning and signal-only/noise-only simulations. We
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assume that the signal is independent of noise, thereby throwing out random signal-noise cor-

relations that come into a direct estimation of the covariance matrix. Early in the develop-

ment of the multi-component framework, we have seen that the results depended a lot on the

off-diagonal elements in each ℓ-block of the band power covariance matrix. We saw that by

zeroing out certain elements, under the assumptions that they should be driven to zero in

the limit of an infinite simulation set, we got different results than if we left those elements

in. However, this zero-ing was approximate, and it was required to take a closer look at what

each of the elements in BPCM looked like in the case of a limited number of simulations.

The framework is capable of taking in N experiments with separate signal and noise

simulations; however, in our case, we will distinguish between independently simulated exper-

iments (i.e., experiments like BICEP2, BICEP1) and dependently simulated experiments (i.e.,

experiments simulated by re-observing BICEP2, like WMAPK). For each independent exper-

iment, the inputs are signal expectation values, signal variance, noise expectation values, and

noise variance. For each dependent experiment, the inputs are just noise expectation values

and noise variance. As usual, we zero BPCM terms that differ by more than one ℓ-bin.

In addition to that, the new framework allows one to input multiple types of signal (like

dust or sync) into the BPCM, by scaling the already available simulations to reflect any

choice of underlying model (as seen in sect;2). This lets us perform our usual H-L calcula-

tion and test how dependent it is on the choice of fiducial model, or alternatively it lets us

perform a dynamic likelihood calculation by evaluating the BPCM at each point in the phase

space we are exploring, and using a simple χ2 likelihood.
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B.2 General Semi-analytic Formulation

Let the letters a, b, c, d denote the different experiments in our analysis, and the subscripts

i = 1, 2, 3 denote the various signal components: CMB, dust, sync, for each of the afore-

mentioned experiments. Then, the total signal for experiment a is the sum of all components∑N
i ai, where N is the number of signal components, and each ai is a Gaussian field with

mean zero. Furthermore, we will assume that all signals are independent of noise, and each

experiment has different noise nexpt. Then, a generic covariance between two spectra is repre-

sented by:
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Cov{Expt(A)× Expt(B), Expt(C)× Expt(D)} =

=< (
∑
i

ai + na)(
∑
i

bi + nb)(
∑
i

ci + nc)(
∑
i

di + nd) > +

− < (
∑
i

ai + na)(
∑
i

bi + nb) >< (
∑
i

ci + nc)(
∑
i

di + nd) >=

=< (
∑
i

ai
∑
i

bi + na

∑
i

bi + nb

∑
i

ai + nanb)(
∑
i

ci
∑
i

di + nc

∑
i

di + nd

∑
i

ci + ncnd) > +

− <
∑
i

ai
∑
i

bi + nanb ><
∑
i

ci
∑
i

di + ncnd >=

=<
∑
i

ai
∑
i

bi
∑
i

ci
∑
i

di > + < ncnd ><
∑
i

ai
∑
i

bi > + < nbnd ><
∑
i

ai
∑
i

ci > +

+ < nbnc ><
∑
i

ai
∑
i

di > + < nand ><
∑
i

bi
∑
i

ci > + < nanc ><
∑
i

bi
∑
i

di > +

+ < nanb ><
∑
i

ci
∑
i

di > + < nanbncnd > − <
∑
i

ai
∑
i

bi ><
∑
i

ci
∑
i

di > +

− < ncnd ><
∑
i

ai
∑
i

bi > − < nanb ><
∑
i

ci
∑
i

di > − < nanb >< ncnd >=

=<
∑
i

ai
∑
i

bi
∑
i

ci
∑
i

di > − <
∑
i

ai
∑
i

bi ><
∑
i

ci
∑
i

di > + < nanbncnd > +

− < nanb >< ncnd > + < nbnd ><
∑
i

ai
∑
i

ci > + < nbnc ><
∑
i

ai
∑
i

di > +

+ < nand ><
∑
i

bi
∑
i

ci > + < nanc ><
∑
i

bi
∑
i

di >

(B.1)

We would like to simplify the difference between the first two terms of the last equality.
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Taking a closer look at the first term, and making use of the assumption that two different

types of signal are uncorrelated, that is that < aiaj >=< bibj >=< aibj >= ... = 0 for i ̸= j,

we find

<
∑
i

ai
∑
i

bi
∑
i

ci
∑
i

di > =
∑
i

< aibicidi >+
∑
i ̸=j

< aibi >< cjdj > (B.2)

+
∑
i ̸=j

< aici >< bjdj >+
∑
i ̸=j

< aidi >< bjcj > (B.3)

Similarly, the second term expands to

<
∑
i

ai
∑
i

bi ><
∑
i

ci
∑
i

di >=
∑
i

< aibi >< cidi >+
∑
i ̸=j

< aibi >< cjdj >

And the difference between the two yields

∑
i

Cov{aibi, cidi}+
∑
i ̸=j

< aici >< bjdj >+
∑
i ̸=j

< aidi >< bjcj >

Which brings the total answer to

∑
i

Cov{aibi, cidi}+ Cov{nanb, ncnd}+ < nbnd ><
∑
i

aici > + < nbnc ><
∑
i

aidi > +

+ < nand ><
∑
i

bici > + < nanc ><
∑
i

bidi > +
∑
i ̸=j

< aici >< bjdj >+
∑
i ̸=j

< aidi >< bjcj >

We now have to think how to go from this Gaussian field representation to a bandpower rep-

196



resentation, after all, the benefit of this semi-analytic BPCM construction is that we could

build it from signal-only, and noise-only aps, which contain bandpower information.

To construct a bandpower, one has to sum over the map modes. One might notice that

until now there was no mention of different map modes; this is because the above case is, in

fact, a special case in which we have only one map mode. In the case of multiple map modes,

and different modes from spectra to spectra, one has to take an extra sum. Denoting by the

Greek letters α, β the map mode number, and leaving the Roman letters i, j to represent dif-

ferent types of signal, the line

< (
∑
i

ai + na)(
∑
i

bi + nb)(
∑
i

ci + nc)(
∑
i

di + nd) > (B.4)

− < (
∑
i

ai + na)(
∑
i

bi + nb) >< (
∑
i

ci + nc)(
∑
i

di + nd) >

(B.5)

becomes

<
∑
α

{(
∑
i

aiα + naα)(
∑
i

biα + nbα)}
∑
β

{(
∑
i

ciβ + ncβ)(
∑
i

diβ + ndβ)} > (B.6)

− <
∑
α

{(
∑
i

aiα + naα)(
∑
i

biα + nbα)} ><
∑
β

{(
∑
i

ciβ + ncβ)(
∑
i

diβ + ndβ)} >

(B.7)

We will have all the same terms as in the calculation above, except that now we have to be

careful about different map modes. To make it clear how this changes the formulation, let’s
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look at the terms that contributed to the Signal Covariance term in the boxed equation

<
∑
i

ai
∑
j

bj
∑
m

cm
∑
p

dp > − <
∑
i

ai
∑
j

bj ><
∑
m

cm
∑
p

dp >

this difference will now look like

<
∑
i,α

aiα
∑
j,α

bjα
∑
m,β

cmβ

∑
p,β

dpβ > − <
∑
i,j,α

aiαbjα ><
∑
m,p,β

cmβdpβ > =

=<
∑
i,j,α

aiαbjα
∑
m,p,β

cmβdpβ > − <
∑
i,j,α

aiαbjα ><
∑
m,p,β

cmβdpβ > =

=
∑
i,α,β

< aiαbiαciβdiβ >+
∑

i ̸=j,α,β

< aiαciβ >< bjαdjβ >+
∑

i ̸=j,α,β

< aiαdiβ >< bjαcjβ >+

−
∑
i,α,β

< aiαbiα >< ciβdiβ > =

=
∑
i

Cov{
∑
α

aiαbiα,
∑
β

ciβdiβ}+
∑

i ̸=j,α,β

< aiαciβ >< bjαdjβ >+
∑

i ̸=j,α,β

< aiαdiβ >< bjαcjβ > =

=



∑
iCov{

∑
α aiαbiα,

∑
β ciβdiβ} +

∑
i ̸=j,γ < aiγciγ >< bjγdjγ >+

+
∑

i ̸=j,γ < aiγdiγ >< bjγcjγ >, if there is mode overlap

0, if there is no mode overlap

(B.8)

where γ is the set of overlapping modes and where in the last step we took into account that

the map modes are independent, so that < aiαbiα >= 0 if α ̸= β.
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Now, for a cross term of the type

< nbnd ><
∑
i

ai
∑
j

cj >

We will get

<
∑
α

nbα

∑
β

ndβ ><
∑
i,α

aiα
∑
j,β

cjβ >=


∑

i,γ < nbγndγ >< aiγciγ >, mode overlap

0, no mode overlap

where γ is the set of overlapping modes. Notice however, that there is only one sum over

modes for the cross terms, so we can’t just form two band-powers. Instead, we can see that

for each i we effectively have

∑
γ

< nbγndγ >< aiγciγ >=
Cai,ci
l Cnb,nd

l√
kai,cil knb,nd

l

=
1

2

√
V ar(aici)V ar(nbnd)

where we have used that k is the number of degrees of freedom, and is given by

kai,cil = 2
(Cai,ci

l )2

V ar(aici)
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So then, the entire result will look like

∑
i

Cov{
∑
α

aiαbiα,
∑
β

ciβdiβ}+ Cov{
∑
α

naαnbα,
∑
β

ncβndβ}+
∑
i,γ

< nbγndγ >< aiγciγ > +

+
∑
i,γ

< nbγncγ >< aiγdiγ > +
∑
i,γ

< naγndγ >< biγciγ > +
∑
i,γ

< naγncγ >< biγdiγ > +

+
∑
i ̸=j,γ

< aiγciγ >< bjγdjγ >+
∑
i ̸=j,γ

< aiγdiγ >< bjγcjγ >

(B.9)

Or dropping the Greek letter indices, and taking a combination of Roman letters to mean a

bandpower (rather than Gaussian modes), we have:

∑
i

Cov{aibi, cidi}+ Cov{nanb, ncnd}+

+
1

2

∑
i

√
V ar(aici)V ar(nbnd) +

1

2

∑
i

√
V ar(aidi)V ar(nbnc)+

+
1

2

∑
i

√
V ar(bici)V ar(nand) +

1

2

∑
i

√
V ar(bidi)V ar(nanc)+

+
1

2

∑
i ̸=j

√
V ar(aici)V ar(bjdj) +

1

2

∑
i ̸=j

√
V ar(aidi)V ar(bjcj)

So how do we compute this? We have signal simulations for a particular model, so a sim-

ple way to get these signal components for other models is to rescale the signal simulations in

each ℓ bin. An example of this scaling for one of the terms is presented below

V ar(aibi) =
( < aibi >

< asimulationsbsimulations >

)2
V ar(asimulationsbsimulations)
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Adopting the shorthand asimulations = as and the scaling introduced above, the final result

looks like

Cov{asbs, csds}
∑
i

< aibi >

< asbs >

< cidi >

< csds >
+ Cov{nanb, ncnd}+

+
1

2

√
V ar(ascs)V ar(nbnd)

∑
i

< aici >

< ascs >
++

1

2

√
V ar(asds)V ar(nbnc)

∑
i

< aidi >

< asds >
+

+
1

2

√
V ar(bscs)V ar(nand)

∑
i

< bici >

< bscs >
+

1

2

√
V ar(bsds)V ar(nanc)

∑
i

< bidi >

< bsds >
+

+
1

2

√
V ar(ascs)V ar(bsds)

∑
i ̸=j

< aici >

< ascs >

< bidi >

< bsds >
+

+
1

2

√
V ar(asds)V ar(bscs)

∑
i ̸=j

< aidi >

< asds >

< bici >

< bscs >

(B.10)

All the bandpowers with index i are obtained from like_getexpvals.m which takes model pa-

rameters and evaluates bandpower expectation values of the model for all specified fields, ex-

periments, and ℓ bins. While all the signal and noise bandpowers, as well as variances and

covariances of these (elements denoted by subscript s) are taken from the raw aps.
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For each element of the BPCM, we exclude certain terms based on the fact that each

of the a, b, c, d, na, nb, nc, nd are independent Gaussian fields with zero mean. For an explicit

demonstration of this calculation of each element, please refer to the more extensive post-

ing. For pedagogy, I will demonstrate the calculation of one of the elements here, namely

Cov{B2×B2, B2×B1}. We take for our BPCM model the simulations fiducial model, which

is just a (tensor+lensing) model and thus has only one signal component (CMB). Also, in

this case, a = b = d. Hence:

Cov{B2×B2, B2×B1} = Cov{asas, ascs} + 0 +
1

2

√
V ar(ascs)V ar(nana) + 0

+
1

2

√
V ar(ascs)V ar(nana) + 0 + 0 + 0

(B.11)

All the other elements are evaluated similarly.

B.3 Validation

The implementation of the semi-analytic bandpower covariance matrix above is based on

existing signal and noise simulations but can also be rescaled to reflect a multi-component

model different from the one used to generate the simulations. This procedure involves one

key simplifying assumption, which is that the various signal fields all have similar covariance

structure, i.e., they populate similar Fourier modes as our CMB signal simulations. To make

sure that everything is being calculated correctly, we generate a set of toy model simulated
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bandpowers and contrast the direct covariance matrix construction to the semi-analytic one.

The example we present here is one with three experiments (BICEP1 100 GHz, BICEP2

150 GHz, and WMAP7 23 GHz), and is the first application of this framework we have per-

formed:

First, we outline the procedure for the BPCM construction for this particular case.

• We run a set of scripts to calculate signal×signal, noise×noise, and signal×noise an-

gular power spectra (aps) for all experiment combinations. The aps generating scripts

use reduc_makeaps but then combine and reorganize the results. In the end, we have

one set of files that contain single experiment results (3 aps per file: S × S, N × N ,

and S × N). A second set of files includes one file for each pairwise combination of

experiments, with 10 aps per file. In this step, for this example, we specify the signal

simulations to mean lensed-ΛCDM+r=0.2 because that is a good fit to the BICEP2

bandpowers. However, we are free to use any signal simulations as long as we record

the model that describes the simulations. For instance, to test the rescaling, we also

simulate bandpowers with lensed-ΛCDM+r=0.05 and Adust = 3.75 µKCMB.

An important note here is that we are using the BICEP2 signal simulations as a stand-

in for WMAP signal simulations. This is justified to the extent that we believe the

WMAP maps (after beam correction) include unbiased estimates of every mode on the

sky. If that is the case, then the only signal filtering that occurs is what we apply with

our reobserving matrix, and the BICEP2 signal simulations describe how the reobserva-

203



tion process affects sky signals.

• The next step is to calculate covariances from these aps. One goal of the semi-analytic

construction is to avoid extra noise in the covariance matrix from terms that would av-

erage to zero in the large number of simulations limit, so we are selective about which

covariances to calculate. The output of this process is a set of six covariance matrices.

– Covariance matrix between signal × signal bandpowers. For this matrix, we cal-

culate and keep all terms.

– Covariance matrix between noise×noise bandpowers. If we assume that the noise

is independent for all experiments, then we only keep terms that are the variance

of noise bandpowers (i.e. Cov(Ni ×Ni, Ni ×Ni) or Cov(Ni ×Nj , Ni ×Nj) but not

Cov(Ni × Ni, Nj × Nj)). However, we also allow for covariance across ℓ bins, so

this matrix includes some other diagonals in addition to the main diagonal.

– Four covariance matrices for signal × noise bandpowers. These consist of terms

with the form Cov(Si×Ni, Sk ×Nl), Cov(Si×Nj , Nk ×Sl), Cov(Ni×Sj , Sk ×Nl),

and Cov(Ni × Sj , Nk × Nl), respectively. These terms are non-zero only if the

two noise terms come from the same experiment/field and the two signal terms

are correlated (i.e., same field, but potentially different experiments). For the case

where we include both E and B-mode signals, we assume that the E and B signal

fields are uncorrelated, and the same for the E and B noise fields.
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• With those six covariance matrices in hand, we can calculate the bandpower covariance

matrix for an arbitrary model by applying appropriate scale factors and summing over

signal components, as shown in Equation B.10. As a first step, here we calculate the

semi-analytic bandpower covariance matrix for the same model that was used in the

simulations (i.e., lensed-LCDM+r=0.2). This is done by simply summing the six com-

ponents, without any rescaling. Then we use this matrix to rescale to the model which

includes dust as well.

For the toy model simulated bandpowers, we assume degrees-of-freedom per band taken

from the Bicep/Keck aps (but rounded to integer values). We simulate a single signal field,

with variance equal to the bandpower expectation values for lensed-ΛCDM+r=0.2; all three

experiments (B2, B1 100 GHz, and WMAP 23 GHz) see a perfectly correlated signal. Sepa-

rately, we do the same for the model with dust. Each experiment gets its own independent

noise field, with the same number of degrees-of-freedom and variance equal to the appropriate

noise-only bandpowers.

The toy model also includes correlations between adjacent ℓ bins. To induce correlation,

we generate a series of gaussian random numbers for each signal and noise component in each

ℓ bin, then replace the first ni numbers in each bin with the last ni numbers from the previ-

ous bin, rescaled to the appropriate noise level and degrees of freedom of the new bin. Since

we know that the real datasets have ∼ 10% overlap between ℓ bins, we choose ni using the

formula ni = (νi + νi+1)/2× 0.1.
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Figure B.1: Direct (left) and semi-analytic (right) correlation matrices with logarithmic color scale.
The matrix is symmetric with 6 spectra times 5 ell bins; see the bottom left for the layout of each
6×6 block. For both cases, the correlations are calculated using the diagonal elements of the direct
covariance matrix for normalization.

We then calculate a million realizations of the signal and noise fields, for each model,

then derive bandpowers, and store them in files that can be read by the semi-analytic bpcm

code. At the same time, we add the signal and noise fields and calculate traditional signal+noise

bandpowers. These bandpowers are used to compute the direct bandpower covariance matrix.

Figure B.1 shows correlation matrices calculated from the direct and semi-analytic co-

variance matrices (both for the lensed-ΛCDM+r=0.2 model). To calculate a correlation ma-

trix, we divide the i, j covariance element by the square root of AiiAjj obtained from the

direct bandpower covariance matrix (A). This means that the diagonal elements of the di-

rect correlation matrix are equal to one by construction, but this is not exactly true for the

semi-analytic correlation matrix. The color scale is logarithmic.

Figure B.2 shows the difference between the two correlation matrices, now on a linear
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Figure B.2: Difference between direct and semi-analytic correlation matrices. Linear color scale.
Both covariance matrices are derived for the lensed-ΛCDM+r=0.2 model.

color scale. There is no visible structure in the difference map for the correlation matrices.

Taking the standard deviation across all entries gives a value of 0.961e− 3, which is very close

to the sample variance expected from 106 simulations: 1/
√
106.

Figure B.3 shows a different set of correlation matrices. The direct covariance matrix

is calculated for the model with lensed-ΛCDM+r=0.05 and Adust = 3.75 µKCMB. The

semi-analytic covariance matrices is calculated from the same simulations as before (i.e., the

lensed-ΛCDM+r=0.2 model) and rescaled to the new model.
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Figure B.3: Direct (left) and semi-analytic (right) correlation matrices with logarithmic color scale.
The direct covariance matrix is calculated for the model with lensed-ΛCDM+r=0.05 and Adust =
3.75 µKCMB . The semi-analytic covariance matrices is calculated from the same simulations as before
(i.e., the lensed-ΛCDM+r=0.2 model) and rescaled to the new model.

Figure B.4 shows the difference of these two correlation matrices, on a linear color scale.

Yet again, there is no visible structure in the difference map for the correlation matrices, and

the entries are within the sample variance expected from 106 simulations: 1/
√
106.

This is a conclusive test that both the original formulation of the semi-analytic matrix

(without rescaling) and the rescaling process, is working as expected.
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Figure B.4: Difference between direct and semi-analytic correlation matrices. Linear color scale.
The direct covariance matrix is calculated for the model with lensed-ΛCDM+r=0.05 and Adust =
3.75 µKCMB . The semi-analytic covariance matrices is calculated from the same simulations as before
(i.e., the lensed-ΛCDM+r=0.2 model) and rescaled to the new model.
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