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Holographic dark energy cosmology free of the Q-ball formation, with
accelerated expansion and an observable cosmological constant considered as the
sum of the vacuum (Λvac) and an induced term 2( 3 4)ind mΛ = −  with m being the
ultra-light masses (ULM) ( ≈ Hubble parameter) implemented in the theory from
supergravities arguments and non-minimal coupling, is constructed and discussed in
this letter.

PACS numbers (2006): 95.35.+d, 95.36.+x

Two of the greatest mysteries in modern physics today are what drives the
accelerated expansion of the universe and why the cosmological constant
(lambda) is positive and extremely small (the cosmological constant problem)
[1–3]. The origin of the first problem is theoretically explained by adding exotic
dark energy matter with an equation of state ,p Λ= ω ρ  1 3Λω < −  (ωΛ is a
parameter, not necessarily constant). This negative-pressure dark energy density
gives rise to cosmic acceleration and its origin remains a mystery from the point
of view of Einstein general relativity, standard particle theory or even quantum
gravity. This phenomenological explanation unfortunately didn't succeed to give
a realistic explanation of the second problem that is, why the observed lambda is
120 orders of magnitude less than the theoretical estimates [4]. Several theories
have been proposed including scalar fields (quintessence with single field or
with N coupled field), complex scalar fields, 1/R gravity theory, a phantom field,
k-essence, etc. [5, 6]. Of particular interest for us is the holographic dark energy
model with event horizon as IR cutoff scale L and 2 23 8c GLΛρ = π  proposed in
the literature based on holographic principle (G is Newton's gravitational
constant and c is a constant) [7–12]. It was argued that this model can produce
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an accelerating cosmic expansion and that holographic principle can provide a
natural physical and realistic solution to the cosmological constant problem. In
this letter, we study a new holographic dark energy model with a non-minimally
coupled complex scalar field with a modified supergravity dark energy density.
In recent years, a lot of works have been devoted to the investigation of the
cosmological models with the non-minimal coupling between gravity and
inflaton scalar field and to their connection with inflationary cosmology and
phase transitions in the early Universe. It has also been noted that spontaneous
symmetry breaking and phase transitions can be induced by curvature via the
non-minimal coupling with the external gravitational field [13–15]. Recently, we
have investigated a particular cosmological model with complex scalar self-
interacting inflation field non-minimally coupled to gravity, based on
supergravities argument [16–18]. It was shown that in the case of non-minimal
coupling between the scalar curvature and the density of the scalar field such as

( )2L gR ∗= − ξ − φφ  (R is the scalar curvature or the Ricci scalar) and for a

particular scalar complex potential field ( )2 2 2( ) 3 4 ( 1),V m∗ ∗φφ = ωφ φ −  (ω is a

tiny parameter that can be time-dependent and to be differentiate from ωΛ),
inspired from supergravity inflation theories, ultra-light masses m are
implemented naturally in the Einstein field equations (EFE), leading to an
effective cosmological constant Λ in accord with observations. The metric tensor
of the spacetime is treated as a background and the Ricci scalar in the non-
minimal coupling term, regarded as an external parameter, was found to be

24 3 4 effR m= Λ − = Λ  where 2(3 4)eff mΛ = Λ −  is the effective cosmological

constant and Λ is the vacuum cosmological constant. That is to say, there is
another induced contribution to the vacuum cosmological constant with

2
induced 3 4.mΛ = −  These ultra-light masses are in fact too low while they may

have desirable feature for the description of the accelerated universe [19–21].
We consider the non-minimally coupled theory described by the action

( ) ( )

int

4 1 1 1 .
2 2 2

GS S S S

gd x R g V

∗φφ

∗
μν ∗ ∗ ∗

μ ν μ ν

= + + =

⎛ ⎞⎛ ⎞ξφφ⎜ ⎟= − − + Λ − ∂ φ ∂ φ + ∂ φ∂ φ − φφ⎜ ⎟κ κ⎝ ⎠⎝ ⎠∫
(1)

g is the absolute value of the determinant of the metric tensor, 8 ,Gκ = π

( ) ( )1 42 2GS d x g R−= κ − + Λ∫  is the Einstein-Hilbert gravitational part of the

action, ( ) 4
int 2S d x gR ∗= − ξ − φφ∫  is the non-minimal interaction term between

the gravitational and the complex scalar fields, and finally S ∗φφ  describes the

material part of the action associated with the complex scalar field.
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The variations of the above action with respect to the scalar field and the
metric tensor yield the Klein-Gordon field Eq. (1) and the Einstein equations:

( ) ( )

( ) ( )2 2 2 2

1

3 3 1 0,
4 4 3

G g

g m m g D

∗ ∗ ∗ ∗ λ
μν μ ν μ ν μν λ

∗ ∗ ∗
μν μν ν μ

− ξφ φ + ∂ φ ∂ φ + ∂ φ∂ φ − ∂ φ ∂ φ +
κ

+ Λ − + ωφ φ + φ φ − ∂ φ φ =
 (2)

where  denotes the covariant derivatives and Dν  is the covariant derivative.
The last three terms in the bracket are due to the variations of the term

( )1 2 g R ∗− − ξ φφ  in the action. These terms modify the gravitational constant

and the cosmological constant as 1 1
eff
− − ∗κ = κ − ξφ φ  and modΛ = Λ −

( ) ( ) ( )2 2 23 4 1 .m V∗ ∗− − ωφ φ ≡ Λ + φφ  The ultra-light masses were shown to

contribute to the dark energy problem. We propose now the effective
holographic dark energy density (EHDED)

2 2

2
4 ( )3 3 11 1 ,

3eff

VH H
m

∗

Λ

⎛ ⎞⎛ ⎞φφ⎜ ⎟ρ = = − ξκ +⎜ ⎟κ κ ω⎜ ⎟⎝ ⎠⎝ ⎠
 (3)

 ,c m+= ρ + ρ  (4)

following the idea where the IR cutoff is chosen at Hubble scale in order to be
consistent with recent astronomical observations and c = 1 [6]. In case φ = 0,

23 8c H GΛρ = ρ = π  the critical density of the four-dimensional FRW standard
cosmology [22]. The extra density m+ρ  is positive unless the non-minimal
coupling constant is negative. The main feature of the EHDED is that at the
critical value of the scalar field 2 2 1

cc
∗ −φ φ = ω  where the potential vanishes,

23m c cH∗
+ρ = − ξφ φ  [17]. In other words, ( )2 1 1 23 1 .H − −

Λρ = κ − κξω  This

corresponds to a slow change of the scalar field in nonsingular cosmological

model. If in addition, ( )2ω = κξ  then 0.Λρ =  In what follows, we take a four
dimensional FRW spatially flat universe favored by recent observations with
metric ( )2 2 2 ,i

ids dt a t dx dx= − +  where ( )a t  is the scale factor. Instead of
complex scalar field, we would like to use alternative field variables. In order to
construct equations which relate the SIP to the recent astronomical observations
suggesting the accelerating expansion of the cosmos, we consider simple real
quintessence field by letting ( ) ( ) ( )expt t ikφ = ϕ α  and assuming that there is no
contributions from the angular-motion at a first level, that is, we neglect
centrifugal terms. In other words, we consider a local phase transformation for
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the scalar field such that φ and ϕ represent the same physical object (the universe
tends to the de Sitter-like regime through chaotic inflation for the real field). The
field cosmological equations corresponding to the real inflationary supegravity
decaying potential 2 4( ) (3 4)( 1)V mϕ = ωϕ −  with the ansatz 2

0t−ω = ω  (ω0 is

the value of ω at t = 1) chosen, 1 1 2
eff
− −κ = κ − ξϕ  and ( )2 1 23 1H −

Λρ = κ − κξϕ

are as follows [6, 23–27]:

( ) ( )( )2 2 2 4
2

36 1 ,
43 1

H H mΛ
κ= ρ + ρ + ϕ + ξ ϕϕ + ωϕ −

− ξκϕ
 (5)

( )2 2 33 6 2 3 0,H H H mϕ + ϕ + ξ + ϕ + ωϕ =  (6)

where H a a=  is the Hubble parameter. Remember that the ULM with scalar

kinetic energy of order of 21 2ϕ  were shown to contribute to the dark energy
and cosmological constant problem, the reason we assume their kinetic energy
contribution in Eq. (5) [16, 28]. In order to obtain solutions to these field
equations, we adopt power-law solutions for the scale factor ( ) r

oa t a t=  and by

making the ansatz ( ) 0
pt tϕ = ϕ  corresponding to the attractive solution in the

phase space where r and p are real parameters to be determined. From Eqs. (6)
and (5) we obtain simply:

( ) ( ) 2 2 2 2
01 3 6 2 1 3 0,pp p rp r r m t +− + + ξ − + ωϕ =  (7)

2 2 2 2 2 2 2 2 2
0 0

3 36 0.
4 4

p pp pr m t m t+ − −+ ξ + ω ϕ − ϕ =  (8)

The model requires, for a consistent solution of Eqs. (7) and (8) to exist,
that ultra-light particles (decaying cold dark matter) are unstable and decays as

1
0 ,m m t−=  m0 is a constant chosen such that at t = 1, m = m0 (explaining the

effective cosmological smallness constant behaving in this case as 2 )eff t−Λ ∝

[29, 30]. In fact, one expects that cold dark matter particles with time decreasing
masses may have an important measurable effect in the dynamical motion of the
halo of spiral galaxies. At clusters scale this could have important consequences
on dark matter halos (axions and mass varying neutrinos are good candidate for
the cold dark matter of our universe) [31–33]. Moreover, recent astronomy
observations suggest that our universe has a critical energy density which
consists of 1 3  the matter density and 2 3  the dark energy density with negative
pressure [34–38]. As a consequence, we can consider the simplest case of dark
energy dominated universe with 1.m <<  In order to have a consistent acceptable
solution, we choose p = 1 [23, 39, 40]. In other words we have the following



5 Accelerated universe dominated by holographic dark energy 167

ansatz: ( ) 0 ,t tϕ = ϕ  0 0 ,m m= ϕ ϕ  2 2
0 0ω = ω ϕ ϕ  and a supergravity scalar field

potential that behaves as an inverse power-law ( )2 2 2 2
0 0 0 0( ) 3 4 1V mϕ = ϕ ϕ ω − ϕ ≈

( )2
0 0 ,V≈ ϕ ϕ  ( ) 2

0 03 4 .V m= −  It is easy to check that, in this case,

( )3 6 2 1 3 0r r r+ ξ − + α ≈  and ( ) ( )1 6 3 4 0r+ ξ + α ≈  respectively where
2 2

0 0 0mα ≡ ω ϕ  for simplicity (ϕ0 is the present value of the scalar field at t = 1).
As a result, one can easily prove that the coefficient r depends only on the
coupling coefficient ξ. Two cases appear: for 1,ξ <<  5 4,r ≈  while for 1,ξ >>

5 2r ≈  and both correspond to an acceleration universe. The second case seems
more accelerated. In reality, as follows from cosmological applications, we
expect ξ to be small [41]. It is worth mentioning that Hsu has already point out
that there is no accelerated expansion in the holographic dark energy model with

2 2 23(1 ) ,m pc M Hρ = −  here c is a integral constant, while, Li argued that the

holographic dark energy model with 2 2 23m p hc M Rρ =  (Rh is the future event

horizon) succeeds in accelerating the universe [42–44]. The model in this paper
is similar to the former model but accelerating expansion still occurs if a non-
minimally coupled complex scalar field behaving like ( ) ,t tϕ ∝  a modified
supergravity dark energy density and a decaying ultra-light masses are present in
the theory. It can be seen that despite the slow roll in inflation theory, ϕ → ∞  for
large t and the universe expansion accelerated forever while the effective
supergravity potential ( ) ( )3 4 1V ϕ → α <<  (minimum value) at late times. Note
that the conservation of the energy-momentum of the field in a dark energy
dominated universe reduces to ( )3 0H pΛ Λ Λρ + ρ + =  and the dark energy

restriction at actual time ( )01 2 3Λ− < ω < −  is easily checked to be verified [29].

An additional interesting feature comes from the effective Ricci scalar tensor

( )( ) 12 2 4 24 3 3 1effR m m
−

= κ Λ − + ωϕ − ξκϕ  of our non-minimal coupling theory.

It behaves as [17, 45]:

2 2
0

2 2
0

4 3 3
0

1eff
m t

R
t

−Λ − + α
= κ →

− ξκϕ
 (9)

as time grows up. That is 0effR →  at late times while it is finite at t = 1. This

later could contribute on some astrophysical problems (for example the CMB
spectrum) [46–50]. In particular for 1,ξ <<  the cosmological scenario discussed
does not suffered from the Q-ball formation, some kind of non-topological
soliton whose stability is guaranteed by some conserved charge Q [32, 51–59].
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In reality, the formation of Q-ball is very generic for complex scalar field. Their
formation is some kind of trouble for spintessence which is a canonical complex
scalar field. The hessence model can avoid this difficulty but no holographic
dark energy is present in its basic scenario [57, 58, 60–67]. In addition, we
believe that stable Q-balls produce the present baryon asymmetry of the universe
by their decay and as a result they will produce dangerous relics at the same time
when they decay to produce the baryons. Their decay temperature becomes in
general much lower than the freeze-out temperature of the dangerous lightest
supersymmetric particle, which causes serious and unrealistic constraints [66].
To avoid this problem, we need to have a proper potential possessing a ( )O N

internal symmetry and obeying a certain critical condition of instability for the
potential against Q-ball formation [61]. One of these potential is of inverse

power-law as the one appeared in this letter, e.g. ( )2
0 0( )V Vϕ ≈ ϕ ϕ  [39, 40].

Note that in Q-ball theory, a term 2 6 3Q a ϕ  is associated to Eq. (7) and a term
2 6 22Q a− ϕ  is associated to Eq. (8). In our scenario, both will behave as

2 6 4 6 4 2
00

r pQ a t + −ϕ  where 3 2Q a≡ ϕ θ 3 2 ,rt +∝ θ  θ is a second variable introduced
to describe the hessence scenario [57, 59]. It is not difficult to notice that they
will not modify crucially the cosmological holographic scenario. For
homogenous ϕ and θ, in order to have a total conserved charge within the
physical volume, θ must decreases with time as 3 1,rt− −θ ∝  otherwise, the charge
increases with time and changes its fate, that is it will be difficult to be
evaporated or to be dissociated. There is a critical value of charge say Qc for
which Q is constant depending on the time-evolution of θ and on r. If in the
other side mtθ ∝  with 3 1,m r< − −  then Q-ball lose their charge and disappear
in a burst of particles resulting on some inhomogeneity that could be of
important cosmological consequences. Qc corresponds to 3 1.m r= − −  The
effective charge due to non-minimal coupling will behaves as

( )2 2 2 21effQ Q Q= − ξκϕ →  at late times in particular for 1.ξ <<  These results

encourage a thorough study of the dark energy problem of the universe and
further investigations of the model described are in progress.

The author would like to thanks the anonymous referees for their useful
comments.
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