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1, INTRODUCTION

Throughout the history of quantum theory, a battle has raged between
the amateurs and professional group theorists, The amateurs have main-
tained that everything one needs in the theory of groups can be discovered
by the light of nature provided one knows how to multiply two matrices, In
support of this claim, they of course, justifiably, point to the successes of
that prince of amateurs in this field, Dirac, particularly with the spinor
representations of the Lorentz group.

As an amateur myself, I strongly believe in the truth of the non-pro-
fessionalist creed, I think perhaps there is not much one has to learn in
the way of methodology from the group theorists except caution, But this
does not mean one should not be aware of the riches which have beenamassed
over the course of years particularly in that most highly developed of all
mathematical disciplines - the theory of Lie groups.

My lectures then are an amateur’'s attempt to gather some of the fasci-
nating results for compact simple Lie groups which are likely to be of physi-
cal interest. I shall state theorems; and with a physicist's typical unconcern
rarely, if ever, shall I prove these. Throughout, the emphasis will be to
show the close similarity of these general groups with that most familiar
of all groups, the group of rotations in three dimensions,

In 1951 I had the good fortune to listen to Prof. Racah lecture on Lie
groups at Princeton. After attending these lectures I thought this is really
too hard; I cannot learn this; one is hardly ever likely to need all this com-~-
plicated matter. I was completely wrong, Eleven years later the wheel has
gone full cycle and it is my turn to lecture on this subject. I am sure many
of you will feel after these lectures that all this is too damned hard and un-
physical. The only thing I can say is: I do very much hope and wish you do
not have to learn this beautiful theory eleven years too late,

2. SOURCES

A word about the sources [1] and the scheme I wish to follow. The chief
sources in this theory are the famous thesis of Cartan in which most of this
subject was created Hermann Weyl and his classical text on "Classical
Groups" and Racah's Princeton lectures [2]. However, I believe conceptu-
ally the most concise existing treatment of the subject is in the works of
DYNKIN [3]. Dynkin's paper has a magnificent appendix which gives a re-
view of the known results and this appendix is my major source, From the
point of view of a physicist working on symmetry problems perhaps the best
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reference is to the review paper of BEHRENDS, LEE, FRONSDAL and
DREITLEIN [4]. I have checked with Lee that apparently while these authors
knew of Dynkin's work they did not have it accessible when they were writing
their review, Thustheir treatment of the fundamentals resembles Cartan and
Racah more closely rather than Dynkin, Another excellent paper for physi-
cists is SPEISER and TARSKI [5]. For a fuller exposition of Dynkin, refer-
ence may also be made to two Imperial College theses - those of NE'EMAN
[6] and IONIDES [7].

3. DEFINITIONS

The general theory of Lie groups follows closely the pattern of the one
group we are all thoroughly familiar with, the theory of the three-dimen-
sional rotation group Oj. It is indeed a matter of deep regret that the ele-
mentary expositions of this familiar case do not employ the same termi-
nology as that of-the general theory. Half the conceptual difficulties of the
subject would simply disappear if this had consistently been done in our
undergraduate courses, To illustrate and to anticipate notation we sum-
marize known facts about the rotation group Og. (All statements made here
will be formalized later.) We know that this group is completely determined
by three infinitesimal generators:

Jr= 1/ (3 21Ty, I,
and their commutation relations:
el =8, [0, 5] -0, (0,3 = 4,

The commutation relations tell us that

(i) The number of operators (out of these three) which can be diago-
nalized is one (J;). Call this number the "rank" of the group, Thus the rank
of 03 =1, .

(ii) Call the eigenvalues of J3 (i.e. the magnetic quantum numbers) by
the name "weights". The highest eigenvalues j of J; uniquely labels a rep-
resentation, We shall call this "the highest weight",

(iii) The commutation relations tell us (from [J%, J;] = £J,) that, irre-
spective of what the weights are, the difference of two consecutive weights
is £ 1, These numbers + 1 which are characteristic of the commutation re-

_lé.tions of the group and not of any particular representation are called
"roots". In the subsequent general study of Lie groups these three concepts,
"rank' of the group, "roots" of the group and "weights" (and particularly

the highest weight) will be generalized and will play crucial roles.

(iv) Another way of labelling the representations of Oy is to use the oper-
ator 42_ This operator commutes with all other operators and thus for a
given representation equals a constant multiple of unity, If j is the highest
weight J%= j(j + 1) 1. This operator is called the "Casimir operator”. We
shall find that the concept of a general "Casimir operator" is not as highly
developed, andforthis reason we shall treat this concept at an early stage
{section 5) and then not mention it at all later.
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4, MATHEMATICAL PRELIMINARIES

4.1, A group G is a set of elements a, b.... with a composition law (multi-
plication) such that the following conditions are fulfilled:

(i) if a and b are elements of the set, then also the product ¢ = ab be-
longs to the set, :

(ii) the composition is associative: a (bc) = (a b) ¢,

(iii) the set contains a unit element e such that ae = ea = a,
(iv) to any element a of the set, there exists one and only one element
a’! of the set such that ala = a al = e,

The definition of a group does not imply that the two elements ab and
ba are equal; i.e., the composition is not necessarily commutative. A group
in which all elements commute is called abelian,

A sub-group H of a group G is a sub-set of elements of G, which again
fulfils the group postulates. G and the group consisting of the unit element,
e, are called trivial sub-groups of G, A sub-group N is called an invariant
sub-group of G if for any element n of N (neN), sns! is again an element
of N where s is any element of G(s€G).

A groupis called simple if it contains no non-trivial invariant sub-groups,
except possibly discrete ones,

A group is called semi-simple if it contains no non-trivial invariant
abelian sub-groups, except possibly discrete ones.

4,2, A representation of a group G is a mapping of the group into a set of
linear transformations D of a vector space R such that

if ab =

then D(a) D(b) = D(c),
D(al) = D7 (a),
D(e) =

where I is the unit operator,
- A representation is reducible if it leaves a sub-space of R invariant,
Then every transformation matrix can be brought into form:

b

y :

0 D

A representation is fully reducible if every transformation matrix can

be written as
A 0
0 D:l

4.3. A Lie group is a group whose elements form an analytic manifold in
such a way that the composition ab = ¢ is an analytic mapping of the manifold
GX G into G and the inverse a -a! is an analytic mapping of G into G, A
Lie group can thus be viewed from an algebraic, topological or analytical
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point of view, The topological concepts of importance are connectedness,
compactness and invariant integral on the group (see SPEISER and TARKSI
(5]). :
A group G is compact if every infinite sequence in G has a limit point
in G, For a compact group one can define a f1n1te total volume which is in-
variant under the group.

For example, the group of rotation in three dimensions O3 without re-
flections is a connected and compact group., The proper Lorentz group is
connected but not compact and the improper Lorentz group is neither con-
nected nor compact,

The study of simple groups is important because every semi-simple
connected group is essentially a direct product of simple groups, and any
connected compact Lie group is essentially a product of a semi-simple and
a one-parameter (abelian) compact group.

Ex. Oy ® O3 X Og; O, simple; - O4 semi-simple.

The symbol ® means locafly isomorphic. From now on we consider only
simple compact Lie groups.

5. SIMPLE COMPACT LIE GROUPS

So far as a physicist is concerned, a Lie group is a group of transfor-
mation of variables which depend analytically on a finite set of N parameters.
The fundamental idea of Lie was to consider not the whole group but that
part of it which lies close to the identity consisting of the so-called infini-
tesimal transformations, To formalize this, we have Theorem I.

- Theorem 1

Every representation of a compact Lie group is equivalent to a unitary
representation and is fully reducible (RACAH, WEYL (2]). Thus, since the
matrices D(g) can be taken as unitary, they can be put into the form:

D = exp(ie®X,),

where X, are constant hermitian matrices (X} = X,), which are called infin-
itesimal generators of the group. €*{@ = 1,2...,N) are N real parameters
on which the set of transformations D depend.

The group is called unimodular if for any D(S), det[D(s)] =

Then tr X = 0,

Theorem 2

Fundamental Theorem of Lie
The local structure of a Lie group is completely specified by the com-
mutation relations between the operators Xyt

(X, x]-cy L s aBr = L2.,N, (5.1) .

where the coefficients CJg which are independent of the representations of
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the group are numbers (called the structure constants of the group). These
numbers satisfy two requirements:

(a) antisymmetry in the two lower indices

{b)
& & € 8 €
Cag Csy + Cyo Csg + Cgy Coa = 0.

Note that conditions (a) and (b) are equivalent to the antisymmetry of
the Commutator bracket [X,, X,] and the Jacobi identity:

[[Xe Xpl, X1 +[[X), X, Xl +[[X5, X)) X, ] = 0.
Rewrite (b) in the form:
(Cafy (Co)y - (Coly (Caf = éie(ca);- :
Thus, we have shown the following:

Theorem 3

The N matrices C, with matrix elements (Ca); form the so-calledregular
or adjoint representation of the Lie algebra*,

The problem of classification of Lie groups is the problem of finding
the numbers c's which satisfy (a) and (b) and then of finding N constant ma-
trices which satisfy the fundamental commutation relation of Theorem 1.
This problem was completely solved by Cartan in 1913, Before however
we state Cartan's results, wefirst wish to recast the fundamental commu-
tation relation (5. 1) in a "canonical" form and also get over a number of
auxiliary results connected with Casimir operators,

6. .CASIMIR OPERATORS

From the structure constants we can define a metric tensor:
- B~
gyu - Cpa Cue .

Theorem 4
The necessary and sufficient condition for a Lie group to be semi-sim-~
ple is that : ‘

* The set of N matrices X, span a linear vector space over the field of complex numbers and define a
Lie Algebra; the sum of two matrices is an element of the algebra and so is their commutator. Lie algebras
and Lie groups possess a one-one correspondence, and it is possible to go freely from Lie groups to Lie algebras.
The study of Lie algebras (first introduced by Weyl)is in effect the study of the infinitesimal aspect of Lie
group theory. Even though it is galling to bring in a new concept (of alie algebra) at this stage, this ap-
parently improves the mathematical rigour of the statements made in these lectures’
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det [g“y] # 0 (Cartan).

Thus for a semi-simple roup we can define an inverse metric g such that
: group metric g :

[ = g
g8, &

and we can use the metric tensors for ralsing and lowering indices.

Now define an operator F = galazXa X ? This is called the Casimir
operator and has the property that it commutes with all the generators of
the group:

(F. X] =

The proof of the result is trivial. The significance of the Casimir operator
lies in recalling that by Schur's Lemma any operator which commutes with
all the generators of the group must be a multiple of the 1dent1ty

For G5 this operator is the total angular momentum J One can define
generalized Casimir operators:

It is easy to see that all these commute with X%,

For Og all inequivalent irreducible representa tions.can be character-
ized by giving different values of A where Al = J2. The question arises if this
is true in general. Racah gives the following partial answer: Write the set
{)\k} defined by A*1 = F¥. For simple groups if the representation D and (D})T
are equivalent representahons then the set {\} gives an unequivocal charac-

' terization of all the inequivalent representations.

7. CANONICAL FORMS OF THE COMMUTATION RELATIONS AND RANK
OF A GROUP

Theorem 6 (P.lIonides)

By a suitable choice of linear combination of the X's, the ng can be
made antisymmetric in all three indices and pure imaginary; i.e. one can
write the commutation relations in the form:

[Xo Xgl = 188y %.

with f;g, purely antisymmetric and real.
In the usual theory of angular momentum, the first step is to rewrite
(the Ionides type of) commutation relations,

[ Bl =iegd, . @B,y =123, (7.1)

in the so-called "canonical form". Defining the non-hermitian operators,

J* = (Jl :tiJg)/\/—z,
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we rewrite (7. 1) as

[3,, 3] =3,

(7.2)
(3,,31=3,.

There are two virtues of this canonical form:

(1) If J, is d1agonahzed (Jal m) = m|m), we infer from (7. 2) that the
operators J* act as "creation"” and "annihilation" operators,

(2) (7.2) shows that the consecutive eigenvalues m of J; differ by 1.
Our first task is to cast the commutation relations (5. 1) in the "canonical
form",

Assume that among the N generators, there are f which mutually com-
mute and can thus be simultaneously diagonalized. This number £ is called
" the rank, and we shall designate these f (hermitian) operators as H;, Hs...
..Hy. (For O3, £= 1). These operators have a direct physical meaning since
their eigenvalues for any representation provide us the quantum numbers.

Let us consider H;, H,....H, as the components of an ¢{-dimensional
operator-valued vector H. The components of H clearly satisfy the com-
mutation relations:

(H;, HJ =0  fori, j=1,2,....,4,

If the dimension of the algebra is N (i.e. the number of parameters of the
corresponding group is N), we still need (N - £) elements to complete a basis
of the algebra. A suitable choice of these is provided by the following:

Theorem 7

There exists a basis of the Lie algebra consisting of the elements H,,
Hy...,Hp; Ey, By ...Eyn-g/2 Such that the following commutation relations
hold: '

[H, E] = r (¢) E, (7.3)
[Ey . Eg = r (a)H, (7.4)
[Ey Egl = NygE foraf - B, (7.5)

withe, B =11, £2,..,2(N-4)/2. E's are non-hermitian matrices and r (a)
are real vectors in an /-dimensional space. The r's are called roots “of the
algebra; they have the property that

re)=-r(-a)) (7.6)

Clearly the total number of the roots is (N -J).

The scalar product appearing in (7.4) is the usual Euclidean scalar prod- .
uct provided the H's are chosen in such a way that the following normali-
zation conditions hold: '

Er(oz)r(oz)SRé1

pij=1,2...4, (1.7)
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with an arbitrary scale constant. Finally, N, are real numbers which are
different from zero if and only if r (a) + r (8) is also a root,

The roots, being essentially our old friends the structure constants, spec-
ify completely the group (at least in the local sense). They possess a twin
role in the theory. First, as may be inferred from (7.3), the roots
are the differences of the eigenvalues of H. Second and more important
for our present purposes, the roots allow us to classify Lie groups. Interms
of the roots we can state Cartan's solution of the problem of finding all simple
Lie groups. The crucial theorem here is Theorem 8 which lists further
properties of the roots and in terms of these gives a complete classification
of Lie groups.

8. CLASSIFICATION OF LIE GROUPS /

A root is said to be positive if its first non-vanishing component (in an
arbitrary basis) is positive, A root is called simple if it is a positive root
and in addition it cannot be decomposed into the sum of two positive roots,

Theorem 8
(i) For a simple group of rank fthere exist { simple roots and they are
all linearly independent, (We shall call the set of simple roots the #-gystem.)
(ii) Every positive non-simple root can be expressed as a linear com-
bination r(al}” Ry r (@) where Ry are non-negative integers.

(iii). If r (@) and r (8) are two simple roots, the angle 6,4 between these
can take only the following values: ’

90° 120° ©135° and 150°,

so that 2r @) - r(B)/r(a) - r(e) and 2r(a)- r(B)/r(B) - r(B) areboth inte-
gers,

(iv) For every simple group, all the simple roots either have the same
length or their length ratios assume simple values, More explicitly one has

1 if 8.g= 120°

2
ﬁ%%g= 2 if 6= 135°

3 if e.aﬁs 150°.
If 6,5 = 90°, the ratio of lengths is undetermined.

Dynkin diagrams

As we shall see in a moment, the geometrical properties of the simple
roots in the T-system characterize in a unique manner the corresponding
Lie groups. Therefore it is most convenient to incorporate them in a sche-
matic diagram. These diagrams (the so-called Schouten-Dynkin diagrams)
are drawn in Fig. 1.

From Theorem 8, the lengths of the simple roots of a given simple Lie
group can assume at most two different values, This fact together with the
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CLASSICAL GROUPS N=NUMBER OF
PARAMETERS
AL OO O-0 e

B @ OO0 O | 20+
« OO0 @ | 2+

D,n>z)<O]>O—O-—O— -------- o) 22—

EXCEPTIONAL GROUPS

G2 0= ) G
Fs o 52

Es o—o—g@@ a
2 &O{g—ow 133
Es cyo—g—o—o—cyo 28

Fig. 1

Cartan solution of all possible single Lie groups.

properties about the angles enumerated above can be symbolically described
by associating with each simple root a small circle, For the roots of great-
est length the circle is marked in black, If the angle between two consecu-
tive simple roots is equal to 120°, 135° or 150°, the corresponding circles
are joined by simple, double or triplelinesrespectively. If the angle is 90°,
the circles are not joined. For a group of rank / there are ? simple roots
and therefore f circles (black or white),

In terms of these diagrams we give now the Cartan solution of all pos-
sible simple Lie groups. Broadly these fall into two categories: -the so-
called "classical groups' and the five "exceptional groups”.

To anticipate we shall find that the classical Lie groups are some of
the well known objects:

A, is the group of unitary unimodular matrices in complex space of
(£ + 1) dimensions (SUp,).

B, and D, are groups of orthogonal transformations (rotations} in real
spaces of 2/ +1 and 2/ dimensions respectively (Oyy.; and O,).

C; is the group of unitary matrices U in complex space of 2; dimensions
which fulfil the condition UTJ U = J where J is a non-singular antisymmet-
ric matrix (the symplectic group)*,

* Note from the Dynkin diagrams:
i Dy = g>o g o—0—0 =
® 3 isomfl)’rphic As
Also i.e. Oy & SU,.
(ii) C,= a—»

2
n
L

iLe. Oy = C;.
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To take simple examples of root structures: :

For £=1 (i,e. group Oy) there is just one simple root + 1,. The space
spanned by simple roots (the 7-space) is {1}, For ; = 2, the space is a plane,
the relevant groups being

Ay o—0 . Two simple roots of equal length, and the
angle between them is 120°.

By: €O Two simple roots. Their length ratio is 2.

Cy: a» | The angle between them is 135° .

Gyt | =0 Two simple roots with length ratio equal to

3, and angle 150°,

Dy: Z 1s semi-simple, D, =~ ,Al X A,

Summarizing this section then, from the Dynkin diagrams we read off im-
mediately the rank £ of the group, the lengths of the simple roots and their
mutual angles (and of course the dimensionality of the Euclidean space (7)
spanned by these £ independent vectors)*,**, The simple roots r(1),
.r(2),....,r (£), are given by the following formulae:

% It is perhaps worthwhile to make the reminder at this stage that not all roots are simple. In fact the
total number of roots is (N-£), the distinct ones being (N-¢)/2in virtue of r(0) = -r(-0), a=1, 2,..., (N-2)2.
The remaining (N-3£)/2 distinct non-simple roots can easily be constructed, and in Footnote ** we give a
complete ansatz for drawing a complete root diagram (for 2 = 2 for example in a plane; for £=3 i.n{s}
space and so on). Personnally, I consider these diagrams pointless. However, to satisfy current prejudice the
root diagrams for A,, B, and G, are reproduced in Fig. 2.

Root diagrams for A,,B, and G,

%% The following scheme incorporates all the requirements about angles aud lengths of simples roots
specified by the diagrams.
For A, define the following vectors:

by the conditions

M At ¥, = 0,
2 _ 2 _ R T
R=X= Ay = s

Ap 2= "Ar P A= L2 241,
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E(ﬂ) = Ag‘épl ,

Tl =2pgm2y,

(8.1)
)= -2,
-0
, [ 1
For B, : the simple root structure is as follows:
r(¢)=2X,, (This is the smallest root)
r(g-1)= Xp172e, (8.2).
= -2,
* where ) . .
' X=Xy X = A,
XA =0,pfa, (8.3)
R 1

For C,: the simple roots are given by:

r(g) = 22,, (Thisis the greatest root.)

- =Xy ~Ag, (8.4)
r(1)=2s-2,

ams—e —e.

¢ el 1

where the A 's satisfy (8. 3).

For D, : the simple roots are given by:

r(2) =2+ 2,,
D=, - 2, (8.5)

r(1) =2, -2
3 a2

-0
3 1

£-1

The A's satisfy (8.3). So much for simple roots, All roots are given for the
classical groups by the following expressions:

Ay A -2 )P g2, 44
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By: kA, A A2 ;p,q=1,2,.... L ~
The * signs are to be taken in
: 2A, +A %X ; p,q=1,2,..... , i )
Cot 2224, 2022 5 p.q ' £ arbitrary combinations,

D : A A ;p,g=1,2,.....,2.

Similar expressions can be given for the exceptional groups. Also one
can give a full correspondence between the "canonical” expressions for the
commutation relations and the more familiar manner in which one writes the
commutation relations for the orthogonal, symplectic groups, etc.

Thus, for the orthogonal group in (24 + 1) dimensions which leaves in-
variant the quadratic form

? -
£ x°x"
p=-1
one may write the infinitesimal operators:

e % = %P
e = Ry = X 5%

with the commutation relations:

[Xik’ an] = G Xip ™ G Xim = 8+m Xin - Op4n Xim

where 6q = 1 if q = 0 and zero otherwise. These operators correspond to the
E's and the H's of B, if we make the following identifications:

){p-p = H'p‘ titq £ E:t)\pi-)\q- Xin = Ei)\p ; p’q> 0.

Similar correspondence can be stated for A,, C,, D, etc. (Racah's notes).

9. REPRESENTATIONS OF LIE GROUPS: WEIGHTS

9.1, Now we come to physically the most important problem of all - the
problem of finding representations of the group, i.e. the matrices corre-
sponding to H and E,.

Consider a representation of dimension {or degree) d. Since H;, H,, ...
.., Hy are hermitian matrices, and since they commute with each other, we
can simultaneocusly diagonalize these, Let |m> be a simultaneous eigenket:

H |m)> = m |m). (8.1)

Since H's are d X d matrices, the total number of such eigenkets |m> is d.

The m's in Eq. (9. 1) are real numbers and are called "weights'. They
form £-dimensional vectors in a Euclidean space for whose basis one may
take the 7-space of the group (the space spanned by the £ simple roots).
Summarizing, for the case of a group of rank £ and for a given representa-
tion of dimensionality d, there are
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£ : simple root vectors
(N-34/2 : distinet non-simple root vectors

d :  weight vectors (provided we count each weight
vector as many times as its multiplicity indi-
cates, the multiplicity being defined as the
number of independent eigenkets |m) corre-
sponding to a given weight m).

Note that root vectors are characteristic of the group. They are really the
structure constants. The weight vectors on the other hand are characteristic
of the representation, There are only £linearly independent roots (simple
roots)., There are also only £ linearly independent weight vectors. The sim-
plest (oblique axis) basis for the weight vectors is that provided by the sim-
ple root vectors.

All this intertwining of weights and roots is exciting enough, but still
further and the more exciting result comes when we look for the analogue
of the result in Qy that all weights are either 1ntegers or half—mtegers The
analogous result is Theorem 9, which gives the ''component' of any weight-
vector along a simple root-vector.

.

Theorem 9 )

For every weight m, the number m r (a)/r (@) r (@), where r ()erm, is
an integer or a half-integer, % 0.

Theorem 9 provides the justification for Dynkin's insistence on simple
roots as the primary entities on which all conceptual emphasis should be
placed. Dynkin cares neither for the non-simple roots nor for the weight
vectors. Given the simple roots, Theorem 9 tells us what the weights look
like through the simplest possible generalization of the familiar results for
the {3} rotation group*, In this insistence on simple roots possibly lies the
superiority of Dynkin's presentation of Lie group theory.

10. IRREDUCIBLE REPRESENTATIONS AND THEIR DIMENSIONALITY

Definition: A weight m is said to be higher than m’ if m-m’ has a posi-
tive number for its first non-vanishing component in an arbitrary basis. The

weight A which is higher than all the others is called the highest (or greatest]
weight,

Theorem 10

A representation is uniquely characterized by its highest weight A, and
the highest weight always has multiplicity one.

* Earlier it was mentioned that roots are differences of weights.. The formal result is: If | m> is an
eigenket of H corresponding to a weight m, Eal@ is also an eigenket with weight m * r(a). Theresult fol-
lows from

[Eq. B] =1(@E,.

Note the role of Ea as a creation operator.
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Theorem 11

In order that a vector A be the highest weight ot some irreducible rep-
resentation, itisnecessary and sufficient that j,, definedas jq =A.r (a)/z (@)-r(a),
is a non-negative integer or half-integer,

Thus to get the irreducible representations of any Lie group, we should
mark each circle in the Dynkin diagram with a non-negative integer or half-
integer j,. These numbers characterize uniquely the irreducible representa-
tion with A as its highest weight, the "components" A -r (@)/r (a)-r(a) of |
A being just (j;, jg.....- ). The dimensionality of this representation is given
by the following theorem of Weyl:

Weyl's Theorem: Theorem 12

Let L, be the system of all positive roots of a semi-simple Lie algebra,
and let an irreducible representation be uniquely characterized by the highest
weight A, Then its dimensionality d is given by the formula:

4 L(ge;[l A E(ag/g'z(a),

where
g = % [_(B%GE,,, E(B) S

If one writes the vectors A and g in terms of the auxiliary quantities A'g
previously mtroduced in the third footnote of section 8,

>
n

L2

g =Lg A,
The Weyl formula above gives the explicit expressions listed in Table I.
As examples consider some of the interesting physical cases, namely,
the case of rank / = 2. In this case the number of commuting matrices in
the algebra is two, and we can associate them, for example, with the third
component of the isotopic spin and the hypercharge. The only simple com-
pact Lie groups of rank 2 are Ag, By, C; and Gy;. Any irreducible represen-
talion of these groups can be labelled by means of two non-negative integers
jp Jg. The formulae for the dimensionality given in Table I can be written
explicitly 1n a simple way and is shown in Table II. )
For instance, for the simplest choices of the arrays j,, j, one gets the
following dimensions:

Ay: d(0,00= 1 By(*G=0) : d(0,00= 1 Gp: d(0,0)= 1

d(1,0)= 3 d(3,0) = 4 d(3,0)= 7
de,%) = 3 d(0,3) = 5 d(0, }) = 14

d(1,0)= 6 d(1,0) = 10 d(1,0) = 27
at,1) = 8 d(0,1) = 14 '

d(1,2) = 15 o ad,h-16

d(1,1) = 27
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(i{s are non-negative integers or half-integers)

N .
Group number of Dynkin diagrams Dimension of the irred. represent, f::);e:;l:ns
parameters ’ g
[
where fre = fogq4p+ 2 & d
opq= 2" fa “ e
Pa gn -8 f =— T ij
P IH7 94 gy
Ag 0% +2¢ jl jg-1 i1 (14 apg) £ 4, -0
O—0— 0 .. o p.q PY pa= p~d 8k= 73 +‘(2-k+1)
8p *8q _
8o = ~2/2
=T/ Note fy+... g4y = 0
fi, =3 +2li‘1' Ji
= 1
By 20 + ¢ e _o----o T+ Tp)(Asapq) (1+Epq) " k™07 %2k
Ip Jg-y L 8k=(2'k+i)
=2
. » B J
Cy 202+ ¢ —»——e--—--- . . ) _ k=2 Z i
lg Jp-1 13 gk =(2_k*§)
| ' f; j jg +2 i}—:,z j
j k= ¥p-1+Je it
b 2 - Jl " k
! et >>—0~ _______ o g.(é"' YP)(l + apq)
i i1-2 I fg=3p., =Jp 89=0+ gk=2-kforkge-1
0-1

The products here range over all possible values of p and q; the indices denoted by distinct letters must have distinct values,
and of all sets of values obtained from one another by permutations of indices only one must be chosen,

\

SANOYD TT 0 WSITVIANO FHL

L8T



188 A. SALAM

TABLE II

Group Number of Dimension of the irr. rep.
parameters N

A, 8 + (1) ) Uy +1,]

B

C’ } 10 H () () Oy +1,] 21, +1y)

2

G, 14 + 0D () Uy +1y) (20, +34] %

(31, +14] [31, +2I,]

{ Note: Here J; =(2j; +1) and J, = (2, +1)}

These numbers d(j, jo)* represent the number of particles which can be
accomodated in any given multiplet in physical applications.

The adjoint (or regular) representation R plays a very important role
in vector meson theories. For the case of § = 2, these representations are
the following:

Ay T dpg=d3,3) = 8,
B,(C,): dg=d(1,0) = 10, |
G, : dg=d(0,1) =14, ‘

These groups, therefore, can accommodate 8, 10 and 14 vector gauge mesons
respectively if these mesons correspond to the adjoint representation.

11, COMPUTATION OF ALL WEIGHTS OF A GIVEN IRREDUCIBLE
REPRESENTATION

Notwithstanding the fact that the greatest weight uniquely characterizes
an irreducible representation, it is important for physical applications to
be able to compute all the weights of an irreducible representation. Later
we shall construct weight diagrams for some irreducible representation of
low dimensionaiity for the case of rank 2 groups (A,, By, C,, Gy). In con-
trast to the root diagrams, the weight diagrams are directly of physical '
interest, )

An explicit method to ¢alculate all the weights in terms of the highest
weight and the simple roots is given by the next theorem,. We have learnt
earlier that the roots equal differences of weights.

% I have introduced a small change of notation in the labelling of representations. Dynkin and Behrends
et al, label irreducible representations with numbers a;, a,,...,a, where a; are (non-negative) integers. 1
have used for labelling the numbers j,, i,.... +p where the j's are (non -negative) integers or half-integers.
The new notation possibly brings out still more the fact that a general Lie group of rank ¢ is a simple "gener-
alization” of Oy and has ¢ distinct "angular momenta” j;, j,,... ’ji rather than just one (j, ).
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Let A and W be the highest weight and the set of all weights respec-
tively of a given irreducible representation,

An element m €W is said to belong to the layer A® if it can be ob-
tained by subtracting K simple roots from A, Clearly A( consists only
of A, and

w=a9 ua®ya®,... :
Note that all the layers are disjointed,

Theorem 13
Every element m® eA® can be expressed as

E(k) = E(k-l) - _r_ (a )’
where _E(k-l) e Ak-1)

and r(a) 7.

However, if m(-1) belongs to A®) and r(e) is an arbitrary simple root, the
difference m(k 1) -r(e)ea® if and only if the following condition is satisfied:

2m®Y . r(e)/r(a) r(a) + Q >0,

where the number Q is defined by the requirements:

E(R'l) +qr(a) eW for q<Q
m&D 4+ qr(e) eW for q=Q+1.

Example:

Perhaps the best way to show that the theorem is actually quite harmless
and simple in practice is to construct the weights for a specific case. Con-
sider the group Ay, =~ SUj for which £= 2, The Dynkin diagram is O—O.

The 7 -space is two-dimensional; and if we call the roots « and §, the dia-
gram tells us that their lengths are equal (| a |2 |B | ) and the angle be-
tween them is 120° so that

[
.

a-Bla-a-=-

Consider now the regular representation (3, 3). The dimensionality in
this case is d = 8, so that the representation could accommodate 8 particles.
The "components” of the highest weight A (ie)j,, j; are given by

(11.1)

>
IR
I?
IR
o

Ja =

(11.2)

/
/

(koY

™
[}

[N

>
™
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Noticing that o and E do not form an orthogonal basis, we find from (11,1)
and (11,2) that

A=a + B,

Now using Theorem 13, if we are given an arbitrary weight M and we
wish to know whether M-a is a possible weight or not, we proceed as fol-
lows:

Write the series M, M+a, M+ 22,...M+(Q+1)a where Qis an
integer. The series terminates for a Q defined by the requirement that while
M,M+a,....M+ Qa are weights, M+ (Q+ l)a isnota we1ght Now com-
pute > the number,

Q+ M, where M, =2 M- a/a- a.

If M, + Q >0, then M-a is a weight; otherwise it is not. In starting this
procedure the crucial pomt to remember is that A + a where o is a simple
root is never a possible weight,

Consider now the case when M = A, Since A + 2 is not a weight, Q = 0,
Since

=Ara/a a =j, >0, (11.3)

we see from (11.3) that A - a is indeed a weight, Likewise, since s> 0,
A-Bis also a weight.

“We can now start with (A - @) and test if {A-a)-a and (A-a)- B are pos-
sible weights or not, It is easy to see that A - 2a is not a weight, but A-o-8
is. Proceeding in this fashion, we findthat all possible weights are given by
the diagram shown in Fig. 3.
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Notice that the weightA -a- ﬁ is of multiplicity two. The diagram does not
further fan out, and we obtain a totality of eight weights. Wr1t1ng A=a+§,
we have the following system of welghts

a+B, a B, 0,0, -8, -a -(a+B). (11.4)
The multiplicities are spindle-shaped: they increase, come to a maximum

and decrease again. (The weight zero has multiplicity two.) This is a gen-
eral result which will not be discussed further.

n(g) pla+f)

) z° THA)

Fig. 4

Euclidean diagrams

Fig.4 gives the Euclidean diagram of these weights. The two rings in
the centre indicate the two zero weights. A tentative identification of the
stable baryons with the appropriate weights has also been made in the figure,
provided we identify

m, = 13,

(23U,

mg

where m (ml ) in a Euclidean basis.
- For 111us{rat1ve purposes, here are some more weight diagrams cor-
responding to the representations [4] shown in Fig. 5.
Before concluding this section we state one important theorem and make
one final remark.

Theorem 14

For the adjoint representation, the root vectors and the non-zero weight
vectors coincide. The weight zero occurs with a multiplicity equal to the
rank of the group.

An illustration of th1s theorem is given by the weight diagram of the
(3, §) representation of SU; computed earlier in this section. Because of
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]
1+ & y
(1,0) OF SUy
or A
1 | 1
-1 1 I
2 0 Z 3
u
A
0_
(0,19 OF SU3
-1} % A
L | H
-1 1 I
z 0 2 3
u
1r €1,0) OF G
, 2
0._
-1k
I
u
1+ X :
(0,1 OF Gy
0._
A
_.‘ -
=- ze
1 1 1 1 1
-1 -1 1 I
1 5 0 3 1 3
Fig. 5

this rather remarkable property clearly the adjoint representation has a
greater claim to attention than any other.
Remark

In O4, the eigenvalues of J; (the weights) are non-degenerate for any
given representation and hence suffice to label the representation. For gen-
eral Lie groups,. except for the highest weight, all others may possess
multiplicities of > 1 (compare the weight (0, 0) for SU; which has multiplicity
2). If the multiplicity is > 1 we need additional operators all commuting
with each other and with the H{'s, whose eigenvalues will enable us to re-
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move the degeneracy and label uniquely the eigenvectors of the H's, belonging
to the same given weight. (A Casimir operator which has the same eigen-
value for all vectors of a given representation is clearly useless for this
purpose.) The number of extra operators needed canbe shown to equal (N- £)/2-2£
= (N-32)/2.For Oy, N = 3, £ =1 so that no extra operator is needed to cha-
racterize all the eigenkets of J; in a representation specified (uniquely) by
the highest weight j. For SUs, however, N = 8, £= 2 so that we need one
more operator besides I; and U to label uniquely the eigenkets of 1, and U.

It is not hard to show that in this case such an operator is given by I . For
C,, (N-32)/2 = 2, Thus, even additional tol' (and U and 15 }, one more gquan-
tum number is needed to form a complete set of commuting observables.

For G,, (N-34)/2 =4

12. REDUCIBLE REPRESENTATIONS

Let us take stock of the situation. For a physicist working in symmetry
problems, the information necessary for progress is the following:

(i) Classification of irreducible representation for a group of rank £,
We possess a complete solution of this problem.

(ii) The eigenvalues of the commuting operators H,,....,Hy,. This is
the same problem as the problem of determination of weights. Again
we possess a complete solution of this,

(iii) Determination of the extra(N-3£)/2 operators to enable a unique
labelling of the eigenkets of H,, ....,H;. For groups like A;, B,,
C,, D, weknow how to construct suchoperators but a general system-
atic procedure apparently is net known.

(iv) The reduction of a reducible representation into the direct sum of
irreducible representations. There are two parts of this problem:
first, finding out which irreducible representations make their ap-
pearance in this direct sum; second, to find the Clebsch-Gordon
coefficients, Theorem 15 will give the procedure for solving the
first problem, The second problem will be dealt with by Ruegg and
Goldberg in their lectures for some special (fortunately for the
physicist, extremely important) cases. No general solution how-
ever exists,

First, some obvious definitions:

Kronecker products
If R;, Ry, Ry are three linear spaces of dimensions m, n and mn re-
spectively, we shall say R, is the Kronecker product of R, and R, (R,
= R; XR,) provided to every vector |&, > €R, g 2 €R,, there corresponds
a vector | £ 3 eRg(notation | Ez>=1E;>X | £€,>) such that:
(i) The operation IE DX IE > is linear in each argument
(ii) Rj is spanned by vectors of the form IE > X ls
If ¢, and ¢, are linear representations of a L1e algebra operating in R,
" and Ry, the representation ¢5 defined in R; XR, by the formula,

b, (18, 0% [8,01=(4 18 D1x |8, >+ |8, DX(9, |E, 03,
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is called the Kronecker product of ¢, and ¢, and will be denoted as

by =6, X 0, .

Theorem 15
(i) Addition of weights
If Aq) is the weight space of ¢, and Ay, is the weight space of the
representatlon ¢g, then AG) = Aq) + A
(ii) If A, and A, are the greatest welghts of ¢1 and ¢,, the greatest
welght of ¢3 is Ay + A,.

This theorem is an obvious generalization of the addition theorem for
angular momenta in O3 which we consider in detail. If j; and j, are the
highest weights of two irreducible representations ¢ (j;) and ¢ (j,), the (re-
ducible)} product representation has the highest weight j; + j,. Also the
totality of its weights is given by

Weight - ji+is 31t ig-1, 33+ 392, ey =31 Jo

multi-

plicity—) » 2 ;s 3 s eses 1

The multiplicities are easily deduced, For example, j;+ j,-1 arises in two
ways: either as the sum j; + (j,-1) or equally as the sum of the weights
(j1-1) + jo. The usual procedure to find the irreducible representations
contained in ¢ (j;) X¢ (jp) can be stated thus: Take away from the totality
of weights those which belong to the representation ¢ (j, + j, ). Among the
remaining weights occurs the weight j; + jo-1 with unit multiplicity. Clearly
this must be the highest weight of the representation ¢ (j; + j,-1) which
therefore must also be contained in ¢ (j;) X ¢ (j,). Taking away all the
weights belonging to ¢ (j;+js-1), we next identify the occurrence of
¢ (j; + j-2) in the direct sum from the fact that the highest weight left is
(i1 + jz -2). This procedure is continued till we reach ¢ (|j,- j, |). At this
stage all weights are exhausted, leadingtothe inference that

$GIX GG =8+ 3)+ 6 G+ ip-Det ¢ (fi -3,

The procedure is obviously completely general. Its only drawback is that

in order to apply it we need to know all the weights, A simpler version has
been developed by Racah, Speiser and Ruegg where, if j,; > j,, one adds

all weights belonging to the representation ¢ (j5) (i. e. jo, jo-1,..., -jg) to the
highest weight j; of ¢(j;). For Os, the resulting weights are clearly the high-
est weights of the irreducible representations contained in ¢ (j;) X ¢ (j2)° For
the more general cases this sum may lead to a certain number of negative
weights which certainly cannot qualify as highest weights. These then have
to be excluded, and the procedure for this is explained in Ruegg's lecture.

Cartan composition
If ¢, and ¢, are two irreducible representations, the Kronecker product
¢; X ¢ is in general a reducible representation. Consider its greatest com-
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ponent, ¢; X ¢,. This is an irreducible representation. with the highest
weight A, + A, The operation of Kronecker multiplication of two irreducible
representations followed by the operation of isolating the greatest component
lead to the formation of a new irreducible representation Ml X ¢2) and is
called the cartan composition of irreducible representations.

Those irreducible representations of an algebra which cannot be obtained
from other irreducible representations are called basic representations by
Cartan, These representations are characterized by the fact that their high-
est weights cannot be split into the sums of two elements that are themselves
highest weights. Clearly a representation ¢ is basic if, and only if, all the
labelling numbers j;, jo, ..., jo are zero except one which equals 3. Thus
every simple algebra of rank £ has £ basic representations.

One can go further and show that all basic representations themselves
can be constituted from a few so-called elementary representations by
Kronecker multiplications followed by an antisymmetrization procedure
which is somewhat familiar in ordinary tensor theory and will not be de-
scribed here indetail. For A, and B, there are just two elementary repre-
sentations. C, has one elementary representation and D, has three. One of
the elementary representations ¢ of A, is realized as the group SL(£+ 1) of
all matrices of order £ +1 with determinant + 1, the other being given by

6" = - [4,1".

For B,, one of the elementary representations is obtained by considering
the group O(2£ + 1) of all unimodular orthogonal transformations of the
(2£+1) dimensional space, while the second elementary representation is
the so-called spinor representation. The realization of the group C, in the
form of the group Sp(2n) of the symplectic matrices of order 24 gives its
elementary representation , while for D, (£ > 5) one elementary represen-
tation is given by the group of unimodular orthogonal matrices of order 24
and in addition there are two distinct spinor representations. For the ele-
mentary representations of the exceptional groups reference may be made to
Dynkin,

This brief description of the results in representation theory does not
even touch the practical problem of reduction of representation in the man-
ner the physicist wants it solved. For this we must fall back on our amateur
methods, multiplying matrices, symmetrizing and antisymmetrizing tensor
indices, though perhaps somewhat emboldened by the Enowledge that this
is also the entire, and when I say entire - I mean entire, stock-in-trade of
the professional group theorist. ’
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