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Abstract We study the gravitational collapse of a star with barotropic equation of
state p = wρ in the context of f (R) theories of gravity. Utilizing the metric for-
malism, we rewrite the field equations as those of Brans-Dicke theory with vanishing
coupling parameter. By choosing the functionality of Ricci scalar as f (R) = αRm ,
we show that for an appropriate initial value of the energy density, if α and m sat-
isfy certain conditions, the resulting singularity would be naked, violating the cosmic
censorship conjecture. These conditions are the ratio of the mass function to the area
radius of the collapsing ball, negativity of the effective pressure, and the time behavior
of the Kretschmann scalar. Also, as long as parameter α obeys certain conditions, the
satisfaction of the weak energy condition is guaranteed by the collapsing configuration.

Keywords Naked singularity · f (R) gravity

1 Introduction

Einstein’s General theory of relativity is the classical theory of one of the four
fundamental forces, gravity, which is the weakest but most dominant force of nature
governing phenomena at large scales, and is described by a mathematically well-
founded and elegant structure i.e., differential geometry of curved spacetime. The
Einstein’s field equations, a system of non-linear partial differential equations, relate
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the geometric property of spacetime to the four-momentum (energy density and linear
momentum) of matter fields leading to precise predictions that have received con-
siderable experimental confirmations with high accuracy such as solar system tests
(see [1] and references therein). One of the most engrossing but open debates in gen-
eral relativity is that of the final fate of gravitational collapse with possibility of the
existence of spacetime singularities, the ultra-strong gravity regions where the densi-
ties and spacetime curvatures blow up, leading to a spacetime which is geodesically
incomplete [2] and the structure of any classical theory of fields is vanquished. A star
with a mass many times than that of the Sun would undergo a continual gravitational
collapse due to its self-gravity without achieving an equilibrium state in contrast to a
neutron star or a white dwarf. Then, according to singularity theorems established by
Hawking and Penrose [3–5] a singularity is reached as the collapse endstate. Such a
singularity may be a black hole hidden from external observers by an event horizon
or visible to the outside Universe (naked singularity). In the latter collapse procedure,
the information on super-dense regions can be transported via suitable non-spacelike
trajectories to a distant observer. Although the occurrence of a spacetime singular-
ity as the final outcome of a collapse scenario is proved by the singularity theorems,
they do not specify the nature of such a singularity. The cosmic censorship conjecture
first articulated by Penrose [6] states that a black hole is always formed in complete
gravitational collapse of reasonable matter fields, or a physically reasonable spacetime
contains no naked singularities. However, up to now many exact solutions of Einstein’s
field equations describing singularities, not hidden behind an event horizon of space-
time, are known. A remarkable study is the one by Shapiro and Teukolsky [7,8], who
showed numerically that gravitational collapse of a spheroidal dust may end in a naked
singularity. Also many exact solutions of Einstein’s field equations with a variety of
field-sources admitting naked singularities have been surveyed. The examples stud-
ied so far include gravitational collapse of a pressure-less matter [9–14], radiation
[15–22], perfect fluids [23–25], imperfect fluids [26,27] and null strange quark fluids
[28–30]. Beside general theory of relativity, there exist alternative theories of gravity
explaining gravitational phenomena. Such theories have been studied for a long time
[31–35]. From the theoretical standpoint there has been many attempts to correct the
Einstein-Hilbert action in order to renormalize general relativity to build a quantum
theory of gravity or at least some effective action (including the low-energy limit of
string theories), or to quantize the scalar fields in curved spacetimes [36]. From the
observational point of view, the discovery of current acceleration of the Universe using
CMB Ia supernova [37–45] suggests that such acceleration may be explained within
the framework of general relativity by assuming that 76% of energy content of the Uni-
verse is filled with a mysterious form of dark energy with equation of state p ∼ −ρ
(where ρ and p are the energy density and pressure of the cosmic fluid, respectively).
Another possibility is to include a cosmological constant� of a very small magnitude
in Einstein’s field equation, but encounters such difficulties as the well-known cos-
mological constant problem and the coincidence problem. Another alteration is f (R)
theories of gravity [46–50] where the Ricci scalar in the Einstein-Hilbert Lagrangian is
replaced by a general function of it, providing alternative gravitational models for dark
energy since the explanation of the cosmic acceleration comes back to the fact that
we do not understand gravity at large scales. Such theories can describe the transition
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from deceleration to acceleration in the evolution of the Universe [51]. Moreover, the
coincidence problem may be solved simply in such theories by the Universe expansion.
Also some models of modified theories of gravity are predicted by string/M-theory
considerations [52]. Recently, it has been shown that the accelerated expansion of
the Universe may be the result of a modification to the Einstein-Hilbert action in the
context of higher order gravity theories [53–55]. Our purpose here is to consider the
gravitational collapse of a star within the framework of f (R) theories of gravity,
whose matter content obeys the barotropic equation of state, p = wρ. We investigate
the conditions under which the resulting singularity may be naked or not. In Sect. 2
we apply the metric formalism to the action of f (R) gravity [56–58] and rewrite it
as that of the Brans-Dicke theory with ωB D = 0. Choosing f (R) = αRm [59–61] in
Sect.2 and fixing the corresponding potential, we find m as a function of initial energy
density and α. In Sect. 4 we study the behavior of the expansion parameter which
is the key factor in examining the formation or otherwise of trapped surfaces during
the dynamical evolution of the collapse scenario. In Sect. 4 we examine the global
features of the nakedness of the resulting singularity by investigating the behavior of
the Kretschmann scalar as a function of time. In order to fully complete the model we
utilize the Vaidya metric to match the interior spacetime to that of the exterior one.

2 f (R) field equations

We begin by the general action in modified theories of gravity given by

A = 1

2κ

∫
d4x

√−g f (R)+ Amatter (gμν, ψ), (1)

where κ = 8πG, G is the gravitational constant, g is the determinant of the metric, R
represents the Ricci scalar and ψ collectively denotes the matter fields. Introducing
an auxiliary field
, one can write the dynamically equivalent action as (See [62] and
references therein)

A = 1

2κ

∫
d4x

√−g
[

f (
)+ f ′(
)(R −
)
]+ Amatter (gμν, ψ), (2)

where variation with respect to 
 leads to the following equation as

f ′′(
)(R −
) = 0. (3)

If f ′′(
) �= 0, one can then recover action (1) by setting
 = R. Redefining the field

 by φ = f ′(
) and setting

V (φ) = 
(φ)φ − f (
(φ)), (4)

action (2) will take the following form

A = 1

2κ

∫
d4x

√−g [φR − V (φ)] + Amatter (gμν, ψ), (5)
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which corresponds to the Jordan frame representation of the action of Brans-Dicke
theory with Brans-Dicke parameter ωB D = 0. Brans-Dicke theory with ωB D = 0 is
sometimes called massive dilaton gravity [63] which was originally suggested in [64]
in order to generate a Yukawa term in the Newtonian limit. Extremizing the action
yields the following field equations as (we set κ = 8πG = 1 in the rest of this paper)

Gμν = T (eff)
μν , (6)

and

3�φ + 2V (φ)− φ
dV (φ)

dφ
= T m, (7)

where T m stands for the trace of T m
μν and the subscript “m” refers to the matter fields

(fields other than φ) and we have defined the effective stress-energy tensor as

T (eff)
μν = 1

φ

(
T m
μν + T φμν

)
, (8)

with

T φμν = (∇μ∇νφ − gμν�φ)− 1

2
gμνV (φ), (9)

and

Tμm
ν = diag (ρm, pm, pm, pm) , (10)

being the stress-energy tensors of the scalar field and a perfect fluid, respectively.

3 Gravitational collapse of a homogeneous cloud with f (R) = αRm

Let us now build and investigate a homogeneous class of collapsing models in f (R)
gravity with m �= 0, where the trapping of light is avoided till the formation of singu-
larity, allowing the singularity to be visible to outside observers. In order to achieve our
purpose we examine a spherically symmetric homogeneous scalar field, � = �(τ)

originating from geometry. Since the interior spacetime is a dynamical one, we param-
eterize its line element as follows

ds2 = −dτ 2 + a2(τ )
(

dr2 + r2d�2
)
, (11)

where τ is the proper time of a free falling observer whose geodesic trajectories are
distinguished by the comoving radial coordinate r and d�2 is the standard line element
on the unit 2-sphere. It is worth mentioning that here we assume that starting from the
homogeneous initial data, the collapsing configuration remains homogeneous till the
singularity is formed. But as the collapse proceeds there may be some inhomogeneities
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occurring throughout the collapse scenario, the existence of which can be investigated
by perturbation theory, that is, imposing inhomogeneous perturbations on the energy
density, scale factor and BD scalar field and then see whether the terms rising from
inhomogeneity are dominant in the formation of the singularity or not. Here we do not
deal with such an issue but for more details the reader may consult [95] and references
there in. Since the presence of matter acting as a “seed” field prompts the collapse
of the BD scalar field, we have considered perfect fluid models obeying barotropic
equation of state as

pm = wρm . (12)

Using the conservation equation for the matter (∇αT m
αβ = 0) together with the use of

above equation, one gets the following relations betweenρm , pm and the scale factor as

ρm = ρ
0 ma−3(1+w); pm = wρ

0 ma−3(1+w), (13)

where ρ
0 m = ρm(a = 1), is the initial value of energy density of matter on the

collapsing volume. Making use of Eqs. (8) and (11) one finds the following equations
for the effective stress-energy tensor as

ρ
(eff) = −T τ (eff)

τ = 1

φ

(
ρm + ρφ

) = 1

φ

[
ρm − 3

ȧ

a
φ̇ + V (φ)

2

]
, (14)

and

p
(eff) =T r (eff)

r =T θ (eff)
θ =T ϕ (eff)

ϕ = 1

φ

(
pm + pφ

)= 1

φ

[
pm + 2

ȧ

a
φ̇ + φ̈ − V (φ)

2

]
,

(15)

with all other off-diagonal terms being zero and the radial and tangential profiles of
pressure are equal due to the homogeneity and isotropy. Substituting the line element
(11) into Einstein’s equation one gets the interior solution as

ρ
(eff) = 3

ȧ2

a2 = M′

R2 R′ ; p
(eff) = −

[(
ȧ

a

)2

+ 2
ä

a

]
= − Ṁ

R2 Ṙ
, (16)

Ṙ2 = M
R
, (17)

where M(τ, r) rises as a free function from the integration of Einstein’s field equation
which can be interpreted physically as the total mass within the collapsing cloud at
a coordinate radius r with M ≥ 0, and R(τ, r) = ra(τ ) is the physical area radius
for the volume labeled by the comoving coordinate r . From Eq. (14) and first part of
Eq. (16), one can solve for the mass function

M = R3

3φ
(ρφ + ρm). (18)
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Using the above equation together with Eq. (17) we arrive at a relation between ȧ and
the effective energy density as follows

ȧ2 = a2

3φ
(ρφ + ρm). (19)

Since we are concerned with a continual collapsing scenario, the time derivative of the
scale factor should be negative (ȧ < 0) implying that the physical area radius of the
collapsing volume for constant value of r decreases monotonically. The singularity
arising as the final state of collapse at τ = τs is given by a(τs) = 0. On the other hand
when the scale factor and physical area radius of all the collapsing shells vanish, the
collapsing cloud has reached a singularity. A point at which the energy density and
pressure blows up, the Kretschmann scalar K = Rabcd Rabcd diverges and the normal
differentiability and manifold structures break down. In order to solve the field equa-
tions we proceed by substituting for ρ

(eff) and p
(eff) from Eq. (16) into Eqs. (14) and

(15) and rewrite them as follows

3
ȧ2

a2 = 1

αm�

[
ρ

0 ma−3(1+w) − 3αm
ȧ

a
�̇+ V (�)

2

]
, (20)

−
[(

ȧ

a

)2

+ 2
ä

a

]
= 1

αm�

[
wρ

0 ma−3(1+w) + αm�̈+ 2αm
ȧ

a
�̇− V (�)

2

]
, (21)

where for later convenience we have rescaled the scalar field asφ = αm� (α and m are
real constants), and by the virtue of Eq. (4) the associated potential to f (R) = αRm

can be fixed as

V (�) = α(m − 1)�
m

m−1 ; m �= 1. (22)

Since the scalar field must diverge at the singularity we examine its behavior by taking
the following ansatz for the scalar field

�(τ) = aδ(τ ), (23)

where δ is a constant whose sign decides the divergence of the scalar field. Substituting
the first and second time derivatives of the scale factor from Eqs. (20) and (21) into
Eq. (7) together with the use of Eq. (22) one finds

a−[δ+3(1+w)]
{2ρ

0 m(δ + 3w − 1)

3αmδ(2 + δ)

}
+ a

[
δ

m−1

] {
4 + δ(2m − 1)− 2m

6mδ + 3mδ2

}
= 0. (24)

Matching the powers of scale factor in Eq. (24) we arrive at the following expression
for δ

δ = 3(1 + w)(1 − m)

m
, (25)
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whence by substituting the above equation into the pair of square brackets in Eq. (24)
one gets the following equation to be satisfied by m

α
{

3(1 + w)+ m [−13 − 9w + m(8 + 6w)]
}

+ 2ρ
0m [4m − 3(1 + w)] = 0. (26)

Solving the above equation, we find m as a function of α and ρ
0m for w as

m± =
13α − 8ρ

0m ±
[
73α2 − 16αρ

0m + 64ρ2
0m

] 1
2

16α
, (27)

for w = 0,

m± = −
−5α + 4ρ

0m ±
[
13α2 − 16αρ

0m + 16ρ2
0m

] 1
2

6α
, (28)

for w = − 1
3 ,

m± = −
−7α + 8ρ

0m ±
[
33α2 − 80αρ

0m + 64ρ2
0m

] 1
2

8α
, (29)

for w = − 2
3 , and

m± =
4α − 2ρ

0m ± √
2
[
3α2 + 2αρ

0m + 2ρ2
0m

] 1
2

5α
, (30)

for w = 1
3 , where α �= 0.

4 Time behavior of the scale factor and singular epoch

One would like to study time behavior of the scale factor as the collapse evolves,
considering matter fields. If at time τ = τ ∗ (or equivalently for some a = a∗) the
collapse begins, then by integrating Eq. (20) together with the use of Eqs. (22) and
(23) near the singularity with respect to time one gets the time behavior of the scale
factor as
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a(τ ) =
⎡
⎣a∗ 1

2 (δ+3(1+w))− 1

2

√
2ρ

0m +α(m−1)

6αm(1+δ) (δ + 3(1 + w)) (τ − τ∗)

⎤
⎦

2
δ+3(1+w)

,

(31)

and the corresponding singular epoch as

τs = 2

√
2ρ

0m + α(m − 1)

6αm(1 + δ)

a∗ 1
2 (δ+3(1+w))

δ + 3(1 + w)
+ τ ∗, (32)

where the time τs corresponds to a vanishing scale factor. Thus the collapse reaches the
singularity in a finite proper time. This result for the scale factor completes the interior
solution within the collapsing cloud, providing us with the required construction.

5 The conditions

We are now in a position to investigate the nature of singularity as the endstate of a
collapsing scenario. The singularity is called locally naked if it is only visible to an
observer being in the neighborhood of it (such a singularity is necessarily covered
by a spacetime event horizon) and is called globally naked if there exists a family
of future directed non-spacelike geodesics reaching to the outside observers in the
spacetime and terminating at the past in the singularity. To investigate the nature of
spacetime singularity arising from the collapse procedure, we examine here whether
such a singularity could be naked, or necessarily covered within a spacetime event
horizon and if so under what conditions. Since α can be regarded as a free parameter,
we seek for the appropriate values of it satisfying the following conditions

• The ratio M/R stays less than unity till the singular epoch which means that the
singularity has been formed earlier than the formation of the apparent horizon or
the formation of trapped surfaces have been failed till the singular epoch.

• δ < 0 during the gravitational collapse scenario accompanied by divergence of
the scalar field.

• For physical reason, weak energy condition, stated as ρ
(eff) ≥ 0 and ρ

(eff)+p
(eff) ≥0

must be satisfied during the dynamical evolution of the system.
• The effective energy density and effective pressure blow up in the vicinity of the

singularity, the latter being negative during the evolution of the collapse process,
since the absence of trapped surfaces is accompanied by a negative pressure. In
fact the negativeness of the effective pressure implies that Ṁ < 0, that is, the mass
contained in the collapsing volume with comoving coordinate r keeps decreasing
leading to an outward energy flux during the gravitational collapse scenario.

• Kretschmann scalar diverges at the singular time and then converges to zero at
late times.

In order to determine whether the singularity is naked or not, one needs to investigate
the formation of trapped surfaces during the collapse procedure. These surfaces are
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defined as compact two-dimensional (smooth) spacelike surfaces such that both fam-
ilies of ingoing and outgoing null geodesics orthogonal to them necessarily converge
or the expansion parameter� of the outgoing future-directed null geodesics is every-
where negative [65,66]. Consider a congruence of outgoing radial null geodesics
having the tangent vector (V τ , V r , 0, 0), where V τ = dτ/dk and V r = dr/dk and k
is an affine parameter along the geodesics. For the spacetime metric (11), the geodesic
expansion parameter which is defined as the covariant divergence of the vector field
V ν is given by [67]

� = ∇νV ν = 2

r

[
1 −

√
M
R

]
V r . (33)

If the null geodesics terminate at the singularity in the past with a definite tangent, then
at the singularity we have � > 0. If such family of curves do not exist and the event
horizon forms earlier than the singularity, a black hole is formed. Utilizing Eq. (33),
we now attempt to study the formation of trapped surfaces during the dynamical evo-
lution of the gravitational collapse procedure. We show that physically, the formation
of a black hole or a naked singularity as the final state for the dynamical evolution is
governed by the rate of collapse and the presence of scalar field. It is seen that for a
specified range of variation of α, the cosmic censorship conjecture may be violated for
all cases of matter considered below. In the following subsections we consider first the
four conditions mentioned in the beginning of this section and postpone the last one
to the next section. We begin by calculating the ratio M/R in the general case which
is considered for the four cases of matter,w = {0,− 1

3 ,− 2
3 ,

1
3

}
corresponding to dust,

cosmic strings, domain walls and radiation, respectively. By the virtue of Eq. (17) we
have

M
R

= r2
[2ρ

0m + α(m − 1)

6αm(1 + δ)

]
a−(δ+3w+1). (34)

The weak energy condition which states that the energy density as measured by any
local observer must be non-negative can be written for any timelike vector Vμ as
follows

TμνVμV ν ≥ 0, (35)

whereby one gets the following conditions for the effective energy density (ρ
(eff) ≥ 0)

ρ
(eff) =

[2ρ
0m + α(m − 1)

2αm(1 + δ)

]
a−(δ+3(w+1)) ≥ 0, (36)

and the sum of effective energy density and pressure (ρ
(eff) + p

(eff) ≥ 0) as

ρ
(eff) + p

(eff) =
(

1 + w + δ

3

)[2ρ
0m + α(m − 1)

2αm(1 + δ)

]
a−(δ+3(w+1)) ≥ 0. (37)
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Finally for the rate of change of mass function with respect to time one has

Ṁ = r3(δ + 3w)

[2ρ
0m + α(m − 1)

6αm(1 + δ)

]
a−(δ+3w+1) | ȧ |, (38)

where the minus sign has been absorbed into ȧ. At the initial epoch where a (τ ∗) = 1
there should not be any trapping of light, then by assuming that r = rb is the boundary
of the collapsing volume one may easily see that for a suitable initial value of energy
density the ratio M/R is less than unity at the initial time. This fact is in accordance
with the regularity conditions stating that if gravitationally collapsing massive stars are
to be modeled, then the energy density, pressure, and other physical quantities must
be finite and regular at the initial spacelike hyper-surface from which the collapse
commences. For the case of homogeneous-density collapse the resulting singularity
coincides with the curves R(τs, 0) = 0 or R(τs, r �= 0) = 0, corresponding to a cen-
tral or non-central singularity, respectively. In the next subsections we first consider
the simpler case of non-central singularity and investigate formation or otherwise of
trapped surfaces for different values of w.

5.1 Dust (w = 0)

For this case of matter we have the following relations (we set ρ
0m = 1 in the rest of

this paper)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
R = r2

[ 2ρ
0m +α(m−1)
6αm(1+δ)

]
a−(δ+1),

ρ
(eff) + p

(eff)

= (1 + δ
3

) [ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+3),

⎧⎪⎪⎨
⎪⎪⎩
ρ
(eff) =

[ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+3),

Ṁ=r3δ
[ 2ρ

0m +α(m−1)
6αm(1+δ)

]
a−(δ+1) | ȧ | .

p
(eff) = δ

3

[ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+3),

(39)

If the interval for α is −3.9 < α < −0.1 and by picking out m− in Eq. (27), the
corresponding parameter δ− is always negative, its absolute value varies between
1 <| δ− |< 3 and its minimum and maximum values are δ− = −2.72484 and
δ− = −1.00569, respectively. It is seen that for such values of α and δ−, the ratio
M/R stays less than unity and then the expansion parameter is always positive up to
the singularity, that is the singularity is formed earlier than the formation of appar-
ent horizon which is the boundary of trapped surfaces. The negativeness of effective
pressure for the allowed values of α ensures that Ṁ is negative as collapse proceeds
which means that the mass contained in the collapsing volume keeps waning. Then
there exists an outward energy flux which may be visible to outside observers (for
the case of globally naked singularity) since the trapped surfaces do not form early
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enough to cover the singularity. In addition, the validity of the weak energy condition
can be easily checked by the virtue of expressions obtained for ρ

(eff) and ρ
(eff) + p

(eff) .

5.2 Cosmic strings (w = − 1
3 )

Cosmic strings are the result of hypothetical 1-dimensional (spatially) topological
defects which may have been constructed during a symmetry breaking phase transi-
tion at the early Universe. The possibility of their existence was first considered by
Tom Kibble [68] in 1976. A fluid of cosmic strings may have an effective equation of
state, p

m
= − 1

3ρm
, so one has the following relations for this type of matter fluid as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
R = r2

[ 2ρ
0m +α(m−1)
6αm(1+δ)

]
a−δ,

ρ
(eff) + p

(eff) = ( δ+2
3

) [ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+2),

⎧⎪⎪⎨
⎪⎪⎩

ρ
(eff) =

[ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+2),

Ṁ = r3(δ − 1)
[ 2ρ

0m +α(m−1)
6αm(1+δ)

]
a−δ | ȧ | .

p
(eff) = ( δ−1

3

) [ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+2),

(40)

Choosing m+ in Eq. (28), it can be seen that the valid range of change for α is
−100 < α < −0.1 upon which the absolute value of parameter δ+ is restricted to
vary between 0 <| δ+ |< 2 (in order to prevent the ratio M/R to be infinity, δ+ = −1
has to be excluded) and its minimum and maximum values are δ+ = −1.86224 and
δ+ = −0.61558, respectively. It should be noted that one can choose the lower limit of
α to be much less than −100, but such a choice does not affect considerably the value
of δ+ and its magnitude remains close to −0.6. Taking these values into account, the
ratio M/R stays finite till the singular epoch and causes the expansion parameter to be
positive up to the singularity, and if no trapped surfaces exist initially then none would
form until the epoch a(τs) = 0 which is consistent with the fact that there exist families
of outgoing radial null geodesics emerging from the singularity. Also the weak energy
condition is satisfied (| δ+ |< 2) and the effective pressure is negative (since δ+ < 0),
consistent with the fact that time derivative of mass function is negative i.e., the mass
incorporated in the region where the collapse procedure evolves keeps falling off. As
a result, there exists an outward energy flux during the collapse scenario which may
be visible to external Universe.

5.3 Domain walls (w = − 2
3 )

Domain walls are two-dimensional objects that form when a discrete symmetry is
spontaneously broken at a phase transition [69]. It has been noticed that there exist
a link between domain-walls and cosmologies such as brane cosmology [70]. The
effective equation of state for a fluid of domain walls may be p

m
= − 2

3ρm
and the

mentioned conditions for this case can be written as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
R = r2

[ 2ρ
0m +α(m−1)
6αm(1+δ)

]
a−(δ−1),

ρ
(eff) + p

(eff) = ( δ+1
3

) [ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+1),

⎧⎪⎪⎨
⎪⎪⎩

ρ
(eff) =

[ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+1),

Ṁ = r3(δ − 2)
[ 2ρ

0m +α(m−1)
6αm(1+δ)

]
a−(δ−1) | ȧ | .

p
(eff) = ( δ−2

3

) [ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+1),

(41)

As long as α varies in the range −100 < α < −0.1 (lower limit of α can be chosen
much less than −100 but such a choice has no noticeable influence on the maximum
value of δ), by choosing m+ in Eq. (29), the parameter δ+ is negative, its absolute
value is less than unity and its minimum and maximum values are δ+ = −0.953501
and δ+ = −0.379572, respectively. One then may easily see that at initial epoch
(a (τ ∗) = 1), the regularity condition (there should be no trapped surfaces at the
initial hyper-surface from which the collapse commences) is satisfied and the ratio
of mass function to physical area radius of the collapsing volume is less than unity
during the collapse procedure denoting that the expansion parameter being positive up
to the singularity. In this case the collapse to a naked singularity may take place, where
the trapped surfaces do not form early enough or are avoided in the spacetime. Also
the mass contained in the collapsing ball reduces as the time advances due to the fact
that the effective pressure stays negative till the singular epoch. It is obvious that for
such values of α and δ+ the weak energy condition is satisfied during the collapse
scenario.

5.4 Radiation (w = 1
3 )

Finally, for this type of matter we have following relations for the said conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
R = r2

[ 2ρ
0m +α(m−1)
6αm(1+δ)

]
a−(δ+2),

ρ
(eff) + p

(eff) = ( δ+4
3

) [ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+4),

⎧⎪⎪⎨
⎪⎪⎩

ρ
(eff) =

[ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+4),

Ṁ = r3(δ + 1)
[ 2ρ

0m +α(m−1)
6αm(1+δ)

]
a−(δ+2) | ȧ | .

p
(eff) = ( δ+1

3

) [ 2ρ
0m +α(m−1)
2αm(1+δ)

]
a−(δ+4),

(42)

The suitable range of variation of α for m− in Eq. (30) is −0.66 < α < −0.01
which makes the corresponding values of δ− to vary in the range 2 <| δ− |< 4 with
δ− = −2.01007 and δ− = −3.95037 are the maximum and minimum values of this
parameter respectively. For such values of α and δ− the ratio M/R stays less than
unity as the collapse procedure ends. Then the expansion parameter remains positive
up to the singularity denoting that the apparent horizon is failed to form. On the other
hand, weak energy condition is satisfied for these values of α and δ− and the effective
pressure is negative till the singular epoch. It is worth noticing that if one chooses the
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parameter α and the power of Ricci scalar in Eqs. (27)–(30) other than the ones deter-
mined in the above subsections, weak energy condition together with the conditions
on effective pressure and the ratio M/R would be violated. The central singularity
occurring at R = 0, r = 0 can be naked if we have any future-directed outgoing null
geodesics terminating in the past at the singularity. In order to examine the possibility
of existence of such families let us introduce a new variable y = rγ with γ > 1
defined in such away that the ratio R′/rγ−1 is a unique finite quantity in the limit
r → 0. Now consider the outgoing radial null geodesic equation which is given by

dτ

dr
= a(τ ). (43)

In terms of variables y = rγ and R the above equation reads

d R

dy
= 1

γ rγ−1

[
Ṙ

dτ

dr
+ R′

]
, (44)

whence using Eq. (17) we have

d R

dy
= R′

γ y
γ−1
γ

[
1 −

√
M
R

]
. (45)

If there exist outgoing radial null geodesics in the past at the central singularity which
occurs at τ = τs , then along such geodesics we have R → 0 as r → 0, or in terms of
the variables y and R, the point y = 0, R = 0 is a singularity of the above first order
differential equation. For such a congruence of geodesics d R/dy must be positive
up to the singularity. Then as long as α, ρ

0m , and m satisfy the values which was
determined previously, trapped surfaces would fail to form as the collapse evolves.

6 Nakedness of the singularity

The final fate of a continual gravitational collapse of a matter cloud ends in either a
black hole or a naked singularity where in the former there exists an event horizon of
spacetime developing earlier than the formation of the singularity to cover it. Thus the
regions of extreme curvatures and densities are concealed from the outside observers.
The event horizon or surface of a black hole is defined as the boundary of the spacetime
that is causally connected to future null infinity [71], or in other word the boundary
between events from which light rays emitted inside this boundary surface can not
escape to future infinity while those emitted outside in a suitable direction can. Both
event and apparent horizons coincide in stationary spacetimes, however, this case is not
generally true in dynamical ones. Although the existence of an apparent horizon pred-
icates the existence of spacetime event horizon, the converse is not always true and the
event horizon may veil the singularity even if apparent horizon does not emerge on a
spatial slice. So far we have discussed the conditions under which the collapse scenario
ends in a locally naked singularity, that is, the singularity is visible to an observer being
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in the neighborhood of it. In this case, the trajectories coming out of the singularity
do not actually come out to a distant observer but fall back into the singularity again
at a later time without going out of the boundary of the star. Thus the locally naked
singularity could still be covered by the event horizon and only strong version of cos-
mic censorship conjecture is violated but the week form of it is intact [72]. However,
if the event horizon is delayed to form or the singularity forms early enough before
the formation of event horizon, then it would be visible to external observers and thus
a globally naked singularity would born as the endstate of collapse rather than a black
hole. Therefore in such a situation curvature invariants namely the Kretschmann scalar
should increase near the singularity, diverge at the singular epoch and then converge
to zero at late times [74]. In previous section we showed that for suitable values of
α, trapping of light can be avoided which means that the apparent horizon is failed to
form. But since the failure of formation of an apparent horizon does not necessarily
bode the absence of an event horizon, we investigate the nakedness of the singularity in
spherically symmetric collapse of a fluid by considering the behavior of Kretschmann
scalar with respect to time. For the line element (11) this quantity is given by

K ≡ Rabcd Rabcd = 12

a4

[
a2ä2 + ȧ4

]
. (46)

By the virtue of Eq. (31) one can easily obtain this quantity as a function of time
for w = {

0,− 1
3 ,− 2

3 ,
1
3

}
and the results are sketched in Figures 1, 2, 3 and 4. It

is seen that Kretschmann scalar diverges at singular time and then tends to zero at
late times. In order to better understand the situation one should resort to critical
behavior at the black hole threshold. Such a behavior was discovered in gravitational
collapse of a spherically symmetric massless scalar field [75], axisymmetric gravi-
tational waves [76], spherical system of a radiation fluid [77] and spherical system
of a perfect fluid obeying the equation of state p = wρ [78]. Consider a type II
critical collapse in which the black hole mass is scaled as MB H ∝| p − p∗ |γ ,
where p parameterizes a family of initial data sets evolving through Einstein’s equa-
tions, p∗ is a critical value and γ is a positive constant which is called a critical
exponent [74,79,80]. For a sufficiently large value of p the collapse procedure devel-
ops to a black hole and for a sufficiently small one it evolves to a dispersion [79,
80]. The boundary between these two regimes is the black hole threshold. Now con-
sider the limit from supercritical collapse (p > p∗) to a critical collapse, i.e., p →
p∗. In such a limit, the black hole mass tends to zero and the maximum value of
curvature diverges just outside the event horizon. Since we have arbitrarily strong
curvature outside the event horizon by fine-tuning, the black hole threshold can be
regarded as a globally naked singularity [79,80]. Let us now consider the geome-
try of the exterior spacetime. In order to complete the model we need to match the
interior spacetime of the dynamical collapse to a suitable exterior geometry. The
Schwarzschild solution is a useful model to describe the spacetime outside stars but
the spacetime outside such a star may be filled with radiated energy from the star in
the form of electromagnetic radiation. The Schwarzschild solution does not describe
this properly as it deals with an empty spacetime given by Tab = 0. The space-
time outside a spherically symmetric star surrounded by radiation emitted from the

123



Naked singularity formation in f (R) gravity 2957
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20
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40

radiation

Fig. 1 The behavior of Kretschmann scalar (in units of s−4) as a function of proper time for w = 1
3

and different values of α and δ−. α = −0.65,m− = 2.02575 and δ− = −2.02542, Solid curve, α =
−0.15,m− = 5.97355 and δ− = −3.33038, Dotted curve and α = −0.05,m− = 6.6128 and δ− =
−3.75922, Dashed curve. For the initial energy density, scale factor, and proper time we have adopted the
values ρ0m = 1, a∗ = 1, and τ∗ = 0, respectively. The corresponding singular epoches are, τs = 2.49674
for Solid curve, τs = 9.44081 for Dotted curve, and τs = 27.8945 for Dashed curve

1 2 3 4 5 6
τ

100

200

300

400

500
dust

Fig. 2 The behavior of Kretschmann scalar (in units of s−4) as a function of proper time forw = 0 and dif-
ferent values of α and δ−. α = −3.5,m− = 1.52406 and δ− = −1.03175, Solid curve, α = −2.5,m− =
1.60424 and δ− = −1.12996, Dotted curve and α = −1.5,m− = 1.8076 and δ− = −1.34034, Dashed
curve. For the initial energy density, scale factor, and proper time we have adopted the values ρ0m =
1, a∗ = 1, and τ∗ = 0, respectively. The corresponding singular epoches are, τs = 2.5083 for Solid curve,
τs = 2.70354 for Dotted curve, and τs = 3.19309 for Dashed curve

star is described by the Vaidya metric [81–83] which can be given in the following
form as

ds2
out = −

[
1 − 2M(rv, v)

rv

]
dv2 − 2dvdrv + r2

vd�2, (47)

where v is the retarded null coordinate, rv and M(rv, v) are the Vaidya radius and
Vaidya mass, respectively. In what follows, we use the Isreal-Darmois junction con-
ditions to match the interior spacetime to a Vaidya exterior geometry at the boundary
hyper-surface � given by r = rb. The spacetime metric just inside � is given by

ds2
in = −dτ 2 + a2(τ )

[
dr2 + r2

b d�2
]
, (48)
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400

600

800

cosmic strings

Fig. 3 The behavior of Kretschmann scalar (in units of s−4) as a function of proper time for w = − 1
3 and

different values ofα and δ+.α = −90,m+ = 1.44581 and δ+ = −0.616689, Solid curve,α = −30,m+ =
1.46909 and δ+ = −0.638609, Dotted curve and α = −10,m+ = 1.54031 and δ+ = −0.701562,
Dashed curve. For the initial energy density, scale factor, and proper time we have adopted the values
ρ0m = 1, a∗ = 1, and τ∗ = 0, respectively. The corresponding singular epoches are, τs = 4.04176 for
Solid curve, τs = 4.13327 for Dotted curve, and τs = 4.38509 for Dashed curve

5 10 15 20
τ

100

200

300

400

500

domain walls

Fig. 4 The behavior of Kretschmann scalar (in units of s−4) as a function of proper time for w = − 2
3

and different values of α and δ+. α = −100,m+ = 1.61179 and δ+ = −0.379572, Solid curve, α =
−20,m+ = 1.68699 and δ+ = −0.407227, Dotted curve and α = −2,m+ = 2.55425 and δ+ =
−0.608495, Dashed curve. For the initial energy density, scale factor, and proper time we have adopted the
values ρ0m = 1, a∗ = 1, and τ∗ = 0, respectively. The corresponding singular epoches are, τs = 10.2643
for Solid curve, τs = 10.787 for Dotted curve, and τs = 16.808 for Dashed curve

whereby matching the area radius at the boundary one gets

R(rb, τ ) = rv(v). (49)

One then gets the interior and exterior metrics on the hyper-surface � as follows

ds2
�in = −dτ 2 + a2(τ )r2

b d�2, (50)

ds2
�out = −

[
1 − 2M(rv, v)

rv
+ 2

drv
dv

]
dv2 + r2

vd�2, (51)
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where matching the first fundamental form gives

[
dv

dτ

]
�

= 1[
1 − 2M(rv,v)

rv
+ 2 drv

dv

] 1
2

, (rv)� = rba(τ ). (52)

In order to match the second fundamental form (extrinsic curvature) for interior and
exterior spacetimes we need to find the unit vector field normal to the hyper-surface
�. We then proceed by taking into account the fact that any spacetime metric can be
written locally in the following form as

ds2 = −
(
α2 − βiβ

i
)

dτ 2 − 2βi dxi dτ + hi j dxi dx j , (53)

where α, β i , and hi j are the lapse function, shift vector, and induced metric, respec-
tively and i, j run in {1, 2, 3}. Comparing the above equation with Eqs. (47) and (48)
together with using the following normalization condition for nv and nrv

nvnv + nrvnrv = 1, (54)

one gets the normal vector fields for the interior and exterior spacetimes as

na
in = [0, a(τ )−1, 0, 0], (55)

nv = − 1[
1 − 2M(rv,v)

rv
+ 2 drv

dv

] 1
2

, nrv = 1 − 2M(rv,v)
rv

+ drv
dv[

1 − 2M(rv,v)
rv

+ 2 drv
dv

] 1
2

. (56)

The extrinsic curvature of the hyper-surface� is defined as the Lie derivative of the
metric tensor with respect to the normal vector n, given by the following relation as

Kab = 1

2
Lngab = 1

2

[
gab,cnc + gcbnc

,a + gacnc
,b

]
, (57)

whereby the nonzero θ components of the extrinsic curvature read

K in
θθ = rba(τ ), K out

θθ = rv
1 − 2M(rv,v)

rv
+ drv

dv[
1 − 2M(rv,v)

rv
+ 2 drv

dv

] 1
2

. (58)

Setting
[
K in
θθ − K out

θθ

]
�

= 0 on the hyper-surface �, together by using Eqs. (17) and
(52) one gets the following relation between the mass function and Vaidya mass on
the boundary as

M(τ, rb) = 2M(rv, v). (59)
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From Eqs. (59) and (18) it is seen that the behavior of Vaidya mass is decided by the
allowed values of ρ

0 m, α and m which prompt the gravitational collapse scenario to
end in the formation of a naked singularity. In order to get a relation describing the
rate of change of Vaidya mass with respect to rv one has to match the τ component of
the extrinsic curvature on the hyper-surface �. Setting

[
K in
ττ − K out

ττ

] = 0 we have

M(rv, v),rv = M
2rv

+ r2
b aä. (60)

Now it can be seen that at the singular time, τ = τs the ratio 2M(rv, v)/rv tends to
zero. Thus the exterior spacetime at the singular epoch reads

ds2 = −dv2 − 2dvdrv + r2
vd�2, (61)

which describes a Minkowski spacetime in retarded null coordinates. Hence, the
exterior generalized Vaidya metric at singular time can be smoothly extended to the
Minkowski spacetime as the collapse completes [84]. The occurrence of a naked sin-
gularity as the final fate of a collapse scenario depends on the existence of families of
non-spacelike trajectories reaching faraway observers and terminating in the past at the
singularity. In order to show this we begin by Eq. (52) and after using Eq. (59) we get

[
dv

dτ

]
�

= 1 − rbȧ

1 − M(τ,rb)
rv

. (62)

It is seen that imposing the null condition on the Vaidya metric leads to the same
relation as the above. This means that null geodesics can come out from the singularity
and reach distant observers before it evaporates into the free space. On the other hand,
since for the allowed values ofα, ρ

0m and m formation of trapped surfaces in spacetime
is avoided and from another side the singularity emerges outside of the event horizon,
such a congruence of trajectories can be detected by the outside observer.

7 Conclusion and outlook

One of the physical motivations for discussing naked singularities is that these objects
provide a useful laboratory for quantum gravity, since in such ultra-strong gravity
regions the length and time scales are comparable to the Planck length and time. In
other words, quantum effects occurring in such super-dense regimes are no longer
covered by the spacetime event horizon and the chance to observe such effects in the
universe is provided. An example is quantum particle creation due to the formation of
a naked singularity, which has been studied in the literature [85–91]. During the past
20 years, cosmic censorship conjecture has been extensively investigated in spherical
models of gravitational collapse of physically reasonable matter. The simplest of those
which has been scrutinized in detail and has been shown that both black holes and
naked singularities form from generic initial conditions is gravitational collapse of a
dust fluid. Dwivedi and Joshi in [92] and Waugh and Lake in [93] showed that a naked
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strong curvature singularity can be formed in an inhomogeneous dust collapse and a
self-similar one, respectively. Also some examples of naked singularity formation in
gravitational collapse of a scalar field is given in [94]. In this work we have studied the
process of gravitational collapse of a star where the matter fluid obeys the barotropic
equation of state p = wρ, in the context of f (R) theories of gravity. Making use of
metric formalism we wrote the action of f (R) gravity as the Brans-Dicke one with
vanishing coupling parameter. Having solved the resulting field equations by taking
the ansatz (23) for scalar field we arrived at the expressions (27)–(30) for the exponent
of Ricci scalar as a function of α and initial energy density. In Sect. 5 we imposed
five conditions on the effective energy density and pressure, the ratio M/R, param-
eter δ, time behavior of the mass function, and Kretschmann scalar, the validity of
which depends on determining appropriate values of α. As long as these conditions
are fulfilled the resulting singularity can be globally naked, i.e., ultra-dense regions
are no longer covered by a spacetime event horizon and physical effects are allowed
to be shared by the external Universe. It is worth mentioning that there are future
finite-time singularities in the dark energy universe coming from modified gravity as
well as in other dark energy theories. Considering f (R) gravity models that satisfy
cosmological viability conditions (chameleon mechanism), it is possible to show that
finite-time singularities emerge in several cases. Such singularities can be classified
according to the values of the scale factor a(t), the density ρ, and the pressure p [96].

Acknowledgments The authors would like to express their sincere thanks to H. R. Sepangi for useful
discussions.
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